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Introduction

The analysis of the patient omics prole (genome, metabolome, proteome, etc.) would become a standard for molecular based diagnosis and treatment tailored to patient by contrast to a one-size-ts-all strategy based on a oneto-one correspondence between disease and drug [START_REF] Georey | Translational genomics: From discovery to clinical practice -chap[END_REF][START_REF] Mirnezami | Preparing for Precision Medicine[END_REF]. Precision medicine is an emerging branch of medicine based on omics analysis aiming at improving clinical decision-making by designing new tools for the customization of therapies and their risk/benet assessment. Addressing this challenge puts the focus on the causality study of the pathogenesis at molecular level.

However, the relationship between genomic information and disease phenotype remains elusive. Indeed, a disease phenotype is rarely a consequence of an abnormality in a single gene product but involves complex interplays of various biological molecules [START_REF] Barabási | Network medicine: a network-based approach to human disease[END_REF]. For instance, patients with sickle cell anemia, which is caused by a unique well-dened mutation in a single gene (classic Mendelian disease) can exhibit highly variable phenotypes in the clinic [START_REF] Samir | Dening the Phenotypes of Sickle Cell Disease[END_REF][START_REF] Schadt | Molecular networks as sensors and drivers of common human diseases[END_REF]. This variability is due to the interaction of the mutated gene with other individual-dependant genetic variants [START_REF] Sebastiani | Genetic dissection and prognostic modeling of overt stroke in sickle cell anemia[END_REF][START_REF] Schadt | Molecular networks as sensors and drivers of common human diseases[END_REF]. Therefore, understanding the pathogenesis at molecular level requires to conceive frameworks facilitating the discovery of causes altering the molecular systems of a living organism. This challenge logically focuses on biological networks modelling the causal interplays of molecules [START_REF] Delaplace | Discrete causal model view of biological networks[END_REF].

The main approaches in this eld study the location of dysfunctional molecules in networks and on the nature of network alterations leading to disease.

The works [START_REF] Barabási | Network medicinefrom obesity to the "diseasome[END_REF][START_REF] Barabási | Network medicine: a network-based approach to human disease[END_REF][START_REF] Gustafsson | Modules, networks and systems medicine for understanding disease and aiding diagnosis[END_REF] study the formation of specic subnetworks, called module delineating the disease propagation. The hypothesis motivating the approach is that modules are considered as plausible support of integrated molecular function [START_REF] Milo | Network motifs: simple building blocks of complex networks[END_REF][START_REF] Eric | The regulatory genome: gene regulatory networks in development and evolution[END_REF]. Besides some evidences, [START_REF] Oti | Predicting disease genes using proteinprotein interactions[END_REF] conrm the fact that proteins involved in the same disease have a high propensity to interact forming a tightly interconnected entity in the interactome. Thereby, disease should likely alter a functional module or being themselves modules supporting a dys-functionality (disease modules).

In [START_REF] Zhong | Edgetic perturbation models of human inherited disorders[END_REF], a network-perturbation approach is used to explain molecular dysfunctions underlying human disease. The mutations causing genetic defects are expressed as actions on edges and nodes of the interactome. Schematically, a mutation leading to inoperative protein is modelled by a node deletion while mutations inducing loss or gain of interaction are respectively modelled by an edge deletion or addition (edgetic perturbation). They uncovered experimental and computational evidences that these network alterations occur in human Mendelian diseases.

It is worth noting that the perturbation on networks induced by diseases are formalized by elementary topological modications: nodes or edges are added or cut. Hence the complexity of disease relies on the impact of these topological modications on the biological processes aecting their evolution.

For example, cancer cells acquire the capability to sustain proliferative signalling notably by defecting feedback loops that hamper the regulation of the cell division [START_REF] Hanahan | Hallmarks of cancer: The next generation[END_REF]. Therefore, a deeper understanding of disease/therapy mechanism requires to enforce the prediction capabilities on the incidence of these elementary actions in the underlying dynamics of networks.

In this paper, we combine two theoretical frameworks: game theory and discrete models of dynamics (Boolean networks) to determine the best drug to administrate to a patient. The clinical decision-making is modeled using game theory, that denes the process of selection by the players of an action among alternative possibilities [START_REF] Martin | A course in game theory[END_REF][START_REF] Chettaoui | Games network and application to pas system[END_REF], while Boolean networks are used for modelling the eects of the interplay between disease and drugs on the patient molecular system. Boolean networks are used in biology to study the dynamics of molecular networks (modeled as interaction graphs), which represent functional interactions between molecules [START_REF] Thomas | Dynamical behaviours of regulatory networks -II . immunity control in bactériophage lambda[END_REF][START_REF] Ciliberto | Steady states and oscillations in the p53/Mdm2 network[END_REF][START_REF] Abou-Jaoudé | From structure to dynamics: frequency tuning in the p53-Mdm2 network i. logical approach[END_REF]. Such a dynamics evolves towards equilibria interpreted at the molecular level as the patient health condition or illness. The physician and the disease are considered as players of a game, each of them having strategies of action that correspond to a drug administration and to a genetic mutation, respectively. In a game, combinations of strategies, called strategy proles, modify the patient interaction graph, therefore modifying the associated Boolean dynamics and its equilibria. From the assessment of biomarkers at these equilibria, players' preferences are determined, and then, the interpretation of the ordinal Nash equilibrium leads to the discovery of the best physician action (drug). 

Network action game

We rst introduce the two models composing the network action game framework: Boolean networks and ordinal game theory then show their coupling.

Boolean networks

A Boolean network is a discrete dynamical system of a population of agents dened by a family of propositional formulas determining the evolution of the agents. The dynamics is dened by a transition system where Boolean vectors represent the possible states of the agents and transitions represent their evolution.

Let A be a set of agents. A (Boolean) state of a ∈ A is dened as a mapping s : A → B associating to an agent in A a value from B.

Let F = (f a ) a∈A be a family of propositional formulas, each f a dening the updated state of a depending on the states of other agents (seen as propositional variables), cf., Figure 2. An asynchronous 1 Boolean network is dened as a pair A, F . Its model of dynamics is a labelled transition system (S, -→, A) where the transition relation labelled by agent a, a -→, updates the state of agent a (i.e., s[a] = f a (s)). Hence the global dynamics is the union of the transitions labelled by agents (i.e., -→= a∈A a -→).

   a 1 = ¬a 2 ∧ ¬a 3 a 2 = ¬a 1 a 3 = a 2
The signed interaction graph associated to F , G F = A, , δ represents all the signed interactions between agents. The sign of the arc is given by a labelling function δ and may be + for increasing relation,for decreasing one and ± otherwise. Such a graph can be inferred from the syntax of the propositional formulas 2 , where a i a j stands for the occurrence of the negative literal ¬a i in f a j , a i + a j for the occurrence of the positive literal a i in f a j , and a i ± a j for both.

A state s is an equilibrium for -→, if it may be reached innitely often, i.e., ∀s ∈ S : s -→ * s =⇒ s -→ * s, where -→ * denotes the reexive and transitive closure -→. We denote by E -→ the set of all equilibria of -→. An attractor is a set of equilibria that are mutually reachable and a steady state is an attractor of cardinality 1. In Figure 2, the states (1, 0, 0) and (0, 1, 0) are steady states.

Ordinal game

An ordinal game models strategic decision-making based on the denition of apreference relationamongst combination of players' strategies . Each player has a set of possible strategies and a strategy prole represents a partic- 1 Asynchronous means that the state of at most one agent is updated at each transition. The statement of the prisoner's dilemma is as follows: two suspects (i.e., Players p 1 and p 2 ) are arrested without the possibility to interact and are oered to choose between two strategies: betray (strategy B) by testifying that the other committed the crime or remaining silent (S). A prison sentence, for each player, is associated to the possible strategy proles: if both players betray (strategy prole B, B), they serve 2 years in prison, if they both remain silent (S, S), they serve 1 year, if p 1 betrays but p 2 remains silent (B, S), p 1 is set free and p 2 serve 3 years and vice versa. the preference is governed by the expectation of minimizing their prison sentence leading to the above preference graph where the Nash equilibrium is highlighted in grey. ular combination of strategies. A preference relation denes the preference, for a player, between each pair of strategy proles. Figure 2.2 illustrates the application of the ordinal game theory for the prisonner's dilemma.

Formally, an ordinal game is a triple P, (C p ) p∈P , ( p ) p∈P where:

• P is a set of players;

• for each player p ∈ P , C p is a non-empty set of strategies c p of player p.

The set C P = C p 1 × . . . × C p |P | represents the set of all strategy proles;

• for each player p ∈ P , the relation p : C P × C P is a transitive and reexive relation (pre-order) on strategy proles called preference relation of player p.

In the sequel, we denote by c -p the strategy prole c restricted to strategies of players in P \ {p}. For each player, the preference relation is restricted to strategy proles where only his/her own strategy may dier:

∀p ∈ P : c p c =⇒ c -p = c -p ∧ c -p = c -p =⇒ (c p c ∧ c p c). (1) 
The solution concept of an ordinal game is an ordinal Nash equilibrium, In [START_REF] Le Roux | Conversion/preference games[END_REF], the authors propose a computational denition of the ordinal Nash equilibrium as the strategy proles belonging to a terminal strongly connected component of a graph corresponding to the union of the preferences of players.

Network action game

Our framework, called network action game, denes an ordinal game complying to two founding principles:

First, each strategy prole c ∈ C P is associated to a Boolean network A, F c giving rise to the unique dynamics (S, -→ c ) and its set of equilibria E -→c . The preference relation p between strategy proles c and c , for each player p, is deduced from an assessment of these equilibria. More precisely, p is dened from a pre-order p on sets of equilibria E -→c and E -→ c , as follows:

c p c def = E -→c p E -→ c ∧ c -p = c -p . (2)
The second principle is directly related to the biological network perturbation scheme mentioned in the introduction. Actually, the eect of a strategy prole c is instantiated by an interaction graph structural modication involving arc addition and arc deletion as basic actions. They are interpreted as a functional modication of the Boolean network dening F c . More precisely, the structural modication is implemented by the sole operation of deletion applied on a saturated Boolean network F = (f a ) a∈A . Its interaction graph G F = A, includes all the arcs inserted in order to instantiate structurally the strategy proles, i.e.,

= {a i a j | ∃c ∈ C P : Ω c (a i a j )}, (3) 
where Ω c (a i a j ) is a predicate, which is true if arc a i a j is added by strategy prole c, and false if the arc is deleted. Arc addition is thus interpreted as maintaining the corresponding arc in the saturated Boolean network. Hence, each strategy prole c gives rise to a Boolean network F c obtained from F by replacing variable a i by 0 in f a j for each deletion of arc a i a j . In other words, an arc deletion is functionally interpreted as cancellation of the eect of source a i on target a j .

Example

The following example illustrates a typical use of the network action game. Let us consider a two-players network action game with the saturated Boolean network dened in (Figure 2).

A = {a 1 , a 2 , a 3 }, F = (a 1 = ¬a 2 ∧ ¬a 3 , a 2 = ¬a 1 , a 3 = a 2 ) .
Each player has two strategies: a particular one, α for p 1 , β for p 2 and an identical one . Each strategy c p of player p is interpreted as a function assigning to each arc a positive or negative strength (cf., Table 1). They are used to assess whether arcs are removed or maintained.

a 1 a 2 a 2 a 1 a 3 a 1 a 2 a 3 1 -1 1 1 α 1 2 -2 1 β 1 2 1 -2
Table 1: Strength of arcs per strategies.

Thus, predicate Ω c is dened using the sum of the strengths assigned by players' strategies to the arcs: a positive sum indicates an addition of the arc, while a negative or null indicates a deletion. Formally, for each arc

a i a j : Ω c (a i a j ) = p∈P c p (a i a j ) > 0.
Then, for each strategy prole c ∈ {( , ), (α, ), ( , β), (α, β)} we compute F c from F using Ω c . The resulting F c are shown in Figure 2.4 together with their corresponding interaction graphs and Boolean models of dynamics. The equilibria E -→c are highlighted in grey.

( , ) (α, ) In order to compute the preferences p on strategy proles, see ( 

(a 1 = ¬a 3 , a 2 = ¬a 1 , a 3 = a 2 ) (a 1 = ¬a 2 , a 2 = ¬a 1 , a 3 = a 2 )
c p c def = max σp (E -→c ) ≤ min σp (E -→ c ) ∧ c -p = c -p . (4) 
The union 3 of the preference relations of p 1 and p 2 is represented as a graph where the preferences are represented as arcs between strategy proles and labelled by the player in Figure 5, with the ordinal Nash equilibrium (in gray). 

Network action game applied to best drug selection in breast cancer

In this section, after introducing the modeling principles, we describe a model of Breast Cancer (BC) and show the application of network action game to drug selection. 3 which is equivalent to the transitive reduction of the global preference relation.

Modeling Principles

We consider a two-players network action game where the players are the Physician and the Disease whose respective strategies correspond to dierent subtypes of disease and drugs. Hence a strategy prole is a combination (Drug, Disease). Each of such proles acts on the patient by disrupting his interactome network and the disruptions are formally interpreted as addition or deletion of arcs [START_REF] Zhong | Edgetic perturbation models of human inherited disorders[END_REF]. Each strategy prole is thus associated to an interactome network whose dynamics is modeled by a Boolean network, The ( ,

)
strategy prole leads to the healthy Boolean network and corresponds to a situation where neither the Disease nor the Physician acts.

From a systems biology perspective, the cell phenotype arises from the interactome network [START_REF] Vidal | Interactome Networks and Human Disease[END_REF] and a main assumption in Boolean network modeling is that the equilibria of the dynamics are representative of this phenotype [START_REF] Thomas | Boolean formalization of genetic control circuits[END_REF]. We therefore assess the eects of the interactome disruption on the phenotype by considering the equilibria of the Boolean networks associated to each strategy prole. To assess the result of the prole actions to predict the eciency of a drug, a score is dened on the state of some molecules assimilated to biomarkers in Precision Medicine [START_REF] Mirnezami | Preparing for Precision Medicine[END_REF][START_REF] Frank | Clinical biomarkers in drug discovery and development[END_REF]. By comparing the scores at the equilibria of the dynamics, we determine the preferences of the players on strategy proles.

Obviously, a drug is ecient when the disease has disappeared permanently. The appropriate therapy is selected by detecting proles, where the disease has no option but to prefer its disappearance under the action of the drug. Such proles correspond to (Drug, ), which are Ordinal Nash equilibria reecting a stable condition. Hence, the best association between a drug and a disease is given by a prole (Drug, Disease), from which Disease player prefers the Ordinal Nash equilibrium (Drug, ) and the Physician player has no incentive to modify the selected drug.

Description of the Breast cancer model 3.2.1. Overview

BC tumors are classied in molecular subtypes associated to specic genetic events leading to the disruption of the signalling network controlling the cell proliferation phenotype [START_REF] Hanahan | Hallmarks of cancer: The next generation[END_REF][START_REF] Campisi | Cancer and ageing: rival demons? Nature reviews[END_REF]. The targeted drugs prescribed to treat BC tumors are inhibitors of specic molecular targets that impair the proliferation of tumoral cells. We constructed a signalling network involved in the control of breast cell proliferation and modeled the perturbations induced by the genetic events and targeted drugs as deletion or addition of arcs in this signalling network.

The deletion of a gene is modelled as the deletion of all the input or output arcs of the node corresponding to the protein encoded in this gene and the over-expression of a protein is modelled by an addition of an arc between a node the state of which is xed to 1 to the protein encoded in the gene. As drugs are inhibitors of specic molecular targets [START_REF] Michaela | Targeted therapies for breast cancer[END_REF][START_REF] Sawyers | Targeted cancer therapy[END_REF], their actions are modelled as the deletion of the arcs surrounding their targets in the signalling network. The joint action of disease and physician follows the same procedure as Example 2.4: each player assigns a strength on arcs and if the sum of the strengths is positive the arc is added or maintained, otherwise it is deleted. To determine the eects of a strategy prole on the cell proliferation phenotype, the model of the dynamics is dened for the saturated Boolean network representing the signalling network comprising all the possible interactions between proteins.

Schematically, the eciency of an anticancer drug depends on its ability to impair the proliferation of tumoral cells [START_REF] Michaela | Targeted therapies for breast cancer[END_REF][START_REF] Sawyers | Targeted cancer therapy[END_REF] and, from a Darwinian point-of-view, we can assume that a tumoral cell has an incentive in proliferating [START_REF] Campisi | Cancer and ageing: rival demons? Nature reviews[END_REF]. We therefore dene a score function on the biomarkers of cellular proliferation to assess the benets of drugs and breast cancer strategies for each player. These scores are opposite for both players: the worst for the disease is the best for the physician and vice versa.

In the following, we describe the reconstruction of the healthy signalling network, the actions of drugs and BC subtypes, the saturated Boolean network and the score functions for each player.

Healthy signalling network

Based on the literature and the KEGG Database [START_REF] Kanehisa | Kegg: kyoto encyclopedia of genes and genomes[END_REF], we reconstructed a healthy signaling network representing the control of a breast cell proliferation phenoytpe in response to stress. We focused on the p53 [START_REF] Gasco | The p53 pathway in breast cancer[END_REF][START_REF] Charles | The rb and p53 pathways in cancer[END_REF],

PI3K/Akt [START_REF] Jerey A Engelman | Targeting pi3k signalling in cancer: opportunities, challenges and limitations[END_REF][START_REF] Reuben | Ras, pi (3) k and mtor signalling controls tumour cell growth[END_REF] and BRCA [START_REF] Xu | Genetic interactions between tumor suppressors brca1 and p53 in apoptosis, cell cycle and tumorigenesis[END_REF][START_REF] Deng | Brca1: cell cycle checkpoint, genetic instability, dna damage response and cancer evolution[END_REF] signalling because they are involved in cell proliferation control and are commonly associated with cancers. In this signalling network model, the dierent pathways collaborate to regulate the activation of two targets: Cyclin D1 and Bax which are respectively the regulator of the G1/S transition during mitosis [START_REF] Musgrove | Cyclin d as a therapeutic target in cancer[END_REF] and a pro-apoptotic factor initiating apoptosis [START_REF] Stephen W Fesik | Promoting apoptosis as a strategy for cancer drug discovery[END_REF]. The interaction graph representing the 11 proteins and 14 interactions of this healthy signaling network is shown on Figure 6. The PI3K/Akt pathway is a phosphorylation cascade that promotes cell cycle progression through the inactivation of GSK3β and prevents apoptosis through the activation of Bcl2, an inhibitor of Bax [START_REF] Chang | Involvement of pi3k/akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy[END_REF]. The PI3K/Akt pathway interacts with p53 signalling through the activation of its inhibitor Mdm2 [START_REF] Ute | The mdm2-p53 interaction[END_REF]. In turn, p53 inhibits PI3K signalling through the activation of its inhibitor PTEN [START_REF] Stambolic | Regulation of PTEN transcription by p53[END_REF], therefore forming a loop [START_REF] Mayo | The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network[END_REF][START_REF] Carracedo | The ptenpi3k pathway: of feedbacks and cross-talks[END_REF]. p53 is also involved in the activation of apoptosis through direct activation of Bax transcription [START_REF] Toshiyuki | Tumor suppressor p53 is a direct transcriptional activator of the human bax gene[END_REF][START_REF] Basu | The relationship between bci2, bax and p53: consequences for cell cycle progression and cell death[END_REF]. BRCA1 increases Bax activation transcription through p53 activation [START_REF] Xu | Genetic interactions between tumor suppressors brca1 and p53 in apoptosis, cell cycle and tumorigenesis[END_REF][START_REF] Pb Mullan | The role of brca1 in transcriptional regulation and cell cycle control[END_REF]. BRCA is also involved in cell cycle arrest at the G1/S checkpoint [START_REF] Pb Mullan | The role of brca1 in transcriptional regulation and cell cycle control[END_REF][START_REF] Deng | Brca1: cell cycle checkpoint, genetic instability, dna damage response and cancer evolution[END_REF], this mechanism is modelled by an inhibition of CycD1 by BRCA1. Finally, PARP inhibition induces cell cycle arrest and enhances cell death in a p53-dependent manner [START_REF] Nguyen | Poly (adp-ribose) polymerase inhibition enhances p53-dependent and-independent dna damage responses induced by dna damaging agent[END_REF] and this is modeled as PARP activation of Cyclin D1 and PARP inhibition of p53.

Actions of BC and drugs on the signalling network

Three dierent subtypes of Breast cancer are dened based on the genetic signature of the tumoral cells: ER positive, HER2 positive and BRCA1decient breast cancer cells and are treated with three dierent drugs: Tamoxifen, Trastuzumab and Olaparib [START_REF] Michaela | Targeted therapies for breast cancer[END_REF]. The drugs are targeted inhibitors: they inhibit specic molecular targets, respectively ER, HER2 and PARPs [START_REF] Michaela | Targeted therapies for breast cancer[END_REF].

Their actions are modeled as deletions of the edges connecting the drugs' targets to their own targets. ER-positive BC cells overexpress the gene coding the Estrogen Receptor (ER) while HER2-positive BC cells overex-press the gene coding for the Human Epidermal Receptor-2 (HER2) and BRCA1-decient BC cells are characterized by mutations in both alleles of the BRCA1 gene leading to a decience of BRCA1 protein [START_REF] Piri | Brca1 and brca2 and the genetics of breast and ovarian cancer[END_REF]. We modeled these diseases' actions as additions of edges between ER and HER2 nodes and their targets and by the deletion of edges connecting the BRCA1 node to its targets. The actions and their strength are shown in Table 4 (for BC) and Table 3 (for the physician) in Appendix. Figure 6 details the interaction graph in health condition. The saturated interaction graph comprising all the possible interactions is shown on Figure 8 and the formulas of the saturated Boolean network for each protein are given in Table 2 of Appendix.

Score functions on cell proliferation biomarkers

Cell proliferation can be considered as the balance between mitosis and apoptosis. Schematically, we can distinguish four proliferation phenotypes: quiescence, dormancy, division and death. A dividing cell enters mitosis and inhibits apoptosis, a dying cell triggers apoptosis and stops mitosis, a quiescent cell undergo neither mitosis nor apoptosis and a dormant cell balance mitosis with apoptosis [START_REF] Spiliotaki | Evaluation of proliferation and apoptosis markers in circulating tumor cells (CTCs) of women with early breast cancer who are candidates for tumor dormancy[END_REF]. We dene the score functions for each player on the states of the Cyclin D1 and Bax that can be considered as biomarkers of these two cell processes [START_REF] Musgrove | Cyclin d as a therapeutic target in cancer[END_REF][START_REF] Ward | Biomarkers of apoptosis[END_REF]. We assigned, to the player Disease, a maximal score when mitosis is active and apoptosis is inactive (the cancer cell is proliferating) and a minimal score when mitosis is inactive and apoptosis is active (the cell is dying). Conversely, the Physician has a maximal score when the cell dies and a minimal score when the cell divides.

As cancer cells in quiescent and dormant states are responsible for relapses occurring many years after the treatment and healing of the patient [START_REF] Spiliotaki | Evaluation of proliferation and apoptosis markers in circulating tumor cells (CTCs) of women with early breast cancer who are candidates for tumor dormancy[END_REF], we dened intermediate and opposite scores for both players when the cell is in a quiescent or dormant phenotype. The scores for each player are given in Table 5 of the Appendix.

Application of network action game on the BC model

The comparison of the scores, for each player, at the equilibria of the dynamics (with Equation 4) determine the players' preference relations on strategy proles. Figure 7 Ola,BRCA ; Ta,ER ; highlighted in grey) to a strategy prole corresponding to its absence of action (Tra, ; Ola, ; Ta, respectively). BC is unable to discriminate between a healthy and a treated state with a disease in these situations and we therefore interpret them as the eciency of the drug.

Morevover, the physician does not change his strategy while on Tra,HER and Ta,ER or Ola,BRCA. Also notice that Tra, , Ola, , Ta, are Ordinal Nash equilibria, indicating a situation where the disease has permanently disappeared in presence of these drugs.

Therefore from the preference graph, we can conclude that Trastuzumab is ecient to heal HER cancer, Tamoxifen for ER cancer and Olaparib for BRCA1 cancer. These conclusions are conrmed by clinical practice since the associations described by these strategy proles are currently used in the clinic [START_REF] Michaela | Targeted therapies for breast cancer[END_REF]. Hence, in this case, the network action game framework has inferred the best drug strategy selection for three types of dierent mutations causing BC without explicit knowledge on these associations.

Conclusion

Network action game couples Boolean networks with game theory in order to predict the best therapy. Arc addition/deletion on the interactome is considered here as a paradigm of the causal explanation of disease and therapy prediction. The eciency of the framework has been assessed on breast cancer model. As a result we show that the proposed associations between drugs and malignant mutations exactly match to those found in literature.

Future prospects mainly concern the application of the network action game to drug re-purposing and design. The former investigates the repositioning of drugs to new indications leading to substantially reduce the duration and the cost of their development cycle since the necessary analysis of the molecules was already performed. This may be addressed by generalizing the method applied for breast cancer. Indeed, screening in-silico drug actions on arcs against disease ones may be realized by assessing the consequence on the dynamics from the evaluation of marker states. To be feasable, this approach requires to automatically characterize actions from data and knowledge on drugs and to get reliable and complete description of network encompassing all the actions on arcs. The computational challenge for the drug design is the inverse problem of the therapy prediction, where the eects described by states of markers are known but the causes dened as actions must be discovered. Hence the issue is to infer the necessary actions on a diseased network in order to bring the dynamics back to the health state. This approach needs also to deduce the requested properties of the molecules to design and to compare them to actions of known molecules.

Figure 8: Saturated graph of the breast cancer model This graph represents all the interactions of healthy interaction graph and the interactions that can be added by strategies. Three interactions are added compared to the healthy interaction graph: the activation of PI3K by HER2 that occurs in HER2 positive breast cancer cells [START_REF] Hynes | ERBB receptors and cancer: the complexity of targeted inhibitors[END_REF][START_REF] Yarden | Untangling the ErbB signalling network[END_REF] and the activation of PI3K by ERα that occurs in presence of E2 in ER-positive breast cancer cells [START_REF] Lee | Up-regulation of pi3k/akt signaling by 17βestradiol through activation of estrogen receptor-α, but not estrogen receptor-β, and stimulates cell growth in breast cancer cells[END_REF][START_REF] Sun | Phosphatidylinositol-3-oh kinase (pi3k)/akt2, activated in breast cancer, regulates and is induced by estrogen receptor α (erα) via interaction between erα and pi3k[END_REF]. 

Strategy Action Strength Arc

Figure 1 Figure 1 :
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Figure 2 :

 2 Figure 2: A Boolean network, its model of dynamics and associated interaction graph.
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 13 Figure3: The statement of the prisoner's dilemma is as follows: two suspects (i.e., Players p 1 and p 2 ) are arrested without the possibility to interact and are oered to choose between two strategies: betray (strategy B) by testifying that the other committed the crime or remaining silent (S). A prison sentence, for each player, is associated to the possible strategy proles: if both players betray (strategy prole B, B), they serve 2 years in prison, if they both remain silent (S, S), they serve 1 year, if p 1 betrays but p 2 remains silent (B, S), p 1 is set free and p 2 serve 3 years and vice versa. the preference is governed by the expectation of minimizing their prison sentence leading to the above preference graph where the Nash equilibrium is highlighted in grey.

  namely a strategy prole c * such that by considering the opponents' choices, a player may only deviate into another Nash equilibrium. In the prisonner's dilemma example, such strategy prole corresponds to (B,B) where the prisonners betray each other (highlighted in grey in Figure 2.2). The ordinal Nash equilibria may form a cluster of strategy proles where the preference of the players changes to reach another strategy prole inside the cluster. Such situation may represent an absence of consensus (i.e., a single strategy prole) amongst a subset of players choices. Hence, by considering the global preference relation ( = p∈P p * ), the ordinal Nash equilibria are equivalent in the cluster. Formally, a strategy prole c * ∈ C P is an ordinal Nash equilibrium if: ∀c ∈ C P : c c * ⇐⇒ c * c.
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 14 Figure 4: Network action game and associated boolean networks.
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 15 Figure 5: Preference graph. The arcs representing the preferences are labelled by the player. The nodes are strategy proles. The Nash equilibria are in grey.

Figure 6 :

 6 Figure6: Model of a breast cell healthy signalling network. The PI3K/Akt pathway is a phosphorylation cascade that promotes cell cycle progression through the inactivation of GSK3β and prevents apoptosis through the activation of Bcl2, an inhibitor of Bax[START_REF] Chang | Involvement of pi3k/akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy[END_REF]. The PI3K/Akt pathway interacts with p53 signalling through the activation of its inhibitor Mdm2[START_REF] Ute | The mdm2-p53 interaction[END_REF]. In turn, p53 inhibits PI3K signalling through the activation of its inhibitor PTEN[START_REF] Stambolic | Regulation of PTEN transcription by p53[END_REF], therefore forming a loop[START_REF] Mayo | The PTEN, Mdm2, p53 tumor suppressor-oncoprotein network[END_REF][START_REF] Carracedo | The ptenpi3k pathway: of feedbacks and cross-talks[END_REF]. p53 is also involved in the activation of apoptosis through direct activation of Bax transcription[START_REF] Toshiyuki | Tumor suppressor p53 is a direct transcriptional activator of the human bax gene[END_REF][START_REF] Basu | The relationship between bci2, bax and p53: consequences for cell cycle progression and cell death[END_REF]. BRCA1 increases Bax activation transcription through p53 activation[START_REF] Xu | Genetic interactions between tumor suppressors brca1 and p53 in apoptosis, cell cycle and tumorigenesis[END_REF][START_REF] Pb Mullan | The role of brca1 in transcriptional regulation and cell cycle control[END_REF]. BRCA is also involved in cell cycle arrest at the G1/S checkpoint[START_REF] Pb Mullan | The role of brca1 in transcriptional regulation and cell cycle control[END_REF][START_REF] Deng | Brca1: cell cycle checkpoint, genetic instability, dna damage response and cancer evolution[END_REF], this mechanism is modelled by an inhibition of CycD1 by BRCA1. Finally, PARP inhibition induces cell cycle arrest and enhances cell death in a p53-dependent manner[START_REF] Nguyen | Poly (adp-ribose) polymerase inhibition enhances p53-dependent and-independent dna damage responses induced by dna damaging agent[END_REF] and this is modeled as PARP activation of Cyclin D1 and PARP inhibition of p53.

  shows a graph representing the preference relation obtained from the application of the network action game on the BC model. On this graph, the nodes represent strategy proles (Drug, BC subtype) and the arcs represent BC preferences (gray) and the physician preferences (black).
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  2), we consider, for each player p ∈ P , a score function σ p on states in S. σ p 1 is dened here as the number of 1s in a state expressing p 1 's preference while σ p 2 is dened as the number of 0s in a state. Hence, if the maximum score on E -→c is less or equal than the minimum score on E -→ c , then we have c p c , meaning that player p prefers c to c. More precisely, with min σp of a set of states E ⊆ S dened as min σp (E) = min({σ p (s)|s ∈ E}), and analogously for max σp , we have:

Table 3 :

 3 Drugs as strategies and associated actions

		Deletion	-1	HER2	+	PI3K
	Tamoxifen	Deletion	-1	E2	+	ERα
	Olaparib	Deletion	-1	PARP PARP	-+	p53 CycD1

Table 2 :

 2 Logical rules underlying the activation of nodes. Both ERα and HER2 can activate PI3K signalling and PTEN terminates PI3K signalling.

	Strategy Action Strength		Arc
	HER2	Addition	+1	HER2	+	PI3K
	ER	Addition	+1	ERα	+	PI3K
	BRCA1	Deletion	-1	BRCA1 BRCA1	+ -	p53 CycD1

Table 4 :

 4 Breast cancer subtypes as strategies and associated actions

	CycD1	Bax	Physician score	Cancer score	Cell phenotype
	0	0	25%	75%	Quiescent
	0	1	100%	0%	Death
	1	0	0%	100%	Division
	1	1	25%	75%	Dormant

Table 5 :

 5 Scores on the states of biomarkers

Appendix