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Introduction

A ribbon torus link is a locally flat embedding of disjoint tori S 1 × S 1 in the ball B 4 , bounding locally flat immersed solid tori S 1 × D 2 whose singular sets are finite numbers of ribbon disks. These elementary singularities are 4-dimensional analogues of the classical notion of ribbon introduced by Fox [START_REF] Fox | Characterizations of slices and ribbons[END_REF]. Ribbon torus links are considered up to ambient isotopy; the fundamental groups of their complement and the derived Alexander modules provide topological invariants.

In this paper, we consider ribbon tangles that are ribbon proper embeddings of disjoint tori and cylinders in the ball B 4 . The intersection of a given tangle T with ∂B 4 = S 3 is a trivial link L. For a given free abelian group G, tangles are colored with a group homomorphism ϕ: H 1 (B 4 \ T ) → G. We construct an Alexander invariant A of colored ribbon tangles, lying in the exterior algebra of the homology Z[G]-module H ϕ 1 (S 3 \ L), twisted by the morphism induced by ϕ, see Definition 2.4. This invariant coincides with the Alexander polynomial in the case of tangles with only two boundary components, see Proposition 2.6. The construction of A is based on the Alexander function introduced by Lescop [Les98]. The proof of the invariance and the main properties follow from algebraic and homological arguments developed in a paper by the second author and Massuyeau [START_REF] Florens | A functorial extension of the abelian Reidemeister torsions of three-manifolds[END_REF].

Ribbon colored tangles can be splitted into morphisms in a category Rib G . We show that the invariant A induces a functor from Rib G to the category of Z[G]-graded modules, see Theorem 2.10. In the case of ribbon braids, that are the analogues of braids in this context, the functor coincides with the exterior powers of the ad-hoc colored Burau-Gassner representation, multiplied by a certain relative Alexander polynomial, see Proposition 2.9.

The multiplicativity of A fits naturally in the context of planar algebras, introduced by Jones [START_REF] Jones | Planar algebras, I[END_REF]. We construct an algebra Cob G over the colored cobordisms operad, see Theorem 3.3. The cobordisms are smooth cylinder in B 4 with a finite collection of disjoint "small" balls removed, and the compositions are given by identification of some boundary components. We observe that cobordisms act on tangles and that A commutes with this action, see Theorem 3.4.

Ribbon knotted objects admit representations as broken surfaces via projections on the 3-dimensional space, and through welded diagrams which are representations in the 2-dimensional space. These representations were first introduced by Yajima [START_REF]On simply knotted spheres in R 4[END_REF] and Satoh [START_REF] Satoh | Virtual knot presentation of ribbon torus-knots[END_REF]. A complete description is given in the papers by Audoux, Bellingeri, Meilhan and Wagner [START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF][START_REF] Audoux | On the welded tube map[END_REF]. This offers perspectives from both point of view: diagrams permit combinatorial computations of invariants of ribbon knotted objects, and ribbon knotted objects provide topological realizations of welded diagrams. Moreover, a presentation of the group of ribbon knotted objects is obtained from the diagrams by a Wirtinger type algorithm, see [START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF].

We give a diagrammatic description of the invariant A, see Theorem 4.6 and show that it extends the multivariable Alexander polynomial of virtual tangles developed by Archibald and Bar-Natan. For futher details on these objects, see also [START_REF] Bar-Natan | Meta-monoids, meta-bicrossed products, and the Alexander polynomial[END_REF] and [START_REF] Polyak | Alexander-Conway invariants of tangles[END_REF]. The algebra Cob G appears as a topological incarnation of a circuit algebra of diagrams Weld µ , essentially introduced in [START_REF] Archibald | The Multivariable Alexander Polynomial on Tangles[END_REF]. The compatibility of A with this structure allows local calculations in the diagram. If these diagrams do not have any virtual crossing, the construction holds for usual links, and we obtain a purely local description of the usual Alexander polynomial. This extends the construction of the Alexander representation by the second author, Bigelow and Cattabriga, see [START_REF] Bigelow | Alexander representation of tangles[END_REF].

Our construction arises in the context of defining generalizations of Alexander polynomials to tangle-like objects, in which we can include, in addition to [START_REF] Bigelow | Alexander representation of tangles[END_REF] concerning usual tangles and [START_REF] Archibald | The Multivariable Alexander Polynomial on Tangles[END_REF][START_REF] Polyak | Alexander-Conway invariants of tangles[END_REF] concerning virtual tangles, also the works of Cimasoni and Turaev, through Lagrangian categories [START_REF] Cimasoni | A lagrangian representation of tangles[END_REF], Bigelow [START_REF] Bigelow | A diagrammatic Alexander invariant of tangles[END_REF] and Kennedy [Ken13] which studied diagrammatical invariants of usual tangles, Sartori [START_REF] Sartori | The Alexander polynomial as quantum invariant of links[END_REF], who defined quantum invariants of framed tangles, and Zibrowius in [START_REF] Zibrowius | On a polynomial Alexander invariant for tangles and its categorification[END_REF]. This last one in particular defines an invariant for usual tangles which consists in a finite set of Laurent polynomials, and states, without explicit calculation, that on usual tangles, one can calculate Archibald's invariant from his set of invariants and vice versa. However, nothing seems to appear in the literature about the 4-dimensional case of ribbon tangles.

In Section 2 we recall the definitions of ribbon tangles and construct the invariant A. Section 3 is devoted to the circuit algebra Cob G over the cobordism operad, and the properties of A with respect with the action of cobordisms on tangles. In Section 4 we describe the diagrammatic construction of A and a circuit algebra Weld µ related to Cob G . In Section 5 we compute some examples.

The Alexander invariant A

In this section G is a free abelian group, and R is the group ring Z[G].

Ribbon tangles.

Let m be a positive integer and X a submanifold of the mdimensional ball B m . An immersion Y ⊂ X is locally flat if and only if it is locally homeomorphic to a linear subspace R k in R m for some k ≤ m, except on ∂X and/or ∂Y , where one of the R summands should be replaced by R + . An intersection Y 1 ∩ Y 2 ⊂ X is flatly transverse if it is locally homeomorphic to the intersection of two linear subspaces R k 1 and R k 2 in R m for some positive integers k 1 , k 2 ≤ m except on ∂X, ∂Y 1 and/or ∂Y 2 , where one of the R summands is replaced by R + .

An intersection D = Y 1 ∩ Y 2 ⊂ S 4 is a ribbon disk if it is homeomorphic to the 2-disk and satisfies: D ⊂ Y1 , D ⊂ Y2 and ∂D is an essential curve in ∂Y 2 . More details on ribbon knotted objects can be found in [START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF][START_REF] Audoux | On the welded tube map[END_REF].

Definition 2.1. Let L be an oriented trivial link with 2n components in S 3 = ∂B 4 . A ribbon tangle T is a locally flat proper embedding in B 4 of oriented disjoint annuli S 1 × I denoted A 1 , . . . , A n and disjoint tori S 1 × S 1 denoted E 1 , . . . , E m such that: i) There exist locally flat immersed solid tori

F i for i = 1, . . . , m such that ∂F i = E i .
ii) ∂A i ⊂ L and the orientation induced by A i on ∂A i coincides with the given orientation of the two components of L. iii) There exists n locally flat immersed 3-balls B i B 2 × I whose singular set are finite number of ribbon disks and such that, for all i ∈ {1, . . . , n}:

∂B i = A i ∪ ∂ (B 2 × {0, 1}).
A G-colored ribbon tangle is a pair (T, ϕ) where T is a ribbon tangle with complement X T = B 4 \ T , equipped with a group homomorphism ϕ: H 1 (X T ) → G.

Definition of A.

Let (X, Y ) be a pair of topological spaces. Denote p : X → X the maximal abelian cover. For a ring homomorphism ϕ : Z[H 1 (X)] → R, we define the twisted chain complex

C ϕ (X, Y ) = C( X, p -1 (Y )) ⊗ Z[H 1 (X)] R
whose homology is denoted H ϕ * (X, Y ; R), or simply H ϕ * (X, Y ). Let (T, ϕ) be a G-colored ribbon tangle. The homomorphism ϕ extends to a ring homomorphism ϕ: Z[H 1 (X T )] → R. For the rest of this section, we set H = H ϕ 1 (X T , * ). Proposition 2.2. The R-module H admits a presentation with deficiency n.

We postpone the proof of Proposition 2.2 to the end of Section 4.1. Consider a presentation of H of the form:

H = γ 1 , . . . , γ n+q | r 1 , . . . , r q .
Let Γ be the free R-module generated by γ 1 , . . . , γ n+q : the relators r 1 , . . . , r q are words in these generators in Γ. Let us denote r Different n-deficient presentations will give rise to Alexander functions that differ only by multiplication by a unit in R. Note that if H is free of rank n, then A ϕ T is a volume form.

= r 1 ∧ • • • ∧ r q and γ = γ 1 ∧ • • • ∧ γ n+q . The Alexander function A ϕ T : ∧ n H → R is the R-linear map defined by r ∧ ũ = A ϕ T (u) • γ for all u = u 1 ∧• • •∧u n ∈ ∧ n H,
Let us consider the q × (q + n) matrix defined by the presentation of H. If one adds to this matrix the row vectors giving u 1 , . . . , u n in the generators γ 1 , . . . , γ q+n , then A ϕ T (u) is the determinant of the resulting (q + n) × (q + n) matrix.

Example 2.3. Suppose that G has rank 2 and is generated by t 1 , t 2 . Consider the module H whose presentation has generators γ 1 , . . . , γ 4 and two relations given by the matrix:

-

1 0 1 0 0 -1 1 -t 1 t 2
The values of the Alexander function

A: ∧ 2 H → R are A(γ 1 ∧ γ 2 ) = t 2 , A(γ 1 ∧ γ 3 ) = 0, A(γ 1 ∧ γ 4 ) = 1, A(γ 2 ∧ γ 3 ) = -t 2 , A(γ 2 ∧ γ 4 ) = t 1 -1, A(γ 3 ∧ γ 4 ) = 1. Let H ∂ = H ϕ 1 (S 3 \ L, * )
, which is the free R-module of rank 2n, generated by the meridians of L. Let m ∂ : H ∂ → H be induced by the inclusion map S 3 \ L → X T . For short, for a given z ∈ ∧ n H ∂ , we use the notation m ∂ z for ∧ n m ∂ (z).

Definition 2.4. The element A(T, ϕ) of ∧ n H ∂ is the (colored) isotopy invariant defined by the following property:

(2.1)

∀z ∈ ∧ n H ∂ , A ϕ T (m ∂ z) = ω ∂ (A(T, ϕ) ∧ z)
where ω ∂ is a volume form on H ∂ .

2.3.

The Alexander polynomial of a (1 -1)-tangle. Given a finitely generated R-module H, and k ≥ 0, the k-th Alexander polynomial of H is the greatest common divisor of all minors of order (m -k) in a q × m presentation matrix of H. This invariant of H, denoted ∆ k (H) ∈ R, is defined up to multiplication by a unit of R.

Definition 2.5. The Alexander polynomial

∆ ϕ (T ) ∈ R of a G-colored ribbon tangle (T, ϕ) is ∆ 0 (H ϕ 1 (X T )).
Similarly to classical knot theory, T is a (1 -1)-tangle if n = 1. The components of T in B 4 consist of m tori and a cylinder whose boundary is a 2-component trivial link L in S 3 = ∂B 4 . Let x 1 and x 2 be the meridians of the components of L. Note that in X T , both x 1 and -x 2 are homologous to the meridian x of the cylinder. We use the same notations x 1 and x 2 for the homology classes of their lifts in H ϕ 1 (S 3 \ L, * ).

Proposition 2.6. Let (T, ϕ) be a G-colored (1 -1)-tangle, such that ϕ is not trivial. Denote t = ϕ(x) and let r be the rank of ϕ(H 1 (X T )). Then the element A(T, ϕ) of H ∂ is given by

A(T, ϕ) = (t -1)∆ ϕ (T ) • (x 1 -x 2 ) if r ≥ 2, ∆ ϕ (T ) • (x 1 -x 2 ) if r = 1.
It is worth noticing that, up to a unit in R, the result is independent of the order chosen on the components of L. For the reader's convenience, we give a short proof of Proposition 2.6. More detailed arguments can be found in [FM15, Section 3].

Proof. Denote H = H ϕ 1 (X T , * ). From the long exact sequence of the pair (X T , * ):

0 ----→ H ϕ 1 (X T ) ----→ H ----→ H ϕ 0 ( * ) ----→ H ϕ 0 (X T ) ----→ 0 we deduce that TorsH ϕ
1 (X T ) TorsH. Moreover, rkH = rkH ϕ 1 (X T ) + 1. This implies that ∆ ϕ (T ) = ∆ 1 (H). Let A be the matrix of a presentation of H = γ 1 , . . . , γ q+1 | r 1 , . . . , r q , and A ϕ be the related Alexander function. We have

∀z 1 , . . . , z q+1 ∈ R, A ϕ (z 1 γ 1 + • • • + z q+1 γ q+1 ) = q+1 i=1 det(A i )z i , where A i is A with the i-th column removed. Hence, ∆ 1 (H) = gcd A ϕ (H) = gcd{ϕ(h); h ∈ H}. If A ϕ = 0, then ∆ ϕ (T ) = 0. Consider now the connecting homomorphism ∂ * : H → H ϕ 0 ( * ) R.
If A ϕ = 0, then rank (H) = 1 and two linear maps H ⊗ R QR → QR are linearly dependent, where QR is the fraction field of R. Then there exist elements

P, Q in R such that for each h ∈ H, A ϕ (h) = (P/Q)∂ * (h). Hence A ϕ (h) = ∆ ϕ (T ) • ∂ * (h) gcd ∂ * (H) .
For a loop γ based in * with lift γ, one has

∂ * γ = ϕ(γ) -1. Hence, gcd ∂ * (H) is equal to 1 if r ≥ 2 and is equal to t -1 if r = 1. We deduce that for all h ∈ H A ϕ (h) = (t -1)∆ ϕ (T ) if r ≥ 2, ∆ ϕ (T ) if r = 1.
Let ω ∂ be the volume form on H ∂ relative to the choice of the meridians

x 1 , x 2 . By definition, A(T, ϕ) verifies A ϕ T (m ∂ z) = ω ∂ (A(T, ϕ) ∧ z). Since m ∂ (x 1 ) = x and m ∂ (x 2 ) = -x, we obtain the result from A ϕ (x) = ω ∂ (A(T, ϕ) ∧ x 1 ) = -ω ∂ (A(T, ϕ) ∧ x 2 ).
2.4. The Burau functor. Let Rib be the category of ribbon cobordisms. The objects are sequences ε of signs ±1 of length n, and correspond to trivial links with n components in B 3 , such that a sign is affected to each component. The morphisms ε 0 → ε 1 are the equivalence classes of ribbon cobordisms between L 0 and L 1 . More precisely, a ribbon cobordism from ε 0 to ε 1 is a collection S of ribbon annuli and tori in B 3 × I whose boundaries are the components of L 0 and L 1 , with according signs. Two cobordisms are equivalent if there is an ambient isotopy fixing the boundary circles L 0 and L 1 . The degree of the ribbon cobordism S is δ = (n 1 -n 0 )/2. The composition S • S of two ribbon cobordisms S and S in Rib is defined by identifying (B 3 × {1}, S ) to (B 3 × {0}, S).

The category Rib can be refined to the category of colored ribbon cobordisms Rib G . An object is a pair (ε, ϕ), where ϕ:

H 1 (B 3 \ L) → G. A morphism (ε 0 , ϕ 0 ) → (ε 1 , ϕ 1 ) is a pair (S, ϕ) such that ϕ • m i = ϕ i for i = 1, 2, if m i are induced by the inclusions X L i → X S , where X L i = (B 3 × {i}) \ L i and X S = (B 3 × I) \ S.
We define a projective functor ρ from the category Rib G to the category of Z-graded R-modules grMod G , whose morphisms are graded R-linear maps of arbitrary degree, up to multiplication by an element of ±G. Let (ε, ϕ) be an object of Rib G . The image of (ε, ϕ) by ρ is

ρ(ε, ϕ) = ∧H ϕ 1 (X L , * ; R), the exterior algebra of the free R-module H ϕ 1 (X L , * ; R) of rank n, where * is a base point in ∂B 3 . Next, to a morphism (S, ϕ): (ε 0 , ϕ 0 ) → (ε 1 , ϕ 1 ), we associate a R-linear map ρ(S, ϕ): ∧H ϕ 0 1 (X L 0 , * ; R) → ∧H ϕ 1 1 (X L 1 , * ; R)
, of degree δ as follows. Let J be the interval in ∂B 3 × I, which connects the base points of the bottom and top balls. We denote the R-modules

M 0 = H ϕ 0 1 (X L 0 , * ; R) and M 1 = H ϕ 1 1 (X L 1 , * ; R). The module H ϕ 1 (X S , J; R) admits a presentation with deficiency d = (n 0 + n 1 )/2. Denote the Alexander function A ϕ S : ∧ d H ϕ 1 (X S , J; R) → R. For any integer k ≥ 0, the image ρ(S, ϕ)(x) ∈ ∧ k+δ M 1 of any x ∈ ∧ k M 0 is defined by the following property ∀y ∈ ∧ d-k M 1 , A ϕ S (∧ k m 0 (x) ∧ ∧ d-k m 1 (y)) = ω 1 (ρ(S, ϕ)(x) ∧ y) ,
where ω 1 is a volume form on M 1 .

Theorem 2.7. The map ρ is a degree preserving functor Rib G → grMod G .

The proof of Theorem 2.7 follows word by word the proof of [FM15, Theorem I]. Note that the deficiency of the presentation of H ϕ 1 (X S , J; R) depends only on n 0 and n 1 . A G-colored ribbon tube (S, ϕ) is a morphism such that the inclusions m 1 and m 2 induce isomorphisms in homology (with integer coefficients). Ribbon tubes are analogous to string links; the links L 0 and L 1 have the same number of components, and S has no toric component. For a fixed ϕ, the set of G-colored ribbon tubes form a monoid T ϕ . Following [KLW01, Proposition 2.1], one proves that m 1 and m 2 induce isomorphisms

(m i ) * : H ϕ (X L i ; QR) -→ H ϕ (X S ; QR), for i = 1, 2 where QR is the quotient field of R. Set H ϕ to be H ϕ (X L 1 ; QR) = H ϕ (X L 2 ; QR). Set L = L 0 = L 1 . The composition m -1 2 • m 1 is an automorphism of H ϕ (X L ; QR). Definition 2.8. The colored Burau representation is the monoid homomorphism r ϕ : T ϕ → Aut(H ϕ ). Let ∆ ϕ (X T , X L 2 ) = ∆ 0 (H ϕ 1 (X T , X L 2 ; R)) be the Alexander polynomial of the pair (X T , X L 2 ), see Section 2.3.
Proposition 2.9. For any G-colored ribbon tube (S, ϕ) ∈ T ϕ , we have

ρ(S, ϕ) = ∆ ϕ (X T , X L 2 ) • ∧r ϕ : ∧H ϕ → ∧H ϕ .
In particular, if the ribbon tube (S, ϕ) is monotone with respect to the coordinate in I in B 4 × I, it is called a ribbon braid (see [START_REF] Audoux | Homotopy classification of ribbon tubes and welded string links[END_REF][START_REF] Damiani | The topology of loop braid groups: applications and remarkable quotients[END_REF]). In this case ∆ ϕ (X T , X L 2 ) = 1 and ρ(S, ϕ) coincide with the exterior powers of r ϕ . The proof of Proposition 2.9 can be obtained similarly to [FM15, Proposition 7.2], or in the monotone case, to [BCF15, Section 3.1].

Let (T, ϕ) be a G-colored ribbon tangle in B 4 . Let L = L 0 ∪ L 1 be a splitting of L into two disjoint (trivial) links, and let B 0 and B 1 be two 3-balls such that

S 3 = B 0 ∪ S 2 ×{0} S 2 × [0; 1] ∪ S 2 ×{1} B 1 and L i ⊂ B i for i = 1, 2. Let ϕ i be induced by ϕ on H 1 (B i \ L i )
, and ε i be sequences of signs according to the co-orientations of the components of T . Then (T, ϕ) is splitted as a morphism ( T , ϕ): (ε 0 , ϕ 0 ) → (ε 1 , ϕ 1 ). Note that 2n = n 0 + n 1 .

Theorem 2.10. Let (T, ϕ) be a G-colored ribbon tangle, and ( T , ϕ): (ε 0 , ϕ 0 ) → (ε 1 , ϕ 1 ) be a splitting of (T , ϕ) in Rib G . There is an isomorphism, well-defined up to a unit in R,

∧ n H ∂ → Hom R (∧M 0 , ∧M 1 ) sending A(T, ϕ) to ⊕ k (-1) k(n 0 -k) ρ k ( T , ϕ), where ρ k is the k-component of ρ.
An explicit example is given in Remark 5.1.

Proof. The decomposition

H ∂ = M 0 ⊕ M 1 induces a natural isomorphism ∧ n H ∂ n k=0 (∧ k M 0 ⊗ ∧ n-k M 1 ). The element A(T, ϕ) ∈ ∧ n H ∂ decomposes as k A k (T, ϕ), where A k (T, ϕ) ∈ ∧ k M 0 ⊗ ∧ n-k M 1 . Suppose now that k is fixed; the element A k (T, ϕ) might not be decomposable.
There exist a finite sequence of element

A l 0 ∈ ∧ k M 0 and A l 1 ∈ ∧ n-k M 1 (depending on k, and (T, ϕ)) such that A k (T, ϕ) = l A l 0 ⊗ A l 1 . Let ω 0 be a volume form ∧ n 0 M 0 → R.
There is an isomorphism

∧ k M 0 ⊗ ∧ n-k M 1 Hom R (∧ n 0 -k M 0 , ∧ n-k M 1 ) sending A k (T, ϕ) to x → l ω 0 x ∧ A l 0 • A l 1 .
We now show that this morphism coincides with ρ n 0 -k ( T , ϕ). Let x ∈ ∧ n 0 -k M 0 . Note that we have n 0 -k + δ = n -k and the morphism has degree δ. Consider a volume

form ω 1 : ∧ n 1 M 1 → R and the sum ω ∂ = ω 0 ⊗ ω 1 : ∧ n H ∂ → R. Let A ϕ be the Alexander function related to a presentation of H ϕ 1 (X T , * ; R) of deficiency n. Since m ∂ = m 0 ⊕ m 1 we have, for all y in ∧ k+δ M 1 , A ϕ (∧ n 0 -k m 0 (x) ∧ ∧ k+δ m 1 (y)) = ω ∂ (A(T, ϕ) ∧ x ∧ y) = ω ∂ (A k (T, ϕ) ∧ x ∧ y) = l ω 0 (A l 0 ∧ x) • ω 1 (A l 1 ∧ y) = ω 1 ( l ω 0 (A l 0 ∧ x) • A l 1 ∧ y). Hence l ω 0 (x ∧ A l 0 ) • A l 1 = (-1) k(n 0 -k) ρ n 0 -k ( T , ϕ)(x). Note that if, for cosmetic reasons, one prefers that A k (T, ϕ) induces (-1) k(n 0 -k) ρ k ( T , ϕ)(x) instead, one might compose with Hodge duality ∧ k M 0 → ∧ n 0 -k M 0 .

The circuit algebra of colored cobordisms

In this section, we introduce the circuit algebra Cob G . The algebraic structure is inspired by [START_REF] Jones | Planar algebras, I[END_REF][START_REF] Polyak | Alexander-Conway invariants of tangles[END_REF], see also [START_REF] Kennedy | A Diagrammatic Multivariate Alexander Invariant of Tangles[END_REF][START_REF] Archibald | The Multivariable Alexander Polynomial on Tangles[END_REF]. Let Hom G be the operad of tensor powers of R-modules and R-linear applications, considered up to an element of ±G. The composition in Hom G is induced by the usual composition of maps. We construct the circuit algebra Cob G as a morphism of operads from C G to Hom G .

Let (L, ϕ) be a G-colored oriented trivial link with k components in S 3 , with complement

X L = S 3 \ L. The group homomorphism ϕ: H 1 (S 3 \ L) → G induces a ring homomorphism denoted also ϕ: Z[H 1 (S 3 \ L)] → R.
Let * be a base point on S 3 . The R-module H ϕ 1 (S 3 \ L, * ; R) is free of rank k, generated by the meridians of L. Let now (C, ϕ) be a G-colored cobordism, with complement X C . For i = 1, . . . , p, let * and * i be base points in the boundary of B i and J i be intervals (whose interiors are disjoint, and disjoint from C) connecting * to * i . Note that the union of the J i is contractible. The homomorphism ϕ induces a ring homomorphism Z[H 1 (X C )] → R also denoted ϕ. The inclusion m i :

S 3 i \ L i → X T induces ϕ i : Z[H 1 (S 3 i \ L i )] → R. Set H = H ϕ 1 (X C , J), H ∂ = H ϕ 1 (S 3 \ L, * ), and 
H ∂ i = H ϕ i 1 (S 3 \ L i , * i ) for i = 1, . . . , p. Note that H is free of rank r = n + n 1 + • • • + n p and H ∂ i are free of rank n i . Let ω ϕ C be a volume form ω ϕ C : ∧ r H → R, and ω ∂ : ∧ 2n H ∂ → R. For i = 1, . . . , p, we denote again m i : H ∂ i → H the map induced by the inclusion. Let m: ⊗ i ∧ n i H ∂ i → ∧ n 1 +•••+np H be defined as m = ∧ n 1 m 1 ∧ • • • ∧ ∧ np m p .
To the cobordism (C, ϕ) we associate Υ C,ϕ :

p i=1 ∧ n i H ∂ i → ∧ n H ∂ such that, for x ∈ ⊗ i (∧ n i H ∂ i ), (3.1) ω ϕ C (m(x) ∧ m ∂ (y)) = ω ∂ (Υ C,ϕ (x) ∧ y), ∀y ∈ ∧ n H ∂ .
We denote Cob G the object that associates to a pair (L, ϕ) the homology module H ϕ 1 (S 3 \ L, * ; R), and to each pair (C, ϕ) the linear map Υ C,ϕ .

Theorem 3.3. Cob G is a circuit algebra.

Proof. We show that Υ commutes with the composition of cobordisms. Let (C , ϕ ) and (C , ϕ ) be two cobordisms with Υ C ,ϕ :

p k=1 ∧ k i H ∂ k → ∧ n H ∂ , and Υ C ,ϕ : p l=1 ∧ n l H ∂ l → ∧ n H ∂ .
Let ϕ be the coloring induced by ϕ and ϕ on C • i C . Then, we have to prove that for all u k ∈ ∧ k i H ∂ k with k = 1, . . . , p and k = i and all v l for l = 1, . . . , p ,

Υ C • i C ,ϕ (u 1 ⊗ • • • ⊗ (⊗ p 1 v l ) ⊗ • • • ⊗ u p ) = Υ C ,ϕ (u 1 ⊗ • • • ⊗ Υ C ,ϕ (⊗ p 1 v l ) ⊗ • • • ⊗ u p ).
Let H = H ϕ 1 (X T , J ) and H = H ϕ 1 (X T , J ) be the (free) homology modules of the exteriors of the cobordisms. Let α 1 , . . . , α 2n be a basis of H ∂ H ∂ i . Consider presentations of H and H :

H = m ∂ α 1 , . . . , m ∂ α 2n , β 1 , . . . , β k | ρ 1 , . . . , ρ s , H = m i α 1 , . . . , m i α 2n , ζ 1 , . . . , ζ l | r 1 , . . . , r t .
Applying Mayer-Vietoris theorem to X T = X T ∪ X T , we obtain that the (free) module H is generated by

(3.2) m ∂ α 1 , . . . , m ∂ α 2n , m i α 1 , . . . , m i α 2n , β 1 , . . . , β k , ζ 1 , . . . , ζ l subject to the relations ρ 1 , . . . , ρ s , r 1 , . . . , r t , m ∂ α 1 -m i α 1 , . . . , m ∂ α 2n -m i α 2n .
Let ω and ω be volume forms on H and H , and ω ∂ be the form on H ∂ . Let ω be the form on H induced by ω and ω . For the computation below, we introduce the notation

u ∧ i v = u 1 ∧ • • • ∧ u i-1 ∧ (v 1 ∧ • • • ∧ v p ) ∧ u i+1 ∧ • • • ∧ u p .
We want to show that, for all y ∈ ∧ n H ∂ ,

ω ∂ (Υ C •C (u 1 ⊗ • • • ⊗ (⊗ p 1 v l ) ⊗ • • • ⊗ u p ) ∧ y) = ω ∂ (Υ C (u 1 ⊗ • • • ⊗ Υ C (⊗ p 1 v l ) ⊗ • • • ⊗ u p ) ∧ y). We have ω ∂ (Υ C •C (u 1 ⊗ • • • ⊗ (⊗ p 1 v l ) ⊗ • • • ⊗ u p ) ∧ y) • m ∂ α ∧ β ∧ m i α ∧ ζ = ω((m u ∧ i m v) ∧ m ∂ y) • m ∂ α ∧ β ∧ m i α ∧ ζ = ρ ∧ r ∧ (m ∂ α -m i α) ∧ (m u ∧ i m v) ∧ m ∂ y = Q (-1) |Q| ε Q • ρ ∧ r ∧ m ∂ α Q ∧ m i α Q ∧ (m u ∧ i m v) ∧ m ∂ y,
where the sum is taken over all subsets Q ⊂ {1, . . . , 2n } of cardinal n . The number t of relations r i can be chosen arbitrarily to be even and

m ∂ α Q ∧ m i α Q ∧ (m u ∧ i m v) coincides with m ∂ α Q ∧ m v ∧ (m u ∧ i m i α Q) up
to a sign depending only on p and the n i , the sum coincides up to a sign with

Q (-1) |Q| ε Q • (ρ ∧ m ∂ α Q ∧ m v) ∧ (r ∧ (m u ∧ i m i α Q) ∧ m ∂ y) whose summands are equal to (-1) |Q| ε Q • ω (m ∂ α Q ∧ m v) • ω ((m u ∧ i m i α Q) ∧ m ∂ y) • (m ∂ α ∧ β ∧ m i α ∧ ζ).
It follows that, up to a sign, 

ω ∂ (Υ C •C (u 1 ⊗ • • • ⊗ (⊗ p 1 v l ) ⊗ • • • ⊗ u p ) ∧ y) = Q (-1) |Q| ε Q • ω (m ∂ α Q ∧ m v) • ω ((m u ∧ i m i α Q) ∧ m ∂ y) = ω ( Q (-1) |Q| ε Q • ω (m ∂ α Q ∧ m v) • (m u ∧ i m i α Q) ∧ m ∂ y) = ω ( Q (-1) |Q| ε Q • ω ∂ (Υ C (v 1 ⊗ • • • ⊗ v p ) ∧ α Q ) • (m u ∧ i m i α Q) ∧ m ∂ y) = ω ((m u ∧ i [ Q (-1) |Q| ε Q • ω ∂ (Υ C (v 1 ⊗ • • • ⊗ v p ) ∧ α Q )]m i α Q) ∧ m ∂ y) = ω ((m u ∧ i m i (Υ C (v 1 ⊗ • • • ⊗ v p ))) ∧ m ∂ y) = ω ∂ (Υ C (u 1 ⊗ • • • ⊗ Υ C (⊗ p 1 v l ) ⊗ • • • ⊗ u p ) ∧ y).
A(T, ψ) = Υ C,ϕ (A(T 1 , ϕ 1 ) ⊗ • • • ⊗ A(T p , ϕ p )) ∈ ∧ n H ∂ . Proof. For i = 1, • • • , p, consider a presentation of H T i = H ϕ i 1 (X T i , * i ) of the form H T i = m ∂ i γ i 1 , . . . , m ∂ i γ i 2n i , β i 1 , . . . , β i k i | ρ i 1 , . . . , ρ i s i
and let A ϕ i T i be the Alexander function related to this presentation. Let H C = H ϕ 1 (X C , J) be the free module, with volume form ω ϕ C associated to the presentation

H C = m 1 γ 1 1 , . . . , m 1 γ 1 2n 1 , . . . , m p γ p 1 , . . . , m p γ p 2np , α 1 , . . . , α l | r 1 , . . . , r t .
By successive Mayer-Vietoris arguments, the module H T = H ϕ 1 (X T , * ) admits a presentation with generators of the form m ∂ i γ i j , m i γ i j , for j = 1, . . . , 2n i and i = 1, . . . , p, and β i 1 , . . . , β i k i , α 1 , . . . , α l . They are subject to the relations m ∂ i γ i j -m i γ i j , for j = 1, . . . , 2n i and i = 1, . . . , p, and ρ i 1 , . . . , ρ i s i for i = 1, . . . , p and r 1 , . . . , r t . One has

A(T, ψ) = Υ C,ϕ (A(T 1 , ϕ 1 ) ⊗ • • • ⊗ A(T p , ϕ p )) if and only if ∀z ∈ ∧ n H ∂ , A(T, ψ) ∧ z = Υ C,ϕ (A(T 1 , ϕ 1 ) ⊗ • • • ⊗ A(T p , ϕ p )) ∧ z By Equation (2.1), ω ∂ (A(T, ψ) ∧ z) = A ψ T (m ∂ z).
For short, we write A(T i ) for A(T i , ϕ i ), for i = 1, . . . , p. By definition of the Alexander function A ψ T ,

(3.3)

A ψ T (m ∂ z) • m ∂ * γ ∧ m * γ ∧ β ∧ α = ρ ∧ r ∧ (m i ∂ i -m i γ i ) ∧ m ∂ z = Q 1 ,...,Qp (-1) |Q| ε Q • ρ ∧ r ∧ m ∂ 1 γ 1 Q 1 ∧ • • • ∧ m ∂p γ p Qp ∧ m 1 γ 1 Q1 ∧ • • • ∧ m p γ p Qp ∧ m ∂ z,
where the sum is taken over the subsets Q i ⊂ {1, . . . , 2n i } of cardinal n i (the other terms vanish). We denote Qi the complement of

Q i , |Q|= n 1 + • • • + n p and ε Q the signature of the permutation Q 1 • • • Q p Q1 • • • Qp , where the elements of Q 1 • • • Q p in
increasing order are followed by the elements of Q1 • • • Qp in increasing order. Moreover, we can decide arbitrarily that the number t of relations in the presentation of H C is even, and get (3.3) to be equal to:

Q 1 ,...,Qp (-1) |Q| ε Q • (ρ ∧ m ∂ 1 γ 1 Q 1 ∧ • • • ∧ m ∂p γ p Qp ) ∧ (r ∧ m 1 γ 1 Q1 ∧ • • • ∧ m p γ p Qp ∧ m ∂ z) = (-1) |Q| ε Q • (ρ ∧ m ∂ 1 γ 1 Q 1 ∧ • • • ∧ m ∂p γ p Qp ) • ω ϕ C (m 1 γ 1 Q1 ∧ • • • ∧ m p γ p Qp ∧ m ∂ z) • (m * γ ∧ α).
Moreover, since s 1 , . . . , s p can also be supposed even,

ρ ∧ m ∂ 1 γ 1 Q 1 ∧ • • • ∧ m ∂p γ p Qp = (ρ 1 ∧ m ∂ 1 γ 1 Q 1 ) ∧ • • • ∧ (ρ p ∧ m ∂p γ p Qp ) = A ϕ 1 T 1 (m ∂ 1 γ 1 Q 1 ) • • • A ϕp Tp (m ∂p γ p Qp ) • m ∂ * γ ∧ β = ω ∂ 1 (A(T 1 ) ∧ γ 1 Q 1 ) • • • ω ∂p (A(T p ) ∧ γ p Qp ) • m ∂ * γ ∧ β Then A ψ T (m ∂ z) coincides with the sum over Q 1 • • • Q p of the summands (-1) |Q| ε Q • ω ∂ 1 (A(T 1 ) ∧ γ 1 Q 1 ) • • • ω ∂p (A(T p ) ∧ γ p Qp ) • ω ϕ C (m Q1 γ 1 Q1 ∧ • • • ∧ m Qp γ p Qp ∧ m ∂ z) = ω ϕ C ( (-1) |Q| ε Q •ω ∂ 1 (A(T 1 )∧γ 1 Q 1 ) • • • ω ∂p (A(T p )∧γ p Qp )•m Q1 γ 1 Q1 ∧• • •∧m Qp γ p Qp ∧m ∂ z).
Note that for all i = 1, . . . , p and x ∈ ∧ n i H ∂ i , we have

x = |Q i |=n i ε Qω ∂ i (x ∧ γ i Q i ) • γ i Qi = |Q i |=n i (-1) |Q i | ε Q i ω ∂ i (x ∧ γ i Q i ) • γ i Qi .
Moreover, (-1

) |Q| = (-1) |Q 1 | • • • (-1) |Qp| and ε Q ε Q 1 • • • ε Qp do not depend on Q 1 , . . . , Q p but only on n 1 = |Q 1 |, . . . , n p = |Q p |.
Hence, up to a sign

A ψ T (m ∂ z) = ω ϕ C (m 1 A(T 1 ) ∧ • • • ∧ m p A(T p ) ∧ m ∂ z) = ω ϕ C (m(A C (Υ(T 1 ) ⊗ • • • ⊗ A(T p )) ∧ m ∂ z) = ω ∂ (Υ C (A(T 1 ) ⊗ • • • ⊗ A(T p )) ∧ z).

A diagrammatic description

Broken surfaces are locally flat immersions in the 3-ball B 3 of disjoint annuli and tori, whose singularities consist of a finite number of circles. Any ribbon tangle in B 4 can be projected onto a broken surface in a suitable sense. These projections can be viewed as a way to represent ribbon tangles similarly to diagrams in usual knot theory. Conversely, every broken surface is the projection of a ribbon tangle. This gives a correspondence between ribbon tangles and broken surfaces (in fact, of a certain type, called symmetric).

Welded diagrams are a quotient of virtual diagrams under a certain set of moves, see for example [START_REF] Audoux | On the welded tube map[END_REF]. To each welded tangle one may associate a symmetric broken surface diagram, see [START_REF] Satoh | Virtual knot presentation of ribbon torus-knots[END_REF] and [START_REF] Yajima | On the fundamental groups of knotted 2-manifolds in the 4-space[END_REF]. This define a map T ube sending any welded tangle to the ribbon tangle associated to the symmetric broken surface resulting from the preceding construction.

For general ribbon knotted objects, such as ribbon tangles, ribbon tubes [ABMW14] and knotted spheres [START_REF] Yanagawa | On ribbon 2-knots. II. The second homotopy group of the complementary domain[END_REF], the Tube map is well defined and surjective, but its injectivity is still an open question [START_REF] Bar-Natan | Finite Type Invariants of w-Knotted Objects I: w-Knots and the Alexander Polynomial[END_REF]. However, this is an isomorphisms on ribbon braids and extended ribbon braids [START_REF] Brendle | Configuration spaces of rings and wickets[END_REF][START_REF] Damiani | The topology of loop braid groups: applications and remarkable quotients[END_REF].

A combinatorial fundamental group can be defined for welded tangle diagrams, with the Wirtinger method (virtual crossing are simply ignored). This group coincides with the fundamental group of the complement of an associated ribbon tangle in B 4 [Sat00, Yaj64, ABMW14]. Then, two welded tangle representing the same ribbon tangle have isomorphic fundamental groups (and this isomorphism sends meridian to meridian).

Let D be the unit disk in C, and for any positive integer n, let x 1 , . . . , x 2n be a fixed ordered set of points in ∂D. Definition 4.1. Let n be a positive integer. A welded tangle on n-strands, or welded n-tangle is a proper embedding τ of an oriented 1-manifold in D. It consists of some copies of the circle and n copies of the unit interval whose boundary are {x 1 , . . . , x 2n }. The singular set of τ is a finite number of transversal double points equipped with a partial order on the preimages. By convention, this order is specified by erasing a small neighbourhood of the lowest preimage, or by pointing the crossing if the preimages are not comparable. If the preimages of a crossing are comparable, then the crossing is said classical; otherwise it is said virtual. Moreover, a classical crossing is positive if the basis made of the tangent vectors of the highest and lowest preimages is positive; otherwise, it is negative. Let µ be a positive integer. A µ-colored welded tangle is a pair (τ, ψ) where τ is a welded tangle and ψ is a map from the set of strands and circles to the set {t 1 , . . . , t µ }. Two welded colored tangles are equivalent if they are related by generalized Reidemeister moves (see [START_REF] Kamada | Braid presentation of virtual knots and welded knots[END_REF]pp. 445 and 454]), respecting the coloring. 4.1. Computation of A. Let (τ, ψ) be a µ-colored welded tangle. It decomposes into a finite union of disjoint oriented arcs. Label the crossings with (formal) letters, and each arc with the same letter as the crossing it begins at. If an arc connects points on the border of τ without meeting any crossing, we use the convention of Figure 3. We construct a matrix M ψ (τ ) with coefficients in G where the rows are indexed by crossings (positive, negative and virtual) and points interrupting arcs, and the columns by the arcs.

• Fill row corresponding to each positive and negative crossing as shown in Figure 2, • At each point on the diagram, fill the row as shown in Figure 3. The other entries of the rows are zero. Virtual crossings can be ignored or considered as divided arcs. Notice that, after some Reidemeister moves of type I, one might suppose that there every arc begins at a crossing, and the receipt of Figure 3 becomes useless to construct the matrix M ψ (τ ).

c b a a b c t j t i t j c c -1 a 1 c t i 1 -t i b t j c -t j a t i -1 b
Remark 4.2. Let p be the number of internal arcs of τ . Since τ has 2n arcs connected to the boundary, the total number of arcs is 2n + p. One easily observes that the matrix M ψ (τ ) has size (p + n) × (p + 2n).

Definition 4.3. Let (τ, ψ) be a µ-colored welded n-tangle and H ∂ be the module of rank 2n freely generated by the set of marked points {x 1 , . . . , x 2n } . The invariant α is defined to be α(τ, ψ)

= I |M ψ (τ ) I | • x I ∈ ∧ n H ∂ ,
where the sum is taken for all subset I ⊂ {1, . . . , 2n} of n elements, |M ψ (τ ) I | is the determinant of the (n + p)-minor of M ψ (τ ) corresponding to the columns indexed by the internal arcs and the columns relative to the arcs indexed by I, and x I is the wedge product of the generators x i with i ∈ I.

A computation shows that α(τ, ψ) is invariant by generalized Reidemeister moves, up to multiplication by a unit. Otherwise the invariance is simply a consequence of Theorem 4.6 below.

Example 4.4. Consider the tangle τ given by one positive see Figure 1. The matrix M ψ (τ ) coincides with the matrix of Example 2.3. The module H ∂ is generated by x 1 , . . . , x 4 and

α(τ, ψ) = t 2 x 3 ∧ x 4 + x 2 ∧ x 3 -t 2 x 1 ∧ x 4 + (t 1 -1)x 1 ∧ x 3 + x 1 ∧ x 2 ∈ ∧ 2 H ∂ .
Let τ be a welded tangle. We denote π(τ ) the group defined by the Wirtinger method (ignoring the virtual crossings). Then, there is a system of generators of π(τ ) in one-to-one correspondance with the arcs of τ . In particular, a µ-coloring of a welded tangle τ can be viewed as a group homomorphism ψ from π(τ ) to the abelian group freely generated by t 1 , . . . , t µ .

The following proposition follows directly from the results of Satoh and Yajima [START_REF] Satoh | Virtual knot presentation of ribbon torus-knots[END_REF][START_REF]On simply knotted spheres in R 4[END_REF]. Proposition 4.5. Let τ be a welded tangle. For any ribbon tangle T such that T is the image of τ by the Tube map, there is an isomophism

π(τ ) π 1 (B 4 \ T )
sending arcs of τ to meridians of T . Theorem 4.6. Let µ be a positive integer and G be a free abelian group of rank µ. Let (τ, ψ) be a µ-welded tangle and (T, ϕ) be a G-colored ribbon tangle, such that T is the image of τ by the Tube map. Suppose that there are generators t 1 , . . . , t µ of G such that the following diagram commutes:

π 1 (B 4 \ T ) ϕ ----→ G     π(τ ) ψ ----→ t 1 , . . . , t µ Then, A(T, ϕ) = α(τ, ψ) ∈ ∧ n H ∂ .
Welded string links are string links with possibly virtual crossings; for details on these last ones see [START_REF] Kirk | The Gassner representation for string links[END_REF]. Through the Tube map, ribbon tubes can be described by welded string links, see [ABMW14, Section 3.3]. By Theorem 2.10, Proposition 2.9 and Theorem 4.6, the invariant α induces the usual (generalisation of) colored Burau representationor Gassner, if the coloring is maximal -on (welded) string links [START_REF] Bardakov | Extending representations of braid groups to the automorphism groups of free groups[END_REF].

Proof. The points of τ ∩ ∂B 2 are in one-to-one correspondence with the component of the trivial link L in T ∩ ∂B 4 , and H ∂ is generated by x 1 , . . . , x 2n . By Proposition 4.5 and Fox calculus, the matrix M ψ (τ ) is a presentation matrix of the R-module H ϕ 1 (X T , * ), viewed as a Z[t ±1 1 , . . . , t ±1 µ ]-module through the choice of generators of G. Then M ψ (τ ) is used to compute A ϕ . By definition, for all I ⊂ {1, . . . , 2n} with cardinal n:

ω ∂ (A(T, ϕ) ∧ x I ) = A ϕ (m ∂ x I ).
To calculate ϕ (m ∂ x I ), we consider the matrix M ψ (τ ), add n row vectors giving the element mx i 1 , . . . , mx in and compute the determinant of the resulting square matrix. Hence adding mx i j corresponds to add the p + n + j th row (0, . . . , 0, 1, 0, . . . , 0) where 1 is at position p + j. We obtain A ϕ (m ∂ x I ) = ε Ī |M ψ (τ ) Ī |, where Ī is the complement of I and ε Ī is the signature of the permutation I Ī (where the elements of I in increasing order are followed by the elements of Ī in increasing order). Finally, we get

A(T, ϕ) = I ε Ī • ω ∂ (A(T, ϕ) ∧ x I ) • x Ī = I |M ψ (τ ) Ī | • x Ī = α(τ, ψ).
Remark 4.7. The invariant α coincides up to a unit with the invariant of virtual tangles introduced by Archibald [START_REF] Archibald | The Multivariable Alexander Polynomial on Tangles[END_REF]. It is worth mentioning that using a specific canonical choice for the marked points x i , her construction is well-defined, not only up to multiplication by a unit (through the multiplication by a correction term).

Proof. of Proposition 2.2. As observed in the proof of Theorem 4.6, the matrix M ψ (τ ) is a presentation matrix of H ϕ 1 (X T , * ), whose size is (p + n) × (p + 2n), see Remark 4.2. We get a presentation of deficiency n. Definition 4.9. Consider a circuit p -diagram P and a circuit p -diagram P such that D i is a disk of P with n i = n , for some i ∈ {1, . . . , p }. If the signs of the marked points match, we define the diagram P = P • i P by rescaling via isotopy the tangle P so that the of D is identified with the boundary of D i , and making its marked and base points coincide to those of D i . Then D i is removed to obtain P • i P . This operation is well defined since the starting points eliminate any rotational ambiguity.

A µ-colored circuit diagram is a pair (P, ψ) where P is a circuit diagram and ψ is a map from the set of arcs of P to the set {t 1 , • • • , t µ }. Two µ-colored circuit diagrams can be composed once the coloring match on the boundary components. The µ-colored circuit diagrams form and operad D µ . Let S = Z[t ±1 1 , . . . , t ±1 µ ] be the Laurent polynomial ring. Let Hom µ be the operad of tensor products of S-modules and S-linear maps. The circuit algebra Weld µ is constructed as a morphism from the operad D µ to Hom µ as follows.

Consider the unit circle with a base point and a set of marked points X = {x 1 , . 

∧ n i H ∂ i → ∧ n H ∂ such that, for x ∈ ⊗ i (∧ n i H ∂ i ), ω ϕ C (m(x) ∧ m ∂ (y)) = ω ∂ (γ P,ψ (x) ∧ y), ∀y ∈ ∧ n H ∂ .
Then, we can prove Proposition 4.10 below, by repeating the arguments of the proof of Theorem 3.3.

Proposition 4.10. Weld µ is a circuit algebra.

Note that Weld µ is similar to half densities introduced by Archibald, see [START_REF] Archibald | The Multivariable Alexander Polynomial on Tangles[END_REF] for the definition of half densities and [START_REF] Damiani | The topology of loop braid groups: applications and remarkable quotients[END_REF] for the explicit correspondance. The morphism γ P,ψ could be written as the interior product relative to a subset corresponding to interior arcs of P .

The Tube map and the choice of a set of generators {t 1 , . . . , t µ } of G induce a surjective morphism of algebras Weld µ -→ Cob G .

Given a colored circuit diagram P and a collection of colored tangle diagrams τ 1 , . . . , τ p , one may create a new tangle, if the data on the boundaries and the colorings match, by gluing τ i into the internal disk D i of P . Similarly to Theorem 3.4, the invariant α commutes with this action of µ-colored circuit diagrams on µ-colored welded tangles. Indeed, one has the following proposition. Proposition 4.11. Let (τ, ψ) be the µ-colored welded tangle obtained by gluing the µcolored welded tangles (τ 1 , ψ 1 ), • • • , (τ p , ψ p ) to a µ-colored circuit diagram (P, χ). The following equality holds α(τ, ψ) = γ P,χ (α(τ 1 , ψ 1 ) ⊗ • • • ⊗ α(τ p , ψ p )) ∧ n H ∂ .

Examples

Consider the tangle diagram τ , given in Figure 5. We let G = Z =< t > and ψ be the coloring sending all arcs of τ to t. In this section, we compute α(τ, ψ) in different ways. By Theorem 4.6, this computes the value of A(T, ϕ) the image of (τ, ψ) by the Tube map. The Z[t ±1 ]-module H ∂ is free, generated by x 1 , . . . , x 6 and α(τ, ψ) ∈ ∧ 3 H ∂ is given by α(τ, ψ) = -x 1 ∧ x 2 ∧ x 5 + x 1 ∧ x 2 ∧ x 6 + x 2 ∧ x 5 ∧ x 4 + (t -1)x 1 ∧ x 5 ∧ x 4 -tx 1 ∧ x 5 ∧ x 3 + (1 -t)x 1 ∧ x 6 ∧ x 4 + tx 1 ∧ x 6 ∧ x 3 + tx 6 ∧ x 4 ∧ x 3 -x 2 ∧ x 6 ∧ x 4 -tx 5 ∧ x 4 ∧ x 3 .

We now consider (τ, ψ) as the composition of the circuit diagram (P, ψ) with (σ, ψ), see Figure 6. We have to compute γ P,ψ : ∧ 2 H ∂ 1 → ∧ 3 H ∂ (here p = 1). Let H be the free 

Q,ψ : ∧ 2 H ∂ 1 ⊗ H ∂ 2 → ∧ 3 H ∂ .
As previously α(σ, ψ) = x 1 ∧ x 2 + (t -1)x 1 ∧ x 4 -tx 1 ∧ x 3 + x 2 ∧ x 4 -tx 3 ∧ x 4 ∈ ∧ 2 H ∂ 1 and γ(β) = x 6 -x 5 ∈ H ∂ 2 . The composition α(τ, ψ) = γ Q,ψ (α(σ, ψ) ⊗ α(β, ψ)) gives the result again.

Remark 5.1. In the sense of Subsection 2.4, there is a splitting of the tangle σ to an (oriented) braid σ 1 in B 2 . We have M 0 = x 1 , x 2 and M 1 = x 3 , x 4 , and α(σ, ψ) ∈ ∧ 2 H ∂ 1 ∧ 2 (M 0 ⊕ M 1 ) 2 k=0 ∧ k M 0 ⊗ ∧ 2-k M 1 , similarly to the proof of Theorem 2.10. Then α(σ, ψ) decomposes as:

( -tx 3 ∧ x 4 ) ⊕ ((t -1)x 1 ⊗ x 4 -tx 1 ⊗ x 3 + x 2 ⊗ x 4 ) ⊕ (x 1 ∧ x 2 ).
Let ω 0 : Λ 2 M 0 → R be the volume form related to the basis x 1 , x 2 . For k = 1, the element (t -1)x 1 ⊗ x 4 -tx 1 ⊗ x 3 + x 2 ⊗ x 4 ∈ M 0 ⊗ M 1 induces the morphism M 0 → M 1 :

x → (t -1)ω 0 (x ∧ x 1 ) • x 4 -t ω 0 (x ∧ x 1 ) • x 3 + ω 0 (x ∧ x 2 ) • x 4 .

The image of x 1 is x 4 and the image of x 2 is (1 -t)x 4 + tx 3 . This corresponds to the Burau representation. Similalrly, the other values of k give k th -exterior powers of Burau, up to a sign.

  where ũ1 , • • • , ũn are arbitrary lifts in Γ and ũ = ũ1 ∧• • •∧ũ n .

Definition 3. 1 .

 1 Let B = B 0 be a 4-ball and B 1 , . . . , B p be disjoint 4-balls in the interior of B. For every i ∈ {0, . . . , p}, let L i (with L = L 0 ) be a trivial oriented link with 2n i (n = n 0 ) components in S 3 i = ∂B i (with S 3 = S 3 0 ). A cobordism C is a disjoint union of locally flat proper embedded annuli in B \ { B1 , . . . Bp }, whose boundary are the links L i , with the conditions of Definition 2.1 but without singularities. Definition 3.2. Let C and C be two cobordisms such that B i is a ball of C with n i = n . The composition C • i C is the cobordism obtained with the identification of B = B 0 with B i .As in the previous section, G is a fixed free abelian group with group ring R. A G-colored cobordism is a pair (C, ϕ) where C is a cobordism with complement X C , equipped with is a group homomorphism ϕ: H 1 (B 4 \ C) → G. The orientation-preserving diffeomorphism classes of G-colored cobordisms with composition of compatible cobordisms, form an operad denoted C G .

3. 1 .

 1 Action of cobordisms on tangles. Given a cobordism C and a collection of tangles T 1 , • • • , T p , one may create a new tangle, if n(T i ) = n i for all i = 1, . . . , p, by gluing each T i into the internal ball B i of C. The action of G-colored cobordisms on G-colored tangles is defined once the colorings coincide on the boundary components. The following theorem states that the invariant A respects the structure of circuit algebra Cob G . Theorem 3.4. Let (T, ψ) be the G-colored tangle obtained by gluing the G-colored tangles (T 1 , ϕ 1 ), • • • , (T p , ϕ p ) to a G-colored cobordism (C, ϕ). The following equality holds

Figure 1 .

 1 Figure 1. Positive, negative and virtual crossings.

Figure 2 .

 2 Figure 2. rule to fill the matrix M ψ (T ), where t i and t j are not necessarily different. If b = a or b = c we add the contributions.

Figure 3 .

 3 Figure 3. Rule for arcs that don't begin at crossings.

4. 2 .

 2 The circuit algebra Weld µ . Definition 4.8. A circuit p-diagram consists of the following data: • the unit disk D = D 0 in C together with a finite set of disjoint subdisks D 1 , . . . , D p in the interior of D. For every i in {0, . . . , p}, each D i have 2n i distinct marked points with sign on its boundary (with n = n 0 ), and a base point * on the boundary of each disk. • a finite set of embedded oriented arcs whose boundary are marked points in the D i . They may cross each other along virtual crossings only. Each marked point is the boundary point of some string -which meets the corresponding disk transversally-and the sign is coherent with the orientation. Circuit diagrams encode only the matching of marked points, see Figure 4.

Figure 4 .

 4 Figure 4. Two equivalent circuit diagrams.

Figure 5 .

 5 Figure 5. A welded tangle τ .First, we compute α(τ, ψ) directly. Label the arcs of τ with letters a to f as in Figure5. We obtain the matrix

Figure 6 .Figure 7 .

 67 Figure 6. A welded tangle σ and a circuit diagram P .module generated by the curves of σ, labelled a, b, e, f . We have that H ∂ 1 = x 1 , . . . , x 4 and H ∂ = x 1 , . . . , x 6 . Using the volume form on H related to the choice of the

  γ

  . . , x 2k }, for k ≥ 0 (with a sign). To this data, we associate the module ∧ k H ∂ , where H ∂ is the free S-module of rank 2k generated by X. Let (P, ψ) be a µ-colored circuit diagram, and M = {c 1 , . . . , c q } be the set of curves of P . Consider the free module H generated by M , and the volume form ω: ∧ q H → S related to this basis. For i = 1, . . . , p, denote H ∂ i the module associated to the boundary circle ∂D i and H ∂ he module associated to ∂D. Let m i : H ∂ i → H be the morphims defined by m i (x j ) = sign(x j )c j if x j ∈ ∂c j . The mophism m ∂ is defined similarly. Let ω ∂ i be the volume form on H ∂ i related to the generating system of points of the circle ∂D

i . Set m = ⊗ i (∧ n i m ∂ i ).

To the colored diagram (P, ψ) we associate γ P,ψ : p i=1
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