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In the present paper, we combine numerical and experimental approaches to study the
dynamics of stable and unstable internal wave attractors. The problem is considered in
a classic trapezoidal setup filled with a uniformly stratified fluid. Energy is injected into
the system at global scale by the small-amplitude motion of a vertical wall. Wave mo-
tion in the test tank is measured with the help of conventional synthetic schlieren and
PIV techniques. The numerical setup closely reproduces the experimental one in terms
of geometry and the operational range of the Reynolds and Schmidt numbers. The spec-
tral element method is used as a numerical tool to simulate the nonlinear dynamics of
a viscous salt-stratified fluid. We show that the results of three-dimensional calculations
are in excellent qualitative and quantitative agreement with the experimental data, in-
cluding the spatial and temporal parameters of the secondary waves produced by triadic
resonance instability. Further, we explore experimentally and numerically the effect of
lateral walls on secondary currents and spanwise distribution of velocity amplitudes in
the wave beams. Finally, we test the assumption of a bidimensional flow and estimate
the error made in synthetic schlieren measurements due to this assumption.

1. Introduction

Stratified and/or rotating fluids are ubiquitous in geophysical and astrophysical hydro-
dynamics. Such fluids support internal and/or inertial waves which have many common
properties due to the similarity of their dispersion relations: typical occurrences of these
waves are oblique beams that propagate at an angle with respect to the horizontal con-
trolled by the ratio of the forcing frequency to the natural frequency of the system, the
latter being set by the combined balances of restoring (buoyancy and/or Coriolis) force
and inertia.
The anisotropic dispersion relation requires the preservation of the angle of the wave

beam to the horizontal upon reflection at a rigid boundary. In the case of a sloping
boundary, this property gives a geometric reason for the strong variation of the beam
width (focussing or defocussing) upon reflection. In the limit of a vanishingly small beam
width, the wave reflection in confined domains can be studied by ray tracing which shows
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that focussing prevails. A typical generic case is represented by wave rays converging to
a closed loop, the wave attractor. A detailed analysis shows that a confined domain of a
specific geometry has a subset of global resonances (similar to normal modes) and a rich
variety of wave attractors having different complexity and rates of convergence toward
limit cycles (Maas & Lam 1995).
Internal wave attractors have been experimentally observed in the seminal paper

by Maas et al. (1997) for a benchmark geometric setting, a trapezoidal domain filled
with a uniformly stratified fluid. The properties of internal wave attractors have been
extensively studied (Grisouard, Staquet & Pairaud 2008; Hazewinkel et al. 2008, 2010;
Echeverri et al. 2011; Hazewinkel, Grisouard & Dalziel 2011). In parallel, a rich litera-
ture describes the properties of inertial wave attractors, considering a rotating spherical
annulus as a generic model of homogeneous liquid shells of celestial bodies (Stewartson
1971, 1972; Rieutord & Valdettaro 1997; Rieutord, Georgeot & Valdettaro 2000, 2001;
Rieutord, Valdettaro & Georgeot 2002; Rieutord & Valdettaro 2010; Rabiti & Maas
2013), and also simpler geometrical settings of academic interest (Manders & Maas
2003; Ogilvie 2005; Jouve & Ogilvie 2014). Inertia-gravity waves in rotating strati-
fied fluids contained in spherical shells have also been considered (Dintrans, Rieutord &
Valdettaro 1999; Maas & Harlander 2007). In addition to the above-mentioned two-
dimensional (plane or axisymmetric) settings, fully three-dimensional geometries have
been considered theoretically (Maas 2005), numerically (Drijfhout & Maas 2007) and
experimentally (Hazewinkel et al. 2011; Manders & Maas 2004).
The major part of the cited literature is focussed on the theoretical analysis of wave at-

tractors, assuming linearized equations of motion and a simple harmonic time-dependence.
In the inviscid limit, the theory explores the structure of singular and regular solutions
of the wave equation (in spatial coordinates) in a confined domain, what is known to be
generally an ill-posed problem: see e.g. Stewartson (1971, 1972); Maas & Lam (1995);
Rieutord & Valdettaro (1997). The inclusion of viscosity regularizes the problem, re-
placing attractors singularities by shear layers of finite width, which can be computed
numerically (Rieutord & Valdettaro 1997; Rieutord, Georgeot & Valdettaro 2001). The
competition between geometric focussing and diffusive viscous broadening provides a
physically clear mechanism for setting the final width of the branches of wave attractors,
at least in linear problems (Ogilvie 2005; Hazewinkel et al. 2008; Grisouard, Staquet &
Pairaud 2008). Other dissipative mechanisms can be involved, which might be modeled
by considering a relevant eddy viscosity, triadic resonance instability accompanied with
energy flux to waves with shorter length scales, or magnetic damping in the case of con-
ductive fluids (Ogilvie 2005). Remaining within the realm of the linearized approach,
Ogilvie (2005) has shown that the asymptotic dissipation rate in the system (i.e. the
value corresponding to the zero viscosity limit or, equivalently, a vanishingly small Ek-
man number) is, to the leading order, not sensitive to the replacement of viscous damping
by a ’frictional’ damping force proportional to the velocity. However, if a system is given
a sufficiently large forcing, nonlinear effects become important, motivating experiments
and direct numerical simulations of the fully nonlinear problem.
The first numerical simulations of the corresponding Navier-Stokes equation have been

performed in Grisouard, Staquet & Pairaud (2008) and a subsequent study has been
presented in Hazewinkel, Grisouard & Dalziel (2011). It has shown that numerical re-
sults successfully reproduce the experimentally observed dynamics of wave beam forma-
tion (Hazewinkel et al. 2008) in terms of the overall flow pattern, width of the wave beams
and shape of the wave number spectra during transient and steady regimes. Hazewinkel,
Grisouard & Dalziel (2011) have reported also a good qualitative agreement in terms of
measured and computed stream functions, and have concluded that the good quantitative
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agreement for stable attractors is possible if the forcing in the numerical model is ad-
justed in such a way that the computed peak velocities coincide with the measured ones
(it relies on a forcing in 2D numerical simulation much lower than in the experiments.).
Regarding the computed non-linear effects, Grisouard, Staquet & Pairaud (2008) have
described the harmonic components corresponding to multiples (double and triple) of
the forcing frequency. The presence of the second harmonic has also been experimentally
detected in the data from Maas et al. (1997), and later re-analyzed in Lam & Maas
(2008).
The stability of attractors for an injected energy of high amplitude remained largely

unexplored until the experimental work by Scolan, Ermanyuk & Dauxois (2013), which
has demonstrated that attractors are prone to triadic resonance instability Note that the
particular case for which both unstable secondary waves have a frequency equal to half of
the forcing frequency is of particular interest in the oceanographic context where viscosity
is negligible. In that case, the appropriate name is parametric subharmonic instability
and abbreviated as PSI. By abuse of language, some authors have sometimes extended
the use of the name PSI to cases for which secondary waves are not corresponding to
half of the forcing frequency. For the sake of terminological consistency, we propose to
abbreviate triadic resonance instability in the rest of the paper using the new acronym:
TRI.
The onset of the instability is similar to the scenario for wave beams in an unbounded

domain (Bourget et al. 2013): in reality the finiteness of the beam width matters (Karimi
& Akylas 2014; Bourget et al. 2014). Direct numerical two-dimensional simulations of
inertial wave attractors in linear and nonlinear regimes have been performed in Jouve &
Ogilvie (2014) for a model geometry represented by a tilted square. In the linear regime,
the simulations reported very nicely confirm the linear analysis presented in Ogilvie
(2005). In the nonlinear regime, the instability is shown to transfer energy to short wave-
lengths where it is more efficiently dissipated by viscosity. Owing to this mechanism, the
saturation of the overall dissipation in the system occurs faster than in the linear regime.
The scenario of instability observed in these numerical simulations (Jouve & Ogilvie
2014) for inertial waves is qualitatively similar to the one described in Scolan, Ermanyuk
& Dauxois (2013) for internal waves. In the oceanographic context, observations have
provided strong suggestions of the particular case of parametric subharmonic instability
(MacKinnon & Winters 2005; Alford et al. 2007; Alford 2008).
Summing up the literature survey, we note that there are only few studies reporting di-

rect numerical simulations of internal (Grisouard, Staquet & Pairaud (2008); Hazewinkel,
Grisouard & Dalziel (2011)) and inertial (Jouve & Ogilvie 2014) wave attractors. Ex-
cept in Drijfhout & Maas (2007) in a more oceanographic context, all these studies
were performed in two-dimensional settings. Grisouard, Staquet & Pairaud (2008) use
a trapezoidal geometry, with one horizontal boundary representing a free surface, and
free-slip conditions at rigid boundaries of the fluid volume, except at the vertical wall,
where barotropic forcing is applied in the form of a uniform horizontal flow of small
amplitude oscillating at a chosen forcing frequency. The implementation of free-slip con-
ditions avoid resolving viscous boundary layers. Hazewinkel, Grisouard & Dalziel (2011)
use a similar geometrical setup but forced the system via a progressive first-mode internal
wave. In both cases, Grisouard, Staquet & Pairaud (2008) and Hazewinkel, Grisouard
& Dalziel (2011) take advantage of the two-dimensional version of MITgcm, the general
circulation model developed by Marshall et al. (1997) based on finite volume method.
The Prandtl-Schmidt number (the ratio of the fluid viscosity to the salt diffusivity) was
taken equal to 100 in Grisouard, Staquet & Pairaud (2008) and 770 in Hazewinkel,
Grisouard & Dalziel (2011). In their study of inertial waves, Jouve & Ogilvie (2014) use
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a different geometry: a tilted square. They carried out direct numerical simulations using
a two-dimensional version of the 3D spectral code SNOOPY (Lesur & Longaretti 2005,
2007; Lesur & Ogilvie 2010). No-slip boundary conditions are imposed via a fictitious
absorbing layer outside the fluid domain where the velocity components are forced to
vanish, ensuring the global energy conservation with an accuracy of a few per cent.
To our knowledge, there have been no attempts of 3D simulations for direct comparison

with experimentally generated attractors. In rectangular domains where normal modes
are of primary interest, the dissipation at rigid walls (boundary friction) can dominate
the dissipation in the bulk by a factor of one hundred (Benielli & Sommeria 1998; Lam &
Maas 2008). The importance of boundary friction for triadic resonance instability in the
case of normal modes in a rectangular domain has been already emphasized in McEwan
(1971). His experimental results of the amplitude threshold for TRI of normal modes
are indeed in good agreement with theoretical predictions when the sum of a bulk-
internal term and a boundary-layer term is taken into account in the calculated energy
dissipation. Moreover, he noticed that, on a laboratory scale, internal dissipation becomes
comparable with wall dissipation only from a vertical modal number of order 10. In the
case of the normal modes, an analytical expression for the energy dissipation can be
found and reveals that the bulk dissipation depends on the wavelength of the wave while
the boundary dissipation is only related to the direction of the wavenumber vector. In
contrast to normal modes, attractors are strongly dissipative structures which adapt their
typical wavelength (and, therefore, shear and associated dissipation rate) to reach a global
balance between the injected and the dissipated energy (Ogilvie 2005). Thus, the role of
the dissipation at rigid boundaries as compared to the dissipation by shearing in the bulk
of fluid is less clear for attractors than for normal modes. It is also not obvious to what
extent 3D simulations are necessary to reproduce the experimental results quantitatively.
The present paper aims at addressing these questions about dissipation and 3D effects
by performing cross-comparisons of the available experimental data against the results
of three-dimensional direct numerical simulations of internal wave attractors using a
spectral element method based on the code Nek5000 (Fischer & Ronquist 1994).
The paper is organized as follows. In Section 2, we describe the experimental and nu-

merical setup. In Section 3, we compare the results of three-dimensional computations
with the experimental data in the linear and nonlinear regimes. In particular, in the non-
linear regime, we apply to numerical results the technique previously employed in Scolan,
Ermanyuk & Dauxois (2013) for analyzing triadic resonances. In Section 4, we describe
the wave structure in the transversal direction. Using experiments and numerical simu-
lations, we test the assumption of the bidimensionality of the flow and we examine the
mean-flow generated by the wave attractor. We also estimate the error made in synthetic
schlieren measurements due to the bidimensional flow assumption. Finally, in section 5,
we present our conclusions.

2. Experimental and numerical set-ups

2.1. Experimental set-up

In the present work, we use the experimental results presented in Scolan, Ermanyuk &
Dauxois (2013) and also additional experimental data obtained with the experimental
setup sketched in figure 1(a). A cartesian coordinate system is introduced, with the
horizontal x and vertical z axes located in the vertical midplane of the test tank. The y
axis is perpendicular to the (x, z)-plane and directed from the observer/camera towards
the tank. The rectangular test tank of size 800 × 170 × 425 mm3 is filled with a salt-
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Figure 1. (a): Experimental set-up. A sloping wall is inserted inside a tank of size
L×W×H = 800×170×425 mm3. The working bottom length L of the section, the depth H ,
and the sloping angle α can be clearly identified in this picture. A wave maker located on
the left of the tank generates a mode 1 forcing at a tunable frequency ω0. The flow is mostly
two-dimensional as demonstrated within the text and, therefore, essentially independent of the
transversal variable y except for narrow boundary layers at lateral walls and weak nearly horizon-
tal secondary currents in the wave beams. The schematic attractor is depicted with the dotted
quadrilateral in the working domain. The longitudinal (resp. transversal) variable ξ (resp. η)
of the most energetic branch of the attractor are also defined on the picture. (b): Example
of a stratification measured with the conductivity probe before one experiment. The density
difference with fresh water, ∆ρ, is plotted in function of the depth z.

stratified fluid using the conventional double-bucket technique. The density distribution
as a function of the vertical coordinate z is measured prior and after experiments by a
conductivity probe driven by a vertical traverse mechanism. The value of the buoyancy
frequency N = [(−g/ρ̄)(dρ/dz)]1/2 is inferred from the linear fit to the measured density
profile. An example of such a profile is shown on figure 1(b). A sliding sloping wall,
inclined at the angle α, is carefully inserted into the fluid once the filling procedure is
over. The sloping wall delimits a trapezoidal fluid domain of length L (measured along
the bottom) and depth H .
The input forcing is introduced into the system by an internal wave generator (Gostiaux

et al. 2007; Mercier et al. 2010; Joubaud et al. 2012; Scolan, Ermanyuk & Dauxois
2013) with the time-dependent vertical profile given by

ζ(z, t) = a sin(ω0t) cos(πz/H), (2.1)

where a and ω0 are the amplitude and frequency of oscillations, respectively. The profile
is reproduced in discrete form by the motion of a stack of 47 horizontal plates driven by
the rotation of a vertical shaft. The stack of moving plates is confined between lateral
walls of a vertical box-like support frame. Each lateral wall of the frame is 15 mm thick.
Therefore the inner size of the frame, W ′, which coincides with the width of the moving
plates, is 30 mm smaller than the width of the tank W . Thus the forcing is applied to
the stratified fluid with a width W ′ representing 82% of the whole width W .
Fluid motion is recorded by a computer-controlled video AVT (Allied Vision Technolo-

gies) Stingray camera with CCD matrix of 1388× 1038 pixels or Pike camera with CCD
matrix of 2452 × 2054. The camera is placed at a distance between 1750 to 2300 mm
from the test tank. Given the relatively small size of the working section, no correction
for the parallax errors is applied. Two methods are used to measure the parameters of



6 C. Brouzet1, I. Sibgatullin1,2,3, H. Scolan1,4, E.V. Ermanyuk1,5, T. Dauxois1

the fluid motion. The perturbations of the density gradient are measured with synthetic
schlieren technique (Dalziel, Hughes & Sutherland 2000) from apparent distortions of
a background random dot pattern observed through the stratified fluid. In some cases,
standard PIV technique has alternatively been used for velocity measurements. The fluid
is seeded with light-reflecting particles of typical size 8 µm and density 1.1 kg/m3. The
sedimentation velocity of particles is found to be sufficiently low. Its effect on the results
of velocity measurements is negligibly small. The test section is illuminated by a vertical
laser sheet coming through the transparent side or bottom of the test tank. The spanwise
position of the sheet could be varied to assess three-dimensional effects.
For the synthetic schlieren technique, the camera takes 2 frames per second. For the

PIV measurements, the camera operates in two-frame burst mode with an interval be-
tween the pair of images within a burst set to 0.125 s and a global burst cycle period of
0.5 s. Conversion of images into velocity fields is performed using a cross-correlation PIV
algorithm with subpixel resolution (Fincham & Delerce 2000). Thus with 2 velocity fields
per second, i.e typically around 20 fields per wave period, we can resolve the significant
frequency components of the signal. Besides, the spatial resolution for the velocity field
is about 3 mm in each direction and is found sufficient to resolve fine details of the wave
field.

2.2. Numerical set-up

The numerical simulation of wave attractors faces two major challenges. First, the fluid
motion is highly nonlinear, and accounting for nonlinear interactions is crucial for the
dynamics, even for weak interactions. Second, the Schmidt number (Sc), defined as the
ratio of water kinematic viscosity and salt diffusivity, is close to 700 in a salt-stratified
fluid. So the spatial scale of the density perturbations can be much smaller than the
scale of the velocity perturbations and more demanding in terms of spatial resolution.
The scale under which no scalar gradient remains because of diffusion effect is very small
and smaller than the usual Kolmogorov scale LK used as a mesh criterion for direct
simulations where LK = Re−3/4 × L with L the integral scale and Re the large scale
Reynolds number. Strictly speaking, this small scale where scalar diffusion takes place
can be estimated with the Batchelor scale LB = LK × Sc−1/2 (Batchelor 1959; Buch
& Dahm 1996; Rahmani, Seymour & Lawrence 2014).
The first numerical simulation of the formation of internal wave attractors (Grisouard,

Staquet & Pairaud 2008) used finite volume method, one of the most popular state-of-
the-art tools in computational fluid dynamics. However, as noted by these authors, the
numerical simulation could only reproduce the dynamics of the attractors for Schmidt
number less than 100. In addition, the discretization of convective terms produces a
numerical viscosity, which acts similarly to a real viscosity. This numerical artefact blurs
the fine-scale structures arising due to the high value of the Schmidt number and it may
also introduce substantial errors in calculations of the long-term dynamics of attractors
(at time scales of tens or hundreds of periods). However, for the current study, the long
time intervals are precisely of particular interest to study the growth, saturation and
cascades of secondary instabilities.
As an alternative, the Galerkin method represents a highly efficient approach to tackle

the nonlinear interactions if a full system of basis functions subject to boundary condi-
tions can be used. A pseudospectral approach offers an efficient realization of the Galerkin
method. In Jouve & Ogilvie (2014), this approach has been used to study nonlinear in-
teractions in attractors of inertial waves. In the present work we have chosen the method
of spectral elements which combines the accuracy and high resolution of spectral methods
with geometric flexibility of finite element methods, and what is particularly suitable for
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simulation of long-term evolution of fine-scale flows in globally forced geophysical sys-
tems (Favier et al. 2015). The computational domain is divided into a finite number of
quadrilateral (in 2D) or hexahedral (in 3D) elements and a Galerkin approach is applied
to each element. For the numerical realization, we use the open code Nek5000, developed
by Paul Fischer and colleagues (Fischer & Ronquist 1994; Fischer 1997; Fischer & Mullen
2001). In each element, the Lagrange polynomial decomposition is used and applied at
Gauss-Lobatto-Legendre points for the sake of stability (to avoid ill-conditioning). The
full resulting mesh, consisting of the elements and the Gauss-Lobatto-Legendre points,
is highly nonuniform, adding a bit more complexity in post-processing data treatment.
However, the efficiency of the code fully justifies such a nuisance. In other words, the
approach used weighted residual techniques employing tensor-product polynomial bases.
Besides other benefits, it allows “analytical” computation of the derivatives through
matrix-matrix products or matrix-matrix-based evaluation

u(x, y, z, t) =
∑

i,j,k

ui,j,k(t)ψi(x)ψj(y)ψk(z) (2.2)

∂

∂x
u(x, y, z, t) =

∑

i,j,k

ui,j,k(t)ψ
′

i(x)ψj(y)ψk(z), (2.3)

in which u represents any of the unknown variables, for instance, velocity components,
density, etc. ψ is a Lagrangian interpolant through the Gauss-Lobatto-Legendre points.
The implementation of a high-order filter in Nek5000 allows to stabilize the method for

convection-dominated flows (Fischer & Mullen 2001). The time advancement is based
on second-order semi-implicit operator splitting methods and stable backward-difference
scheme. The additive overlapping Schwarz method is used as a pre-conditioner (Fischer
1997).
The most difficult regions from a computational viewpoint are located in the vicinity

of the rigid walls since, in these regions, intense folding of high-gradient density layers
may occur, especially in the case of a high-amplitude wave motion. For this reason, a
nonuniform element mesh in the near-wall regions is preferable for simulations of the non-
linear dynamics of wave attractors. Typically, we have used meshes with up to 0.5 million
elements, with eighth to tenth order polynomial decomposition within each element.
The full system of equations being solved consists of the Navier-Stokes equation in the

Boussinesq approximation

ρm

(

∂v

∂t
+ (v ·∇)v

)

= −∇p̃+ µ∆v + ρsg, (2.4)

the continuity equation

∇ · v = 0 (2.5)

and the equation for the transport of salt

∂ρs
∂t

+ (v ·∇)ρs = λ∆ρs, (2.6)

where ρm is the density of solution with the constant minimal reference salinity, ρs the
density perturbation in a unit volume due to local salinity (the full density is ρ = ρm +
ρs), µ the dynamical viscosity and λ the diffusivity of salt. Dynamical viscosity and
diffusivity are assumed to be constant. We impose no-slip boundary conditions on the
rigid surfaces and stress-free condition on the upper surface. The boundary conditions
on ρs are isolation: ∂ρs/∂n = 0 where n is the normal to the wall. Forcing is applied at
the vertical wall by prescribing the profile of the horizontal velocity which reproduces the
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motion of the generator (2.1) in the vertical direction and takes into account the difference
between the width of the generator W ′ and the width of the tank W . The transverse
profile of the forcing is prescribed by stepwise or piece-wise linear function. At the central
segment of the widthW ′, the horizontal velocity is uniformly distributed in the transverse
direction in both cases. At the side segments of width (W −W ′)/2, we prescribe either
i) zero velocity or ii) a linear decrease of the velocity from the uniform value to zero.
These two versions of transverse profiles of forcing give essentially the same results, with a
small quantitative difference in the second version where forcing gives a higher horizontal
impulse to the system. Both versions can be implemented in calculations, but the second
version of the forcing is found to be much less expensive computationally and the major
part of computations was performed with it. The efficiency of the generator used in
experiments is not 100%. For this reason, the amplitude of forcing in computations with
the piecewise linear case is intentionally reduced by 10% compared to the experimental
value, thereby providing a good match between numerical and experimental results.

The comparison between numerical and experimental results is typically complicated
by the presence of a thin mixed layer close to the free surface of the stratified fluid in
the test tank. Because of this layer, the internal wave beam is not reflected precisely at
the free surface. Instead the wave beam undergoes a complex reflection, partially at the
interface between the mixed layer and the linearly stratified fluid and partially at the free
surface. This complex reflection affects the shape of the attractor (Grisouard, Staquet &
Pairaud 2008) and the shape of envelopes of wave motions in the wave beams. To take
this layer into account in the numerical model, we introduce a model density distribution
where the full depth is denoted H as in experiments, the thickness of the thin mixed
upper layer is δ, and the depth of the linearly stratified fluid is H ′ = H − δ.

3. Wave pattern in the vertical plane

3.1. A stable attractor

As already mentioned in the Introduction, the dynamics of stable attractors has been
studied in great detail before, both in stratified and rotating fluids. It is well established
that the typical thickness of the attractor scales as 1/3 power of the Ekman/inverse Stokes
number in rotating/stratified fluid (Rieutord, Georgeot & Valdettaro 2001; Ogilvie 2005;
Hazewinkel et al. 2008; Grisouard, Staquet & Pairaud 2008). The evolution of the spatial
wave spectrum during the transient regime after the start-up of the oscillations toward
an equilibrium shape is also well-known (Hazewinkel et al. 2008; Grisouard, Staquet &
Pairaud 2008). This dynamics is well reproduced in our calculations be they 2D or 3D.
In addition, we observe a very good quantitative agreement in our 3D simulations once
we introduce a small correction for non-perfect efficiency of the wave generator.

Typical snapshots of the computed and measured fields of the horizontal density gra-
dient ρx are shown in figure 2, emphasizing a very good qualitative and quantitative
agreement between the numerical and experimental data. This good agreement is fur-
ther confirmed with the time-series of the horizontal density gradient at a point located
in the most energetic branch of the attractor as illustrated in figure 2. Note that the
numerical value of the density gradient is computed at the vertical mid-plane xOz of
the test tank. With this comparison, we tacitly assume that the flow is approximately
two-dimensional and the standard schlieren technique is applicable (Dalziel, Hughes &
Sutherland 2000). The effects of three-dimensionality are discussed further in the next
section.
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Figure 2. Experimental (a) and numerical (b) snapshots of the horizontal density gradient at
t = 50 T0. The amplitude of the wave maker is a = 2 mm for the experiment and a = 1.8 mm for
the simulation. Both attractors are stable. Note that the shade (color online) scale is the same
in both panels. The small black quadrilateral defines the acquisition region used for computing
the time-frequency spectrum presented in figure 4. The wave frequency is ω0/N = 0.62 ± 0.01.
Experimental (c) and numerical (d) horizontal density gradients as a function of the time, for
a point located on the most energetic branch within the black trapezoid depicted in panels (a)
and (b). In the calculation we take a piecewise linear approximation of the experimental density
profile, with the lower layer of depth H ′ = 308 mm and buoyancy frequency N , and the upper
layer of depth δ = 18 mm with a density gradient 8 times smaller. The total depth of fluid
H = H ′ + δ = 326 mm.

3.2. An unstable attractor

As the amplitude of oscillations of the wave generator increases, the attractor becomes
unstable. In what follows, we describe the comparison of the experimental and numerical
results for the onset of the triadic resonance instability. 2D simulations were also per-
formed and found to predict the instability to occur at the forcing amplitudes roughly
two times smaller than the experimental ones. This is due to the absence of lateral walls
in the 2D simulations. These walls introduce a significative dissipation in 3D simulations,
as demonstrated in subsection 4.5. In view of this quantitative discrepancy between 2D
and 3D simulations, in what follows we use the results of 3D calculations for compari-
son with the experiments. The experimental and numerical snapshots of the horizontal
density gradient field are presented in figure 3. The development of TRI is clearly seen
in the most energetic branch of the attractor. A very good quantitative and qualitative
agreement is again observed between the experimental and numerical wave fields. The
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Figure 3. Experimental (a) and numerical (b) snapshots of the horizontal density gradient at
t = 50 T0. The amplitude of the wave maker is a = 2.5 mm for the experiment and a = 2.4 mm for
the numerical simulation. The wave frequency is ω0/N = 0.62±0.01. Both attractors are unstable
and the instability appears first on the most energetic branch. The small black quadrilateral
defines the acquisition region used for computing the time-frequency spectrum presented in
figure 4. Experimental (c) and numerical (d) horizontal density gradients as a function of the
time, for a point located on the most energetic branch within the black trapeze depicted in
panels (a) and (b). The density stratification is the same as described in caption to figure 2.

experimental and numerical time-series at a point in the most energetic branch of the
attractor show also an excellent correspondence.

Let us now focus on the development of the instability in more detail to see if compu-
tations reproduce the experimentally observed triads in temporal and spatial domains.
We first consider the evolution of the instability in the temporal domain. The develop-
ment of the frequency spectrum of wave motion over time is presented in figure 4. The
time-frequency diagrams are calculated from numerical and experimental data for points
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Figure 4. Experimental and numerical time-frequency spectra of data presented in figure 3.
Both have been computed with the same signal processing parameters, over the same area,
located on the most energetic branch and depicted with a black trapeze in figure 3.

as in Bourget et al. (2013), with the formula

Sr(ω, t) =

〈∣

∣

∣

∣

∫ +∞

−∞

vr(x, z, τ)e
iωτh(t− τ) dτ

∣

∣

∣

∣

2

〉

xz

, (3.1)

where h is an Hamming window and r the component of the velocity field along x or
z, i.e. Su or Sw. The calculations are performed with the Matlab toolbox described in
Flandrin (1999). The appropriate choice of the length of the Hamming window allows
to tune the resolution in space and time. The experimental and numerical spectra are
averaged over the analyzing area shown in figure 3. It can be seen that the numerical
and experimental spectra agree qualitatively and quantitatively. The signal is initially
entirely dominated by the forcing frequency Ω0 = 0.62 (in which Ω0 = ω0/N is the non-
dimensional frequency of oscillation) : it corresponds precisely to the primary (carrier)
wave. Then oscillations with frequencies Ω1 and Ω2, which correspond to two secondary
waves generated by TRI, slowly develop with time. At t = 50T0, these frequencies are
Ω1 = 0.24 and Ω2 = 0.38. They satisfy the frequency conditions for the triadic resonance

Ω1 +Ω2 = Ω0. (3.2)

In addition, one can see also two peaks Ω3 = 0.86 and Ω4 = 1.00 satisfying differential
conditions

Ω3 − Ω1 = Ω0 and Ω4 − Ω2 = Ω0. (3.3)

To verify the fulfillment of the condition for triadic resonance in space, we apply the
Hilbert transform technique (Mercier, Garnier & Dauxois 2008; Bourget et al. 2013) to
the numerically simulated data in the same way as it is done in experiments (Bourget
et al. 2013): the experimental signal is demodulated with the Fourier transform, filtered
around the three frequencies of interest, Ω0, Ω1 and Ω2, and reconstructed back in real
space using the inverse Fourier transform. As shown in Figure 5 of Scolan, Ermanyuk &
Dauxois (2013), it is possible to compute amplitude and phase of each component. The
latter appear as patterns of stripes, corresponding to a fixed moment of time. The wave
vectors can be derived by differentiating these phases along the x and z directions.
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Figure 5. Experimental (a) and numerical (b) triads. The three wave vectors are measured
from the phase of the waves after Hilbert filtering around ω0, ω1 and ω2. The error bars are
given by of ellipses at the arrow tips.

To quantify the wave vectors involved into the triadic resonance in the numerical data,
we construct probability density functions (PDF) for the components of wave vectors.
Using these PDF for the components of the wave vector corresponding to the primary

wave oscillating at Ω0, we can estimate
−→
k 0 = {−63.5,−80.1} m−1. The same proce-

dure for the secondary wave oscillating at Ω2 gives
−→
k 2 = {−104.8,−242.5} m−1. The

phase pattern is slightly more complicated for the component oscillating at Ω1 as can
be noticed in Figure 5 of Scolan, Ermanyuk & Dauxois (2013) where lines of equal
phase for this frequency are not completely straight and there is a larger error bar on
the measurement of the wave vector. Numerically, it is possible to investigate further in
the focusing branch of the attractor thanks to the PDF analysis: one realizes that there
are two families of collinear wave vectors, which yield multi-peaked PDF of the wave

vector components, where the main peak corresponds to
−→
k 1 = {46.5, 174.3} m−1. These

values of the wave vector components closely match the spatial condition of the triadic
resonance. The physical interpretation of the other peaks present in the PDF of the wave
vector components for the wave field filtered at Ω1 is unclear.
The triangles of the wave vectors obtained in experiments and simulations are shown

in figure 5. Again, we observe a good quantitative agreement between the experimental
and numerical results.

4. Wave structure in the transversal direction: three-dimensional

effects and role of lateral walls

4.1. Introduction

We now consider the wave attractor in the whole domain and investigate its structure
in the transversal direction. An overall idea of the importance of three-dimensional effects
in wave attractors can be indeed drawn from Figure 6 which represents an isosurface of
the norm of the velocity vector for a 3D simulation at the onset of the instability. We
can see the same features as in the vertical xOz plane view in figure 3 with the loop of
the attractor and the secondary perturbations. However, the iso-surface of the velocity
norm is not flat in the transversal direction as the fronts of the perturbations are visibly
curved especially on the two top S-shape features in the focusing branch near the slope.
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Figure 6. Visualization of the three dimensional effects in the internal wave attractor. Snapshot
of the instantaneous magnitude of the velocity field (u2 +w2)1/2 produced by the 3D numerical
simulations based on the spectral element method for a = 2.4 mm. The snapshot corresponds to
a contour plot (level 2.5 mm/s) of the amplitude of the velocity field (u2+w2)1/2 at t = 50 T0.The
inset presents a zoom to emphasize an example in which the transversal direction is curved.

Also, close to lateral walls, in particular in corner regions at the intersection of vertical
walls, it is possible to see some three-dimensional structures. The inset of figure 6 is a
zoom on a region where the 3D-effects are particularly visible.

4.2. 2D visualizations in vertical plane xz at different transversal locations

In Scolan, Ermanyuk & Dauxois (2013), the experiments presented have been per-
formed using the Synthetic Schlieren technique which assumes that the flow is bidimen-
sional. Indeed, in this technique, the image results from the integration of the field along
the transverse direction and the ray of light is expected to cross the tank through always
the same density perturbation. This assumption seems to be reasonable because the ex-
perimental set-up has been designed on purpose to ensure the two-dimensionality of the
flow. Indeed, the tank is narrow in the transverse y direction and forcing is applied via
the wave-maker through almost all the width of the tank so that the flow is expected to
be two-dimensional, except very close to both vertical lateral walls where the viscosity
plays an important role.
To check this assumption, we use experimental standard PIV technique for several

vertical sections at different constant y positions of the light sheet and thus compare
flow properties between the different sections. Experiments have been performed with
L=435 mm, H=300 mm and α = 25◦, a geometry close to experiments performed in
Scolan, Ermanyuk & Dauxois (2013). Different vertical sections in the transverse direc-
tion have been illuminated with a vertical laser sheet, coming from the bottom of the
tank, which is transparent. A 45◦ inclined mirror, located below and as long as the tank,
transforms a horizontal laser sheet into a vertical one. By simply translating the mirror
in the transverse direction, one can illuminate the different test sections. Three series
of experiments have been performed, each one with a different amplitude of the wave
maker: a = 1.5, 3 and 5 mm. For each series, between 9 to 12 vertical sections have been
illuminated by simply translating the mirror in the transverse direction.
Measurements have been carried out in the stationary state of the attractor. For the

lowest amplitude experiment, there is no instability of the attractor: the wave maker was
stopped only at the end of the full series, once all sections have been illuminated. For the
two other series, the instability takes place after a long transient: consequently, the wave
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maker has been stopped after performing measurements at each transversal location to
avoid mixing effects that would modify the stratification and thus the attractor itself.
For all series, measurements in the central section of the tank were performed twice,
once at the beginning, once at the end. This gives an estimate of the errors made on
these measurements and also gives the possibility to check that, after a whole series, the
attractor is really unchanged. To compare the different sections of the same series, we
focused only on the most energetic branch of the attractor (the one connecting the slope
to the free surface). Transversal profiles are extracted through this branch, always at
the same location. As the horizontal and vertical velocities are measured, it is possible
to calculate the velocity along this branch inclined at the angle θ = arcsinΩ0 using the
formula vξ = −vx cos θ + vz sin θ. The maximum value corresponds to the center of the
branch, η = 0, where η is the coordinate transversal to the branch.

Numerically, with 3D simulation, it is possible to get velocity profiles in the transverse
y direction. Two 3D simulations have been performed, with exactly the same geometrical
parameters as in Scolan, Ermanyuk & Dauxois (2013), and with two different amplitudes
of the wave maker: a = 1.6 and 2.2 mm. Velocity profiles in the transverse y direction
were extracted from the most energetic branch and the velocity vξ along this branch
computed as for experiments.

It is important to note that the transverse resolution is much higher in the numerical
data (512 points for 170 mm) than in the PIV experimental ones (between 9 and 12
points for the same 170 mm). Moreover, the different points obtained experimentally
come from different individual experiments performed at the same input parameters but
not from the same unique experiment. Thus, it is difficult to synchronize the different
points and we are limited to look at amplitudes of the filtered signals at ω0, ω1 and ω2.
In contrast, various quantities can be examined numerically such as the raw signal, the
whole signal filtered around ω0, ω1 and ω2 and the mean flow generated by the attractor.
Different videos, available in the supplementary information, show these different fields.

4.3. Velocity profiles in transverse y direction

Figure 7(a) presents the different velocity profiles for the numerical simulation with
a = 1.6 mm. For this amplitude, the attractor is stable. The raw velocity profiles for vξ
are, as expected, very close to the bidimensionality, except into the boundary layers where
the velocity goes to zero. Moreover, it appears clearly that the amplitude of the transverse
velocity vy (represented by a dashed line) is much smaller than the velocity vξ along the
branch. This is a clear confirmation that the attractor generated by the wave maker
is two-dimensional to a good approximation. The difference between the raw velocity
magnitudes measured in positive and negative ξ directions comes from the presence of
slow near-wall secondary currents superposed with the fundamental monochromatic wave
motion in the wave beams as discussed in more detail in §4.4.

To extract only the component of the wave field oscillating at the fundamental fre-
quency, one can do Hilbert filtering on the raw profiles around ω0 over 20 T0. The modulus
of the velocity filtered for the numerical simulation with a = 1.6 mm is shown with a thick
dashed line in figure 7(b). As the raw profiles, it is also very close to bidimensionality.
By looking to the real part of the filtered signal, one can be convinced that the profiles
for vξ are exactly the same for positive and negative values. Hilbert transform allows
us also to investigate the two-dimensionality of the TRI. As the numerical simulation
with a = 1.6 mm is stable, one can use the one with a = 2.2 mm, which is unstable.
Figure 7(b) shows the profiles along y of the modules of vξ filtered around ω0 (thick solid
line), ω1 (thin solid line) and ω2 (thin dashed line) for this simulation. These profiles
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Figure 7. (a): Raw velocity profiles as a function of the transversal direction y for the numerical
simulation with a = 1.6 mm. Thick solid line and thin solid line: maximum (max vξ) and
opposite of the minimum (-min vξ) of the velocity vξ for each y over the time history. Dashed
line: maximum of the absolute value of the transversal velocity vy over the time history for
each y. (b): Modulus of vξ filtered over 20 T0 around ω0 (thick dashed line), for the numerical
simulation with a = 1.6 mm. Modulus of vξ filtered over 20 T0 around ω0 (thick solid line),
ω1 (thin solid line) and ω2 (thin dashed line), for the numerical simulation with a = 2.2 mm.
(c): Normalized profiles of vξ filtered around ω0 for the numerical simulation with a = 1.6 mm
(thick dashed blue line) and a = 2.2 mm (thin solid red line). Points were obtained using PIV
experiments: a = 1.5 mm (blue diamond), a = 3 mm (red square) and a = 5 mm (black circle).

appear to be nearly constant in the y direction, except close to the edges. This ensures
that the instability which develops in the tank is also bidimensional.
To compare the numerics and the experiments, we can superimpose the experimental

and numerical vξ profiles after Hilbert filtering around ω0 for the different amplitudes
of the wave maker. Figure 7(c) shows these different profiles: the solid blue line (resp.
diamonds) corresponds to numerical (resp. experimental) data for a = 1.6 mm (resp.
a = 1.5 mm) while the dashed red line (resp. squares) corresponds to numerical (resp.
experimental) data for a = 2.2 mm (resp. a = 3 mm). Experimental points for a = 5 mm
are represented by black circles. All data are normalized by the velocity in y = 0 mm
to avoid divergences in amplitude due to the location of the point where is measured
the velocity along the branch and small discrepancies in wave maker amplitude. All data
show again a very good two-dimensionality. The loss of amplitude on the edges, before
the boundary layers is less than 10%. Moreover, numerical and experimental data for
a = 1.6 and a = 1.5 mm (dashed blue line and diamonds) show a good agreement
between each other. For higher amplitudes a = 2.2 and a = 3 mm (red line and squares),
where the TRI is developed, the agreement is also very good. Even for the experiment
with a = 5 mm, where TRI is well developed, the shape of the experimentally measured
transverse profile is in reasonable agreement with the simulation at a = 2.2 mm. All
numerical and experimental data collapsed in a reasonable way on a curve that ensures
that all waves inside the tank are reasonably invariant in the transverse y-direction.

4.4. Generation of mean-flows

We previously showed that the velocity field in the transverse direction for the wave
attractor confirms the usual 2D approximation as a reasonable one. Nevertheless, it
turns out that a closer look on the profiles of vξ reveals a discrepancy between profiles
of the maximum (max vξ) and the opposite of the minimum (-min vξ) of the velocity vξ
as illustrated in figure 7(a). Indeed, the raw profiles for the attractor are not totally
symmetric: when vξ is positive (thick solid line), even if the profile looks two-dimensional,
there are some small peaks close to boundary layers which are not present in the profiles
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Figure 8. Mean-flow (Hilbert filtering analysis at ω = 0 rad/s applied on numerical data)
generated in the two different horizontal planes z = 200 mm (panel (a)) and z = 100 mm
(panel (b)). The color represents the vertical velocity component, vz, while arrows represent the
horizontal velocity components, vx ~x + vy ~y, with the arrow scale displayed at the right of the
figure. The wave maker is located at x = 0 mm, on the left of the figure, while the slope is
indicated, on the right, by a vertical white line. The dashed rectangles delimit the regions where
the attractor beams intersect with the planes located at z = 200 mm (panel a) and z = 100 mm
(panel b).

when vξ is negative (thin solid line). This symmetry breaking suggests the presence of a
mean flow, always in the same direction, close to the boundary layers and which modifies
the velocity profiles close to boundary layers. To verify this, we analyse now further
the data and check for possible mean-flow generated within the tank. To extract this
mean-flow from the raw data, we used Hilbert filtering around ω = 0 rad/s.
The numerical simulation specially run to thoroughly study the mean-flow has been

performed with the same geometrical parameters as the one with the amplitude a =
1.6 mm for section 4.3. The attractor is stable and is precisely located at the same position
in the tank as in figure 2. To limit the size of the data saved, the three components of the
velocities were recorded only for the two horizontal planes, z = 100 mm and z = 200 mm,
with 0.5 second time-steps. On theses planes, the velocities were saved on a mesh with a
good resolution of 128× 256 points.
Hilbert filtering at ω = 0 rad/s was applied on time-series of the three velocity compo-

nents for each point of the x-y plane. We consider the situation once the attractor reaches
the steady state. Figure 8 shows the mean-flow in the two different horizontal planes,
z = 100 mm and z = 200 mm. The color represents the vertical velocity component vz,
while arrows represent the horizontal velocity components, vx ~x+ vy ~y. The wave maker
is located at x = 0 mm, on the left of the figure. The slope is indicated, on the right, by
a vertical white line. Figure 2 shows the location of the attractor in the x− z plane. At
z = 100 mm, the attractor is reflecting on the slope while, at z = 200 mm, it is reflecting
on the wave maker. These are the two intense regions in figure 8, close to the slope at
z = 100 mm and close to the wave-maker at z = 200 mm. As reflections occur in these
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Figure 9. Horizontally integrated dissipation ε̃(y) (see definition in Eq. 4.3), normalized by the
total dissipation ε̃(W/2). Panel (a) corresponds to the forcing amplitude a = 1.6 mm, while
panel (b) to a = 2.4 mm. The solid blue line corresponds to a region located within the most
energetic branch of the attractor, while the dashed black line corresponds to a region close to
the center of the tank outside the attractor. The inset present the locally averaged dissipation
ε(y) (in mm2

·s−3) for both forcing amplitudes within the most energetic branch.

regions, it can be difficult to extract conclusions for the mean-flow. Nevertheless, it is
still possible to examine the mean-flow in the regions where the attractor beams inter-
sect with the planes located at z = 200 mm and z = 100 mm. These intersection regions
are delimited by the dashed rectangles in figure 8. The flow in the branches of attrac-
tors shows a clear tridimensional behavior, with recirculation zones where the horizontal
components of the velocity vectors are forming jet-like currents close to the vertical walls
of the tank to compensate the mean flow in the central part of the wave beam. It is
important to emphasize that the magnitude of the mean-flow is much smaller than the
velocity of the fluid due to the waves. Indeed, for this attractor, the typical amplitude of
the velocity oscillations in the most energetic branch at the intersection with the plane
z = 200 mm is about 2.5 mm/s while the typical velocities of the mean-flow are about
0.1 mm/s, thus less than 5% of the velocity due to the waves.

4.5. Dissipation in the bulk and in the boundary layers

To further examine the three dimensionality of the flow, we determine the spatial
distribution of the dissipation in the tank. We first compute the dissipation

ε(x, y, z, t) = 2νei,jei,j (4.1)

where ν is the kinematic viscosity while the strain rate tensor is defined as ei,j =
1
2

(

∂vi
∂xj

+
∂vj
∂xi

)

where vi and xi are respectively the components of the velocity field

and of the position. Then, for a given y-transversal coordinate, we average on a 20× 20
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mm2 square to define the locally averaged dissipation

ε(y) = 〈 ε(x, y, z, t) 〉(x,z,t), (4.2)

which has also been averaged, after 42 periods after the start of the forcing, over three
time periods. This quantity is shown as an inset in figure 9.
However, as for example in Bonometti, Balachandar & Magnaudet (2008), it is even

more explicit to integrate this result horizontally along the transversal y-coordinate as
follows

ε̃(y) =

∫ y

−W/2

ε(y′) dy′ (4.3)

in which W is the total width of the tank.
We plot in figure 9 the horizontally integrated dissipation ε̃(y), normalized by the

total dissipation ε̃(W/2) within the parallelepiped 20 mm×20 mm×W , in two different
locations: one in the most energetic branch after the focusing onto the slope (with the
subscript a for attractor), the second one around the center of the tank (with the subscript
c for center) and thus far from any branch of the attractor. For a weak forcing a=1.6 mm
which leads to a stable attractor, one gets ε̃a(W/2) = 1.7 and ε̃c(W/2) = 0.013 mm2·s−3.
For a larger forcing a = 2.4 mm leading to unstable regime, above values are typically
multiplied by a factor 2, since one gets ε̃a(W/2) = 3.7 and ε̃c(W/2) = 0.028 mm2·s−3.
Above figure 9 emphasizes that, within the most energetic branch, the spatial distri-

bution of the dissipation is only weakly changed while increasing the amplitude of the
forcing, and therefore by passing from a stable to an unstable attractor. Approximately
1/4 of the dissipation is located in the boundary layers, and the three remaining quar-
ters are within the bulk of the flow. The dissipation outside the attractor is significantly
altered by the amplitude of the forcing. This is presumably because TRI has generated
secondary waves which propagate, outside the attractor and more precisely toward the
center of the tank. However, it is important not to overestimate this result since the total
dissipation in the center of the tank is more than 100 times smaller than its counterpart
within the most energetic branch of the attractor. It was of course expected, since this
is where waves, and therefore energy, are trapped. Moreover, figure 9 reveals that, in the
most energetic branch of the attractor, approximately 25% of the total dissipation occurs
within the boundary layers which occupy less than 10% of the total width.

4.6. Synthetic Schlieren test

Using the numerically computed density gradients in the transversal direction, we can
provide an estimation of the error made on experimentally measured density gradients
by assuming that the flow is bidimensional inside the tank. We use the simulation for
a = 2.2 mm as in section 4.3, by considering the density gradients instead of velocity
fields. These data were available on a point located on the most energetic branch, for all
y. Figure 10(a) shows the time history of the horizontal density gradient in y = 0 mm.
TRI occurs after 35 T0 in this simulation.
Dalziel, Hughes & Sutherland (2000) have shown that the angle of deflection of a light

ray crossing the tank in the i-direction is

αi =
1

n

dn

dρ
L
∂ρ′

∂i
, (4.4)

i being x or z. Here L is the width of the tank and n the optical index of water. The
quantity dρ/dn is essentially constant and equal to 4.1 × 103 kg/m3. Equation (4.4)
assumes that the flow is bidimensional and that the density gradients do not depend
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on the y-direction. This deflection induces displacement of the dots on the camera CCD
from which we can measure the density gradients.
With the numerical simulations, one can proceed in the inverse way. Knowing the

density gradients and especially their dependence in y, one can compute the displacement
that these gradients would have caused on a CCD camera placed at typical experimental
distances. For density gradients depending slightly on y, one has to integrate over the
width of the tank to get the deflection

αi =
1

n

dn

dρ

∫ L

0

∂ρ′

∂i
dy. (4.5)

This integration assumes that the deflection of the ray is small in x and z directions, so
the ray remains more or less at (x, z) constant. That is why one can use only a line profile
in y for density gradients. In typical experimental conditions, the CCD camera is placed
at 1.75 m of the tank and at 2.25 m of the random dot pattern. The camera has a lens
of 25 mm. Considering these experimental parameters, simple geometrical calculations
then allows us to convert the angle deflection αi into the displacement on the camera ∆i.
Displacements are indicated on figures 10(b) and (c) by the red squares, before the onset
of TRI (panel b) and after the onset of TRI (panel c). The order of magnitude of these
displacements is of few micrometers, while the pixel size of the two different cameras used
are equal to 3.45 and 4.65 µm. Thus, the displacements are of few pixels and sufficient
for data treatment. Interestingly, one can also compute the displacements as if the flow
was strictly bidimensional, by assuming that, once given (x, z), the density gradients in
y = 0 are the same for all y in the tank. The deflection is thus as in equation (4.4). These
displacements are indicated on figure 10(b) and (c) by the blue circles, before the onset
of TRI (panel b) and after the onset of TRI (panel c). The difference between blue circles
and red squares is very small in both situations, before and after the onset of TRI. This
shows that the bidimensional assumption for the flow is robust and the error using it is
very small. One can see on figure 10(b) and (c) that the displacements of blue circles
are a slightly larger than those for red squares. This shows that the density gradients
in the center plane xOz are slightly underestimated in the experimental measurements
performed with the synthetic schlieren technique, typically by a factor of 5% without
TRI and by a factor of 7% with TRI. This combined experimental-numerical check is
a nice confirmation of the validity of the synthetic schlieren technique that justifies the
comparisons performed in §3.1 and §3.2 of the present paper.

5. Conclusion

In this paper, we present the comparison of the experimental and numerically sim-
ulated internal wave attractors in a trapezoidal domain filled with a linearly stratified
fluid. Three-dimensional versions of the spectral element code Nek5000 (Fischer & Ron-
quist 1994) have been used in the numerical simulations. As expected, in the linear
regime, we recover the dynamics of the wave attractors, which is well described in the
literature (Hazewinkel et al. 2008; Grisouard, Staquet & Pairaud 2008; Hazewinkel,
Grisouard & Dalziel 2011).
In the nonlinear regime, three-dimensional numerical simulations correctly reproduce

the dynamics of the experimentally observed triadic resonance (Scolan, Ermanyuk &
Dauxois 2013) in terms of spatial and temporal parameters of primary and secondary
waves (frequencies, wave numbers). The measurements of the fine parameters of the
calculated internal wave patterns are performed by applying exactly the same technique
as in experiments (Scolan, Ermanyuk & Dauxois 2013), with a systematic use of the
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Figure 10. (a) Time history of horizontal density gradient in y = 0 mm for the numerical
simulation with a = 2.2 mm. (b) Displacement of the dots on the CCD camera that the simu-
lation would have caused if the density gradients have been measured using Synthetic Schlieren
technique at t = 30 T0, before the onset of TRI. (c) same as panel b) after the onset of TRI
(t = 180 T0). The blue circles indicated the displacement caused if the flow is assumed to be 2D,
while the red squares show the displacement caused without this assumption. The displacements
are plotted for two periods of the wave-attractor around the time indicated above the figures.

Hilbert transform (Mercier, Garnier & Dauxois 2008; Bourget et al. 2013). This yields
very strong quantitative evidence that, both numerically and experimentally, we observe
exactly the same scenario of triadic resonance. Recent two-dimensional calculations of the
nonlinear instability in rotating fluids (Jouve & Ogilvie 2014) are qualitatively similar
but less conclusive quantitatively due to the lack of comparison with the experimental
data.
Three-dimensional numerical simulations give access to distribution of wave amplitudes

across the test tank and the mean wave-induced currents. The numerically simulated dis-
tribution of wave amplitudes across the tank is in good agreement with the experimental
data. The transversal distribution of the velocity field reveals interesting features: it typ-
ically has secondary maxima close to lateral walls of the test tank. These maxima are
due to a mean-flow generated by the wave-attractor. The mean-flow is strong close to
the boundary of the tank but the magnitude of the mean-flow velocity remains small
in comparison with the amplitude of velocity oscillation in the wave beams. Moreover,
in the most energetic branch of the attractor, we have shown that approximately 25%
of the total dissipation occurs within the boundary layers which occupy less than 10%
of the total width. Three-dimensional calculations allow us to estimate the error intro-
duced in conventional synthetic schlieren technique which assumes two-dimensionality
of the flow and considers spanwise integrated optical distorsions. For numerically gen-
erated density fields closely reproducing the experiment ones, the error is found to be
small, typically about 5%, thus validating the usual bidimensional assumption used in
such experiments. The validation of three-dimensional spectral element code in a present
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nominally two-dimensional problem represents a necessary step for future exploration of
fully 3D problems in the spirit of Manders & Maas (2004), Maas (2005) and Drijfhout
& Maas (2007), which can shed light on the occurrence of attractors in oceanographic
problems. Another line of attack for the future research is the exploration of long-term be-
haviour of internal wave attractors generating turbulence-like regimes, which have many
similarities with the regimes observed in rotating systems (Favier et al. 2015). Finally,
the question of energy budget in the system, in the spirit of Jouve & Ogilvie (2014), is to
address. This has to be done with emphasis on quantification of the mixing efficiency in a
wide range of forcing (linear and nonlinear regimes) and in wide ranges of Reynolds and
Schmidt numbers. The question of turbulent diffusivity, defined in Chang et al. (2005),
is also very relevant.
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