J Guiochet Grimm-Isycom

/ Lesia

C Baron

UML BASED FMECA IN RISK ANALYSIS

Keywords: Risk analysis, safety, system modeling, object oriented principles, UML

Today, as systems become more and more complex, safety is becoming critical. Reducing the risk to an acceptable level with a complete risk management activity is necessary. This paper more precisely focuses on risk analysis; its demonstrate how the use of a risk analysis technic such as the Failure Modes, Effects and Criticality Analysis (FMECA) can be coupled to a object oriented system modeling process in order to guide the designer to exhaustively consider all potential risk, to increase the system security . For the system model, we chose the UML notation, which is now a standard in system and software engineering.

Introduction

Today, as systems become more and more complex, safety is becoming critical. Safety, sometimes defined as an absolute property, can now be defined as the property of a system to be "free from unacceptable risk" [START_REF]Safety aspects -Guidelines for their inclusion in standards[END_REF]. Therefore it is necessary to reduce the risk to an acceptable level with a complete risk management activity as presented on figure 1. This approach has been used into different domains; and for example, some of its concepts can be found in the medical norm [START_REF]Medical devices -Application of risk management to medical devices[END_REF]. Inside the general risk management activity, our studies more precisely focus on risk analysis. The justification of the use of the Preliminary Hazard Analysis (PHA), Failure Modes, Effects and Criticality Analysis (FMECA) and Fault Tree Analysis (FTA) techniques is exposed in [START_REF] Guiochet | Safety management of service robot systems -UML approach based on system risk analysis[END_REF]. However, the reader can find developed the other aspects of risk analysis in [START_REF] Guiochet | Safety analysis of a medical robot for tele-echography[END_REF][START_REF] Guiochet | Integration of UML in human factors analysis for safety of a medical robot for tele-echography[END_REF]. Those activities are based on a system model. Ideally, the system definition is modelled formally, but the use of formal methods in industrial development of safe systems is still rare. A significant barrier is that many formal languages and formal analysis techniques are unfamiliar and difficult to understand and to apply for engineers. Designers must also communicate between specialists of different domains who usually have their own language. For these reasons, existing techniques must be con-sidered. UML (Unified Modeling Language) notation fulfills these claims, and is now a standard in system and software engineering.

In this paper we will focus on the use of FMECA based on UML models in the risk analysis activity. The first section of this paper positions our works in the research communities on UML and risk analysis. Section two and three expose our method based on UML message exchanges and present generic model of error after an analysis of message failure modes. The two following sections propose a generic FMECA array for a system analysis and validate this on an application to the analysis of messages send by actors such as external devices.

Related works

The risk analysis activity recently appeared in the domain of computer systems safety. What one can found as a reference is the terminology about fault forecasting in [START_REF] Laprie | Dependability: Basic concepts and terminology in English, French, German[END_REF]. It consists in anticipating faults using techniques to identify faults and evaluate their effects. This is close to risk analysis concept and particularly to hazard identification and risk estimation activities. Thus, we focus on fault forecasting studies. Several research works can be found on the notion of component, considering that all components have inputs and outputs (by analogy with electronics components). [START_REF] Yacoub | A methodology for architectural-level risk analysis[END_REF] identify software critical components evaluating the risk factor of each component considering its complexity and the seriousness of its potential failure. [START_REF] Papadopoulos | Model-based automated synthesis of fault trees from matlabsimulink models[END_REF] also use component models, but use the HAZOP (Hazard Operability) analysis technique to automatically generate fault trees. These aspects meet the SIL (Safety Integrity Level) notion, used in norms [START_REF]Functional safety of electrical/electronic/programmable electronic safetyrelated systems[END_REF], but cannot be applied to a system modeled with UML. Indeed, the notion of object is too far from the notion of component [START_REF] Booch | Unified Modeling Language Users Guide[END_REF] to efficiently adopt a similar approach.

Nearer to the object paradigm and to UML, [START_REF] Górski | Object oriented safety monitor synthesis[END_REF] define "critical attributes" of the system objects and study the effects of potential harmful variation of these attributes. This leads first to the notion of critical sub-systems (which can be components) and sec- ond to the identification of hazardous state based on statecharts ([START_REF] Nowicki | Object oriented safety analysis of an extra high voltage substation bay[END_REF]). The approach is the same as the previous ones and consists in identifying parts of the system that might cause some damage. But the link between the very system objects are even more difficult to evaluate.

Among analytical methods, allowing fault forecasting, FMECA ([START_REF]1629A. Procedures for performing a Failure Mode, Effects and Criticality Analysis[END_REF]) is certainly the most used during functional analysis. Nevertheless, it can be applied to software components and to their links [START_REF] Yacoub | A methodology for architectural-level risk analysis[END_REF]. This approach is similar to the study of electronics components but does not take into account the major object concepts as classes or methods. [START_REF] Bitsch | Requirements on methods and techniques in perspective to approval process for railway systems[END_REF] suggests to use this technique analyzing the objects methods as a function analysis, and thus identifying effects on the system. In a case study on a car design, [START_REF] Johannessen | Hazard analysis in object oriented design of dependable systems[END_REF] use the UML use cases to specify requirements and realize a FMECA based on these diagrams. However, the link with UML is limited because the use cases identified, as the "car stability during braking", correspond to non-functional requirements and thus can not be used to identified objects. Among analysis techniques, fault tree analysis must also be mentioned. This technique is usually coupled with a FMECA. [START_REF] Górski | Holistic and partial system models in safety analysis[END_REF] show how they use fault trees to express the different classes of faults of a model. The connection with the system objects is still complex, and the tree study seems to be done in parallel without any real interaction with the UML models. [START_REF] Pai | Automatic synthesis of dynamic fault trees from UML system models[END_REF] presents a method and algorithms allowing to automatically generate fault trees from UML models. The resulting trees are in fact reliability models to describe how a failure can occur in parallel to UML models. [START_REF] Bondavalli | Dependability analysis in the early phases of UML based system design[END_REF] also elaborated reliability models (Intermediate Model) based on UML diagrams, then derived into Timed Petri Nets [START_REF] Bondavalli | Automatic dependability analysis for supporting design decisions in UML[END_REF][START_REF] Majzik | Automatic dependability modeling of systems described in UML[END_REF][START_REF] Bondavalli | Automated dependability analysis of UML designs[END_REF]. All these techniques offer tools to designer and overcome some UML weaknesses, as the lack of executing models. However, the techniques mentioned above strongly rely on the notion of component, which is different from the notion of object or class. On this very subject, this paper shows how our approach distinguishes itself from these works, overall because it takes into account different concepts than the component concept.

Message failure mode analysis

The notion of failure mode is close to the notion of error; both concepts will be indifferently used in this section.

The FMECA technique consists above all in identifying errors that could occur in a system before its production. Actually, errors are often specific to the application. However, to realize a more systematic error identification step, one can sometimes use some generic error models, which can be applied independently from the application. Unfortunately, these models often concern a few low level elements. Thus, we propose to focus on one of the language element which is not specific to an application: the modeling language itself, and in our approach we chose UML. Indeed, by analogy with electronics devices such as actuators and sensors, the modeling language constructions can be reused from an application to another. Moreover, this multidisciplinary language allows to model either electronic, computing, mechanical elements and even human actors. This genericity is thus double: it should allow to develop generic error models not only for different applications, but also for different domains (from electronics to human components).

Due to UML complexity, we focus on one construction of this language: the notion of Message.

Different reasons lead us to this choice. The goal of a failure analysis is to identify hazards during systems use. It is a failure during an activity which lead to a hazard. And the activity of a model depends on the messages. Hazards occur when messages are exchanged. In conclusion, we proceed to a failure analysis based on messages and not on components or on functions.

However, focusing on the notion of Message can reduce the genericity. Indeed, the UML notation includes the concept of Action which is the fundamental element of the meta-model. Yet, in order to keep our approach close to UML user usual concepts, we preferred basing our approach on the Message notion. Moreover, current works on UML formalization show important differences on the Action concept. Indeed, version 1.5 of UML [START_REF] Omg | OMG Unified Modeling Language Specification v1.5[END_REF], strongly modified its previous use (version 1.4 [START_REF] Omg | OMG Unified Modeling Language Specification v1.4[END_REF]). Furthermore, this specification differs from current works for version 2.0 [START_REF] Omg | 2nd revised submission to OMG RFP ad/00-09-02 -Unified Modeling Language : Superstructure -version 2.0[END_REF]! On the other hand, the notion of Message seems stable in those three documents; it just prove the force but also the importance of this concept.

Message error models

This section presents the range of errors linked to the concept of Message that we have determined.

Some languages (such as Ada for example) contain an operational semantics and a verification semantics. The operational semantics allows to specify a system functional aspects and describe how the system will deliver the service. This corresponds to the whole set of UML diagrams. The verification semantics defines properties to verify if some rules are respected. For example, in Ada, constraints on data variables of a software operative part can be expressed. This semantics allows to identify errors resulting from a non-respect of one of these properties, and also permits to treat them. The possible process is thus to group all properties issued from the verification semantics and to derive error models from them.

This approach can be applied to most of languages, but usually, the verification semantics is either implicit, mixed into the operational semantics, either missing. In UML, a certain number of elements can be classified into the verification semantics. First, the use of constraints, graphically represented with curly brackets, allows to specify a restriction on the use of certain kind of elements; an error is raised if the constraint is not respected. There is also in the UML specification the Well-Formedness Rules which define a set of constraints expressed with the OCL language [START_REF] Omg | OMG Unified Modeling Language Specification v1.4[END_REF]. However, most of verification properties are not explicit; they are integrated into the operational semantics. To sum up and conclude on this point, in-stead of trying to group the set of constraints or Well-Formedness Rules together relatively to the notion of Message, we propose to generally define the concepts inherent to the notion of Message. This approach synthesizes the elements specified in version 1.4 and allows to integrate elements such as time constraints, missing from the meta-model at the moment(work in progress by the OMG for UML version 2.0).

A message can be a signal creation, an operation call, a creation or destruction of an instance; we thus present a generic description for all the characteristics of a Message. The graphical representation by a sequence diagram is illustrated on figure 2. The different elements of a message thus are here after defined:

1. the interaction it belongs ; 2. the next and previous messages in the interaction ;

3. the objects that send and receive the message ;

4. the sending and receiving events ;

5. the parameters (number, type and value) ;

6. the implicit response (defined by its arguments, sending and receiving events) ;

7. the period of the message treatment.

Then possible errors for a message are established based on all these elements. First, a message belongs to an interaction, and a sending of a message nonplanned is a type of usual error, which often happens in Human-Machine Interface manipulation. Generally, this type of error can be extended with a first error model: E.1. Sending of a message not belonging to the planned interaction.

The second point dealing with the message order can also lead to errors, particularly with human actors. Indeed, a user having many messages to send might inverse or forget one of them. This type of error can be extended to any model specifying two types of error: E.2. Execution of one or several messages in a wrong order.

E.3. Omission of a message among an interaction.

A message is sent by an object, but the object supposed to receive it might not exit. This type of error, usual in computer sciences, allows to formulate a generic error: Characteristics related to sending and receiving events allow to define temporal properties. Indeed, for these events, time is the fundamental element, and errors are caused by delays; messages can also be in advance compared to their specifications:

E.5. Sending or receiving of a message outside its specified time limits (too son or too late)

The message arguments constituting the operation or called signal parameters must correspond (number, type and value) to those expected for the object receiver. This property, partially expressed in OCL by the Well-Formedness Rules of the UML specification, allows the expression of tree types of errors: E.6. The arguments type is different from the type of parameters expected by the receiver.

E.7. The number of a message arguments is different from the number of parameters expected by the receiver.

E.8. The value of a message arguments is different from the value of parameters expected by the receiver.

The usual implicit answer to a message might be characterized by arguments (for example, an message which is an operation call, can return a value) but also by some sending and receiving parameters. This leads to the identification of an error that is generally relative to a message that call an operation (as for example ReadPosition for a position sensor): E.9. The values returned by a response to a message does not fit with the expected values (for example: constant, random, out of limits, etc.)

The time of a message treatment correspond to the duration between the receiving of a message and the sending of a response. This response can either be a returned value, or the object contruction/destruction, a signal emission, etc. This type of error can thus be identified: E.10. Treatment of a message out of the specified time limits but not least, in order to complete the elements that are mentioned on the diagram, we must also consider the link element, that characterizes the relation between the transmitter and receiver objects, and allows the message emission. This error type can thus be formulate: E.11. Lack of link between sender and receiver objects

Proposition of a generic FMECA array for a system analysis

Based on the works and norms for FMECA as [START_REF]1629A. Procedures for performing a Failure Mode, Effects and Criticality Analysis[END_REF] (devoted to functional analyzes), this section proposes to introduce the following elements into the FMECA array (cf. figure 3) for a message failure mode analysis:

• the message name,

• the failure modes, or the errors identified thanks to the previous error models,

• the causes of those failure modes,

• the effects at a local level, at a directly higher level and at the system level,

• the data to estimate the risk (severity is the damage seriousness, failure mode occurrence noted as probability, associated risk),

• the on-line means to detect failure modes and their effects,

• the possible means of risk prevention and protection,

• other pieces of information.

Before explaining the approach, note that the goal in these arrays is not to proceed to a deep analysis of each of the mentioned points; in particular, it is not the point to consider the causes of the causes but to synthesize the main data in order to obtain a system analysis.

The column Potential solutions of the array on figure 3 deals with the possible means to reduce the risk. It is important to notice that these means are not directly implemented but this help to focus on the point that a preliminary risk evaluation must be done. Risk is here calculated from a qualitative estimation of the probability of occurrence of a failure mode and of the seriousness of the induced damage. We chose to represent the prevention and protection means but such an analysis can lead to other means. For example, having identified critical messages but for which estimating the probability of occurrence was difficult, a means to reduce the risk is to use fault removal techniques (verification, validation, tests, etc.). More generally, the use of FMECA we propose does not follow a systematic process, where each failure mode is evaluated in terms of probability and seriousness, then treated. The main reason comes from the impossibility to estimate the probability of all failure modes, even in a quantitative way, as in the case of a software analysis. Thus, FMECA is essentially useful to focus on critical and weak design points from the safety point of view. Finally, as FMECA directly depends on the model level of details, its use depends on the development process step applied. In our approach, we recommend to concentrate on the first steps, when safety requirements, architecture choices and major hazards are identified.

Application to the analysis of messages send by actors such as external devices

A system approach must allow to take into account all components (electronics, informatics, mechanics and human factors) but it is obvious that only each field specialists really control data. However, as each one has his own language and his own techniques, it can be complex to group information in order to proceed to a global analysis of a system. Using the UML language jointly to the message error models, permits to perform a risk analysis more homogeneous. This section presents an example of use of error models previously identified in order to demonstrate the feasibility of such an approach. This approach has been successfully applied to a complex medical robot system [START_REF] Guiochet | Safety management of service robot systems -UML approach based on system risk analysis[END_REF].

Objects and interactions modeling An actor characterizes an outside user or related set of users who interact with the system [START_REF] Booch | Unified Modeling Language Users Guide[END_REF]. It is possible for an actor to be a human user or an external subsystem. This section present an actor of the external device type. In the case of many systems, it is possible to represent external devices as actors if they interact with the system in an autonomous way. For instance, in the case of tele-medicine using robots, where a master site and a slave site interact, the slave site model might include the master site as an actor. The messages exchanged with the system can be modeled thanks to a collaboration or a sequence diagram as on figure 4. For this type of actor, it is important to notice that the error types include the failures of the sender object, but also the failures of the link with the receiver object (E.11). This allows to consider the telecommunication aspects of some kind of application as telemedicine.

Failure mode analysis

The modeling of all exchanged messages with sequence diagrams allows to process to an analysis very soon in the development process. It leads to formulate safety and reliability requirements from the start, with no need to develop the design choices to make components communicate. For example, on the diagram figure 4, the type of communication is not specified (intranet, internet, RS232, etc.), but failures of messages from the master site can be considered anyway.

Figure 5 shows a generic analysis of the failure mode (E.6, E.7 or E.8 types) of the message Control movement(parameters) of the sequence diagram on figure 4.

Then, from this analysis, one can propose a solution for this failure mode by the modification of the system UML diagrams. The solution we propose consists in temporarily changing the robot controller state. This is illustrated on the state diagram of figure 6.

Conclusions and perspectives

Considering the growing system complexity and the urgent need to take safety into account, we proposed an approach based on risk analysis. We considered that damages appear into a system because of its dynamics. Thus, hazards are partially linked up with message exchanges into a system. Going on the notion of Message in UML, we presented some models of errors related to this concept. We showed that these models can also be useful in other fields (we validated it on the design of a highly critical telemedicine application with robots [START_REF] Guiochet | Safety management of service robot systems -UML approach based on system risk analysis[END_REF]). Moreover, in other papers, we demonstrated that these models was generic and thus could be used for different applications. The link between the object-oriented concepts and the FMCEA technique has been established, although the FMECA was originally dedicated to functional analysis. The approach we propose is integrated into a whole development process based on the UML notation where the risk analysis is developed in parallel using the same UML models. The next technical step would be the development of tools to automatically integrated FMECA to UML design diagrams. Our theoretical perspective is to apply the same philosophy not to FMECA but to fault tree technique.

Figure 1 :

 1 Figure 1 : UML based risk analysis in the risk management activity

Figure 2 : 4 .

 24 Figure 2 : Elements of an interaction realized by the exchange of two messages

Figure 4 :

 4 Figure 4 : Sequence diagram illustrating interactions between a master site and a slave site in a telemedicine system

Figure 3 :

 3 Figure 3 : Example of FMECA array

Figure 6 :

 6 Figure 6 : State diagram taking into account a failure mode of Control movements()

Contact : guiochet@univ-tlse2.fr http://www.lesia.insa-tlse.fr/ guiochet CLAUDE BARON was born in Perpignan, France, and went to the National Institute of Applied Sciences of Toulouse to study computer sciences. She obtained her degrees in 1992 and her PhD in 1995. She is now an assistant professor at INSAT where she teaches real time systems and system reliability. She does her research at the LESIA laboratory where she is in charge of the SFS group. Contact: claude.baron@insa-tlse.fr http://www.lesia.insa-tlse.fr/francais/membres/ppers/baron-claude/index.html