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Texture Reconstruction guided by the Histogram of
a High-Resolution patch

Mireille El Gheche, Jean-François Aujol, Yannick Berthoumieu, Charles-Alban Deledalle

Abstract—In this paper, we aim at super-resolving a low-
resolution texture under the assumption that a high-resolution
patch of the texture is available. To do so, we propose a vari-
ational method that combines two approaches, that are texture
synthesis and image reconstruction. The resulting objective func-
tion holds a nonconvex energy that involves a quadratic distance
to the low-resolution image, a histogram-based distance to the
high-resolution patch, and a nonlocal regularization that links the
missing pixels with the patch pixels. As for the histogram-based
measure, we use a sum of Wasserstein distances between the
histograms of some linear transformations of the textures. The
resulting optimization problem is efficiently solved with a primal-
dual proximal method. Experiments show that our method leads
to a significant improvement, both visually and numerically, with
respect to state-of-the-art algorithms for solving similar problems.

Index Terms—Super-Resolution, Texture Synthesis, Texture
Reconstruction, Wasserstein distance, Histograms, Nonlocal reg-
ularization, Proximal algorithms, nonconvex optimization.

I. INTRODUCTION

TEXTURES refer to the visual appearance of an object
surface resulting from the size, shape, density, arrange-

ment, proportion of its elementary parts. Human observers
perceive textures as images displaying local spatial variations
of features (like color, orientation and intensity) organized in
some regular or repeated pattern. These visual patterns provide
useful cues about the physical properties of the underlying
surface. Consequently, the analysis of texture images plays
a central role in multiple disciplines, such as neuroscience
and psychophisics (for texture detection), computer vision (for
classification and segmentation), and petrology (for physical
property evaluation).

Among the several applications of texture analysis, the one
that motivates our work is the physical parameter estimation
of petroleum reservoirs from their textures. Indeed, one can
extract a cylindrical sample of rock from a reservoir, scan it
through computed tomography (CT), and obtain a stack of
texture images, which can be then analyzed to find visual cues
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Fig. 1. The left figure shows a complete low-resolution acquisition, which
was up-sampled by a factor 2 for visualization purposes. The middle picture
displays a high-resolution patch of the target texture. Our goal is to combine
both observations in order to get a high-resolution texture (right figure).

related to some petro-physical parameters. A typical example
concerns the segmentation and classification of textures, which
in turn relate to the porosity levels of the underlying material.

Due to the large size of a rock sample, the CT scanner
produces a low-resolution image of the reservoir texture,
leading to a loss of important details for the estimation of
petro-physical parameters. Fortunately, the resolution can be
improved by zooming into a specific part of the sample through
a micro-CT scanner. Therefore, in order to make a high-
resolution image of the reservoir texture, one can perform
two CT acquisitions of the same rock sample. The first one
supplies a low-resolution image of the entire texture, while the
second one provides a high-resolution image of a small part
of the texture.

The main focus of this paper is on the super-resolution of a
texture image, under the assumption that a small patch of the
sought texture is available in high-resolution (the considered
setting is illustrated in Fig. 1). Note that this problem can be
solved using two methods:
• a texture synthesis approach of the high-resolution patch

guided by a low-resolution texture, and combined with
some recent tools of image reconstruction.

• a reconstruction approach of the low-resolution acquisition,
guided by the histogram of the high-resolution patch
linking the method to texture synthesis.

A. Related work
a) Reconstruction: The simplest way to upscale a low-

resolution image is by mean of linear scaling (such as bi-cubic
interpolation [1]) or image sharpening methods [2]. However,
these methods introduce high frequency concealing, which blur
the image and erase small texture details.

A number of single-image reconstruction methods are based
on the assumption that a dataset of high-resolution textures
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are available, from which they learn a dictionary of low-
resolution patches, a dictionary of high-resolution patches, and
a correspondence map between the two dictionaries [3], [4],
[5]. However, the results depend on the estimated dictionaries,
and thus the reconstruction of true details is not guaranteed
if the target texture does not appear in the training dataset.
A similar reconstruction method was described in [6], where
the k-nearest neighbors are searched into an external patch
database. Instead of using external data, the authors in [7]
extract correspondences at different scales directly from the
low-resolution image.

A different approach consists of introducing a suitable
regularization into the reconstruction problem formulation, with
the aim of conveying some prior knowledge about the signal
to be recovered. In this context, Total Variation (TV) [8], [9],
[10], [11] has emerged as a simple regularization, consisting
in penalizing the gradient coefficients. However, TV fails to
preserve textures, details, and structures, because they are
hardly distinguishable from noise. To improve this behavior,
the TV model has been extended by using higher-order spatial
differences [12], [13], higher-degree directional derivatives [14],
[15], or the nonlocality principle [16], [17], [18], [19], [20],
[21], [22], [23]. The latter approach leads to the so-called
nonlocal total variation (NLTV) regularization.

b) Texture synthesis: Texture synthesis techniques can
be broadly categorized into region-growing local methods and
optimization-based global methods. Local approaches grow
the texture one pixel (or patch) at a time, while maintaining
the spatial coherence with nearby pixels by modeling the
neighborhoods with Markov fields and fractal models [24].
A weakness of these methods is that the spatial coherence
between pixels is enforced at a local scale. A possible approach
to circumvent this limitation consists of resorting to a small
patch from which to grow the texture, following a procedure
that sequentially processes the pixels [25], [26], [27]. In such
methods, however, small errors can accumulate over large
distances, leading to inconsistencies in the synthesized texture.

Global methods process the entire texture as a whole, using
some criteria for measuring its similarity with a small texture
patch. For example, the latter can be modeled with a statistical
descriptor based on histograms [28], wavelet coefficients [29],
or Fourier coefficients [30]. A similar approach was recently
proposed in [31], [32], which introduces a preliminary step
of dictionary learning for exploiting the given patch, and (not
least) the Wasserstein distance for comparing the histograms
of the entire texture with an extended version of the small
patch. While the Wasserstein distance is well-known in image
processing and computer vision under the name “earth mover
distance” [33], it was only recently expanded to the context of
texture synthesis [34], [32], [35].

Regarding the problem considered in this paper (recall Fig. 1),
an extension of NLTV regularization was recently proposed
in [36]. This prior consists in building a pointwise estimate of
the image, where each missing pixel is connected to a local
neighborhood and to the most similar pixels in the given high
resolution patch. The author in [37] proposed a statistical prior
in addition to the standard NLTV regularization. This prior
is based on a nonparametric spatial covariance structure from

empirical estimation, and a parametric generalized Gaussian
model learned from the high-resolution patch.

B. Contributions

In this paper, we follow a variational approach that aims
at super-resolving a low-resolution texture (possibly degraded
by blur and zero-mean additive Gaussian noise) by explicitly
taking into account a high-resolution patch. To do so, we
propose an algorithm for optimizing a nonconvex energy that
involves two problem-specific terms in addition to the standard
quadratic distance to the low-resolution image. The first term
is a sum of Wasserstein distances to the histograms of the
high-resolution patch, of its gradient, and of its Laplacian.
The second term is a NLTV regularization that measures the
distance of each pixel with a selected subset of pixels in the
high-resolution patch.

There exist few methods in the literature that consider the
texture synthesis problem guided by a low-resolution texture
[36], [37]. These approaches have some similarities with the
proposed one with notable important differences:
• In [36], the problem is solved by taking into account

a nonlocal model. The approach consists in connecting
each missing pixel to a set of neighboring pixels and
some other pixels in the high-resolution patch. However,
this approach neglects the statistical information that can
be extracted from the high-resolution patch. The main
novelty of the proposed approach w.r.t. [36] lies in the
introduction of statistical prior that preserves the texture
details, as well as the design of a new nonlocal graph that
provides better connections between the missing pixels
and the high-resolution patch pixels.

• To interpolate the missing data, the work in [37] exploits a
nonlocal regularization and a Generalized Gaussian distri-
butions model of the texture gradients, whose parameters
are learned on the high-resolution patch. Differently from
[37], we enforce a histogram prior using the Wasserstein
distance, linking our approach with the optimal transport
[38]. The originality of our technique consists of the ability
to consider multi-histogram priors (such as the intensity
values, the gradients and the Laplacians histograms [35,
Chapter 5]) without being constrained to a parametric
model, regardless of the histogram shapes (unimodal,
bimodal or multimodal mixture).

The paper is organized as follows. Section II describes the
degradation model, the histogram-based distance, and the new
graph for the NLTV regularization. Section III presents an
algorithm for solving the proposed optimization problem via
proximal tools. Section IV provides an experimental validation
in the context of texture images. Finally, the conclusion is
given in Section V.

C. notation

Let ‖ · ‖ be the standard Euclidean norm, and let Id be
the identity matrix. The domain of a function f : RN →
] − ∞,+∞] is dom f = {x ∈ RN |f(x) < +∞}. Γ0(RN )
is the class of lower semi-continuous convex functions from
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RN to ] −∞,+∞] such that dom f 6= ∅. Let f ∈ Γ0(RN ).
The conjugate of f is the function f∗ ∈ Γ0(RN ) defined
by f∗ : RN →] −∞,+∞] : u 7→ sup

x∈RN

x>u − f(x). When

f is Gâteaux-differentiable at y ∈ RN , ∂f(y) = {∇f(y)}
where ∇f(y) is the gradient of f at y. A differentiable convex
function has β-Lipschitz continuous gradient ∇f if (∀(x, y) ∈
RN × RN ) ‖∇f(x) − ∇f(y)‖ ≤ β‖x − y‖, where β ∈
]0,+∞[. Let C be a nonempty subset of RN , then ιC is the
indicator function of C, equal to 0 on C and +∞ otherwise.

II. PROPOSED APPROACH

The high-resolution signal of interest is denoted by x̄ ∈ RN ,
which generally corresponds to an image of size N = N1×N2.
The degradation model that we consider is the following:{

z(1) = DBx̄+ η1,

z(2) = Mx̄.
(1)

Hereabove, z(1) ∈ RQ is the complete low-resolution image,
B ∈ RN×N is a linear operator modeling some blur, D ∈
RQ×N stands for spatial down-sampling by a dyadic factor
in each direction, yielding Q = 2−rN , and η1 ∈ RQ is a
realization of an additive zero-mean white Gaussian noise with
standard deviation τ . Moreover, z(2) ∈ RM denotes a small
patch of the high-resolution image x̄, and M ∈ RM×N is a
selection operator that extracts the high-resolution patch from
x̄.

We propose to recover x̄ from the observations z(1) and
z(2) through a variational approach that leads to solving the
following optimization problem:

minimize
x∈RN

‖DBx− z(1)‖2 +H(x, z(2)) + λR(x, z(2))

s. t. Mx = z(2), (2)

where λ > 0 is a regularization parameter. Beside the data
fidelity terms w.r.t. the observations z(1) and z(2), we use two
additional pieces of information: a term H(·, z(2)) conveying
some histogram-based statistics, and a term R(·, z(2)) enforcing
a new type of nonlocal regularization. The histogram-based
term is modeled through the Wasserstein distance discussed
in Section II-A, while the regularization is grounded on the
nonlocal approach presented in Section II-B.

The presented approach takes into account an image reg-
ularization and a global statistical information in one model.
Note that, minimizing the term R(·, z(2)) entails spatial regu-
larization, whereas H(·, z(2)) involves statistical information
that is not spatially indexed. However, taking into account the
statistical information through histogram priors, the proposed
approach infers the correct structures and details of the high-
resolution patch to the estimated structure, leading to improved
results w.r.t. the classical regularizations considered alone.

A. Wasserstein distance to the high-resolution patch

Wasserstein distance is a well-known dissimilarity measure
between probability distributions, as it is easier to optimize than
other distances, such as the ϕ-divergences (Kullback-Leibler,
Hellinger, Jeffreys-Kullback, · · · ) [34], [32].

u v

v ◦ σv v ◦ σv ◦ σ−1
u

Fig. 2. A simple example showing histogram transfer from v to u.

The Wasserstein distance between the histograms1 of two
images u ∈ RN and v ∈ RN is defined as follows:

W2
2 (νu, νv) = min

σ∈ΣN

‖u− v ◦ σ‖2, (3)

where νu and νv are the normalized histograms of u and v,
the symbol v ◦ σ denotes a permutation of the vector v, and
ΣN is the set of all the permutations of N -length vectors. For
grayscale images, the optimal permutation σ∗ is computed as

σ∗ = σv ◦ σ−1
u , (4)

where σv (resp. σu) denotes the permutation operator that
arranges the pixels of v (resp. u) in ascending order (see
Fig. 2). In our case, however, the two images have a different
number of pixels (u ∈ RN and v ∈ RM , with M < N ).
Hence, we replicate the patch v so as to obtain a larger image
ṽ ∈ RN such that the normalized histogram νṽ is equal to νv .
2 Although the Wasserstein distance is nonconvex (due to the
histogram transformation), its gradient is Lipschitz-continuous
and takes the following form [31],[35, Chapter 5]

∇uW2
2 (νu, νṽ) = 2(u− ṽ ◦ σṽ ◦ σ−1

u ). (5)

This property allows us to employ the Wasserstein distance
into the optimization algorithm presented in Section III.

Our first contribution is to use the Wasserstein distance for
comparing the histograms of the intensity values, their gradient,
and their Laplacian, in order to ensure that the synthesized
image has similar details as the high-resolution patch. In other
words, we want to restore the gray levels, the gradients and
the Laplacian values of the textures. To do so, for every s ∈
{1, . . . , 4}, let Ls be a matrix in RNs×N defined as follows.
• L1: the identity matrix (N1 = N ).
• L2: the concatenation of the horizontal and vertical

difference operators (N2 = 2N ).
• L3: the concatenation of the diagonal difference operators

(N3 = 2N ).
• L4: the isotropic Laplacian operator (N4 = N ).

We define the term H in (2) as

H(x, z(2)) =

4∑
s=1

αsW2
2 (νLsx, νz̃(2)

s
) (6)

where, for every ∀s ∈ {1, . . . , 4}, αs > 0, z(2)
s = Lsz

(2) and
z̃

(2)
s is the extension of z(2)

s (after the linear transformation).

1The histogram of a signal refers to a histogram of the pixel intensity values.
2Another solution consists in oversampling the sorted sequence v ◦σv using

a nearest-neighbor approximation.
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B. Nonlocal regularization

The quality of the images reconstructed with the nonlocal
regularization highly depends on the graph used to model
the similarity between pixels. Remarkable results can be
obtained when a good estimate of the true similarity graph is
available. However, in the context of super-resolution, this task
presents some challenges, due to the missing information in
the low-resolution image. One way to circumvent this issue
consists of estimating the standard nonlocal graph over an
interpolated version of the low-resolution image. Unfortunately,
this approach performs poorly on texture images, as the
graph connections are limited to local neighborhoods. A better
solution was proposed in [36], where the missing pixels in
the low-resolution image are linked (by patch similarity) to a
set of pixels in the high-resolution patch. Since the original
pixels are blurry, the pixels to which they are connected are
also blurry, because the quadratic distance used to evaluate the
similarity is not robust to this kind of degradation. Hence, the
image reconstructed with such a nonlocal graph is necessarily
blurred. The proposed approach is different, since each pixel
is connected to the similar ones in the high-resolution patch,
which are not blurry. Hence, the similarity scores are more
likely to be reliable, resulting in a denoised image of better
quality.

In the following, we present the way to build the new
nonlocal graph (see Fig. 3), and we review two state of the art
approaches: the conventional one and the one proposed in [36].

1) The proposed graph: we define the function R in (2) as
follows

R(x, z(2)) =

N∑
i=1

√∑
j∈Ni

wi,j
(
xi − z(2)

j

)2
, (7)

where Ni ⊂ {1, . . . ,M} is a subset of positions w.r.t. the
support of z(2), and wi,j > 0. For every i ∈ {1, . . . , N},
the support Ni and the weights (wi,j)j∈Ni

are computed as
explained in the following.

• Firstly, we select the pixel z(2)

j
(i) that is the most similar

to xi. However, since the high-resolution image x is not
available at this stage, we interpolate the low-resolution
image z(1) ∈ RQ with a bicubic approach, so as to obtain
a new image ẑ(1) ∈ RN that approximates x without
loosing its spectral structure. Once we have ẑ(1), we find
the index j

(i)
according to the criterion

j
(i)

= argmin
m∈{1,...,M}

‖pi(ẑ(1))− pm(z(2))‖2, (8)

where pi(ẑ(1)) is a block extracted from ẑ(1) and centered
around the position i, and pm(z(2)) is defined similarly.

• Secondly, we define Ni as the set of positions j1, . . . , jK
such that

(
z

(2)
jk

)
1≤k≤K are the K most similar pixels to

z
(2)

j
(i) . To do so, for every m ∈ {1, . . . ,M}, we compute

the Euclidean distance between the blocks p
j
(i)(z(2))

and pm(z(2)), and we select the positions (jk)1≤k≤K
associated to the K lowest distances, which of course
includes j

(i)
itself (i.e., j1 = j

(i)
).

(a) Our graph (b) Graph of [36]

Fig. 3. Brodatz Bark image: bicubic interpolation of the low resolution image
with (a) the high-resolution patch, (b) the location of the high-resolution patch
(black square). Dashed Lines are the transitional links to build the final graph
(straight lines).

• Finally, we compute the weights wi,j as follows

(∀j ∈ Ni) wi,j = e
−δ ‖p

j̄(i) (z(2))−pj(z(2))‖2
, (9)

where δ is a positive constant.
The nonlocal energy proposed in (7) differs from the standard

nonlocal regularization, as it takes into account the information
carried by the high-resolution patch. To clarify this concept,
we now review two nonlocal approaches related to our work.

2) The conventional approach: The classical NLTV consists
of computing, for every i ∈ {1, . . . , N}, the most similar pixels
lying in a local neighborhood, yielding the energy

NLTV(x) =

N∑
i=1

√ ∑
j∈Ni⊂Wi

ŵi,j(xi − xj)2, (10)

whereWi is the set of positions located into a Q × Q window
Wi ⊂ {1, . . . , N}\{i} centered at i. For every i ∈ {1, . . . , N},
the support Ni includes the positions of the K most similar
pixels to xi that are located within Wi. Since the image x
is not available, one can interpolate z(1) ∈ RQ and obtain
ẑ(1) ∈ RN , which is used for building Ni and for computing
the associated weights

(∀j ∈ Ni) ŵi,j = e−δ ‖pi(ẑ
(1))−pj(ẑ(1))‖2 . (11)

3) The approach in [36]: This approach consists of connect-
ing each pixel (xi)i∈{1,...,N} to its K-nearest observed pixels
in the high-resolution patch z(2). The nonlocal regularization
is expressed as

NL-HR(x) =

N∑
i=1

√∑
j∈Ni

wi,j(xi − z(2)
j )2, (12)

where Ni ⊂ {1, . . . ,M} includes the positions of the pixels
in z(2) that are the K most similar to xi. Just like before, the
interpolated image ẑ(1) ∈ RN is actually used for building Ni
and for computing the associated weights

(∀j ∈ Ni) wi,j = e−δ ‖pi(ẑ
(1))−pj(ẑ(1))‖2 . (13)

Note that the approach in [36] builds the similarity graph over
an interpolated version of the low-resolution image. Conversely,
we propose to build the graph by only using the high-resolution
patch (see Fig. 3). This makes a very important difference in
the quality of reconstructed images, as shown in Section IV.
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Fig. 4. Test images. From the left to the right, top line: Grass, Bark 1, Bark 2, Wall, Hair and Leaves. From the left to the right, bottom line: Leaf, Flowers,
Cell 1, Cell 2, Cell 3, and CT image scan of a petroleum reservoir.

III. OPTIMIZATION

The solution of Eq. (2) requires an efficient algorithm for
dealing with problems involving nonsmooth functions and
linear operators that are non-necessarily circulant. Recently,
it has been shown experimentally that primal-dual proximal
methods [39], [40], [41], [42], [43], [44], which were originally
designed for convex optimization, can be also applied to
nonconvex problems in some circumstances [45], [46], [47],
[48]. In the convex setting, the key tool of these methods is
the proximity operator [49] of a lower semicontinuous convex
function ϕ : RN 7→]−∞; +∞], defined as

(∀y ∈ RN ) proxϕ(y) = argmin
z∈RN

ϕ(z)+
1

2
‖z − y‖2 . (14)

The proximity operator can be interpreted as an implicit
subgradient step for the function ϕ, since p = proxϕ(y)
is uniquely defined through the inclusion y − p ∈ ∂ϕ(p).
Proximity operators enjoy many properties [50]. In particular,
they generalize the notion of projection onto a closed convex set
C, in the sense that proxιC = PC . Hence, proximal methods
provide a unifying framework that allows one to address a wide
class of convex optimization problems involving nonsmooth
penalizations and hard constraints.

Among the wide array of existing proximal algorithms, we
employ the Forward-Backward Primal Dual method (FBPD)
[43] reported in Algorithm 1. The operators required by this
algorithm are detailed below.
• The nonlocal regularization can be expressed as the
`1,2-norm composed with a discrete difference operator,
yielding

R(x, z(2)) = ‖Tx‖1,2, (15)

where

Tx =


[
w1,j(x1 − z(2)

j )
]
j∈N1

...[
wN,j(xN − z(2)

j )
]
j∈NN


} ∈ RK

...
} ∈ RK .

(16)

The proximity operator of the `1,2-norm, that is prox‖·‖1,2
in Algorithm 1, can be found in [51].

• The projection onto the convex set associated to the
constraint Mx = z(2) is expressed as

P{M·=z(2)}(x) = x+ M>(z(2) −Mx). (17)

• The gradient of the sum of the remaining terms, that is
f(x) = ‖DBx−z(1)‖2 +

∑4
s=1 αsW2

2 (νLsx, νz̃(2)
s

), reads

∇f = 2 B>D>(D Bx− z(1))

+ 2

4∑
s=1

αsL
>
s (Lsx− z̃(2)

s ◦ σz̃(2)
s
◦ σ−1

Lsx
), (18)

where ∇f is β-Lipscitz with β = 2(1 +
∑4

1 αs‖Ls‖2).
Although there is no theoretical guarantee about the estimate

produced by Algorithm 1, in our experiments we observed that
it always converges to a stable solution.

Algorithm 1 FBPD [43]

INITIALIZATION
Choose

(
x[0], y[0]

)
∈ Rn × RKn

set τ > 0 and ω > 0 such that

τ
(
β/2 + ωλ‖T‖2

)
< 1

FOR l = 0, 1, . . .
x̂[l] = ∇f(x[l]) + T>y[l]

x[l+1] = P{M ·=z(2)}
(
x[l] − τ x̂[l])

ŷ[l] = T
(
2x[l+1] − x[l])

y[l+1] = proxω‖·‖1,2

(
y[l] + ω ŷ[l])

IV. EXPERIMENTAL RESULTS

The numerical analysis is decomposed in three parts. Firstly,
we assess the performance achieved by only using the nonlocal
regularization proposed in Section II-B. Secondly, we extend
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our analysis to the histogram-based distance proposed in
Section II-A, by evaluating its impact on the performance.
Finally, we compare the full approach with several state-of-
the-art methods.

As shown in Fig. 4, all the test images are grayscale textures,
such as Nature (Grass, Leaves, Leaf, Flowers), Forest (Bark,
Wall), Hair, Biology (Cell), and Petrology (CT scan).3

A. Error measures

The simplest and the most popular quality measure is the
Mean Squared Error (MSE) along with the related quantity of
Peak Signal-to-Noise Ratio (PSNR). However, these quantities
are based on pixel-wise comparisons, and thus they do not take
into account the texture of the image. In this paper, we consider
the visual inspection to asses the image quality in terms of the
down-sampling factor and the high-resolution patch size. In
order to provide an objective measure, we will evaluate the
results with the SSIM index (the closer to 1, the better the
quality) [52] and we propose to add a new statistical error
measure Errx̄, defined as

Errx̄ =

4∑
s=1

αs
Ns
W2

2 (νLsx̆, νLsx̄), (19)

where x̆ denotes an estimate of x̄. This error aims at showing
how much the resulting image is statistically close to the true
high-resolution image. Indeed, the closer Errx̄ to 0, the better
the results.

To allow a reliable assessment, we will add the PSNR indices
to the numerical evaluation. The aim of this step is twofold:
to be homogeneous to the state-of-the-art methods evaluation
and to prove that the PSNR might not reflect the visual quality
of reconstructed images.

B. Nonlocal regularization

In this section, we test in isolation the proposed reg-
ularization. To do so, we consider the texture denoising
problem arising from (2) by setting D = I , B = I , and
(αs){1≤s≤4} = 0, resulting in the following optimization
problem

minimize
x∈RN

‖x− z(1)‖2 + λR(x, z(2)) s. t. Mx = z(2).

The 8-bit grayscale images are of size 256 × 256, and z(2)

is the half of the original image x̄. The observation z(1) is
generated by degrading x̄ with an additive Gaussian noise
whose standard deviation is equal to 50. The optimization is
performed using Algorithm 1. The parameter λ is hand-tuned
so as to obtain the best visual results. For the nonlocal graph
detailed in Section II-B, K has been fixed to 14, Q to 25 and
the blocks to 5× 5 pixels.

Fig. 5 gives an example of natural textures, whose elements
hold a rough, irregular and nonsmooth patterns. These delicate
textures are difficult to recover when corrupted by noise, due to
the concealing effect on the small details. Having a noiseless

3The authors would like to thank “Sismage” team from TOTAL Group for
providing us the CT data.

patch, we aim at recovering these details using a nonlocal
regularization, whose graph is constructed as proposed in
Section II-B. The visual inspection of the results shows the
interest of considering the proposed nonlocal regularization
R(·, z(2)) for texture denoising. Indeed, R(·, z(2)) proves to
be more effective than NL-HR, which in turn outperforms the
classical NLTV that tends to average the pixel values. The
better performance of R(·, z(2)), w.r.t. NL-HR, seems to be
related to its ability to better choose connections to the noiseless
patch, which in turn preserve the edges and the thin structures.

C. Discussion of the proposed approach

In this section, we compare the approach proposed in (2)
w.r.t. the following methods
• when λ = 0 (without the nonlocal regularization)

minimize
x∈RN

‖DBx− z(1)‖2 +H(x, z(2)) s. t. Mx = z(2),

(20)
• when, for every s ∈ {1, · · · , 4}, αs = 0 (without the

statistical prior)

minimize
x∈RN

‖DBx−z(1)‖2 +λR(x, z(2)) s. t. Mx = z(2).

(21)
The parameters λ and (αs)1≤s≤4

are set with the following
strategy:
• The data fidelity term is normalized by the noise standard

deviation τ ;
• λ is set to 10;
• For every s ∈ {1, · · · , 4}, αs = τs

τ4
, where τs is the

variance of Lsz(2).
In these experiments, x̄ corresponds to a 256 × 256 8-bit
grayscale image. The observed image z(1) is generated by
degrading x̄ with a convolution operator B, which is equal to
a truncated Gaussian function with standard deviation 1.2 and
kernel size 3 × 3, the blurry result is then downsampled by
a factor r = 2 in each direction, and finally we add to this
latter a white Gaussian noise of standard deviation τ = 10.
The observed high-resolution patch z(2) amounts to 25% of
the total image x̄. The quality of the results is evaluated in
term of PSNR, SSIM and Errx̄.

Fig. 6 gives two examples of texture images: a leaf and
a biological cell. One can observe that the visual results
achieved with Problem (2) are better than the ones obtained
with the standard formulations (20) and (21). Indeed, without
the nonlocal regularization, we do not have a spatial prior. As
the problem is nonconvex, we may get stuck in a local minimum
that is near to the patch z(2), but far from the true image x̄.
However, without the statistical prior, even if the nonlocal
regularization performs quite well to recover the smooth areas
and to reconstruct the edges, it fails to infer the correct image
structures. Using the proposed formulation (2), we gain the
best visual results and the best SSIM− Errx̄, which indicates
that the nonlocal regularization pushes the local minima of
(20) closer to x̄. While the best PSNR is given by the results
of Eq. (21), this is not reflected on the visual inspection. Such
a behaviour can be explained by the fact that the SSIM and
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Bark 1 z(1) z(2) R(x, z(2)) NL-HR NLTV

Grass z(1) z(2) R(x, z(2)) NL-HR NLTV

Fig. 5. From the left to the right: true and noisy image (noise standard deviation τ = 50), high-resolution patch (50% of the total image), and the results of:
the proposed nonlocal regularization, the nonlocal regularization of [36], and the classical NLTV [23].

z(1) z(2) Leaf 25.29− 0.845− 2.04 24.02− 0.839− 5.12 26.56− 0.829− 9.63

z(1) z(2) Cell 3 22.36− 0.769− 0.82 21.99− 0.763− 2.43 23.57− 0.764− 3.35

Fig. 6. PSNR− SSIM− Errx̄. From the left to the right: low-resolution image (down-sampling factor r = 2, noise standard deviation τ = 10, blur 3× 3),
high-resolution patch (25% of the total image), true image, the proposed approach (with the statistical prior and the nonlocal regularization), the proposed
approach without the nonlocal regularization, and the proposed approach without the statistical prior.
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Errx̄ measures take in consideration some features, while the
PSNR fails to illustrate them (see Fig. 6).

In Table I, we evaluate the experiments on several images:
Wall, Flowers, Leaves, Leaf, Hair, Cell 3 and Bark 2 (see Fig.
4). We report the PSNR, SSIM and the error measure to the
true image. We present the numerical results obtained with (20)
(without the nonlocal prior) and (2) (with the nonlocal prior). As
one can see the latter approach achieves the best performance in
term of PSNR and SSIM, as well as the smallest error in term
of W2

2 (νLsx̆, νLsx̄) for almost every s ∈ {1, · · · , 4}, and the
better mean weighted value Errx̄ regardless of the degradation
conditions. The best values for each case is put in boldface
for the sake of clarity.

D. Comparison to the state-of-the-art methods

Fig. 7 and 8 present a comparison of the proposed solution
with the state-of-the-art results for the following data:
• x̄ corresponds to a 256× 256 8-bit grayscale image.
• The convolution operator is equal to a truncated Gaussian

function with standard deviation 1.2 and kernel size 3×3.
• The down-sampling factor r = 4 in Fig. 7 (r = 2 in

Fig. 8).
• Noise standard deviation τ = 10.
• z(2) matches 25% of x̄ in Fig. 7 (12.5% in Fig. 8)

Fig. 7 gives two texture examples where the down-sampling
factor is equal to 4, and the high-resolution patch amounts to
25% of the total image. As illustrated by these experiments, the
proposed approach leads to a better texture reconstruction in the
synthesized images, while the state-of-the-art super-resolution
method [53] tends to smooth the textures and the state-of-
the-art texture synthesis approaches [54], [55] produce a high-
resolution image (by replicating the patch) without exploiting
information provided by the low-resolution image. Hence, the
results may be far from the ground truth. The improvement of
the proposed method is confirmed both visually and numerically
by the SSIM and Errx̄. However, the PSNR fails to assess the
image quality.

Fig. 8 gives a similar example where the down-sampling
factor is equal to 2 and the high-resolution patch amounts to
12.5% of the total image. The proposed approach gives the
best visual results compared to the state-of-the-art methods.
This is also confirmed by looking at the reconstructed textures
and the SSIM− Errx̄ indexes. Again, the PSNR fails to assess
the image quality.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we have proposed a variational approach
to solve the problem of texture synthesis guided by a low-
resolution image and a high-resolution patch. To do so, we
have exploited two different sources of information: a nonlocal
smoothness prior and a distance between histograms. The
resulting model is well adapted to textures with sharp edges and
small patterns, as shown in Fig 8. We have investigated a primal-
dual proximal algorithm, which allows us to consider various
convex and nonconvex functions. Interesting perspectives
include a better modeling of the textures, possibly through
constraints on the power spectrum of images as in [32], [37],

as well as the use of a multi-scale strategy for a down-sampling
factor greater than 4. Another perspective is to explore the
convex relaxation of the histogram prior in order to have a
convex minimization problem [56].
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TABLE I
ERROR MEASURES ON THE PROPOSED APPROACH WITH AND WITHOUT THE NONLOCAL PRIOR R(·, z(2)) (DOWN-SAMPLING FACTOR r = 2, NOISE

STANDARD DEVIATION τ = 10, BLUR 3× 3). THE IMAGES ARE EVALUATED USING THE PSNR, SSIM, AND THE WASSERSTEIN DISTANCE BETWEEN
INTENSITY VALUE HISTOGRAMS (s = 1), HORIZONTAL-VERTICAL GRADIENT HISTOGRAMS (s = 2), DIAGONAL GRADIENT HISTOGRAMS (s = 3), OR

LAPLACIAN HISTOGRAMS (s = 4), AND THE ERROR TO THE TRUE IMAGE Errx̄ (19).

Images Regularization PSNR SSIM W2
2 (νLsx̆, νLsx̄)

s = 1 s = 2 s = 3 s = 4 Errx̄

Wall without R(·, z(2)) 28.02 0.863 10.26 2.47 8.30 5.27 8.20
with R(·, z(2)) 28.84 0.876 5.68 0.99 3.17 5.19 4.56

Flowers without R(·, z(2)) 26.83 0.832 14.49 0.45 2.71 0.20 3.45
with R(·, z(2)) 27.53 0.835 12.43 0.48 2.24 0.25 2.97

Leaves without R(·, z(2)) 23.57 0.892 45.49 13.66 26.74 63.21 20.96
with R(·, z(2)) 24.06 0.895 21.03 12.56 22.77 42.19 12.15

Leaf without R(·, z(2)) 24.02 0.839 37.92 0.79 3.73 3.03 4.91
with R(·, z(2)) 25.29 0.845 8.64 0.48 2.35 5.36 1.70

Hair without R(·, z(2)) 19.43 0.679 45.12 10.87 26.51 39.84 5.49
with R(·, z(2)) 19.61 0.682 40.03 10.74 26.10 39.45 5.47
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z(1) z(2) Bark 2 21.75− 0.754− 5.77 24.64− 0.612− 15.34 14.24− 0.10− 789.02 12.21− 0.11− 24.53

Fig. 7. PSNR− SSIM− Errx̄. From the left to the right: low-resolution image (down-sampling factor r = 4, noise standard deviation τ = 10, blur 3× 3),
high-resolution patch (25% of the total image), true image, proposed approach, Dong et al. [53], Aguerrebere et al. [54] and Portilla et al. [55].
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Fig. 8. PSNR− SSIM− Errx̄. From the left to the right: low-resolution image (down-sampling factor r = 2, noise standard deviation τ = 10, blur 3× 3),
high-resolution patch (12.5% of the total image), true image, proposed approach, Dong et al. [53], Aguerrebere et al. [54] and Portilla et al. [55].
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