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Abstract

Over the past few decades folding paper has extended beyond the
origami deployable applications to reach the engineering field.
Nevertheless, mechanical information about paper behavior is still
lacking, especially during folding/unfolding. This article proposes
an approach to characterize the paper fold behavior in order to
extract the material data that will be needed for the simulation of
folding and to go a step further the single kinematics of origami
mechanisms. The model developed herein from simple experiments
for the fold behavior relies on a macroscopic local hinge with a
non-linear torsional spring. Though validated with only straight
folds, the model is still applicable in the case of curved folds thanks
to the locality principle of the mechanical behavior. The influence
of both the folding angle and the fold length are extracted automat-
ically from a set of experimental values exhibiting a deterministic
behavior and a variability due to the folding process. The goal is
also to propose a methodology that may extend the simple case of
the paper crease, or even the case of thin material sheets, and may
be adapted to other identification problems.
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ASME Digital Collection URL:
https://asmedigitalcollection.asme.org/
mechanicaldesign/article-abstract/138/4/
041401/474813,
ASME © 2016. This manuscript version is made available under
the CC-BY distribution license
https://creativecommons.org/licenses/by/4.0/
doi: 10.1115/1.4032629

Nomenclature
α Folding angle
ε Residual variability component
σ Singular value
L Fold length
nα Number of discretization points for α
nL Number of different possible lengths
t Folding torque
V Variance

1 Introduction

Research on mechanisms made from assemblies of thin plates have
been going on for a few decades now. The mechanical studies were
mainly focused on deployable panels for spatial devices [5, 35] or
adjustable architecture [4, 14], but also in other fields such as med-
ical prosthesis (stents in [34, 24]) and biomimicry studies (con-
finement in buds [33, 23]). Many of the studied systems provide
a geometric pattern of creases simply repeated in the plane, in a
way that could be pursued to infinity in every direction of this
plane, and called tessellation. They were discovered through the
origami art and experimentally studied with paper in the 1960s and
1970s [27, 15]. Their kinematic and dynamic abilities were ex-
plored mainly under the pseudo-rigidity assumption [32] consid-
ering the rigid and creases as the concentration zone of strain and
movement. It simplifies modeling but does not fully describe the
degrees of freedom of tessellation structures. It is now known that
the movement of those depends not only on the crease pattern but
also on the flexibility of faces [8, 25, 31].

Concerning engineering design, paper models are also efficient
for prototyping foldable structures made with other materials. The
difficulty is to proceed to a change in scale and material. Once a
paper model has been tested experimentally, similitude is a useful
tool to predict the real-scale and real material engineering struc-
ture design. Nevertheless the behavior of both materials (hence the
paper fold behavior) have to be established. If simulation is used,
the numerical models also need to be fed by a fold behavior model.
This is the case when designing paper-made structures, for instance
for packaging with lockings and pop-ups that take advantage of
the flexibility of the paper to open the structure (spring joints and
their elastic energy are used as distributed unilateral motors). The
same situation occurs for deployable light-weighted spatial struc-
tures when a single opening operation is required: though they are
usually not made with paper, some paper prototypes are useful in
early design stages.

Paper is mainly designed in order to resist to industrial printing
processes [22], endure moisture [20] or cycling folding that cause
tearing [21]. . . These criteria lack the description of paper as a thin
plate and the fold as a mechanical joint. This article proposes a
methodology to characterize paper, and more specifically the folds.
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First, paper is considered as a classic orthotropic material in a thin
fiber composite plate. Second, the crease behavior with a simple
macroscopic model will be considered. Nevertheless, this article
is only based on an application to a special case: the paper used
for these experiments is a 120 g/m2 ECF woodfree pulp uncoated
paper: the Arjowiggins Conqueror CX22™.

2 Experiments and results
Two different behaviors are studied: (i) the tensile test of paper
faces (in-plane traction) which is a classical mechanical test for in-
dustrial paper and (ii) the behavior of folds at a macroscopic scale,
i.e. the torque-angle relationship for a monotonic loading. Smooth
bending of paper that can be modeled with a thin plate behavior
and identified with dedicated tests, is not taken into account herein.
Nevertheless some classical in-plane behaviors are of interest since
they can influence the fold behavior. They are therefore tested and
reported in the following, while focus remains on the fold behav-
ior. The creasing process itself is not of main concern, though it
may influence the subsequent fold stiffness.

2.1 Preliminary data: grammage and thickness
Classical parameters for industrial paper are the thickness and the
surfacic density. Mean thickness e = 129µm has been obtained
with sampling points and a precision ∆e ≤ 5µm on 15 specimens
whose mean area a = 100 cm2 is measured with a precision ∆a ≤
2 cm2. Mass m = 11.62 g is measured with a precision ∆m ≤
0.01 g, at an ambient temperature of 25°C and a relative humidity
(RH) of 40 %. This leads to relative accuracies of ∆e/e ≤ 3.9 %
for the thickness and ∆ρs/ρs ≤ 2.1 % for the surfacic density ρs =
116.2 g/m2. This is in accordance with the statistical variations in
the measurements (∆e/e = 4.8 % and ∆ρs/ρs = 1.7 %) which
are therefore not significant.

2.2 In-plane tensile tests
Paper faces are modeled as thin plates. The behavior characteriza-
tion assumes that these faces remain plane and that only tension so-
licitations are applied (compression would lead to buckling). Due
to the presence of a microstructure (roughly, a weakly entangled
and in-plane layered fiber arrangement component, within a softer
matrix) and a specific manufacturing process, the behavior is ex-
pected to be anisotropic. Indeed, the fiber orientation is not uni-
formly distributed in the paper plane [30]. Two paper orienta-
tions are tested: (i) the so-called machine direction (MD) where
the stress is oriented along the main fiber direction, and (ii) the
cross-machine direction (CD), perpendicular to the main fiber di-
rection.

Experimental device. A Lloyd LF Plus machine equipped with
a 1 kN load cell is used. Tests are performed with a 1 mm/min ve-
locity. The samples are all 30 mm wide and 125 mm long (between
jaws). The force is measured with the load cell, while a camera

Figure 1: Experimental results for the traction to rupture test.

is used to determine the local strain field via digital image corre-
lation (using the Vic2D analysis software) [28, 2, 9]. To do so, a
black paint speckle pattern is first applied on one face of the speci-
men. A comparison between virgin and speckled sample behaviors
allows to assess that the sprayed paint does not influence the me-
chanical behavior of the paper. For each paper direction, 8 samples
are tested, with a RH between 40 % and 45 %, and a temperature
between 22°C and 23.5°C.

Experimental results. Figure 1 reports the obtained traction
curves, with the average behavior and bars corresponding to the
minimum and maximum obtained values, using 8 specimens for
each traction direction. The results confirm the anisotropy of the
paper. Data dispersion is quite small (the ratio of maximum shift
in amplitude to the maximum stress is less than 2.6 %) allowing to
conclude to a good reproducibility of the experiment.

2.3 Crease behavior

The crease behavior is studied at a macroscopic point of view: it is
modeled as a hinge joint with a torsional spring (possibly non lin-
ear). The movement is expected to be sufficiently slow to discard
viscous effect and the experiment is based on static equilibrium.
The fold process is indeed complex at the microscopic scale [13],
but is not under the scope of this article. The aim is to observe the
rigid movement of two faces linked by a simple straight fold. If the
identification of a local fold behavior is performed (i.e. indepen-
dently of its length and orientation), the model would be applicable
to curved folds for which the bending of the faces should also be
taken into account [19, 6, 7]. The criteria for designing the testing
device are the following: a possible large range for the folding an-
gle, a sufficient control precision for small loads (to test somehow
low grammage papers), and a uniform loading of the fold along
its length. A load control with calibrated weights, with a simple
device, and not the standard creasing test rigs, is used.
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Figure 2: Experimental device for determination of the opening
angle under loading.

Protocol. A sample with a single crease is prepared, splitting the
paper in two identical parts and boundary conditions are: a known
load prescribed by increasing weights and a low stiffness hinge (in
order to neglect its stiffness with respect to the fold stiffness, so to
consider it as a perfect hinge), see figure 2. The opening angle of
the sample for each weight is measured with a protractor allowing
a precision ∆α ≤ 1°.

As a quantity of interest, the torque applied on the crease is esti-
mated with the assumption that the boundary hinge is perfect, and
considering the results presented in [25], a face length assumed
to limit the influence of the face bending is selected: samples are
100 mm long, folded in their middle, while their widths may vary,
in order to test the influence of the length of the crease. The load
is applied at Lp = 50 mm of the crease, on the free face and on
its symmetry axis in order to impact as homogeneously as possible
the whole length of the crease. When neglecting the face bend-
ing, figure 2, the torque is given with t = mgLp cos(α/2) where
m is the loading weight, gravity is g, α is the opening angle. A
dispersion analysis provides the precision estimate for the torque:
∆t/t ≤ ∆m/m+ ∆Lp/Lp + 1

2 (tanα)∆α; depending on the an-
gle value, this relative precision is between 2.2 % and 6 %. For the
present measurement campaign, three samples are tested for each
of the nine categories: the fold orientation could be longitudinal
(parallel to MD), transverse (perpendicular to MD) or at 45°, and
the fold length L could be 30 mm, 40 mm or 50 mm.

Concerning the creasing process, the experimental protocol is
the following: each specimen if completely folded in half, with
the thumbnail, from the fold center towards each fold extremity,
completed by a sweep along the whole length from one extrem-
ity to the other. Then, the paper is completely unfolded, using a
5 kg roller, and folded again using the same roller. Finally, the
fold is progressively opened within the experimental device, us-
ing prescribed marked weights and measuring the opening angle
α. The experiments where performed with an ambient temperature
between 20.5°C and 21.5°C, and a RH between 38 % and 47 %.

Experimental results. Figure 3 reports the obtained torques as
functions of opening angle, fold orientation and length. It ex-
hibits a large dispersion, much larger that the measurement pre-
cision that can be neglected (see e.g. the convex hull span of fig-
ure 3a where several specimens of same length and orientation are

considered). This dispersion is considered herein as an intrinsic
part of the model, and should be identified together with the deter-
ministic model itself. Figure 3b depicts the influence of the fold
length: similar dispersions and a trend to increase the torque with
the length that can be guessed. Finally, figure 3c depicts the influ-
ence of the fold orientation, that is clearly not as important as for
the traction curves.

3 Advanced model identification
A modeling approach may consist in an a priori choice of the form
of the dependence of the results on the inputs. Then a data fit-
ting provides the value of the model parameters and the fitting er-
ror. Another approach relies on the latent model discovery from
the raw data, inspired by data mining. It is used herein, with a
small amount of a somehow structured data, which simplifies the
approach: the principal component analysis (PCA) or the singular
value decomposition (SVD) [17], can provide a numerically iden-
tified model.

For the present study, the folding torque t is assumed to depend
both on the folding angle α and orientation, and on the fold length
L. Additionally, for a given fold orientation, we assume that it
can be modeled as a separated function of the folding angle and
the fold length. Therefore it can be expressed as t = k(α)f(L)
without a priori knowledge on the two functions k and f . Since
variability is intended to be non negligible, it is also a parameter
of the model, and ε will denote its associated random variable, so
that t = k(α)f(L) + ε. Finally, due to the small discrepancies on
measurements when compared to the variability, the measurement
errors are neglected in all of the following.

Since each specimen i (i ∈ {1, . . . , n}) takes its fold length Li
in a single list of nL values, the data associated to this length is
much structured. On the other hand, since the tests are controlled
by prescribing weights, each specimen i has its own list of ni an-
gles and torques which are therefore non-structured data. As a
consequence, for a given orientation of the straight fold, the data
is composed for each specimen i of: (i) the length of the fold Li,
(ii) a list of opening angles (αij)j=1...ni , and (iii) a list of asso-
ciated torques (tij)j=1...ni . If the variability is assumed not to be
present for a specific single specimen (but only between different
specimens), and if the torque is related to the angle with a single
smooth dependence, an interpolation of this angle-torque experi-
mental curve from sampled points is meaningful for each specimen
independently.

3.1 Restructuring data: interpolating and averag-
ing

To get a single list of discretized nα values of angles (a priori inde-
pendent of the numbers ni), the angle range is merely discretized
in nα − 1 elements as for a 1D regular finite element (FE) mesh.
To get the corresponding values for the torque, for each set in-
dependently, the following framework is used: (i) interpolate the
available data (angle-torque curve) specimen per specimen in the
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Figure 3: Experimental results; a: compares the experimental curve for one specimen to the convex hull of all the specimens of the same
length and orientation; b: for a single orientation, compares the convex hulls of the different lengths; c: for a single length, compares
the convex hulls of the different orientations.

current set (for instance by linear interpolation); (ii) average the
obtained torque values for a same angle, for the specimens of the
current set. It therefore ends up with a single list of angles and
as many lists of torques as there are lengths. These data can then
be collected into a rectangular snapshot matrix C whose size is
nα × nL. The averaging procedure filters out a priori the variabil-
ity and depends on the modeling parameter nα, i.e. the refinement
in the discretization for the function k(α), provided by the user.

All-in-all, the snapshot matrix is a sampling of the functional
model t(α,L), with a single list of angles α and lengths L. A
standard SVD may therefore be used for assessing an emerging
deterministic model:

C = UΣV T or t(α,L) =

np∑
p=1

up(α)σpvp(L)

A thin-SVD provides np = min(nα, nL) modes in two orthogonal
matrices U of size nα × np and V of size nL × np storing the tab-
ulated functions up and vp in their columns and a diagonal matrix
Σ storing the positive singular values σp, p = 1, ..., np ordered by
decreasing amplitudes. In practice, the experimental data may not
cover all the range of discretized angles α within a single set, so
that some entries in matrix C may lack. This is due to the load
control of the experiments with a fixed set of weights leading to
a range of values for the angle which is specimen dependent, see
Figure 3(a), while the range for the discretized function k(α) is
fixed and unique. To address this issue, the optimality theorem of
Eckart-Young [10] is considered to recast the SVD analysis in a
minimization procedure, including a weight for each entry of C in
a boolean matrix W (a mask): a missing value in C corresponds
to a null weight in W . The proposed approach is very similar to
the so-called iterative gappy POD [11, 26]. A rank-one approxi-
mation of matrix C is of the form uvT , with column vectors u of
size nα and v of size nL obtained with the minimization problem
(well posed as soon as W does not exhibit any null full row nor

column):

min
u,v

∑
i=1...nα
j=1...nL

εijWijεij where εij = Cij − uivj

The underdeterminacy in the product uvT is reduced by prescrib-
ing an arbitrary normalization, for instance vT v = 1. The corre-
sponding generalized singular value is obtained with σ =

√
uTu.

This procedure can then be applied recursively, on the matrix
C − uvT , to find a second rank correction, and so on, to pro-
vide the successive modes of this generalized SVD with weighting.
With this approach, the snapshot matrix contains only determinis-
tic values (the raw data has been filtered with interpolation and
averaging) and the rank-one corrections are also all deterministic
functions of angle and length.

For the transverse orientation of the fold, n = 18 specimens are
tested, 6 for each of the nL = 3 values of the fold length. There
were ni = 13 measured points per specimen. nα is a user param-
eter, related to the precision of the discretization of the function
of the angle. The obtained singular values are reported in table 1.
The small ratio σ2/σ1 (less than 2.6%) validates the assumption
on the separation of variables α and L in the model, so that a rank-
one approximation is sensible. The various modes, scaled by the
associated singular value are plotted in figure 4 for nα = 5 and
for nα = 31 (actually,

√
nαu/

√
σ and

√
nLv
√
σ are depicted). If

nα = 2, a linear evolution is provided and when nα is too large,
some oscillations may appear.

The assumption that the torque is proportional to the length L
can be checked by looking at the mode 1 for v1(L) that is close to
a linear function of L. For instance, with nα = 5, the RMS error
eRMS for the mode 1, once a linear regression is performed, is less
than 3.4%. A non-linear dependence of the torque on α leads to
model a non-constant stiffness with respect to the opening angle.

The first modes u1(α) obtained for different values of nα are
compared on figure 5(a), where the functions v1(L) have been nor-
malized to best fit the identity function.
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nα
σ1√
nαnL

σ2√
nαnL

σ3√
nαnL

σ2

σ1
eRMS

2 1.86 0 0 0 5%
5 1.50 0.039 0.009 2.6% 3.4%
11 1.46 0.027 0.016 1.8% 3.6%
31 1.43 0.024 0.014 1.7% 3.2%

Table 1: Evolution of the first singular values for the longitudinal
orientation, vs the number of elements chosen to discretize the an-
gle function. eRMS is the error in the linearity for the function f(L).
Fold orientation is transverse. Dimensional quantities are in Nmm.

Figure 4: Obtained modes for restructured data. Top: functions
k(α); bottom: functions f(L); left: for nα = 5; right: for nα =
31. Fold orientation is transverse.

Figure 5: Compared functions k(α) obtained for several discretiza-
tions nα; a: restructured data; b: raw data. Fold orientation is
transverse.

3.2 Direct analysis of raw data
To avoid the a priori interpolation and averaging pre-processings,
the identification of both the variability and the deterministic parts
in a single shot procedure is now proposed. A numerical determi-
nation of the deterministic model is performed by discretizing the
corresponding modeling function, as in the previous SVD analysis.
A specific norm is used (the residual least square as for a classical
regression) for the random part, while a Frobenius norm is still
used for the other variables.

The angles and torques are now collected in nL sets of spec-
imens with the same length, leading to a wider list of angles
and torques, containing the variability component: (αji, Cji),
i = 1 . . .mj for the set of specimens of the same length Lj
(j = 1 . . . nL). If a separated variable approximation for the
torque is used, t(α,L) ≈ k(α)f(L), the residuals are εji =
Cji − N(αji)κfj , N(α) being the FE-like shape function vector
(once the space of α is discretized), and κ the column vector of
nodal values of the discretized function k. The least square error
is, for the discrete set of values, e2j =

∑mj
i=1 ε

2
ji and e2 =

∑nL
j=1 e

2
j .

The problem of the automatic determination of the discretized
functions k and f is therefore minκ,fj e

2. This leads to a small
coupled system of equations:

∀j ∈ {1 . . . nL}, (κTMjκ)fj = κT cj and Mκ = c

where the FE-like matrices of the left hand side (LHS) are Mj =∑mj
i=1N(αji)

TN(αji), M =
∑nL
j=1 fjMjfj , while the right hand

sides (RHS) are cj =
∑mj
i=1N(αji)

TCji and c =
∑nL
j=1 fjcj .

Note also that an underdetermination in this system still re-
quires an additional arbitrary normalization equation, for instance∑nL
j=1 f

2
j = 1.

k(α) and f(L) are deterministic functions, since the variability
could be defined as lying in the residual ε = t(α,L)− k(α)f(L).
This assumption could be checked if, once the previous minimiza-
tion problem is solved (for instance with a fixed point, or an al-
ternating projection method), the procedure is iterated for deter-
mining the next order correction (as provides the SVD): t(α,L)−
k(α)f(L) ≈ k̄(α)f̄(L), etc. The validation lies in the fact that
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the second order deterministic corrections should be small when
compared to the first order ones. The SVD usually compares the
singular value amplitudes of the successive corrections; these sin-
gular values correspond here to σ =

√
κTMκ =

√
κT c.

Algorithm 1 Fixed point algorithm to find the best rank one ap-
proximation

Inputs: Data set (αji, Cji), Lj and discretization of α
{Compute constant elementary contributions}
for j = 1 . . . nL do
Mj ←

∑nj
i=1N(αji)

TN(αji)
cj ←

∑nj
i=1N(αji)

TCji
end for
{Initialize}
x←

√∑nL
j=1 L

2
j and ∀j, fj ← Lj/x

{Iterate}
while No convergence do

Update LHS: M ←
∑nL
j=1 f

2
jMj

Update RHS: c←
∑nL
j=1 fjcj

Solve Mκ = c to get κ
Compute σ ←

√
κT c

Check termination criteria
Compute next iterate: ∀j, fj ← (κT cj)/(κ

TMjκ)

Normalize: x←
√∑nL

j=1 f
2
j and ∀j, fj ← fj/x

end while
Return: κ and fj

Euler equations corresponding to the minimization for a second
couple of correction, κ̄ and f̄j , lead to

∀j ∈ {1 . . . nL}, (κ̄TMj κ̄)f̄j = κ̄T [cj −Mjfjκ]

(

nL∑
j=1

f̄jMj f̄j)κ̄ =

nL∑
j=1

f̄j [cj −Mjfjκ]

and, with the minimization for the previous correction:

nL∑
j=1

fj [κ̄
TMj κ̄]f̄j = 0 and κT [

nL∑
j=1

f̄jMj f̄j ]κ̄ = 0 (1)

If the various αji correspond exactly to discretization points of
α, then the matrices Mj are identity, and the previous orthogo-
nality conditions read: [

∑
j fj f̄j ](κ̄

T κ̄) = (κT κ̄)[
∑
j f̄j f̄j ] = 0

leading naturally to the classical SVD orthogonality conditions:∑
j fj f̄j = 0 or κT κ̄ = 0, and two possible normalizations for

the two unknowns:
∑
j f̄

2
j = 1 or κ̄T κ̄ = 1. The present case is a

generalization, with a cross-unknowns orthogonality (1).

Hierarchical modeling. When using the rank-one approxima-
tion, once the parameters κ and fj are identified, the residual
εji = Cji − N(αji)κfj contains the random component. There-
fore, the partition between a deterministic part k(α)f(L) and a
random part ε, is a modeling choice driven by the choice of the

nα
σ1√
m

σ2√
m

σ3√
m

σ2

σ1
eRMS

√
V

2 1.72 0.040 0.006 2.3% 2.4% 0.196
5 1.73 0.030 0.013 1.7% 2.1% 0.177
11 1.73 0.033 0.022 1.9% 2% 0.176
31 1.73 0.046 0.032 2.7% 2% 0.170

Table 2: Evolution of the first singular values for the longitudinal
orientation, vs the number of elements chosen to discretize the an-
gle function. eRMS is the error in the linearity for the function f(L);
V is the variance with respect to the deterministic function. Fold
orientation is transverse. Dimensional quantities are in Nmm.

discretization of α. For instance, using only two nodes for the
discretization leads to a classical linear regression. Therefore the
number of nodes can be increased, in order to increase the size
of the deterministic description space. Nevertheless, nα should
not be too large, first to avoid singular matrices Mj (otherwise, a
Tikhonov-like regularization should be added [16]), and second,
to avoid oscillations in function k(α) denoting that the variabil-
ity part is not correctly filtered, figure 5(b). One can note the av-
eraging property of this approach: the successive solutions k(α)
present each an additional correction to the previous ones, while
preserving the same generalized averages. In the following, the
representation of the function k(α) with nα = 5 is selected.

Variability issue. For the random part, the average ε̄ of the ran-
dom variable ε is zero due to the presence of a constant function
in the minimization test function space. The variance can then be
estimated with:

V =
1

m

nL∑
j=1

mj∑
i=1

ε2ji =
1

m
e2

m =
∑nL
j=1mj being the total number of torque values and e is

the function to be minimized. The deterministic model is therefore
identified thanks to the minimization of the variance. For a rank-
one approximation:

V =
1

m

( nL∑
j=1

mj∑
i=1

C2
ij

)
−
( σ1√

m

)2
leading to the maximization of the predominance of deterministic
mode number one. This identification is also expected to be effec-
tive for behaviors with smaller variability.

The comparison between the raw data and the model is depicted
in figure 6. The variability is assessed by the cumulative density
function (cdf) that can be drawn from the data contained in εji.
Once this experimental cdf is available, figure 7(a), the limits of
the model in terms of level of confidence can be computed as well:
with a level of 90%, bounds on the model are the enveloping sur-
faces on figure 6.

The other fold orientations can be dealt with in the same way.
Figure 8 reports the evolution of the functions k(α) for nα = 5,
and for the three tested orientations. Though the traction tests
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Figure 6: Comparison of the raw data (spherical points) and the
model (central surface), with levels of confidence (outer surfaces).
Top: fold orientation is transverse only; bottom: all orientations.

Figure 7: Cumulative density function (cdf) obtained by statisti-
cal analysis on the sample provided by the experiments; a: fold
orientation is transverse only; b: all orientations. Thin line is the
centered Gaussian cdf with the same standard deviation.
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Figure 8: Comparison of the identified function k(α) for nα = 5,
for each orientation of the fold separately, and all together.

exhibited differences depending on the orientation, this is much
reduced when considering the fold stiffness. One can therefore
model all the orientations in a single shot procedure. Gathering all
the data leads to a set of 43 specimens and m = 611 experimental
points. Analyzing the whole set leads to a best fit linear error for
f(L) of 2% and a ratio of singular values σ2/σ1 = 3.1%, a stan-
dard deviation of

√
V = 0.289 Nmm, and the cdf of Figure 7(b).

Indeed, with a single identification of the whole experimental set,
there is a significant increase in the variability.

4 Discussion

Anisotropy. The in-plane tensile tests show that the machine di-
rection resists up to a 50 % higher stress, but the cross-machine
direction can elongate twice as much, assessing the level of
anisotropy for the paper behavior. The fold behavior does not ex-
hibit such a dependency on its orientation. The fiber orientation
is not uniformly distributed in the paper plane contributing to the
stiffness anisotropy observed in the in-plane tensile tests [30]. The
case of the fold is different due to its complex but localized behav-
ior [13, 3]: the involved physical phenomena (large strains, dam-
age...) when creasing occurs at a small scale (the paper thickness)
are depending on the local paper constitution close to the fold. The
fold behavior is driven by the cross-section along the fold line, with
a complex process at this scale that may allow local fiber rota-
tions. Consequently the fraction of the crossed fibers is the first
order influent parameter, leading to a similar behavior indepen-
dently of the fold orientation. Indeed, image analysis of transverse
cuts along different directions shows almost identical covariances
[29]. This weak dependence on the fold orientation can be further
noticed in several literature results, such as the figure 31 in [18]
for experiments on paperboard. The previous justification is nev-
ertheless to take with care; indeed, the fold-affected zone is not so
thin (presently it is 2.3 times the thickness, and 10 times the fiber
section diameter), and further insight is needed to identify the true
mechanism of orientation independence.

8



Variability. The reproducibility of the tensile test illustrates the
fact that the paper making process is controlled up to a high pre-
cision. The fold behavior nevertheless exhibits a large dispersion
which is a consequence of the material and of the creasing pro-
cess which is difficult to control. With a given folding protocol,
the variability is therefore a part of the model itself and has to be
identified as well.

Model identification. The fact that torque is proportional to
length allows to confirm that the test rig produced a quite uni-
form repartition of torque along the fold. The identification is
therefore suited to obtain a local stiffness of the fold, allowing the
same model to be used for a curved crease. The one-shot proposed
identification leads to the automatic determination of characteristic
functions (of the opening angle and of the fold length). The user
has to specify the number of degrees of freedom needed to repre-
sent these evolutions; a hierarchical approach is herein suggested:
beginning with a linear interpolation, the discretization could be
successively refined up to the point where the function evolution is
stable, but before exhibiting oscillations. This cut-off frequency is
the transition between the deterministic part and the random part
of the model.

Experimental devices. Black speckle pattern on white paper
gives optimal conditions to realize digital image correlation (con-
trast, light. . . ). Nevertheless, tests need to be performed with great
precision: load repartition, sample installation and clamping. . . The
same technique could also be helpful to observe the deformation
of an entire paper model structure. The care devoted to bound-
ary conditions has to be particularly important for the fold char-
acterization in order to produce the fold intrinsic behavior. More-
over, with the different movements of an origami tessellation, pa-
per folds are used on a wider range than the tested one, typically
from 0°° (completely closed) to approximately 160°. Finally, the
folding/unfolding process may be repeated in the tessellation use,
leading to an evolution of the folding torque that can be due to an
evolution of the microstructure (damage...). In such a case, a model
with some internal variables to track the history would be useful.

5 Conclusions
The proposed methodology was first intended to develop a phe-
nomenological macroscopic model of the paper fold, in order to
use it on an origami tessellation structure. It could be useful for
other thin material characterizations for structural applications, e.g.
polymer films [1], or other thin films [12]. Nevertheless, it is
herein developed for a monotonic unfolding path, on a limited
angle range, without consideration of material fatigue nor dam-
age. The model identification relies on a deterministic model and
a variability component, both to be identified. A principal com-
ponent analysis taking into account both of these aspects has been
proposed and studied. Without many assumptions on the parame-
ter influence on the model, it allows to determine the evolution of

the output of interest on the whole range of parameter variations
(here: the linear dependency with the length, and the non-linear
dependency with the angle). Fold orientation appears to have only
a second order influence, that could have been determined by an
experimental design as well.

Acknowledgments. The authors wish to thank Arjowiggins Cre-
ative Papers for letting us choose their Conqueror CX22 120g/m2

paper, and especially J.-M. Baumlin, from the Research and De-
velopment Center, who took interest in our research and provided
us meaningful information.

References
[1] A. C. Abbott, P. R. Buskohl, J. J. Joo, G. W. Reich,

and R. A. Vaia. Characterization of creases in polymers
for adaptive origami structures. In ASME Conference on
Smart Materials, Adaptive Structures and Intelligent Systems,
volume 1, page V001T01A009, 2014. doi:10.1115/
SMASIS2014-7480.

[2] S. Avril, M. Bonnet, A.-S. Bretelle, M. Grédiac, F. Hild,
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