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The influence of the track geometry on the dynamic response of the train is of great concern
for the railway companies, because they have to guarantee the safety of the train passengers
in ensuring the stability of the train. In this paper, the long-term evolution of the dynamic
response of the train on a stretch of the railway track is studied with respect to the long-term
evolution of the track geometry. The characterization of the long-term evolution of the train
response allows the railway companies to start off maintenance operations of the track at the
best moment. The study is performed using measurements of the track geometry, which are
carried out very regularly by a measuring train. A stochastic model of the studied stretch
of track is created in order to take into account the measurement uncertainties in the track
geometry. The dynamic response of the train is simulated with a multibody software. A noise
is added in output of the simulation to consider the uncertainties in the computational model
of the train dynamics. Indicators on the dynamic response of the train are defined, allowing
to visualize the long-term evolution of the stability and the comfort of the train, when the
track geometry deteriorates.

Keywords: train dynamics; stochastic modeling; track irregularities; high-speed trains

1. Introduction

The tracks for the high speed trains are submitted to more and more solicitations,
because of the increase of the train traffic, the load and the speed of the trains.
These solicitations induce degradations of the track geometry, making evolve the
track irregularities. Such degradations impact the dynamic response of the train
in return. To guarantee a good level of safety and comfort of the train, mainte-
nance operations of the track have to be regularly undertaken. These maintenance
operations are heavy and costly. They would gain being started off by indica-
tors on the train safety and comfort, and no more only on the track-irregularities
measurements. However, the vehicle-track system is highly nonlinear, and there
is no obvious correlation between track irregularities and the vehicle-track forces
(see [1]). The knowledge of the influence of the track geometry on the dynamic
response of the train needs to be increased in order to define indicators for the
simulated dynamic response of the train, and to characterize their evolution. Tak-
ing into account parameters uncertainties and model uncertainties increases the
robustness of indicators.
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In Section 2, the adopted approach is detailed. Then, Section 3 focuses on the
track geometry modeling, taking into acount the measurements for a given stretch
of track. In Section 4, indicators on the train dynamics are defined to assess the
train behavior on this given stretch. Model uncertainties are identified in order
to have dynamic indicators more robust. The sensitivity of the indicators to time
evolution of the track irregularities is exposed in Section 5.

2. Proposed approach

The goal of this work is to set up robust indicators, able to describe the long-
term evolution of the dynamic response of the train, under the influence of the
evolution of the track irregularities. The distinction has to be done between the
long-term evolution (of the order of the month), which will be denoted by τ , and
the characteristic time of the train dynamics (of the order of the second), which
is denoted by t. Actually, the vehicle-track system is a complex system, with high
nonlinearities and coupling between inputs (track geometry, track stiffness, train
mechanical characteristics) and outputs (train responses). The track geometry is
the main source of excitation for the train. In France, SNCF measures the track
geometry very precisely and frequently, which provides us information on the track
geometry in the long time τ . A global stochastic model of the track geometry has
been built by Perrin et al. in [2] using a very large experimental data basis con-
cerning a complete high-speed line. This stochastic modeling is very useful to carry
out nonlinear stochastic dynamic analysis of the train excited by the random track
geometry. We need now to adapt this global stochastic model for a given stretch of
track, in order to observe its long-term evolution, by constructing a local stochastic
model. The adaptation of the global stochastic model to a local stochastic model is
performed in Section 3.4, by introducing an additional stochastic model as an input
noise in the global stochastic model proposed by Perrin et al.. The introduction of
the input noise allows the measurement errors and the local variability to be taken
into account in the modeling of the track irregularities, using the experimental
measured data that are available for this track stretch.
Moreover, the analysis of the long-term evolution of the vehicle-track system was

usually done regarding to the long-term evolution of the track geometry irregular-
ities. We noticed in [3] that the high number of coefficients in the global stochastic
model developed for representing track geometry irregularities makes it difficult
to study its long-term evolution. Besides, the long-term evolution of the track ge-
ometry does not always give precise information about the long-term evolution of
the dynamic response of the train because of the nonlinearity between the track
geometry and the train response. This nonlinearity is due to the wheel-rail contact
forces, to the train suspensions, and to bumpstops in the train suspensions. For
example, a particular sequence of small track irregularities may cause a less stable
reaction of the train than one big irregularity (see [4, 5]). That is why the long-
term evolution of the vehicle-track system is analyzed in this work focusing on the
dynamic response of the train.
The dynamic response of the train is numerically simulated using the adapted

stochastic model of the track geometry relative to the given track stretch. The
inputs for the simulation are the track design, the track irregularities modeled
with the adapted stochastic model, and a model of the train. For the numerical
simulation, the computational model of the train is a multibody dynamic model.
In this paper, the train considered is the French double-decker high-speed train
TGV Duplex. The simulation outputs are accelerations in the train and wheel-rail
contact forces. To assess the long-term evolution of the train dynamics and start
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off maintenance operations, we have to define robust indicators for the dynamic
response of the train. Those indicators are computed using the simulation outputs
and give information about the stability and the comfort of the train.
Moreover, in order to increase the robustness of the chosen dynamic indicators,

model uncertainties have to be taken into account in the train modeling. Those un-
certainties are estimated in Section 4.3 by comparing simulation outputs (responses
of the train) with experimental measurements of the train response. The character-
ization of the model uncertainties consists in identifying a stochastic output noise
that is added to the dynamic indicators.

• The goal of this paper is to analyze the sensitivity of indicators related to the
train dynamic responses due to a long-term evolution of track irregularities that
are modeled by a random field for a given stretch of track, and using experi-
mental measurements of the track geometry and of the train dynamics. Taking
into account the strong heterogeneity of the track and its substructure along a
complete high-speed line, the description of the long-term evolution in terms of
physical parameters would require several thousand parameters with an addi-
tional lack of knowledge concerning the mechanical models. Consequently, such
an approach is considered, in the present state-of-the-art, not realistic for a
long-term prediction, and a statistical model based on true measurements seems
to be a way for obtaining a robust prediction model. Thus, the goal is not to
analyze the long-term evolution of some physical parameters of the track and
of its underlying structure, or the long-term evolution of some mechanical and
geometrical parameters of the train and of the wheel-rail contact.

• This choice is guided by the fact that the railway network is spatially extremely
heterogeneous for a same railway line. Moreover, the long-term evolution of the
track depends on the considered stretch of the track and is related to the weather
conditions and to the various types of trains that run on the line. Thus, a para-
metric approach is not feasible.

• This is why a global stochastic model of the track irregularities for the French
railway network is constructed and adapted for all considered stretches of the
track with measurements of these stretches, which experimentally validate the
constructed stochastic model.

• Furthermore, the train is used as a tool to characterize the impacts of the track
irregularities on the comfort and the security of the train. In these conditions, it
is important to take into account the modeling error in the train computational
model, which is identified using simultaneous experimental measurements of a
track geometry and of the corresponding responses of the train. Such an approach
replaces a parameterized model of the train dynamics and of the vehicle-track
interaction, for which the construction is not feasible.

3. Stochastic modeling of track irregularities using experimental

measurements

3.1. Track measurements

The track geometry is measured very precisely and very frequently by a measuring
train equipped with laser cameras (see [6, 7]). The track is described by two data
sets:

• the initial track design, which corresponds to the theoretical track (as it was
planned before the construction) and which is made of perfect lines and curves.
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• the irregularities of the track which appear during the track life cycle and which
have to be added to the track design. We consider track irregularities along the
track, for which the wavelengths are between 3 and 150 m, and for which the
order of magnitude of the amplitude is one millimeter to a dozen of millimeters.
The track irregularities change over long time τ .

The track irregularities are modeled by a vector-valued random field Y, which
depends on long-time parameter τ , and which is denoted by

s 7→ Y(s; τ) = (Y1(s; τ), Y2(s; τ), Y3(s; τ), Y4(s; τ)) . (1)

This random field is indexed by the curvilinear abscissa along the track stretch
s in Ω = [0, S], where S is the fixed length of a stretch of track. Long time τ is
a discrete parameter that increases between successive measurements of the given
track stretch,

τ0 < τ1 < τ2 < ... < τK , (2)

in which τ0 is the time of the first measurement performed just after a maintenance
operation, and where τ1, τ2, ..., τK correspond to the successive long times for which
there are measurements of the track geometry, and τK is the time of the last
measurement before the next maintenance operation.

3.2. A few comments about existing modelings of track irregularities

In order to characterize and to generate track irregularities, various modeling
methods for the track irregularities have been previously developed. First models
are deterministic and use spectral representations or wavelet transforms of the
measured track irregularities. Because these models are not able to take into
account the variability of the track geometry, more advanced modelings have
recently been developed, which consist in stochastic models whose statistical
properties are identified by using statistical inverse methods with experimental
measurements of the track irregularities. Another approach is proposed in [8] by
introducing a representation of the track irregularities based on a discrete Fourier
transform. A model based on the use of the classical spectral representation
for stationary Gaussian or non-Gaussian random processes [9, 10], have been
proposed. These representations allow for generating track irregularities in
order to compute the dynamic response of the train with respect to the track
irregularities. The statistical dependencies between the track irregularities, high-
lighted in [11], recommends to consider the four track irregularities simultaneously.

More recently, the Perrin works [2, 4, 5, 12] consider the four track irregularities
as a non-stationary and non-Gaussian vector-valued random field, whose spatial
discretization is a non-Gaussian random vector. This global non-stationary non-
Gaussian stochastic model as been constructed and identified using a big data
basis of experimental measurements of the track geometry for each high-speed
lines of the French railway network. Nevertheless, this global stochastic model is
not sufficiently sensitive to the local degradation of the track irregularities of a
given local track stretch, because they do not preserve the specificity of each given
track stretch. This is the reason why, in this work, a local model is proposed (see
Section 3.4) by adapting this global stochastic model.
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3.3. Global stochastic modeling of the track irregularities

A global stochastic model of the track irregularities has been proposed in [2] and
detailed in [4, 13–16]. This model has been built solving an inverse statistical
problem using a very large experimental data base related to a complete high-speed
line of the French railway network. It is very robust with respect to measurement
errors and has the capability to generate the track irregularities for any given
stretch belonging to this high-speed line.
The track irregularities vector Y = (Y1, Y2, Y3, Y4), introduced in Equation (1), is

modeled by a vector-valued random field, defined on a probability space (Θ,F ,P),
indexed by Ω = [0, S], with values in R

4. In the global stochastic model, Y is
supposed to be independent of long time τ . Then, for one fixed s in Ω, the mea-
surements {Y (s, τ0), . . . , Y (s, τK)} are considered as independent realizations of the
random vector Y(s). It has been proved that random field Y is neither Gaussian
nor homogeneous (not stationary). Random field Y is centered,

E{Y(s)} = 0 , ∀s ∈ [0, S] , (3)

where E{.} is the mathematical expectation. The continuous vector-valued ran-
dom fieldY(s), s ∈ Ω, is replaced by its spatial discretization at curvilinear abscissa
sn = nh, with h the measurement spatial step, n = 0, . . . , Ns, andNs = S/h. Keep-
ing the same notation for the continuous random field and its spatial discretization,
the following random vector X = (X1,X2,X3,X4) with values in R

4(Ns+1), is in-
troduced such that

Xk = (Yk(0), Yk(h), Yk(2h), . . . , Yk(Nsh)) , k = 1, 2, 3, 4 , (4)

with values in R
Ns+1. In the global stochastic model, the centered random vector

X is written using a truncated principal component decomposition such as

X ≃

Nη∑

i=1

√
λi ui ηi , (5)

in which Nη ≪ 4(Ns + 1), where {λi, 1 ≤ i ≤ Nη} are the Nη most influencing
eigenvalues, and where {ui, 1 ≤ i ≤ Nη} are the associated eigenfunctions of the
covariance matrix [CXX] of X. The random coefficients {ηi, 1 ≤ i ≤ Nη} are

uncorrelated, centered and normalized random variables such that ηi = λ
−1/2
i XTui

for i = 1, . . . , Nη . Introducing the (4(Ns + 1)×Nη) real matrix [U ] defined by

[U ] =
[
u1 . . .uNη

]
, [U ]T [U ] = [INη

] , (6)

in which [INη
] is the unity matrix, the diagonal matrix [λ] whose diagonal entries

are λ1, . . . , λNη
, and the random vector η such that, η = (η1, . . . , ηNη

), then random

vector X can be rewritten as X ≃ [U ] [λ]1/2 η. Introducing [Q] = [U ] [λ]1/2, it yields

X ≃ [Q]η . (7)

Nevertheless, as explained in Section 2, we are interested in constructing a stochas-
tic model adapted to a given stretch of track. The objective of this adapted stochas-
tic model that has to be constructed is to take into account uncertainties induced
by (i) measurement noise associated with local measurements xmeas

τ0 ,xmeas
τ1 ,xmeas

τ2 , . . .,
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and (ii) the local variability of the given track stretch in order to decrease the “sta-
tistical distance” between the global stochastic model and the local measurements.

3.4. Local stochastic modeling

The local stochastic modeling aims at adapting the global stochastic modeling of
the track irregularities to a given stretch of track. For constructing such an adapted
stochastic model, the proposed method consists in introducing a random noise B

in the modeling of the track irregularities. The spatial properties of this random
noise will be induced by the global stochastic model. The intensity of the statistical
fluctuations of the introduced noise, which are controlled by a hyperparameter δτ0 ,
will be identified at long time τ0 using measurement xmeas

τ0 . It is then assumed that
the optimal value for the intensity of the statistical fluctuations of the input noise, is
representative of the level of uncertainties (measurement noise and variability) for
all the values of the long time of the given track stretch. This assumption seems to
be reliable, because it is believable that the measurement noise and the variability
of the track irregularities remain the same between two successive maintenance
operations. Moreover, identifying the local stochastic model at each long time could
prevent from visualizing the long-term evolution of the track irregularities between
two successive track measurements, because it could regard the long-term evolution
of the track irregularities in the random noise. For k = 1, . . . , 4, Xk is the random
vector of dimension Ns + 1 defined (using Equation (7)) as

Xk = [Qk]η , (8)

in which the ((Ns + 1)×Nη) real matrix [Qk] is extracted from matrix [Q]. Intro-
ducing the input noise B(δτ0) = (B1(δ1τ0), B

2(δ2τ0), B
3(δ3τ0), B

4(δ4τ0)) that depends
on hyperparameter δτ0 , the proposed adapted stochastic model is written as

X̃k(δkτ0) = Xk +Bk(δkτ0) . (9)

For preserving the spatial properties of the track irregularities present in matrix
[Qk], for k = 1, 2, 3, 4, random vector Bk(δkτ0) is such that

Bk(δkτ0) = δkτ0 [Q
k]Gk , (10)

in which δτ0 = (δ1τ0 , δ
2
τ0 , δ

3
τ0 , δ

4
τ0) is the vector-valued hyperparameter allowing the

intensity of the statistical fluctuations to be controlled, and which has to be iden-
tified for each track stretch using experimental data at τ = τ0. For fixed k, G

k is a
R
Nη -valued random vector noise. In the model proposed, G = (G1,G2,G3,G4) is

chosen as a R
4Nη -valued Gaussian second-order centered random variable, defined

on the probability space (Θ′,F ′,P ′), for which its covariance matrix is the unity
matrix.
From Equations (8), (9), and (10), the adapted stochastic model can be rewritten

as

X̃k(δk) = [Qk]
(
η + δkτ0 G

k
)

, k = 1, 2, 3, 4 . (11)

The optimal value δoptτ0 of hyperparameter δτ0 is estimated by using the maximum
log-likelihood method with experimental data applied to the observation random
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vector W(δ) = (W 1(δ1),W 2(δ2),W 3(δ3),W 4(δ4)), in which

W k(δk) =
‖X̃k(δk)‖

E{‖Xk‖}
, (12)

where Xk = X̃k(0), and where ‖ · ‖ is the Euclidean norm of the global
stochastic model Xk (see [3]). The experimental observation vector wmeas

τ0 =

(wmeas,1
τ0 , wmeas,2

τ0 , wmeas,3
τ0 , wmeas,4

τ0 ) that corresponds to the experimental measurement
of W(δ) at long time τ0 is such that

wmeas,k
τ0 =

‖xmeas,k
τ0 ‖

E{‖Xk‖}
, 1 ≤ k ≤ 4 . (13)

Let LW(wmeas
τ0 ; δ) = log pW(wmeas

τ0 ; δ) be the log-likelihood function in which
pW(wmeas

τ0 ; δ) is the value of the probability density function w 7→ pW(w; δ) of

random vector W for w = wmeas
τ0 . The optimal value δoptτ0 is then identified solving

the following optimization problem:

δoptτ0 = argmax
δ

{LW(wmeas
τ0 ; δ)} . (14)

The quantity pW(wmeas
τ0 ; δ) is computed using independent realizations of W gen-

erated with the adapted stochastic model, and fitted by using the multivariate
Gaussian kernel method (see for instance [17, 18]). As an illustration, and for
k = 2, Figure 1 displays the variation of the marginal probability density function
(PDF) wk 7→ pW k(δk)(w

k
τ0 ; δ

k) of random variable W k(δk) as a function of δk.

 

 

P
D
F

w2

variation of δ2

w2,meas

Figure 1. Graphs of the PDF, w2 7→ pW2(δ2)(w
2; δ2), as a function of δ2 (the bold line is obtained for

δ2 = δopt,2τ0 ).

The adapted stochastic model of the track irregularities for a given stretch of
track at long time τ is constructed as follows. At long time τ , the measurement
of the track stretch is xmeas

τ = (xmeas,1
τ , xmeas,2

τ , xmeas,3
τ , xmeas,4

τ ). First, we have to
calculate the realization ηmeas

τ of random vector η of the generalized coordinates
of the global stochastic model introduced in Equation (5) and rewritten as Equa-
tion(7). This realization is calculated as the projection of the measurement xmeas

τ
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on the global stochastic model, which yields

ηmeas
τ = [λ]−1 [Q]T xmeas

τ . (15)

At long time τ , the adapted stochastic model is then defined as

X̃k
τ (δ

opt,k
τ0 ) = [Qk]

(
ηmeas
τ + δopt,kτ0 Gk

)
, k = 1, 2, 3, 4 . (16)

As an illustration, a realization X2
τ0(θ

′), θ′ ∈ Θ′, of X2
τ0 and the confidence re-

gion at 90% of X̃2
τ0(δ

opt,2
τ0 ) are displayed in Figure 2. For confidentiality reasons,

numerical values are not displayed. It can be noticed that the geometrical and
physical properties of the irregularities are preserved with the identified adapted
stochastic modeling. Finally, the local stochastic model that has been constructed
allows for adapting the global stochastic model of the track irregularities to a given
track stretch. The statistical properties of the track irregularities of the given track
stretch are preserved by the local stochastic model. The local stochastic model also
enables to generate realizations of the track irregularities, by generating realizations
of random vector G from the probability space (Θ′,F ′,P ′).

 

 

curvilinear abscissa s (m)

ca
n
t
ir
re
gu

la
ri
ty

(m
)

5 % of X̃2
τ0

95 % of X̃2
τ0

X2
τ0(θ

′)

Figure 2. Irregularity X2
τ0
(θ′) and confidence region at 90% of X̃2

τ0
(δopt,2) for the given track stretch.

Upper line (95 % of X̃2
τ0
), bold line (X2

τ0
(θ′), θ′ ∈ Θ′), and lower line (5 % of X̃2

τ0
).

4. Stochastic modeling of model uncertainties in the train computational

model

4.1. Definition of dynamic indicators

The dynamic response of the train on a given track stretch is simulated using the
track measurements. In this section, nine indicators are defined, which are denoted
by cj for j = 1, . . . , 9, in order to assess the train dynamics on this track stretch.
Those indicators are computed from forces and accelerations measured or simu-
lated at different locations of the train, for a given track stretch of length S. They
are based on criteria described in norm UIC 518 [19] for the certification of rail-
way vehicles. From a complete and detailed analysis performed with experimental
measurements, the following observations have been retained for defining the indi-
cators related to the French high-speed trains. For s belonging to [0, S], the chosen
accelerations are

• the lateral acceleration of the first bogie of the train, denoted by A1(s),



February 19, 2016 12:8 Vehicle System Dynamics PREPRINT

Vehicle System Dynamics 9

• the vertical acceleration of the first bogie of the train, denoted by A2(s),

• the lateral acceleration of the third bogie of the train, denoted by A3(s),

• the lateral acceleration of the second coach of the train, denoted by A4(s).

The longitudinal direction is the (Ox)-axis and corresponds to the track axis. The
lateral direction is the (Oy)-axis and corresponds to the direction that is horizontal
and perpendicular to (Ox). The vertical direction is the (Oz)-axis and is oriented
upwards. For the experimental measurements, the accelerometers are not located
at the center of gravity of the bodies (bogies and coaches). In order to compute
in the simulation what has been experimentally measured, the simulated acceler-
ations have to take into account the momentum due to the off-centering of the
accelerometers. For lateral accelerations, we have:

Aj(s) = ÿj(s) + ẅx
j (s) l

x
j − ẅz

j (s) l
z
j , s ∈ [0, S] , j = 1, 3, 4 , (17)

where ÿj(s) is the lateral acceleration of the considered bodies, lxj and lzj are the
distances between the center of gravity of the bodies and the sensor in the longi-
tudinal and vertical directions respectively, and where ẅx

j and ẅz
j , j = 1, 3, 4, are

the angular accelerations about the longitudinal and vertical axes respectively. For
the vertical acceleration A2,

A2(s) = z̈2(s)− ẅx
2 (s) l

x
2 + ẅy

2(s) l
y
2 , s ∈ [0, S] , (18)

in which z̈2(s) is the vertical acceleration of the first bogie, ly2 is the distance between
the center of gravity of the bogie and the accelerometer in the lateral direction, and
where ẅy

2 is the angular acceleration about the lateral axis. A fourth-order band-
pass linear filter is used in order to restrict the signal into the frequency band for
which the train model is relevant for the accelerations.
Five more dynamic outputs are computed from wheel-rail contact forces. They

depend on lateral contact forces Y and on vertical contact forces Q, which are
computed for the wheel-rail contact on the right side (represented by index R) and
on the left side (represented by index L) of a wheelset. For a curvilinear abscissa
s, these indicators are defined as

• the sum of lateral forces on the ninth wheelset, defined by A5(s) = Y R
9 (s)+Y L

9 (s),

• the sum of vertical forces on the first wheelset, defined by A6(s) = QR
1 (s)+Q

L
1 (s),

• the sum of vertical forces on the second wheelset, defined by
A7(s) = QR

2 (s) +QL
2 (s),

• the sum of vertical forces on the tenth wheelset, defined by
A8(s) = QR

10(s) +QL
10(s),

• the difference of vertical forces on the tenth wheelset, defined by
A9(s) = QR

10(s)−QL
10(s).

The signals are filtered in order to restrict the analysis to the frequency band for
which the train computational model is relevant for the forces. For the measured
forces, the filter is a fourth-order low-pass linear filter, according to [19]. Moreover,
for A5, the signal is filtered by computing its sliding average over two meters of
the track.
Let Nc = 9 be the number of indicators. The components of the indicators vector

c = (c1, . . . , cNc
) of the dynamic indicators are defined by

cj = max
s∈[0,S]

|Aj(s)| , j = 1, . . . , Nc . (19)
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4.2. Experimental measurements and numerical simulation of the dynamic

response of the train

In order to characterize the model uncertainties in the computational model of the
train dynamics, we need to compare the indicators vector csim = (csim1 , . . . , csim9 ) ob-
tained by the simulation, with experimentally measured indicators vector cexp =
(cexp1 , . . . , cexp9 ) for the deterministic track geometry of each stretch of track. To
achieve this goal, the accelerations and the forces that are needed to compute the
indicators are experimentally measured and numerically simulated on the same
track. A measuring train is equipped with sensors and travels across a high-speed
line at several speeds and with different loads for its second coach. Five mea-
surement campaigns have been performed on the track, measuring the dynamic
response of the train. The accelerations have been measured on the bogies and the
coaches of the train using accelerometers. The forces applied on the train wheels
are computed using the wheels strain, which are measured using strain gauges fixed
in the wheels.
The measurements are performed for ν stretches of the track. For each track

stretch denoted by ℓ ∈ {1, . . . , ν}, the speed of the train, the track geometry xexp,ℓ,
and the indicators vector cexp,ℓ are simultaneously measured and recorded (the
experimental indicators vector is deduced from the measured accelerations and
forces). It is assumed that cexp,1, . . . , cexp,ν are ν independent realizations of a
random indicators vector denoted as Cexp.
Then, the dynamic response of the train, on the track that has been measured, is

numerically simulated using the experimental conditions as an input of the simu-
lation. The track geometry used in input is the deterministic track geometry mea-
sured during the measurement campaigns (without using the adapted stochastic
model of Section 3). The international norm [19] imposes an output signal sample
frequency Fs of at least 200 Hz. To have the same sample frequency as the mea-
surement, the simulation sample frequency is chosen at 400 Hz. The input speed
is the recorded speed of the measuring train and the input vehicle is the computa-
tional model of the measuring train, which is a TGV Duplex. This computational
model is a multibody model with two levels of nonlinear suspensions and with a
nonlinear wheel-rail contact model, for which the physical parameters have been
identified by using an inverse method and experimental measurements [20]. In the
computational model, despite a precise identification, some uncertainties remain,
because of the high number of physical parameters (more than 800). Uncertain-
ties in the computational model are also due to the multibody modeling, to the
modeling of nonlinear suspensions or of the nonlinear wheel-rail contact, and to
numerical errors. Because the software Vampire is considered as a blackbox, we
chose to take into account the model uncertainties by introducing an output noise
in the construction of the indicators. For each measured track stretch ℓ = 1, . . . , ν
with ν = 937, the train dynamics on the stretch is simulated with the computa-
tional model and indicators vector csim,ℓ are computed (as defined in Section 4.1).
It is assumed that csim,1, . . . , csim,ν are ν independent realizations of a random in-
dicators vector denoted by Csim. Despite the use of an advanced computational
model for the train dynamics, the models of the suspensions of the train and of the
wheel-rail contact differently behave in tangent track or in curved track. Thus it
can be assumed that the model uncertainties (which take into account uncertainties
in the modeling of the suspensions and of the wheel-rail contact) in the computa-
tional model of the train dynamics depend on the track curvature. Consequently,
the stretches of track are decomposed in four curvature classes:

• tangent track, for which the horizontal curvature is zero,
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Figure 3. Division of a track section into track stretches of same length S with four curvature types.

• curved track, for which the horizontal curvature is constant and non zero,

• curve entrance (transition curve approaching to a circular curve), for which the
absolute value of the curvature is linearly increasing,

• curve exit (transition curve receding from a circular curve), for which the absolute
value of the curvature is linearly decreasing.

We have νA = 341 stretches in tangent track, νC = 311 in curved track, νEC = 114
in curve entrance, and νSC = 132 in curve exit. As an illustration, Figure 3 diplays
the division of a track section into stretches of track of same length S with four
curvature types.

4.3. Model uncertainties induced by modeling errors in the train

computational model

4.3.1. Stochastic modeling

The stochastic model of model uncertainties induced by modeling errors [21]
in the train computational model is constructed in introducing a multiplicative
output noise in the simulated indicators vector Csim. To characterize this output
noise, a random vector Bout is introduced, which is statistically independent of the
Csim, and consequently has been defined on another probability space denoted by
(Θ′′,F ′′,P ′′). The random indicators vector that includes model uncertainties is
denoted by Cmod = (Cmod

1 , . . . , Cmod
Nc

) and is then defined by

Cmod
j (θ′, θ′′) = Csim

j (θ′) exp(Bout
j (θ′′)) , j = 1, . . . , Nc , θ

′ ∈ Θ′ , θ′′ ∈ Θ′′ , (20)

in which the noise Bout = (Bout
1 , . . . , Bout

Nc
) is a R

Nc-valued non-Gaussian second-
order random vector, which must be identified in comparing the random indicators
vector Cmod with the corresponding random indicators vector Cexp for which mea-
surements have been carried out for the ν track stretches. Random vector Bout is
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classically written as

Bout = b+

Nc∑

j=1

√
λj ηj ϕ

j , (21)

in which b = E{Bout} is the mean value, and where λ1, . . . , λNc
and ϕ1, . . . ,ϕNc

are the positive eigenvalues and the orthonormal eigenvectors of the covariance
matrix [CBout ] = E{(Bout − b)(Bout − b)T } that will be estimated with the mea-
surements. The non-Gaussian random vector η = (η1, . . . , ηNc

), for which that

components are such that ηj = λ
−1/2
j (Bout − b)(ϕj)T , is such that E{η} = 0 and

E{ηηT } = [INc
] (the unit matrix). In order to represent a family of parameterized

probability distributions of the non-Gaussian random vector η, the following finite
polynomial chaos expansion (PCE) (see for instance [21–23]) is introduced,

η =
N∑

n=0

y(n)ψα(n)(ξ) , (22)

in which ξ = (ξ1, . . . , ξNg
) is a normalized Gaussian random vector of a dimen-

sion Ng ≤ Nc. Consequently, the components ξ1, . . . , ξNg
are independent nor-

malized Gaussian real-valued random variables, and ψα(0)(ξ), . . . , ψα(N)(ξ) are
the multivariate orthonormal normalized Hermite polynomials (the polynomial
chaos), and where N , Ng and the vectors y(0), . . . ,y(N) in R

Nc have to be iden-

tified. For n = 0, . . . , N , the multi-index α(n) is the vector of integers defined by
α(n) = (αn

1 , . . . , α
n
Ng

) ∈ N
Ng . If p denotes the maximal degree of the polynomials,

we have 0 ≤ αn
1 + . . .+ αn

Ng
≤ p, and integer N is such that

N =
(Ng + p)!

(Ng! p!)
. (23)

The polynomial chaos ψα(n)(ξ) are such that

ψα(n)(ξ) = ψα1
(n)(ξ1)× . . .× ψαNg

(n)(ξNg
) , n = 1, . . . , N , (24)

with ψα(0)(ξ) = 1 and satisfy the orthonormal property,

E{ψα(n)(ξ)ψα(k)(ξ)} = δnk , (25)

where δnk is the Kronecker symbol, such that δnk = 1 if n = k and δnk = 0
otherwise.

4.3.2. Identification

Taking into account the hypotheses and the notations introduced in Section 4.2,

and since, for all fixed ℓ and j, we have csim,ℓ
j > 0, the realization Bout

j (θ′′ℓ ) of

the random variable Bout
j , which is rewritten as bexp,ℓj , can be calculated by using

Equation (20),

bexp,ℓj = ln

(
cexp,ℓj

csim,ℓ
j

)
, j = 1, . . . , Nc , ℓ = 1, . . . , ν . (26)
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For numerical considerations, each component bexp,ℓj of the vector bexp,ℓ =

(bexp,ℓ1 , . . . , bexp,ℓNc
) could be normalized by maxℓ |b

exp,ℓ
j |. The following estimations

of mean value b and covariance matrix [CBout ] (defined in Section 4.3.1) are intro-
duced,

b ≃ bexp =
1

ν

ν∑

ℓ=1

bexp,ℓ , [CBout ] ≃
1

ν − 1

ν∑

ℓ=1

(bexp,ℓ − bexp)(bexp,ℓ − bexp)T .

(27)

The independent realizations ηexp,ℓ = (ηexp,ℓ1 , . . . , ηexp,ℓNc
) of random vector η are

then calculated by ηexp,ℓj = λ
−1/2
j (bexp,ℓ − bexp)(ϕj)T .

Let h 7→ pη(h; [y]) be the probability density function of random vector η defined
by Equation (22) and depending on the matrix [y] = [y0, . . . ,yN ] that belongs to
the set MNc,N of all the real (Nc × N) matrices and that verifies the constraints
[y] [y]T = [INc

]. Consequently, [y] must be identified in the admissible set defined
by

C[y] =
{
[y] ∈ MNc,N such that [y] [y]T = [INc

]
}
. (28)

For each fixed [y] and fixed h, pη(h; [y]) is estimated by using samples calculated
with Equation (22) and the Gaussian kernel estimation method. Matrix [y]
is identified by the method described in [4, 14], which is briefly summarized
hereinafter.

For integers Ng and p fixed, the optimal value [yopt(Ng, p)] of [y] is calculated in
solving the optimization problem (maximum log-likelihood method),

[yopt(Ng, p)] = arg max
[y]∈C[y]

ν∑

ℓ=1

ln(pη(η
exp,ℓ; [y])) . (29)

The optimal values of integers Ng and p are calculated in order to minimize the
value of N defined by Equation (23), while respecting the condition given by the
dimension of [y], which is written as

(Ng + p)!

(Ng! p!)
≥
Nc + 1

2
. (30)

Let CN be the admissible set of the couples (Ng, p) of integers, which satisfy Equa-

tion (30). The optimal value (Nopt
g , popt) of (Ng, p) are thus calculated as

(Nopt
g , popt) = arg min

(Ng ,p)∈CN

err(Ng, p) , (31)

in which the error function is written as

err(Ng, p) =

Nc∑

j=1

∫

BIj

| log10(pηexp
j

(hj))− log10(pηj
(hj ; [y

opt(Ng, p)]))|dhj , (32)

in which pηexp
j

is the probability density function estimated by using the Gaussian

kernel estimation method and the realizations ηexp,ℓj , ℓ = 1, . . . , ν, and where BIj
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is the interval on which the probability density function of ηexpj is higher than 1
ν ,

BIj = {hj , | , pηexp
j

(hj) ≥
1

ν
} , j = 1, . . . , Nc . (33)

4.3.3. Identification results

Because the dynamic response of the train depends on the track curvature, it
is assumed that the noise Bout depends on the class of the given track stretch:
tangent track, curved track, curve entrance, and curve exit. The identification of
the stochastic model of random vector Bout is thus carried out for each class of
track stretch. For instance, in tangent track, we have ν = 341. For each admissible
couple (Ng, p) ∈ CN , the optimal value [yopt(Ng, p)] has been computed according to
Equation (29) using 100, 000 samples. Then, the error function (Ng, p) 7→ err(Ng, p)
is computed according to Equation (32). For example, for the tangent class of
stretches, this error function, (Ng, p) 7→ err(Ng, p), is plotted in Figure 4 as a
function of Ng and p. It can be noticed that the minimum of the function is obtained
for (Ng, p) = (7, 2). For the track stretch ℓ = 1, the joint probability density

 

 

er
r(
N

g
,p
)

p

Ng = 7

Ng = 9

Ng = 2
Ng = 3

Figure 4. Error function err(Ng , p) as function of Ng and p.

function of the random variables Cmod,1
1 and Cmod,1

2 (the first two components
of Cmod,1) is plotted in Figure 5. In this figure, the two points corresponding to

the experimental value cexp,11,2 = (cexp,11 , cexp,12 ) and to the simulated value csim,1
1,2 =

(csim,1
1 , csim,1

2 ) are displayed. This figure shows that the random indicators vector
Cmod,1 (that takes into account the train dynamics modeling errors for a given
track geometry) yields a better modeling of the experimental dynamic response of
the train than csim,1.

5. Results for the long-term evolution of track irregularities

5.1. Simulation of the dynamic response of the train

For long time τ and for a given track stretch, the track geometry is measured
by a measuring train, giving the track geometry irregularities vector xmeas

τ =

(xmeas,1
τ ,xmeas,2

τ ,xmeas,3
τ ,xmeas,4

τ ). The optimal value δopt of the hyperparameter
δ for this track stretch is identified using the method described in Section 3.4
(subindex τ0 is removed from δopt and the components of δopt are denoted by
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δopt,k). The admissible set for δ is defined as the domain [0, 2]4 of R4. For estimat-
ing the optimal value, the following deterministic search algorithm is used. The
identification of δopt is made in two steps. The admissible set is partitioned in 204

meshes corresponding to a constant step of 0.1 for each coordinate of δ. For each
value of δ corresponding to a node of the mesh, the log-likelihood is computed with
10, 000 realizations of W(δ). This stage allows the node of the mesh corresponding
to the maximum of the log-likelihood to be identified and this node is then denoted
as δ1 = (δ11 , δ

2
1 , δ

3
1 , δ

4
1). Since the dimension of the admissible set of parameter δ

is small, and since each component δk belongs to a given finite interval, a deter-
ministic algorithm can be used for solving the optimization problem defined by
Equation (14). Then, the subdomain Π4

k=1[δ
k
1 − 0.25, δk1 + 0.25] is explored for δ

with a precision of 0.05 for each coordinate (104 meshes for the subdomain). The
log-likelihood is computed with 100, 000 realizations for W(δ). Figure 6 displays
the sections (following each coordinate δk of δ) of the hypersurface defined by the
graph δ 7→ LW(wmeas

τ0 , δ) of the multidimensional log-likelihood function. For this

given track stretch, the estimated optimal value δopt is δopt = (0.15, 0.9, 0.85, 0.8) .
The adapted stochastic modeling of the track stretch is computed using Equa-
tions (15) and (16), such that

X̃k
τ (δ

opt,k) = [Qk]
(
[λ]−1 [Q]T (xmeas

τ ) + δopt,k Gk
)

, k = 1, 2, 3, 4 . (34)

For this track stretch, the stochastic response of the train dynamics is computed
using the Monte-Carlo method with 2, 000 realizations of the track geometry X̃.
The 2,000 realizations of the track irregularities X̃ are generated using the local
stochastic model of the track irregularities. Then, for each realization X̃τ (δ

opt; θ′)
of the track geometry, the deterministic realization of the train response is com-
puted with a multibody commercial software (Vampire). The static deterministic
wheel-rail contact conditions are first computed by Vampire using the geometry
of the wheel profile and of the rail profile. Then, the computations of the stochas-
tic dynamic response of the train are performed in parallel, using a pre-processing
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script developed to run Vampire in batch mode. For each run of Vampire, a realiza-
tion of the stochastic track irregularities, the deterministic vehicle model, and the
deterministic track model are used by Vampire. For the given track stretch and at
τ = τ0, the confidence region at 90% of the random lateral acceleration of the first
bogie s 7→ A1(s, τ0) and the graph of one realization s 7→ A1(s, τ0; θ

′) are plotted
in Figure 7. For confidentiality reasons, numerical values have been normalized.
For the given track stretch, the simulated indicators vector Csim is computed, as
described in Section 4.1. Simultaneously, 2,000 independent realizations of noise
Bout are generated with the polynomial chaos expansion identified in Section 4.3:
An independent realization of noise Bout corresponds to each independent real-
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ization of random vector ξ. Then, 2,000 independent realizations of the stochastic
indicators vector Cmod are computed by combining the realizations of Csim with
the realizations of Bout, as explained by Equation (20).
In order to analyse the results, the probability density functions of the com-

ponents of Cmod and Csim are estimated using the Gaussian kernel estimation
method. For this track stretch, Figure 8 displays the probability density functions
of the nine components of the random vectors Cmod and Csim, at τ = τ0 and at
τ = τK .
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It can be seen on the figures that the components of Cmod are more dispersed
than the components of Csim, because of the introduction of a model uncertainty
in the train computational model. For each indicator, an evolution between τ0 and
τK can be noticed. The distances between the probability density functions at τ0
and at τK are smaller for Cmod than for Csim.

5.2. Long-term evolution of the dynamic response of the train

For the given track stretch, for each component j ∈ {1, . . . , 9}, and for given long
time τ , the probability density function (PDF) of the random variable C mod

j (τ) is
plotted in Figure 9. In Figure 9, the numerical values have been normalized by di-
viding the indicators values by a threshold value c∗ = (c∗1, c

∗
2, c

∗
3, c

∗
4, c

∗
5, c

∗
6, c

∗
7, c

∗
8, c

∗
9).

The values of the components of c∗ are chosen close to the limit values for the certi-
fication of the vehicles, that are given in [19]. The values given in [19] are arbitrarily
adapted depending on the computed values of the indicators Cmod. The dynamic
indicators allow to assess the dynamic response of the train on a given track stretch
and to observe its long-term evolution as a function of τ . The long-term evolution
of the PDFs of the random indicators shows a significant time evolution and an
increase of the dispersion. Some indicators (for instance Cmod

2 ) have a bigger evo-
lution than others.
An other way to analyse the long-term evolution of the indicators is proposed in
Figure 10. On this Figure, for the long-term evolution of the random indicators
τ 7→ Cmod

2 (τ) and τ 7→ Cmod
8 (τ), the mean functions and the confidence regions at

90% are plotted as a function of long time τ . The successive values can be compared
to the threshold values c∗2 and c∗8 displayed in the figure. Figures 9 and 10 show
that, for every indicator, the mean value increases with long time τ , excepted for
Cmod
4 , which is the lateral acceleration in the second car-body. It can be deduced

that the comfort in the train is not deteriorated by the track irregularities for this
track stretch due to the train suspensions, that operate as a filter. The indicators
Cmod
2 , Cmod

6 , Cmod
7 , and Cmod

8 , which are related to the vertical direction, change
much more than the indicators Cmod

1 , Cmod
3 , Cmod

4 , and Cmod
5 , which are related to

the lateral direction. A detailed analysis of these results has been performed and
has shown that this deterioration of the dynamic response of the train in the verti-
cal direction is effectively due to a deterioration of the track stretch in the vertical
direction. The roll of the vehicle (which is assessed by Cmod

9 ) changes much less
than Cmod

8 that is also related to the dynamic response of the train in the vertical
direction. These results show that all the indicators are not affected in the same
way by the long-term evolution of the track irregularities. The dynamic response
of the train cannot be directly deduced from the track irregularities because of the
presence of nonlinearities in the train-track interaction.
In this paper, the methodology proposed allows for observing the influence of the
long-term evolution of the track irregularities on the long-term evolution of the
indicators related to the dynamic responses of the train, taking into account the
dependence between the four track irregularities. The uncertainties in the com-
putational model of the train dynamics are taken into account, which increases
the robustness of the computational predictions of the statistics for the train indi-
cators. It can then be concluded that the deterioration of the track irregularities
does not have the same influence on all the indicators. For a given track stretch,
the proposed methodology enables the railway network manager to start off the
maintenance operations on the base of statistics related to the train indicators
instead of experimental measurements of the track irregularities. The start off of
the maintenance requires to set up a threshold on the indicators, as featured in
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Figure 10. The choice of the value for the threshold has to be done by the railway
network manager according to its maintenance strategy.

6. Conclusion

In this work, indicators on the dynamic response of the train have been introduced,
which allow to assess the long-term evolution of the train response on a given stretch
of track, taking into account the variability of the track irregularities and the model
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uncertainties in the computational model of the train dynamics. Introducing model
uncertainties increases the robustness of the computed indicators. It should be
noticed that the dynamic indicators do not change in the same way, but in general
each indicator has a mean value and a dispersion that increase as a function of the
long time. As a prospect, the proposed stochastic model, which has been identified
with experimental measurements, and which is experimentally validated, will be
used for constructing a stochastic model for statistical prediction of long-term
evolution of the indicators and thus, will allow for forecasting at what time a
maintenance operation must be started off.
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