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In a previous paper, we demonstrated that the linearized general relativity could explain dark matter (the rotation speed of galaxies, the rotation speed of dwarf satellite galaxies, the movement in a plane of dwarf satellite galaxies, the decreasing quantity of dark matter with the distance to the center of galaxies' cluster, the expected quantity of dark matter inside galaxies and the expected experimental values of parameters Ω dm of dark matter measured in CMB). It leads, compared with Newtonian gravitation, to add a new component (gravitic field) to gravitation without changing the gravity field (also known as gravitomagnetism). In this explanation, dark matter would be a uniform gravitic field that embeds some very large areas of the universe. In this article we are going to see that this specific gravitic field, despite its weakness, could be soon detectable, allowing testing this explanation of dark matter. It should generate a slight discrepancy in the expected measure of the Lense-Thirring effect of the Earth. In this theoretical frame, the Lense-Thirring effect of the "dark matter" would be a value between around 0.3 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 and 0.6 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚. In the LAGEOS or Gravity Probe B experiments, there was not enough precision (around 10% for the expected 6606 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑦𝑦 -1 geodetic and 39 𝑚𝑚𝑚𝑚𝑚𝑚. 𝑦𝑦 -1 frame-dragging precessions). In the GINGER experiment, there could be enough, the expected accuracy would be around 1%. If this discrepancy were verified, it would be the first direct measure of the dark matter.

Overview

General relativity implies the existence of two gravitational components. In addition of the gravity field, there is a gravitic field (together giving what is called the gravitomagnetism) just like the magnetic field in electromagnetism. The new gravitic field can be measured by its precession effect, known as Lense-Thirring effect. Several experiments have validated this effect for the Earth gravitic field, NASA's LAGEOS satellites or Gravity Probe B [START_REF] Adler R | The three-fold theoretical basis of the Gravity Probe B gyro precession calculation[END_REF] with an accuracy of around 10%. Some new experiments will try to obtain a higher accuracy, for example GINGER [START_REF] Ruggiero | Sagnac Effect, Ring Lasers and Terrestrial Tests of Gravity[END_REF] with an expected accuracy of around 1%.

In [START_REF] Corre | Dark matter, a new proof of the predictive power of General Relativity[END_REF], a solution is proposed to explain the dark matter. This explanation leads to the assumption that we are embedded in a relatively uniform gravitic field generated by larger structures than galaxies (likely the clusters). Just like the Earth gravitic field can be measured, this hypothetical embedded gravitic field could be measured by its precession effect. Such a measure will be a direct measure of the "dark matter". We are going to see that the magnitude of this effect is at the limit of our detection. And even, in the most advantageous case, the accuracy of 1% (as expected in GINGER experiment) could be enough to detect it.

First, I recall the theoretical idealization used in this article and in [START_REF] Corre | Dark matter, a new proof of the predictive power of General Relativity[END_REF].

Gravitation in linearized general relativity

From general relativity, one deduces the linearized general relativity in the approximation of a quasi-flat Minkowski space (𝑔𝑔 𝜇𝜇𝜇𝜇 = 𝜂𝜂 𝜇𝜇𝜇𝜇 + ℎ 𝜇𝜇𝜇𝜇 ; |ℎ 𝜇𝜇𝜇𝜇 | ≪ 1). With following Lorentz gauge, it gives the following field equations [START_REF] Hobson | Relativité générale[END_REF] (with

= 1 𝑐𝑐 2 𝜕𝜕 2 𝜕𝜕𝜕𝜕 2 -∆): 𝜕𝜕 𝜇𝜇 ℎ � 𝜇𝜇𝜇𝜇 = 0 ; ℎ � 𝜇𝜇𝜇𝜇 = -2 8𝜋𝜋𝜋𝜋 𝑚𝑚 4 𝑇𝑇 𝜇𝜇𝜇𝜇 (𝐼𝐼) With: ℎ � 𝜇𝜇𝜇𝜇 = ℎ 𝜇𝜇𝜇𝜇 - 1 2 𝜂𝜂 𝜇𝜇𝜇𝜇 ℎ ; ℎ ≡ ℎ 𝜎𝜎 𝜎𝜎 ; ℎ 𝜇𝜇 𝜇𝜇 = 𝜂𝜂 𝜇𝜇𝜎𝜎 ℎ 𝜎𝜎𝜇𝜇 ; ℎ � = -ℎ (𝐼𝐼𝐼𝐼)
The general solution of these equations is:

ℎ � 𝜇𝜇𝜇𝜇 (𝑚𝑚𝑐𝑐, 𝑥𝑥 ⃗) = - 4𝜋𝜋 𝑚𝑚 4 � 𝑇𝑇 𝜇𝜇𝜇𝜇 (𝑚𝑚𝑐𝑐 -|𝑥𝑥 ⃗ -𝑦𝑦 ⃗|, 𝑦𝑦 ⃗) |𝑥𝑥 ⃗ -𝑦𝑦 ⃗| 𝑚𝑚 3 𝑦𝑦 ⃗
In the approximation of a source with low speed, one has: 𝑇𝑇 00 = 𝜌𝜌𝑚𝑚 2 ; 𝑇𝑇 0𝑖𝑖 = 𝑚𝑚𝜌𝜌𝑢𝑢 𝑖𝑖 ; 𝑇𝑇 𝑖𝑖𝑖𝑖 = 𝜌𝜌𝑢𝑢 𝑖𝑖 𝑢𝑢 𝑖𝑖 And for a stationary solution, one has:

ℎ � 𝜇𝜇𝜇𝜇 (𝑥𝑥 ⃗) = - 4𝜋𝜋 𝑚𝑚 4 � 𝑇𝑇 𝜇𝜇𝜇𝜇 (𝑦𝑦 ⃗) |𝑥𝑥 ⃗ -𝑦𝑦 ⃗| 𝑚𝑚 3 𝑦𝑦 ⃗
At this step, by proximity with electromagnetism, one traditionally defines a scalar potential 𝜑𝜑 and a vector potential 𝐻𝐻 𝑖𝑖 . There are in the literature several definitions [START_REF] Mashhoon | Gravitoelectromagnetism: A brief review[END_REF] for the vector potential 𝐻𝐻 𝑖𝑖 . In our study, we are going to define:

ℎ � 00 = 4𝜑𝜑 𝑚𝑚 2 ; ℎ � 0𝑖𝑖 = 4𝐻𝐻 𝑖𝑖 𝑚𝑚 ; ℎ � 𝑖𝑖𝑖𝑖 = 0
With gravitational scalar potential 𝜑𝜑 and gravitational vector potential 𝐻𝐻 𝑖𝑖 :

𝜑𝜑(𝑥𝑥 ⃗) ≡ -𝜋𝜋 � 𝜌𝜌(𝑦𝑦 ⃗) |𝑥𝑥 ⃗ -𝑦𝑦 ⃗| 𝑚𝑚 3 𝑦𝑦 ⃗ 𝐻𝐻 𝑖𝑖 (𝑥𝑥 ⃗) ≡ - 𝜋𝜋 𝑚𝑚 2 � 𝜌𝜌(𝑦𝑦 ⃗)𝑢𝑢 𝑖𝑖 (𝑦𝑦 ⃗) |𝑥𝑥 ⃗ -𝑦𝑦 ⃗| 𝑚𝑚 3 𝑦𝑦 ⃗ = -𝐾𝐾 -1 � 𝜌𝜌(𝑦𝑦 ⃗)𝑢𝑢 𝑖𝑖 (𝑦𝑦 ⃗) |𝑥𝑥 ⃗ -𝑦𝑦 ⃗| 𝑚𝑚 3 𝑦𝑦 ⃗
With 𝐾𝐾 a new constant defined by: 𝜋𝜋𝐾𝐾 = 𝑚𝑚 2 This definition gives 𝐾𝐾 -1 ~7.4 × 10 -28 very small compare to 𝜋𝜋.

The field equations (𝐼𝐼) can be then written (Poisson equations):

∆𝜑𝜑 = 4𝜋𝜋𝜋𝜋𝜌𝜌 ; ∆𝐻𝐻 𝑖𝑖 = 4𝜋𝜋𝜋𝜋 𝑚𝑚 2 𝜌𝜌𝑢𝑢 𝑖𝑖 = 4𝜋𝜋𝐾𝐾 -1 𝜌𝜌𝑢𝑢 𝑖𝑖 (𝐼𝐼𝐼𝐼𝐼𝐼)
With the following definitions of 𝑔𝑔 ⃗ (gravity field) and 𝑘𝑘 �⃗ (gravitic field), those relations can be obtained from following equations:

𝑔𝑔 ⃗ = -𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ����������⃗ 𝜑𝜑 ; 𝑘𝑘 �⃗ = 𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ 𝐻𝐻 � �⃗ 𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ 𝑔𝑔 ⃗ = 0 ; 𝑚𝑚𝑚𝑚𝑑𝑑 𝑘𝑘 �⃗ = 0 ; 𝑚𝑚𝑚𝑚𝑑𝑑 𝑔𝑔 ⃗ = -4𝜋𝜋𝜋𝜋𝜌𝜌 ; 𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ 𝑘𝑘 �⃗ = -4𝜋𝜋𝐾𝐾 -1 ȷ p ��⃗
With relations (𝐼𝐼𝐼𝐼), one has:

ℎ 00 = ℎ 11 = ℎ 22 = ℎ 33 = 2𝜑𝜑 𝑚𝑚 2 ; ℎ 0𝑖𝑖 = 4𝐻𝐻 𝑖𝑖 𝑚𝑚 ; ℎ 𝑖𝑖𝑖𝑖 = 0 (𝐼𝐼𝐼𝐼)
The equations of geodesics in the linear approximation give:

𝑚𝑚 2 𝑥𝑥 𝑖𝑖 𝑚𝑚𝑐𝑐 2 ~-1 2 𝑚𝑚 2 𝛿𝛿 𝑖𝑖𝑖𝑖 𝜕𝜕 𝑖𝑖 ℎ 00 -𝑚𝑚𝛿𝛿 𝑖𝑖𝑖𝑖 �𝜕𝜕 𝑖𝑖 ℎ 0𝑖𝑖 -𝜕𝜕 𝑖𝑖 ℎ 0𝑖𝑖 �𝑑𝑑 𝑖𝑖
It then leads to the movement equations:

𝑚𝑚 2 𝑥𝑥 ⃗ 𝑚𝑚𝑐𝑐 2 ~-𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ����������⃗ 𝜑𝜑 + 4𝑑𝑑 ⃗ ∧ �𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ 𝐻𝐻 � �⃗ � = 𝑔𝑔 ⃗ + 4𝑑𝑑 ⃗ ∧ 𝑘𝑘 �⃗
From relation (𝐼𝐼𝐼𝐼), one deduces the metric in a quasi flat space:

𝑚𝑚𝑚𝑚 2 = �1 + 2𝜑𝜑 𝑚𝑚 2 � 𝑚𝑚 2 𝑚𝑚𝑐𝑐 2 + 8𝐻𝐻 𝑖𝑖 𝑚𝑚 𝑚𝑚𝑚𝑚𝑐𝑐𝑚𝑚𝑥𝑥 𝑖𝑖 -�1 - 2𝜑𝜑 𝑚𝑚 2 � ��𝑚𝑚𝑥𝑥 𝑖𝑖 � 2
In a quasi-Minkowski space, one has:

𝐻𝐻 𝑖𝑖 𝑚𝑚𝑥𝑥 𝑖𝑖 = -𝛿𝛿 𝑖𝑖𝑖𝑖 𝐻𝐻 𝑖𝑖 𝑚𝑚𝑥𝑥 𝑖𝑖 = -𝐻𝐻 � �⃗ . 𝑚𝑚𝑥𝑥 ����⃗
We retrieve the known expression [START_REF] Hobson | Relativité générale[END_REF] with our definition of 𝐻𝐻 𝑖𝑖 :

𝑚𝑚𝑚𝑚 2 = �1 + 2𝜑𝜑 𝑚𝑚 2 � 𝑚𝑚 2 𝑚𝑚𝑐𝑐 2 - 8𝐻𝐻 � �⃗ . 𝑚𝑚𝑥𝑥 ����⃗ 𝑚𝑚 𝑚𝑚𝑚𝑚𝑐𝑐 -�1 - 2𝜑𝜑 𝑚𝑚 2 � ��𝑚𝑚𝑥𝑥 𝑖𝑖 � 2
Remark: Of course, one retrieves all these relations starting with the parameterized post-Newtonian formalism. From (CLIFFORD M. WILL, 2014) one has:

𝑔𝑔 0𝑖𝑖 = - 1 2 (4𝛾𝛾 + 4 + 𝛼𝛼 1 )𝐼𝐼 𝑖𝑖 ; 𝐼𝐼 𝑖𝑖 (𝑥𝑥 ⃗) = 𝜋𝜋 𝑚𝑚 2 � 𝜌𝜌(𝑦𝑦 ⃗)𝑢𝑢 𝑖𝑖 (𝑦𝑦 ⃗) |𝑥𝑥 ⃗ -𝑦𝑦 ⃗| 𝑚𝑚 3 𝑦𝑦 ⃗
The gravitomagnetic field and its acceleration contribution are:

𝐵𝐵 𝑔𝑔 ����⃗ = ∇ � �⃗ ∧ �𝑔𝑔 0𝑖𝑖 𝑚𝑚 𝚤𝚤 ���⃗ � ; 𝑚𝑚 𝑔𝑔 ����⃗ = 𝑑𝑑 ⃗ ∧ 𝐵𝐵 𝑔𝑔 ����⃗
And in the case of general relativity (that is our case): 𝛾𝛾 = 1 ; 𝛼𝛼 1 = 0 It then gives:

𝑔𝑔 0𝑖𝑖 = -4𝐼𝐼 𝑖𝑖 ; 𝐵𝐵 𝑔𝑔 ����⃗ = ∇ � �⃗ ∧ �-4𝐼𝐼 𝑖𝑖 𝑚𝑚 𝚤𝚤 ���⃗ �
And with our definition:

𝐻𝐻 𝑖𝑖 = -𝛿𝛿 𝑖𝑖𝑖𝑖 𝐻𝐻 𝑖𝑖 = 𝜋𝜋 𝑚𝑚 2 � 𝜌𝜌(𝑦𝑦 ⃗)𝛿𝛿 𝑖𝑖𝑖𝑖 𝑢𝑢 𝑖𝑖 (𝑦𝑦 ⃗) |𝑥𝑥 ⃗ -𝑦𝑦 ⃗| 𝑚𝑚 3 𝑦𝑦 ⃗ = 𝐼𝐼 𝑖𝑖 (𝑥𝑥 ⃗)
One then has:

𝑔𝑔 0𝑖𝑖 = -4𝐻𝐻 𝑖𝑖 ; 𝐵𝐵 𝑔𝑔 ����⃗ = ∇ � �⃗ ∧ �-4𝐻𝐻 𝑖𝑖 𝑚𝑚 𝚤𝚤 ���⃗ � = ∇ � �⃗ ∧ �4𝛿𝛿 𝑖𝑖𝑖𝑖 𝐻𝐻 𝑖𝑖 𝑚𝑚 𝚤𝚤 ���⃗ � = 4∇ � �⃗ ∧ 𝐻𝐻 � �⃗ 𝐵𝐵 𝑔𝑔 ����⃗ = 4𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ 𝐻𝐻 � �⃗
With the following definition of gravitic field:

𝑘𝑘 �⃗ = 𝐵𝐵 𝑔𝑔 ����⃗ 4 One then retrieves our previous relations:

𝑘𝑘 �⃗ = 𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ 𝐻𝐻 � �⃗ ; 𝑚𝑚 𝑔𝑔 ����⃗ = 𝑑𝑑 ⃗ ∧ 𝐵𝐵 𝑔𝑔 ����⃗ = 4𝑑𝑑 ⃗ ∧ 𝑘𝑘 �⃗
A last remark: The interest of our notation is that the field equations are strictly equivalent to Maxwell idealization (in particular the speed of the gravitational wave obtained from these equations is the light celerity). Only the movement equations are different with the factor "4". But of course, all the results of our study could be obtained in the traditional notation of gravitomagnetism with the relation

𝑘𝑘 �⃗ = 𝐵𝐵 𝑔𝑔 �����⃗ 4 .

Gravitic field: a way to measure it

Just like for the electromagnetism, this gravitic field implies a phenomenon of precession. It is known as the Lense-Thirring effect. Instead of taking into account only the own gravitic field of the earth, we are also going to take into account the hypothetical external gravitic field that explains the dark matter. We are first going to recall what the equations in the general relativity are for the Lense-Thirring effect. And secondly, we will use it to test our solution by calculating the contribution to the precession effect generated by our gravitic field that explain the dark matter.

Gravitic field and precession effect

The equations of the motion for the spin four-vector 𝑆𝑆 𝜇𝜇 has been studied in several papers. In general relativity, it leads to a precession of 𝑆𝑆 𝜇𝜇 . For example, with (ADLER, 2015), one can write the following equations:

𝑆𝑆 ⃗ ̇= ��𝛾𝛾 + 𝛼𝛼 2 � 1 𝑚𝑚 2 �𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ����������⃗ 𝜑𝜑 ∧ 𝑑𝑑 ⃗� + 1 4 (𝛾𝛾 + 𝛼𝛼)𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ ℎ �⃗ � ∧ 𝑆𝑆 ⃗
Which lead to define a geodetic vector field Ω 𝐺𝐺 �����⃗ and a "gravitomagnetic" vector field Ω 𝐿𝐿𝐿𝐿 �������⃗ :

Ω 𝐺𝐺 �����⃗ = �𝛾𝛾 + 𝛼𝛼 2 � 1 𝑚𝑚 2 �𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ����������⃗ 𝜑𝜑 ∧ 𝑑𝑑 ⃗� ; Ω 𝐿𝐿𝐿𝐿 �������⃗ = 1 4 (𝛾𝛾 + 𝛼𝛼)𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ ℎ �⃗
These expressions use the PPN formalism. As seen before, for general relativity, one has: 𝛾𝛾 = 1 ; 𝛼𝛼 = 1 It leads to:

Ω 𝐺𝐺 �����⃗ = 3 2𝑚𝑚 2 𝑔𝑔𝑚𝑚𝑚𝑚𝑚𝑚 ����������⃗ 𝜑𝜑 ∧ 𝑑𝑑 ⃗ ; Ω 𝐿𝐿𝐿𝐿 �������⃗ = 1 2 𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ ℎ �⃗
In our notation:

𝐻𝐻 � �⃗ = ℎ �⃗ 4 ; 𝑘𝑘 �⃗ = 𝑚𝑚𝑚𝑚𝑐𝑐 ������⃗ 𝐻𝐻 � �⃗
One then has

Ω 𝐿𝐿𝐿𝐿 �������⃗ = 2𝑘𝑘 �⃗

Measure of the dark matter

In our solution, around the Earth, 𝑘𝑘 �⃗ represents the addition of two terms, the own gravitic field of the earth 𝑘𝑘 𝐸𝐸 ����⃗ and the external uniform gravitic field 𝑘𝑘 0 ����⃗ :

𝑘𝑘 �⃗ = 𝑘𝑘 𝐸𝐸 ����⃗ + 𝑘𝑘 0 ����⃗
In the same way, the Lense-Thirring effect Ω 𝐿𝐿𝐿𝐿 �������⃗ is then composed of the own Earth gravitic field term Ω 𝐿𝐿𝐿𝐿_𝐸𝐸 �����������⃗ and of a new supplementary term of "dark matter" Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗

Ω 𝐿𝐿𝐿𝐿 �������⃗ = 2𝑘𝑘 𝐸𝐸 ����⃗ + 2𝑘𝑘 0 ����⃗ = Ω 𝐿𝐿𝐿𝐿_𝐸𝐸 �����������⃗ + Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗
The term Ω 𝐿𝐿𝐿𝐿_𝐸𝐸 �����������⃗ is the traditional frame-dragging precession:

𝐻𝐻 𝐸𝐸 �����⃗ = ℎ 𝐸𝐸 ����⃗ 4 = � 𝜋𝜋 2𝑚𝑚 2 𝑚𝑚 3 � �𝑚𝑚 ⃗ ∧ 𝐽𝐽 ⃗ � ; Ω 𝐿𝐿𝐿𝐿_𝐸𝐸 �����������⃗ = 𝜋𝜋 𝑚𝑚 2 � 𝐽𝐽 ⃗ 𝑚𝑚 3 - 3𝑚𝑚 ⃗ 𝑚𝑚 5 �𝑚𝑚 ⃗ • 𝐽𝐽 ⃗ ��
In the Gravity Probe B experiment, the expected values were:

�Ω 𝐺𝐺 �����⃗ � = 6606 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 �Ω 𝐿𝐿𝐿𝐿_𝐺𝐺𝐺𝐺𝐵𝐵 ���������������⃗ � = 39 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚 Let's evaluate the order of magnitude of the external gravitic field (our dark matter) around the Earth. From [START_REF] Corre | Dark matter, a new proof of the predictive power of General Relativity[END_REF], an average value is:

�Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗ � = 2�𝑘𝑘 0 ����⃗ �~2 × 10 -16.5 𝑚𝑚 -1
It then gives

�Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗ � = 0.4 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚
In fact, from the sample of galaxies studied in [START_REF] Corre | Dark matter, a new proof of the predictive power of General Relativity[END_REF], one obtains the following possible interval for 𝑘𝑘 0 :

10 -16.62 < �𝑘𝑘 0 ����⃗ � < 10 -16.3
If we assume that these galaxies can be representative of our own galaxy, the expected discrepancy should be in the following interval (in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚): 0.3 < �Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗ � < 0.6 2015) we have seen that at this distance the gravitic field of the galaxy could be of the same magnitude. Therefore the expected value should be around 2 times greater than �Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗ �. One also have to take into account the unknown direction of 𝑘𝑘 0 ����⃗ , implying that the magnitude of the effect could be reduced. Furthermore the effect of precession �Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗ � could be spread on the two components �Ω 𝐺𝐺 �����⃗ � and �Ω 𝐿𝐿𝐿𝐿 �������⃗ � and then decrease the discrepancy.

Discussion

Conclusion

In the better case, a precision of 1% could reveal a discrepancy in the measure of the expected precession effects. The next generation of experiments (as GINGER) will have such an accuracy. In our solution the expected discrepancy should be in the following interval (in 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚/𝑦𝑦𝑚𝑚𝑚𝑚𝑚𝑚) 0.3 < �Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗ � < 0.6. But without any detection, a higher accuracy will be required to definitively declare that this solution is irrelevant. In particular if the direction of 𝑘𝑘 0 ����⃗ is very disadvantageous.

  �Ω 𝐿𝐿𝐿𝐿_𝐺𝐺𝐺𝐺𝐵𝐵 ���������������⃗ � is only known with a precision of 10%. We need to have a better accuracy on this kind of experiments to hope to detect this discrepancy. GINGER experiment should have a precision of 1%. It could be enough to detect a discrepancy. But there are several aspects of the experiment that can play a role in decreasing or increasing this discrepancy. The Sun is at around 8kpc from the galactic center. In (LE CORRE,

	�Ω 𝐿𝐿𝐿𝐿_𝐷𝐷𝐷𝐷 ��������������⃗ � represents around 1% of �Ω 𝐿𝐿𝐿𝐿_𝐺𝐺𝐺𝐺𝐵𝐵 ���������������⃗ �. But until
	now,