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A partition π of a set S is a collection B1, B2, . . . , Bk of non-empty disjoint subsets, called blocks, of S such that⋃k
i=1 Bi = S. We assume that B1, B2, . . . , Bk are listed in increasing order of their minimal elements, that is, minB1 <

minB2 < · · · < minBk. A partition into k blocks can be represented by a word π = π1π2 · · ·πn, where for 1 ≤ j ≤
n,π j ∈ [k] and

⋃n
i=1{πi}= [k], and π j indicates that j ∈ Bπ j

. The canonical representations of all set partitions of [n]
are precisely the words π = π1π2 · · ·πn such that π1 = 1, and if i < j then the first occurrence of the letter i precedes

the first occurrence of j. Such words are known as restricted growth functions. In this paper we find the number of

squares of side two in the bargraph representation of the restricted growth functions of set partitions of [n]. These

squares can overlap and their bases are not necessarily on the x-axis. We determine the generating function P(x,y,q)
for the number of set partitions of [n] with exactly k blocks according to the number of squares of size two. From this

we derive exact and asymptotic formulae for the mean number of two by two squares over all set partitions of [n].

Keywords: Set partitions; restricted growth functions; generating functions; Bell numbers

1 Introduction

A partition π of a set S is a collection B1, B2, . . . , Bk of non-empty disjoint subsets of S such that
⋃k

i=1 Bi =
S (see for example [3]). The Bi’s are called blocks, and the size |B| of a block B is the number of elements in

B. We assume that B1, B2, . . . , Bk are listed in increasing order of their minimal elements, that is, minB1 <
minB2 < · · ·<minBk. This is known as the canonical representation. The collection of all set partitions of

S is denoted by P (S). We define [n] to be the set {1,2, . . . ,n}. For example, the canonical representations

of the five partitions of [3] are {1,2,3}; {1,2},{3}; {1,3},{2}; {1},{2,3} and {1},{2},{3}.
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Let A be a (totally ordered) alphabet of k letters. A word w of size n over the alphabet A is an element

of An. In the case A = [k], an element of An is called k-ary word of size n. For example, the 2-ary words

of size 3 are 111, 112, 121, 122, 211, 212, 221, and 222. In the word form of the set partition canonical

representation, we indicate for each integer the block in which it occurs. Thus a partition into k blocks

would be represented by a word π = π1π2 · · ·πn, where for 1 ≤ j ≤ n,π j ∈ [k] and
⋃n

i=1{πi} = [k], and

π j indicates that j ∈ Bπ j
. For example, the above set partitions of [3] in canonical representation are

respectively 111, 112, 121, 122 and 123. We denote the set of all partitions of [n] by P ([n]), and the

number of all set partitions of [n] by Bn = |P ([n])|, with B0 = 1 for the empty set. The Bn are known as the

Bell numbers. Their sequence starts with 1,1,2,5,15,52,203,877, · · · for n = 0,1,2, · · · (see [4, Section

1.4], A000110 in [1]).

It is a fact (see [3]) that the canonical representations of all set partitions of [n] are precisely the words

π = π1π2 · · ·πn such that π1 = 1, and if i < j then the first occurrence of the letter i precedes the first

occurrence of j. Such words are known as restricted growth functions.

Set partitions (or restricted growth functions) have been extensively studied in the literature, see [3] and

references therein. The exponential generating function for set partitions is given by eex−1 = ∑
∞
n=0 Bn

xn

n!
,

and the Bell numbers Bn satisfy the binomial recurrence Bn+1 = ∑
n
k=0

(

n
k

)

Bk with B0 = 1.

In this paper we wish to find the number of squares of side two in the canonical representation or growth

restriction function of set partitions of [n]. These squares can overlap and their bases are not necessarily

on the x-axis.

For example the set partition {14}{23}{5}{6} has restricted growth function 122134. Our example

has a total of three 2× 2 squares. We illustrate one of these squares below.

1 2 2 1 3 4

Fig. 1: An example of a two by two square in the restricted growth function 122134

2 Generating function

Let Pk(x,q) be the generating function for the number of set partitions of [n] with exactly k blocks, ac-

cording to the number of squares of size 2 (2 by 2 squares). The number of parts is counted by x and the

number of 2 by 2 squares by q. We introduce Pk(x,q|a), the generating function for partitions that end

with the letter a and similarly Pk(x,q|ba) for those that end in ba (column b followed by column a).
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Thus for set partitions ending in a we have

Pk(x,q|a) =
k

∑
b=1

Pk(x,q|ba) =
a−1

∑
b=1

Pk(x,q|ba)+
k

∑
b=a

Pk(x,q|ba)

= x
a−1

∑
b=1

qb−1Pk(x,q|b)+ xqa−1
k

∑
b=a

Pk(x,q|b). (1)

For set partitions ending with the letter k, we have

Pk(x,q|k) =
k−1

∑
b=1

Pk(x,q|bk)+Pk(x,q|kk)

= x
k−1

∑
b=1

qb−1[Pk(x,q|b)+Pk−1(x,q|b)]+ xqk−1Pk(x,q|k). (2)

The term Pk−1(x,q|b) corresponds to the case where the k-th block contains only one element.

To simplify the notation, we shall omit the variables x and q and write Pk(a) for Pk(x,q|a). Thus we

have two cases depending on the size of a:

Case I: For 1 ≤ a ≤ k− 1

Pk(a) = x
a−1

∑
b=1

qb−1Pk(b)+ qa−1x
k

∑
b=a

Pk(b), (3)

from equation (1).

Case II: For a = k

Pk(k) = x
k

∑
b=1

qb−1Pk(b)+ x
k−1

∑
b=1

qb−1Pk−1(b) = xPk(x,q;q)+ xPk−1(x,q;q), (4)

from equation (2), where we define

Pk(x,q;v) :=
k

∑
a=1

Pk(a)v
a−1. (5)

We proceed with equation (3), multiply it by va−1 and sum over all values of a for 1 ≤ a ≤ k − 1 and

obtain

Pk(x,q;v)−Pk(k)v
k−1 = xA+ xB− xqk−1vk−1Pk(k), (6)

where

A = q0Pk(1)v
1

+ q0Pk(1)+ qPk(2)v
2

+ · · ·

+ q0Pk(1)v
k−2 + q1Pk(2)v

k−2 + · · ·+ qk−3Pk(k− 2)vk−2
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and

B =q0v0Pk(1)+ q0v0Pk(2)+ · · ·+ q0v0Pk(k)

+ q1v1Pk(2)+ · · ·+ q1v1Pk(k)

+ · · ·

+ qk−2vk−2Pk−1(k− 1)+ qk−2vk−2Pk−1(k)

+ qk−1vk−1Pk(k).

Now using equation (4) in (6) we have

Pk(x,q;v)− x[Pk(x,q;q)+Pk−1(x,q;q)]vk−1

= x

[

q0Pk(1)
v− vk−1

1− v
+ qPk(2)

v2 − vk−1

1− v
+ · · ·

+ qk−3Pk(k− 2)
vk−2 − vk−1

1− v
+ qk−2Pk(k− 1)

vk−1 − vk−1

1− v

]

+ x

[

1− qv

1− qv
Pk(1)+

1− (qv)2

1− qv
Pk(2)+ · · ·+

1− (qv)k

1− qv
Pk(k)

]

− x(qv)k−1Pk(k).

This implies that for k ≥ 2

Pk(x,q;v)− x [Pk(x,q;q)+Pk−1(x,q;q)]vk−1

=
xv

1− v

[

Pk(x,q;qv)−Pk(k)(qv)k−1
]

−
xvk−1

1− v

[

Pk(x,q;q)−Pk(k)(q)
k−1
]

+
x

1− qv
Pk(x,q;1)−

xqv

1− qv
Pk(x,q;qv)− x(qv)k−1 [Pk(x,q;q)+Pk−1(x,q;q)]

so that

Pk(x,q;v) =
xv

1− v
Pk(x,q;qv)−

xvk−1

1− v
Pk(x,q;q)

+
x

1− qv
Pk(x,q;1)−

xqv

1− qv
Pk(x,q;qv)+ xPk(k)v

k−1.

We define P0(x,q;v) = 1 and P1(x,q;v) = x
1−x

. Thus, if we introduce the variable y that counts the number

of blocks, which is k in P(x,y,q;v) = ∑k≥0 Pk(x,q;v)yk we have

P(x,y,q;v)−
xy

1− x
− 1 =

xv(1− q)

(1− v)(1− qv)

[

P(x,y,q;qv)−
xy

1− x
− 1

]

−
x

1− v

[

P(x,yv,q;q)−
xvy

1− x
− 1

]

+
x

1− qv

[

P(x,y,q;1)−
xy

1− x
− 1

]

+ xy [P(x,yv,q;q)− 1] .

This simplifies to the following result.
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Theorem 2.1. We have

P(x,y,q;v) =
xv(1− q)

(1− v)(1− qv)
P(x,y,q;qv)+

(

xy−
x

1− v

)

P(x,yv,q;q)+
x

1− qv
P(x,y,q;1)+ 1.

The series expansion starts 1+ xy+ x2(y+ vy2)+ x3(y+ y2 + vy2 + qvy2 + qv2y3)+ x4(y+ 2y2 + qy2+
2vy2+qvy2+vq2y2+qy3+q2vy3+v2y3+qv2y3+q2v2y3+q3v2y3+q3v3y4). We illustrate the coefficient

of x4 i.e., the 15 set partitions with 4 parts in Figure 2. Recall v counts m− 1 where m is the size of the

last letter and y counts the number of blocks. Below each drawing is the number of two by two squares.

1 1 1 1
y

1 1 2 1

y2

1 2 1 1

y2

1 2 2 1

qy2

1 2 1 2

vy2

1 1 1 2

vy2
1 1 2 2

qvy2
1 2 2 2

q2vy2

1 2 3 1

qy3
1 2 3 2

q2vy3
1 2 1 3

v2y3
1 1 2 3

qv2y3
1 2 2 3

q2v2y3
1 2 3 3

q3v2y3

1 2 3 4

q3v3y4

Fig. 2: Two by two squares in the 15 set partitions with 4 parts

It is well known that the generating function for the number of set partitions of [n] with exactly k blocks

is given by P(x,y,1;1) = ∑k≥0
xkyk

∏
k
j=1(1− jx)

. On the other hand, Theorem 2.1 for q = 1 gives

P(x,y,1;v) =

(

xy−
x

1− v

)

P(x,yv,1;1)+
x

1− v
P(x,y,1;1)+ 1.

Hence, the generating function for the number of set partitions of [n] with exactly k blocks according to
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which block the element n appears in is given by

P(x,y,1;v) = 1+ ∑
k≥1

xkyk−1(1+ v+ · · ·+ vk−2 + vk−1y)

∏
k−1
j=0(1− jx)

.

Theorem 2.1 with q = 0, we have

P(x,y,0;v) =
xv

1− v
P(x,y,0;0)+

(

xy−
x

1− v

)

P(x,yv,0;0)+ xP(x,y,0;1)+ 1,

which implies that P(x,y,0;0) = (xy− x)+ xP(x,y,0;1)+ 1. Thus,

P(x,y,0;v) =
xv+ 1− v

1− v
P(x,y,0;0)+

(

xy−
x

1− v

)

P(x,yv,0;0)+ x− xy. (7)

Lemma 2.2. The generating function fk(x) for the number of words over alphabet [k] of length n with no

squares of size 2 is given by
1+(k−1)x

1−x−(k−1)x2 . Moreover, the generating function for the number of words aπ

over alphabet [k] of length n with no squares of size 2 is given by x
1−x−(k−1)x2 .

Proof. Let fk(x|a) be the generating function for the number of words aπ over alphabet [k] of length n

with no squares of size 2. Each word aπ with a ≥ 2 and π is not empty word, we have the first letter of

π is 1, otherwise aπ has a square of size 2. Thus, fk(x|a) = x+ x2 fk(x), for all a = 2,3, . . . ,k. Note that

fk(x|1) = x fk(x). Therefore, by the fact that fk(x) = 1+∑
k
a=1 fk(x|a), we obtain

fk(x) =
1+(k− 1)x

1− x− (k− 1)x2
.

Moreover, fk(x|a) =
x

1−x−(k−1)x2 , which completes the proof.

Each set partition π1 with exactly k blocks with no squares of size 2 can be written as

π(1)12π(2)13π(3) · · ·1kπ(k)1,

where π( j) is a word over alphabet [ j] such that jπ( j) has no squares of size 2. Hence, by Lemma 2.2, we

have

P(x,y,0;0) = 1+ ∑
k≥1

xyk

1− x

k

∏
i=2

x2

1− x− (i− 1)x2
= 1+ ∑

k≥1

x2k−1yk

∏
k−1
i=0 (1− x− ix2)

.

Hence, by (7), we obtain

P(x,y,0;v) = 1+ ∑
k≥1

x2k−1yk

∏
k−1
i=0 (1− x− ix2)

+ ∑
k≥1

x2kyk(v+ v2 + · · ·+ vk−1)

∏
k−1
i=0 (1− x− ix2)

+ xy ∑
k≥1

x2k−1vkyk

∏
k−1
i=0 (1− x− ix2)

,

which implies the following result.



Two by two squares in set partitions 7

Theorem 2.3. We have

P(x,y,0;1) = 1+ ∑
k≥1

x2k−1yk(1+(k− 1)x+ xy)

∏
k−1
i=0 (1− x− ix2)

.

Although we did not succeed to solve the functional equation in Theorem 2.1, we have come with a

new technique to study the generating function P(x,y,q;1). In order to do that, we define the following

notation. Let Wk(x) be the generating function for the words over alphabet [k] of length n according to the

number of squares of size 2.

Theorem 2.4. Fix 1 ≤ a ≤ k. Let Wk(x|a) be the generating function for the words aπ over alphabet [k]
of length n according to the number of squares of size 2. Then

Wk(x) =
1+∑

k
i=1 xi ∑k−1≥ j1> j2>···> ji≥0(1− q ji)∏

i
m=2(q

jm − q jm−1)

1−∑
k
i=1 xi ∑k−1≥ j1> j2>···> ji≥0 q ji ∏

i
m=2(q

jm − q jm−1)
.

Moreover, Wk(x|a) = Ma(x;q)Wk(x)+La(x;q), where

Ma(x;q) =
a

∑
i=1

xi ∑
a−1= j1> j2>···> ji≥0

q ji
i

∏
m=2

(q jm − q jm−1),

La(x;q) =
a

∑
i=1

xi ∑
a−1= j1> j2>···> ji≥0

(1− q ji)
i

∏
m=2

(q jm − q jm−1).

Proof. By the definitions

Wk(x|a) = x+ x
a−1

∑
j=1

q j−1Wk(x| j)+ xqa−1
k

∑
j=a

Wk(x| j),

which, by Wk(x) = 1+∑
k
a=1Wk(x|a), is equivalent to

Wk(x|a) = x(1− qa−1)+ xqa−1Wk(x)+ x
a−1

∑
j=1

(q j−1 − qa−1)Wk(x| j).

Assume that Wk(x|a) = Ma(x;q)Wk(x)+La(x;q). Then

Ma(x;q) = xqa−1 + x
a−1

∑
j=1

(q j−1 − qa−1)M j(x;q).

and

La(x;q) = x(1− qa−1)+ x
a−1

∑
j=1

(q j−1 − qa−1)L j(x;q).

By induction on a, we have

Ma(x;q) =
a

∑
i=1

xi ∑
a−1= j1> j2>···> ji≥0

q ji
i

∏
m=2

(q jm − q jm−1),

La(x;q) =
a

∑
i=1

xi ∑
a−1= j1> j2>···> ji≥0

(1− q ji)
i

∏
m=2

(q jm − q jm−1).
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Thus,

a

∑
j=1

M j(x;q) =
a

∑
i=1

xi ∑
a−1≥ j1> j2>···> ji≥0

q ji
i

∏
m=2

(q jm − q jm−1),

a

∑
j=1

L j(x;q) =
a

∑
i=1

xi ∑
a−1≥ j1> j2>···> ji≥0

(1− q ji)
i

∏
m=2

(q jm − q jm−1).

Hence, the generating function Wk(x) is given by

Wk(x) =
1+∑

k
j=1 L j(x;q)

1−∑
k
j=1 M j(x;q)

,

and the generating function Wk(x|a) is given by Wk(x|a) = Ma(x;q)Wk(x)+La(x;q), as required.

Example 2.5. Theorem 2.4 for k = 1,2,3 gives W1(x) =
1

1−x
, W2(x) =

1+(1−q)x

1−(1+q)x−(1−q)x2 and W3(x) =

1+x(2−q−q2)+x2q(1−q)2

1−x(1+q+q2)−x2(2−q−q3)−x3q(1−q)2 .

In the next result, we study a particular case, namely, the generating function W ∗
k (x) for the number

of words π over alphabet [k] of length n according to the number of squares of size 2 in π(k+ 1). More

generally, Let W ∗
k (x|a) be the generating function for the number of words aπ over alphabet [k] of length

n according to the number of squares of size 2 in aπ(k+ 1).

Theorem 2.6. We have

W ∗
k (x) =

1

1−∑
k
i=1 xi ∑k−1≥ j1> j2>···> ji≥0 q ji ∏

i
m=2(q

jm − q jm−1)
.

Moreover, for all a = 1,2, . . . ,k,

W ∗
k (x|a) =

∑
a
i=1 xi ∑a−1= j1> j2>···> ji≥0 q ji ∏

i
m=2(q

jm − q jm−1)

1−∑
k
i=1 xi ∑k−1≥ j1> j2>···> ji≥0 q ji ∏

i
m=2(q

jm − q jm−1)
.

Proof. By the definitions

W ∗
k (x|a) = xqa−1 + x

a−1

∑
j=1

q j−1W ∗
k (x| j)+ xqa−1

k

∑
j=a

W ∗
k (x| j).

As usual by W ∗
k (x) = 1+∑

k
a=1 W ∗

k (x|a). Hence

W ∗
k (x|a) = xqa−1W ∗

k (x)+ x
a−1

∑
j=1

(q j−1 − qa−1)W ∗
k (x| j).

Thus, by induction on a, we obtain

W ∗
k (x|a) =W ∗

k (x)
a

∑
i=1

xi ∑
a−1= j1> j2>···> ji≥0

q ji
i

∏
m=2

(q jm − q jm−1).
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Hence, by W ∗
k (x) = 1+∑

k
a=1W ∗

k (x|a), we have

W ∗
k (x) =

1

1−∑
k
i=1 xi ∑k−1≥ j1> j2>···> ji≥0 q ji ∏

i
m=2(q

jm − q jm−1)
,

as required.

Theorem 2.7. The generating function P(x,y,q,1) for the number of set partitions of [n] with exactly k

blocks according to the number of squares of size 2 is given by

P(x,y,q,1) = 1+ ∑
k≥1

yk

(

Mk(x;q)
1+∑

k
i=1 Li(x;q)

1−∑
k
i=1 Mi(x;q)

+Lk(x;q)

)

k−1

∏
ℓ=1

Mℓ(x;q)

1−∑
ℓ
i=1 Mℓ(x;q)

,

where

Ma(x;q) =
a

∑
i=1

xi ∑
a−1= j1> j2>···> ji≥0

q ji
i

∏
m=2

(q jm − q jm−1),

La(x;q) =
a

∑
i=1

xi ∑
a−1= j1> j2>···> ji≥0

(1− q ji)
i

∏
m=2

(q jm − q jm−1).

Proof. Fix k. Note that each set partition with exactly k blocks can be presented as 1π(1)2π(2) · · ·kπ(k),

where π( j) is a word over alphabet [ j]. By using Theorem 2.4 and Theorem 2.6, we obtain that the

generating function for the number of set partitions of [n] with exactly k blocks according to the number

of squares of size 2 is given by

W ∗
1 (x|1)W

∗
2 (x|2) · · ·W

∗
k−1(x|k− 1)Wk(x|k),

as claimed.

Example 2.8. Let us consider Theorem 2.7 when q = 1. For q = 1, Ma(x) |q=1= x and La(x) |q=1= 0.

Thus,

P(x,y,1,1) = 1+ ∑
k≥1

xyk

1− kx

k−1

∏
ℓ=1

(

x

1− ℓx

)

= ∑
k≥0

xkyk

(1− x)(1− 2x) · · ·(1− kx)
,

as is well known.

Example 2.9. Here, we focus on the case q = 0, namely, set partitions with no squares of size 2. Theorem

2.7 with q = 0 gives that M1(x) |q=0= x, L1(x) = 0, and Ma(x) |q=0= xLa(x) |q=0= x2 for a = 2,3, . . . ,k,

i.e., La(x)|q=0 = x. Hence,

P(x,y,0,1) = 1+
xy

1− x
+ ∑

k≥2

ykx2k

∏
k
ℓ=1(1− x− (ℓ− 1)x2)

.
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3 Average

According to the definitions in Theorem 2.7, we have

Ma(x;1) = x, La(x;1) = 0,

d

dq
Ma(x;q)|q=1 = (a− 1)x−

(

a

2

)

x2,
d

dq
La(x)|q=1 =−(a− 1)x.

Thus, by Theorem 2.7, we obtain

Corollary 3.1. The generating function d
dq

P(x,y,q,1)|q=1 for the total number of squares of size 2 in all

set partitions of [n] with exactly k blocks is given by

d

dq
P(x,y,q,1)

∣

∣

∣

∣

q=1

=
1

6
∑
k≥1

yk
k

∏
ℓ=1

x

1− ℓx

(

k(k− 1)(3− x− kx)x

1− kx
+

k−1

∑
ℓ=1

(ℓ− 1)(6− 6ℓx− ℓ(1−2ℓ)x2)

1− ℓx

)

.

In order to study the generating function d
dq

P(x,y,q,1)|q=1, we will find an exponential generating

function E(x,y) for the total number of squares of size 2 in all set partitions of [n] with exactly k blocks.

This can be done by extending the coefficient of xn in d
dq

P(x,y,q,1)|q=1 and then replacing xn by xn/n!.

At first, we write

d

dq
P(x,y,q,1)

∣

∣

∣

∣

q=1

=
1

6
∑
k≥1

yk
k

∏
ℓ=1

x

1− ℓx

(

−
2k

x
+ 2k2 − 7k+ 6−

x

6
(4k3 − 21k2 + 17k)+

k

∑
ℓ=1

2/x

1− ℓx
+

k

∑
ℓ=1

x− 3

1− ℓx

)

.

The ordinary and exponential generating functions for the number of set partitions of [n] with k blocks are

given by ∑k≥1 yk ∏
k
ℓ=1

x
1−ℓx and ey(ex−1)− 1 respectively. We obtain that the exponential generating func-

tion that corresponding to the ordinary generating function 1
6 ∑k≥1 yk ∏

k
ℓ=1

x
1−ℓxAs,k is given by Es(x,y),

where
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As,k Es(x,y) As,k Es(x,y)

− 2k
x

y d2

dydx

(

− 2
6
ey(ex−1)

)

2k2 2y d
dy

(

y d
dy

ey(ex−1)
)

−7k − 7y
6

d
dy

(

ey(ex−1)
)

6 ey(ex−1)− 1

− 4k3x
6

− 4y
36

∫ x
0

(

d
dy

(

y d
dy

(

y d
dy

ey(et−1)
)))

dt 21k2x
6

21y
36

∫ x
0

(

d
dy

(

y d
dy

ey(et−1)
))

dt

− 17kx
6

− 17y
36

∫ x
0

(

d
dy

ey(et−1)
)

dt 1
x

k

∑
ℓ=1

2
1−ℓx

2
6

d
dx

(

x d
dx

ey(ex−1)
)

k

∑
ℓ=1

x−3
1−ℓx

1
6

∫ x
0

(

t d
dt

ey(et−1)
)

dt − 3x
6

d
dx

ey(ex−1)

Remark: Note that F(x) = ∑n≥0 anxn = ∑k≥1
yk

x ∏
k
ℓ=1

x
1−ℓx ∑

k
ℓ=1

1
1−ℓx . Then

F(x) =
d

dx

(

∑
k≥1

yk
k

∏
ℓ=1

x

1− ℓx

)

=
d

dx

(

∑
k≥1

yk ∑
n≥k

Sn,kxn

)

= ∑
k≥1

yk ∑
n≥k

nSn,kxn−1,

where Sn,k is the Stirling number of the second kind. Therefore, the corresponding exponential generating

function is given by

∑
n≥0

an
xn

n!
=

d

dx

(

x
d

dx
∑
k≥1

yk ∑
n≥k

Sn,k
xn

n!

)

,

which implies

∑
n≥0

an
xn

n!
=

d

dx

(

x
d

dx
ey(ex−1)

)

,

By collecting all theses terms together, we obtain that

E(x,y) = ey(ex−1)− 1−
yey(ex−1)

3

(

1+

(

y+
7

2

)

(ex − 1)

)

+
y

6
ex+y(ex−1)(2− x+ 2xyex)

−
y

9

∫ x

0
(et − 1)ey(et−1)(y(et − 1)+ (1+ y(et − 1))2)dt

+
7y

12

∫ x

0
(et − 1)ey(et−1)(1+ y(et − 1))dt

−
17y

36

∫ x

0
((et − 1)ey(et−1)dt +

y

6

∫ x

0
tetey(et−1)dt.

At y = 1, we have that

d

dx
E(x,1) =

2x− 1

4
e2x+ex−1 +

3x− 1

9
e3x+ex−1 +

13

36
eex−1.

Let B(x) = eex−1 = ∑n≥0 Bn
xn

n!
be the exponential generating function for the number of set partitions of

[n]. Then

d

dx
E(x,1) =

6x+ 1

36

d

dx
B(x)+

1− 6x

12

d2

dx2
B(x)+

3x− 1

9

d3

dx3
B(x)+

13

36
B(x).
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Hence, the coefficient of xn

n!
in d

dx
E(x,1) is given by

1− 18n

36
Bn+1 +

1+ 4n

12
Bn+2 −

1

9
Bn+3 +

13+ 6n

36
Bn,

which leads to the following formula.

Corollary 3.2. The total number of squares of size 2 in all set partitions of [n] is given by

19− 18n

36
Bn +

4n− 3

12
Bn+1 −

1

9
Bn+2 +

6n+ 7

36
Bn−1.

Kasraoui [2] showed
Bn+r

Bn
= nr

logr n

(

1+ r
loglogn

logn
(1+ o(1))

)

. Hence, asymptotically, the mean of the

number of squares of size 2 over all set partitions of [n] is given by n2

3 logn
.
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