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Abstract

The inverse electromagnetic casting problem consists in looking for a suit-
able set of electric wires such that the electromagnetic field induced by an
alternating current passing through them, makes a given mass of liquid metal
acquire a predefined shape. In this paper we propose a method for the topol-
ogy design of such inductors. The inverse electromagnetic casting problem is
formulated as an optimization problem, and topological derivatives are con-
sidered in order to locate new wires in the right position. Several numerical
examples are presented showing that the proposed technique is effective to
design suitable inductors.

Keywords: Topological asymptotic analysis, topological derivatives, inverse
problem, electromagnetic casting

1. Introduction

The industrial technique of electromagnetic casting allows for contact-
less heating, shaping and controlling of chemical aggressive, hot melts. The
main advantage over the conventional crucible shape forming is that the liq-
uid metal does not come into contact with the crucible wall, so there is no
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danger of contamination. This is very important in the preparation of very
pure specimens in metallurgical experiments, as even small traces of impu-
rities, such as carbon and sulphur, can affect the physical properties of the
sample. Industrial applications are, for example, electromagnetic shaping of
aluminum ingots using soft-contact confinement of the liquid metal, electro-
magnetic shaping of components of aeronautical engines made of superalloy
materials (Ni,Ti, . . . ), control of the structure solidification, etc. [1, 2].

The direct problem consists in determining the resulting liquid metal
shape for a known external current distribution. In general, the direct prob-
lem can be solved either directly studying the equilibrium equation at the
interface, or minimizing an appropriate energy functional, the main advan-
tage of this last method being that the resulting shapes are then mechanically
stable [3, 4, 5].

The inverse problem consists in determining the exterior field, and there-
fore the external currents, for which the liquid metal takes on a given desired
shape. The model considered here concerns a vertically falling molten metal
column shaped by an externally applied magnetic field created by a set of
inductors. In this two-dimensional case, the inverse shaping problem consists
in finding a distribution of inductors in order that the generated exterior field
makes the horizontal cross-section of the molten metal attain a prescribed
shape. This is a very important problem that one needs to solve in order to
define a process of electromagnetic liquid metal forming.

In a previous work we studied the inverse electromagnetic shaping prob-
lem considering the case where the inductors are made of single solid-core
wires with a negligible area of the cross-section [6]. Thus, the inductors
were represented by points in the horizontal plane. In a second paper we
considered the more realistic case where each inductor is a set of bundled
insulated strands [7]. In both cases the number of inductors was fixed in
advance. In this paper we aim to overcome this constraint, and look for con-
figurations of inductors considering different topologies with the purpose of
obtaining better results. In order to manage this new situation we introduce
a new formulation for the inverse problem using a shape functional based
on the Kohn-Vogelius criterion, see [8, 9? , 10? ]. A topology optimization
procedure is defined by means of topological derivatives.

The remaining contents of this paper are organized as follows. The next
section describes the direct free-surface problem concerning the electromag-
netic casting. Section 3 introduces the topological derivative concept. Sec-
tion 4 introduces the inverse problem in electromagnetic casting, describes
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how to formulate this problem as an optimization problem and shows how
to compute the topological derivative of the objective functional. The nu-
merical method proposed here to construct the solution using the topological
derivative is detailed in Section 5. Some examples are presented in Section 6
to show the efficacy of the proposed approach. Finally, the conclusions of
this paper are presented in Section 7.

2. The mathematical model of the electromagnetic shaping prob-

lem

The simplified model of the electromagnetic shaping problem studied here
concerns the case of a vertical column of liquid metal falling down into an
electromagnetic field created by vertical inductors. We assume that the fre-
quency of the imposed current is very high so that the magnetic field does
not penetrate into the metal. In other words, we neglect the skin effect.
Moreover, we assume that a stationary horizontal section is reached so that
the 2-dimensional model is valid. The equilibrium of the system is ensured
by the static balance on the surface of the metal between the surface tension
and the electromagnetic forces. This problem and other similar ones have
been considered by several authors, we refer the reader to the following pa-
pers for the physical analysis of the simplifying assumptions of the model:
see [11, 12, 13, 3, 14, 15, 4].

We denote by Ω the exterior in the plane of the closed and simply con-
nected domain ω occupied by the cross-section of the metal column. The
exterior magnetic field can be found as the solution of the following bound-
ary value problem:






∇×B = µ0J in Ω ,
∇ · B = 0 in Ω ,
B · n = 0 on Γ ,

‖B(x)‖ = O(‖x‖−1) as ‖x‖ → ∞ in Ω .

(1)

Here the fields J = (0, 0, j0) and B = (B1, B2, 0) represent the mean square
values of the current density vector and the total magnetic field, respectively.
The constant µ0 is the vacuum permeability, n the unit normal vector to the
boundary Γ of Ω and ‖ · ‖ denotes the Euclidean norm. We assume that j0
has compact support in Ω and satisfies:

∫

Ω

j0 dx = 0 . (2)
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Besides, the cross-section area of the liquid metal column is known and equal
to S0:

∫

ω

dx = S0 . (3)

On the other hand, the magnetic field produces a surface pressure that
acts on the liquid metal changing its shape until the equilibrium is attained.
The equilibrium is characterized by the following equation [15, 16? ? ? ]:

1

2µ0
‖B‖2 + σC = p0 on Γ, (4)

where C is the curvature of Γ seen from the metal, σ is the surface tension
of the liquid and the constant p0 is an unknown of the problem. Physically,
p0 represents the difference between the internal and external pressures.

In the direct problem the electric current density j0 is given and one
needs to find the shape of ω that satisfies (3) and such that the magnetic
field B solution of (1) satisfies also the equilibrium equation (4) for a real
constant p0.

Conditions (1)-(2), with the function j0 compactly supported in Ω, imply
the existence of the flux function ϕ : Ω → R such that B = ( ∂ϕ

∂x2
, − ∂ϕ

∂x1
, 0),

with ϕ solution of:





−∆ϕ = µ0j0 in Ω,
ϕ = 0 on Γ,

ϕ(x) = c+ o(1) as ‖x‖ → ∞.
(5)

This equation have a unique solution in the space W 1
0 (Ω) defined as [17]:

W 1
0 (Ω) = {u : ρ u ∈ L2(Ω) and ∇u ∈ L2(Ω)} , (6)

with ρ(x) = [
√

1 + ‖x‖2 log(2 + ‖x‖2)]−1. The constant c of the condition
at infinity in (5) is also an unknown, which has a unique solution in R.
Equivalent formulations of the conditions at infinity are ϕ(x) = O(1) and
ϕ(x) = c + O(1/‖x‖) [18]. The form used in (5) is the most convenient in
the development of numerical methods of solution.

The solution ϕ of the exterior problem (5) satisfies the following Poincaré
type inequality: there exist a constant C > 0 such that [17]

‖ϕ‖W 1
0
(Ω) ≤ C‖∇ϕ‖L2(Ω) (7)
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where the norm ‖·‖W 1
0
(Ω) comes from the scalar product of the Hilbert space

W 1
0 (Ω):

(u, v)W 1
0
(Ω) =

∫

Ω

∇u·∇v dx +

∫

Ω

ρ2 u v dx (8)

The equilibrium equation (4) in terms of the flux becomes:

1

2µ0

∣∣∣∣
∂ϕ

∂n

∣∣∣∣
2

+ σC = p0 on Γ. (9)

The direct problem, in terms of the flux, consists in looking for a domain ω
such that the solution ϕ of (5) satisfies (9) for a real constant p0.

3. Topological derivative concept

The topological derivative measures the sensitivity of a given shape func-
tional with respect to an infinitesimal singular domain perturbation, such as
the insertion of holes, inclusions, source-terms or even cracks. The topological
derivative was rigorously introduced by Soko lowski & Żochowski 1999 [19].
Since then, this concept has proved extremely useful in the treatment of a
wide range of problems, namely, topology optimization [20, 21, 22, 23, 24, 25],
inverse analysis [26, 27, 28, 29, 30] and image processing [31, 32, 33, 34, 35],
and has became a subject of intensive research. Concerning the theoretical
development of the topological asymptotic analysis, the reader may refer to
the papers [36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49], for instance.

More precisely, let us consider that the domain Ω is subject to a non-
smooth perturbation confined in a small ball Bε(x̂) of radius ε and center
x̂ ∈ Ω. Then, we assume that a given shape functional ψ(ε), associated to the
topologically perturbed domain, admits the following topological asymptotic
expansion [19]

ψ(ε) = ψ(0) + f(ε)DTψ + o(f(ε)) , (10)

where ψ(0) is the shape functional associated to the original (unperturbed)
domain and f(ε) is a positive function such that f(ε) → 0, when ε → 0.
The function x̂ 7→ DTψ(x̂) is called the topological derivative of ψ at x̂.
Therefore, this derivative can be seen as a first order correction of ψ(0) to
approximate ψ(ε). In fact, the topological derivative DTψ is a scalar function
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defined over the original domain that indicates, at each point, the sensitivity
of the shape functional when a singular perturbation of size ε is introduced
at that point.

In this paper we propose a new method for inverse electromagnetic cast-
ing problem based on the topological asymptotic expansion (10), which is
presented in details in the next section.

4. The Inverse Problem

The goal of the inverse problem is to find a distribution of current around
the liquid metal column so that it attains a given shape. In addition, the
magnetic field has to be created by a simple configuration of inductors. We
consider a distribution of the electric current density j0 of the form:

j0 = I
m∑

p=1

αpχΘp
, (11)

where I is a predefined intensity of current, Θp, with 1 ≤ p ≤ m, are bounded
domains, χΘp

are their characteristic functions, and αp ± 1. Note that the
expression (11) assumes that the electric current density is uniform on each
region Θp. Inductors made of bundled insulated strands allow the use of (11)
as a good approximation, see [50] and references therein.

Therefore, we have to determine the position and shape of the domains
Θp, 1 ≤ p ≤ m, of (11), where m is also an unknown, in such a way that
the solution B of (1) satisfies also the equilibrium equation (4). This topic
has been already studied and there are a few number of papers about the
existence of solutions, see [13, 51]. Although these above-mentioned refer-
ences constitute a great insight on the existence issue, we are also interested
in obtaining approximate solutions for situations where the existence of solu-
tions is not ensured. There are also two other reasons that lead us to reject
the idea of an algorithm for obtaining exact solutions. First, to the author’s
knowledge, there is not a complete treatise about the characterization of the
solution set, and the uniqueness of the solution in terms of j0 can not be en-
sured. Second, unlike the direct problem, the inverse problem is inherently ill
posed: small variation of the liquid boundary may cause dramatic variations
in the applied exterior field [13, 51].

These reasons motivates us to formulate the inverse problem as an opti-
mization problem, in order to look for a solution minimizing an appropriate
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functional. There are, however, some known facts about the exact solutions
of the inverse problem that are of main importance in what follows. It has
been shown [13] that the magnetic field B is the unique analytic extension
of the field B ·τ defined on the boundary Γ of the liquid metal (τ being the
unit tangent vector to Γ). In [13], the authors proved that a solution of (1)
and (4) for B exists only if Γ is an analytic curve, and the function B ·τ is
analytic. Furthermore, from (4) it is possible to show the following:

B ·τ = κ

√
2µ0(p0 − σC) with κ = ±1 . (12)

The constant p0 must satisfy p0 ≥ maxΓ σC. If p0 > maxΓ σC then κ should
be constant on Γ. That situation is not possible if (2) is satisfied, see [13].
Hence we have the important result:

p0 = max
Γ

σC . (13)

Another restriction is imposed on Γ since κ may change the sign at points
where B.τ = 0 (i.e. where C attains its global maximum), depending on the
multiplicity order of these zero points: if the multiplicity order of a zero point
is even, κ remains constant. On the other hand, if the multiplicity order of
a zero point is odd, κ changes the sign. Hence, by the periodicity of κ, the
number of zero points of odd order must be even. For example, any curve
which has the curvature attaining its maximum value at an odd number of
points (at which B.τ has non-degenerate zeros), is in fact impossible to form.

Therefore, calling p̄ =
√

2µ0(p0 − σC), with p0 known and given by (13),
the equilibrium constraint in terms of the flux function reads

∂ϕ

∂n
= κ p̄ on Γ , (14)

where κ = ±1, with the sign changes located at points where the curvature
of Γ is a global maximum. Of course we have two possible ways to define κ,
however, both lead to the same solution j0 but with the opposite sign.

4.1. Problem Formulation

The previous considerations allow us to formulate the inverse problem as
follows: determine the electric current density j0 and the real constant c in
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such a way that the system





−∆ϕ = µ0j0 in Ω ,
ϕ = 0 on Γ ,

∂ϕ

∂n
= κ p̄ on Γ,

ϕ(x) = c+ o(1) as ‖x‖ → ∞ .

(15)

has a solution ϕ ∈ W 1
0 (Ω). Let us introduce a shape functional based on the

Kohn-Vogelius criterion, namely

ψ(0) = J(φ) =
1

2
‖φ‖2

L2(Γ) =
1

2

∫

Γ

|φ|2 ds , (16)

where the auxiliary function φ depends implicitly on j0 and c by solving the
following boundary-value problem






−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄ on Γ ,

φ(x) = c+ o(1) as ‖x‖ → ∞ .

(17)

Note that (17) has a unique solution in W 1
0 (Ω) if and only if the compatibility

condition:
∫

Γ

κ p̄ ds = 0 , (18)

is satisfied.
The approach proposed here to deal with (15) is the following: determine

the electric current density j0 and the constant c that minimize the shape
functional (16). We note that the minimum of the shape functional (23)
is attained when φ ≡ 0 on Γ. This means that in this situation, from the
well-posedness of both problems (5) and (17), we have φ ≡ ϕ in Ω.

In a first step we can eliminate the variable c of the optimization problem,
defining it as the global minimum c∗(j0) of (16) for any fixed j0, i.e., we take
c = c∗(j0) = arg minc J(φ(j0, c)). In fact, φ = ζ + c, where ζ is the unique
solution in W 1

0 (Ω) to the following problem





−∆ζ = µ0j0 in Ω ,
∂ζ

∂n
= κ p̄ on Γ ,

ζ(x) = o(1) as ‖x‖ → ∞ .

(19)
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From (16), and denoting |Γ| =
∫
Γ
ds, we have J(φ) = J(ζ) + c

∫
Γ
ζ ds +

1
2
c2|Γ|. Differentiating this expression with respect to c, we obtain the global

minimum

c∗(j0) = −|Γ|−1

∫

Γ

ζ ds . (20)

Note also that c = c∗(j0) if and only if the integral of φ on Γ vanishes. In
fact, taking c = c∗(j0) we have

∫
Γ
φ ds =

∫
Γ
ζ ds+ c∗(j0)|Γ| = 0. Conversely,

if we ask for the integral of φ on Γ to be zero, we have
∫
Γ
ζ ds + c|Γ| = 0,

that has the solution c = c∗(j0).
Hence, we can formulate an equivalent optimization problem as follows:

minimize the shape functional (16), where φ depends implicitly on j0 only,
by solving the following problem






−∆φ = µ0j0 in Ω ,
∂φ

∂n
= κ p̄ on Γ ,∫

Γ

φ ds = 0 .

(21)

The variational formulation of (21) is

φ ∈ U :

∫

Ω

∇φ · ∇η dx =

∫

Γ

κ p̄ η ds+

∫

Ω

µ0j0η dx ∀η ∈ U , (22)

where U is the closed subspace of W 1
0 (Ω) defined as U = {u ∈ W 1

0 (Ω) :∫
Γ
u ds = 0}.
Therefore, the proposed approach is to solve the optimization problem

min
j0

1

2
‖φ‖2

L2(Γ) , (23)

subject to the constraint given by (22).
Before continue, let us introduce an adjoint state v for further simplifica-

tion, which is solution to the following boundary-value problem





−∆v = 0 in Ω ,
∂v

∂n
= −φ on Γ ,

∫

Γ

v ds = 0 .

(24)
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or, equivalently, solution to the variational problem

v ∈ U :

∫

Ω

∇v · ∇η dx+

∫

Γ

φ η ds = 0 ∀η ∈ U . (25)

Note that the compatibility condition for (24) is satisfied, since the integral
of φ on Γ vanishes. Hence (24) and (25) always have a unique solution. In
addition, we can also split the solution v = w + β, where w is the unique
solution in W 1

0 (Ω) to the following problem






−∆w = 0 in Ω ,
∂w

∂n
= −φ on Γ ,

w(x) = o(1) as ‖x‖ → ∞ ,

(26)

and the constant β = −|Γ|−1
∫
Γ
w ds.

4.2. The topological derivative calculation

Associated to φ we define the function φε solution to the perturbed varia-
tional problem. In this context, the perturbation is characterized by changing
the electric current distribution j0 by a new one jε which is identical to j0
everywhere in Ω except in two small regions Bε(x

+) ⊂ Ω and Bε(x
−) ⊂ Ω,

such that Bε(x
−) ∩Bε(x

+) = ∅. More precisely, jε is given by

jε = j0 + IχBε(x+) − IχBε(x−) . (27)

Therefore, the perturbed electric current distribution jε also satisfies the
compatibility condition, namely

∫

Ω

jε dx = 0 . (28)

In this way, the shape functional associated to the perturbed problem reads:

ψ(ε) = J(φε) =
1

2

∫

Γ

|φε|
2 ds , (29)

where φε is solution to the following variational problem:

φε ∈ U :

∫

Ω

∇φε · ∇η dx =

∫

Γ

κ p̄ η ds+

∫

Ω

µ0jεη dx ∀η ∈ U . (30)
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Before proceeding, let us introduce the adjoint state vε associated to the
perturbed problem, which is solution to the variational problem

vε ∈ U :

∫

Ω

∇vε · ∇η dx+

∫

Γ

φεη ds = 0 ∀η ∈ U . (31)

Lemma 1. Let φ and φε be the solutions to the variational problems (22)
and (30), respectively. Then, there exist a constant C independent of ε such

that the inequality

‖φε − φ‖W 1
0
(Ω) ≤ Cε , (32)

is satisfied for any small parameter ε.

Proof. We have seen that φ = ζ + c with ζ solution to (19) or, equivalently,
solution to the variational problem

ζ ∈ V :

∫

Ω

∇ζ · ∇η dx =

∫

Γ

κ p̄ η ds+

∫

Ω

µ0j0η dx ∀η ∈ V , (33)

where V = {u ∈ W 1
0 (Ω) : u(x) → 0 as ‖x‖ → ∞} and the constant c =

−|Γ|−1
∫
Γ
ζ ds. Analogously, φε = ζε + cε with ζε solution to the variational

problem

ζε ∈ V :

∫

Ω

∇ζε · ∇η dx =

∫

Γ

κ p̄ η ds+

∫

Ω

µ0jεη dx ∀η ∈ V , (34)

and with the constant cε = −|Γ|−1
∫
Γ
ζε ds. By subtracting the variational

problems (33) and (34), we get

∫

Ω

∇(ζε − ζ) · ∇η dx = µ0I

(∫

Bε(x+)

η dx−

∫

Bε(x−)

η dx

)
∀η ∈ V , (35)

Now, by taking η = ζε − ζ , we have

∫

Ω

‖∇(ζε − ζ)‖2 dx = µ0I

(∫

Bε(x+)

(ζε − ζ) dx−

∫

Bε(x−)

(ζε − ζ) dx

)
. (36)

Thanks to the behavior of (ζε − ζ) at infinity, there exist a constant C1 such
that the following Poincaré type inequality holds [17]

‖ζε − ζ‖2
W 1

0
(Ω) ≤ C1 ‖∇(ζε − ζ)‖2

L2(Ω) , (37)
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From (36) and (37) we obtain

‖ζε − ζ‖2
W 1

0
(Ω) ≤ C1

(∫

Bε(x+)

(ζε − ζ) dx−

∫

Bε(x−)

(ζε − ζ) dx

)
. (38)

Therefore, thanks to the Cauchy-Schwarz inequality there exist a constant
C2 such that

‖ζε − ζ‖2
W 1

0
(Ω) ≤ C2 ε

(
‖ζε − ζ‖L2(Bε(x+)) + ‖ζε − ζ‖L2(Bε(x−))

)
. (39)

Let ρ(x) = [
√

1 + ‖x‖2 log(2 + ‖x‖2)]−1. Then 0 < ρ(x) < 1 for all x ∈ Ω.
Let us introduce ρ∗ = inf{ρ(x) , x ∈ Bε0

(x+) ∪ Bε0
(x−)} with the constant

ε0 > 0. Then, for any ε < ε0 we have

‖ζε − ζ‖L2(Bε(x+)) ≤
1

ρ∗
‖ρ(ζε − ζ)‖L2(Bε(x+))

≤
1

ρ∗
‖ρ(ζε − ζ)‖L2(Ω)

≤
1

ρ∗
‖ζε − ζ‖W 1

0
(Ω) , (40)

and

‖ζε − ζ‖L2(Bε(x−)) ≤
1

ρ∗
‖ζε − ζ‖W 1

0
(Ω) . (41)

Then, from (39), (40) and (41) there exist a constant C3 such that

‖ζε − ζ‖2
W 1

0
(Ω) ≤ C3 ε ‖ζε − ζ‖W 1

0
(Ω) , (42)

that can be expressed as

‖ζε − ζ‖W 1
0
(Ω) ≤ C3 ε . (43)

On the other hand, from the Cauchy-Schwarz inequality and the trace theo-
rem, we obtain

∣∣∣∣
∫

Γ

(ζε − ζ) ds

∣∣∣∣ ≤ C4|Γ| ‖ζε − ζ‖W 1
0
(Ω) . (44)

Therefore,

|cε − c| ≤ C4 ‖ζε − ζ‖W 1
0
(Ω) . (45)

12



Using (43), there exist a constant C5 such that

|cε − c| ≤ C5 ε . (46)

Finally,

‖φε − φ‖W 1
0
(Ω) ≤ ‖ζε − ζ‖W 1

0
(Ω) + |cε − c| ‖1‖W 1

0
(Ω) , (47)

and using (43) and (46) we obtain (32) with C = C3 + C5‖1‖W 1
0
(Ω).

Lemma 2. Let v and vε be solutions the the variational problems (25)
and (31), respectively. Then, we have the following estimate for the dif-

ference vε − v,

‖vε − v‖W 1
0
(Ω) ≤ C ε , (48)

where C is a constant independent of the small parameter ε.

Proof. According to (26), the solution of the adjoint problem can be obtained
as v = w + β with w solution to the following variational problem

w ∈ V :

∫

Ω

∇w · ∇η dx+

∫

Γ

φη ds = 0 ∀η ∈ V , (49)

and with the constant β = −|Γ|
∫
Γ
w ds. Analogously, vε = wε + βε with wε

solution to the variational problem

wε ∈ V :

∫

Ω

∇wε · ∇η dx+

∫

Γ

φεη ds = 0 ∀η ∈ V , (50)

and with the constant βε = −|Γ|
∫
Γ
wε ds. By subtracting the variational

problems (49) and (50), we get

∫

Ω

∇(wε − w) · ∇η dx =

∫

Γ

(φε − φ)η dx ∀η ∈ V , (51)

Now, by taking η = wε − w, we have

∫

Ω

‖∇(wε − w)‖2 dx =

∫

Γ

(φε − φ)(wε − w) dx . (52)
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Thanks to the behavior of (wε −w) at infinity, the Poincaré inequality gives
[17]

‖wε − w‖2
W 1

0
(Ω) ≤ C1 ‖∇(wε − w)‖2

L2(Ω) , (53)

From (52) and (53) we obtain

‖wε − w‖2
W 1

0
(Ω) ≤ C1

∫

Γ

(φε − φ)(wε − w) dx . (54)

By taking into account the Cauchy-Schwarz inequality and the trace theorem,
there exist a constan C2 such that

‖wε − w‖2
W 1

0
(Ω) ≤ C1 ‖φε − φ‖

H
1
2 (Γ)

‖wε − w‖
H

1
2 (Γ)

≤ C2 ‖φε − φ‖W 1
0
(Ω) ‖wε − w‖W 1

0
(Ω) . (55)

Therefore, using Lemma 1, there exist C3 such that

‖wε − w‖2
W 1

0
(Ω) ≤ C3 ε ‖wε − w‖W 1

0
(Ω) , (56)

which leads to

‖wε − w‖W 1
0
(Ω) ≤ C3 ε . (57)

In addition, from the Cauchy-Schwarz inequality and the trace theorem, we
obtain

∣∣∣∣
∫

Γ

(wε − w) ds

∣∣∣∣ ≤ C4|Γ| ‖wε − w‖W 1
0
(Ω) . (58)

Therefore,

|βε − β| ≤ C4 ‖wε − w‖W 1
0
(Ω) . (59)

From the result (57), there exist a constant C5 such that

|βε − β| ≤ C5 ε . (60)

Finally,

‖vε − v‖W 1
0
(Ω) ≤ ‖wε − w‖W 1

0
(Ω) + |βε − β| ‖1‖W 1

0
(Ω) , (61)

and using (57) and (60) we obtain (48) with C = C3 + C5‖1‖W 1
0
(Ω).
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Among the methods for calculation of the topological derivative currently
available in literature, here we shall adopt the methodology developed in [52],
which is given by the following result

DTψ = lim
ε→0

1

f ′(ε)

d

dε
ψ(ε) , (62)

where d
dε
ψ(ε) is the derivative of ψ(ε) with respect to the small parameter

ε, which can be seen as the sensitivity of ψ(ε), in the classical sense [53,
54] to the domain perturbation produced by an uniform expansion of the
perturbation Bε. Therefore, we can use the concept of shape sensitivity
analysis as an intermediate step in the topological derivative calculation.
This procedure enormously simplifies the analysis, allowing us to state the
following result:

Theorem 3. The topological derivative of the shape functional (15) is

DTψ = −µ0I
(
v(x+) − v(x−)

)
. (63)

Therefore, the topological asymptotic expansion of the shape functional reads

ψ(ε) = ψ(0) − πε2µ0I
(
v(x+) − v(x−)

)
+ o(ε2) . (64)

Proof. The shape derivative of the functional (29) can be obtained as follows

d

dε
ψ(ε) = J̇(φε) =

∫

Γ

φεφ̇ε ds . (65)

Now, let us calculate the shape derivative of the state equation, which leads
to

φ̇ε ∈ U :

∫

Ω

∇φ̇ε · ∇η dx =
2

ε
µ0I

(∫

Bε(x+)

η dx−

∫

Bε(x−)

η dx

)
∀η ∈ U .

(66)

Since φ̇ε ∈ U , we can take it as a test function in (31), namely η = φ̇ε, to
obtain

∫

Ω

∇vε · ∇φ̇ε dx = −

∫

Γ

φεφ̇ε ds . (67)
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In the same way, since vε ∈ U , we can take it as a test function in (30),
namely η = vε, to obtain

∫

Ω

∇φ̇ε · ∇vε dx =
2

ε
µ0I

(∫

Bε(x+)

vε dx−

∫

Bε(x−)

vε dx

)
. (68)

By comparing both equations and taking into account the symmetry of the
bilinear forms on their left-hand sides, we have from (65) the following im-
portant result

J̇(φε) = −
2

ε
µ0I

(∫

Bε(x+)

vε dx−

∫

Bε(x−)

vε dx

)
. (69)

In addition, by Lemma 2 we have

‖vε − v‖W 1
0
(Ω) ≤ C ε . (70)

Therefore we can approximate vε as

vε(x) = v(x) +O(ε) . (71)

Then, from the regularity of vε and v at x+ and x− we also have

vε(x
+) = v(x+) +O(ε) and vε(x

−) = v(x−) +O(ε) , (72)

where v is solution to (25). From these elements, we obtain

d

dε
ψ(ε) = J̇(φε) = −

2

ε
µ0I

(
πε2v(x+) − πε2v(x−)

)
+O(ε2)

= −2πεµ0I
(
v(x+) − v(x−)

)
+O(ε2) . (73)

From the result (62) we obtain

DTψ = − lim
ε→0

2πε

f ′(ε)
µ0I

(
v(x+) − v(x−) +O(ε)

)
. (74)

Therefore, in order to extract the main term of the above expansion, we can
choose f ′(ε) = 2πε (f(ε) = πε2) and calculate the limit passage ε → 0 to
obtain the desired result.

Since we want to minimize the shape functional ψ, in the numerical ap-
proach we have to include a pair of inductors at the points x+ (positive
inductor) and x− (negative inductor) were the topological derivative DTψ
takes its more negative values.
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5. Numerical Method

5.1. The exterior Neumann problem

We have seen that to compute the topological derivative given by formula
(63) we have to solve the Neumann problems (21) and (24). To obtain
approximate solutions for the these problems, we can resort again to functions
ζ and w, solutions to (19) and (26), respectivelly. So, let us consider the
following general form of the exterior Neumann problem:






−∆u = b in Ω ,
∂u

∂n
= q on Γ ,

u(x) = o(1) as ‖x‖ → ∞ ,

(75)

The solution u of (75) satisfies the following integral equation [18, 55, 56,
57]

c(ξ)u(ξ) +

∫

Γ

q∗(ξ, x)u dγ −

∫

Γ

u∗(ξ, x)q(x) dγ =

∫

Ω

u∗(ξ, x)b(x) dx , (76)

where u∗ is the fundamental solution of the problem, u∗(ξ, x) = − 1
2π

log ‖ξ−
x‖, q∗(ξ, x) = ∂u∗

∂n
(ξ, x), the characteristic function c(ξ) = 1, for any interior

point ξ, and c(ξ) = ∆θ
2π

, for any point ξ ∈ Γ, where ∆θ is the angle, internal to
Ω, formed by the right and left tangents to Γ at ξ (c(ξ) = 1

2
at points where

Γ is smooth). The first integral on left hand side of (76) must be understood
in the Cauchy principal value sense.

The spatial discretization consists in approximating the boundary Γ into
N linear elements Γj , 1 ≤ j ≤ N . The functions u and q are approximated
inside each element by piecewise linear polynomials in the form:

u(x) = N(x)u(j) , q(x) = N(x)q(j) , in Γj , (77)

where N is the 1 × 2 matrix of the linear interpolation functions and u(j)

and q(j) are the vectors that contain the nodal variables corresponding to u
and q in the element Γj . The collocation boundary element method (BEM),
builds a linear system imposing (76) at each node ξi of the boundary:

ciui +

N∑

j=1

hiju
(j) −

N∑

j=1

gijq
(j) = u1(ξi) , 1 ≤ i ≤ N , (78)
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where the element matrices hij and gij are:

hij =

∫

Γj

q∗(ξ, x)N(x) dγ , gij =

∫

Γj

u∗(ξ, x)N(x) dγ , (79)

and the function u1, which is a particular solution of (75), is defined as:

u1(ξ) =

∫

Ω

u∗(ξ, x)b(x) dx . (80)

The linear system (78) can be expressed in matrix form as:

Hu = Gq + u1 , (81)

where H was assembled from the values of ci and hij, G from the values of
matrices gij , the vectors u and q contain all the nodal variables corresponding
to u and q, respectively, and (u1)i = u1(ξi).

Once solved the linear system (81), the solution u provides the piecewise
approximation of u on Γ by using (77). The approximate solution at interior
points is obtained using (76), with c(ξ) = 1, and with u and q defined on Γ
by the interpolation expressions of (77).

5.2. Construction of the solution

Before starting with the optimization process, we have to define a mesh
of linear elements approximating the boundary Γ, and a mesh of cells in a
region inside Ω surrounding the liquid metal. For each of these cells we set
the initial value for the parameters αp of (11). The solution of the design
problem will be obtained changing the values of αp. For academic examples,
we compute the constant value p0 using (13), in real life cases p0 is a given
data. For numerical calculations, the curvature C at a node of the boundary
mesh is approximated by the curvature of the circumference defined by it and
adjacent nodes. Inside the elements the curvature is linearly interpolated.
Next we define the function κ = ±1 with a sign change at each global
maximum of the piecewise approximation of the curvature. Curves for which
this definition of κ does not satisfies the compatibility condition (18), or
having an odd number of global maximum points, are strictly not shapable.
Finally, we assign a power of two to the integer variable NC.

The procedure proposed here to build the solution is the following:
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1. Find φ and v on the boundary solving the Neumann exterior prob-
lems (17) and (24) and compute the initial value of the objective func-
tion J(φ).

2. Compute the adjoint state v value at the center of each cell of the mesh.

3. For the set of cells with αp ≤ 0, set αp := αp + 1 to the NC cells
that have the largest values of v. For the set of cells with αp ≥ 0, set
αp := αp − 1 to the NC cells that have the smallest values of v.

4. Solve the Neumann exterior problems (17) and (24) on the boundary
and compute the new value of the objective function J(φ). If the ob-
jective function has decreased then return to step (2). Otherwise, undo
the changes made in step (3) and set NC := NC/2. If NC < 1 stop.
Otherwise, return to step (3).

Note that the previous procedure generates a sequence of solutions that
monotonically decrease the value of the objective function. Note also that
the stopping criterium is the most rigorous possible, because the procedure
stops only if it can not find other solution having a smaller value of the
objective function.

Step (2) is by far the most expensive of the previous procedure. Roughly
speaking, the number of operations of this step is proportional to the number
of elements of the boundary mesh times the number of cells of the domain
mesh. The number of operations of steps (1) and (4) is related only to the
number of elements of the boundary mesh. The number of operations of
step (3) is also related to the number of cells of the domain mesh, but the
ordering operations of this step can be performed in significantly less time
than the operations of step (2).

6. Numerical examples

6.1. Example 1

The target shape of this example is the solution of a direct free-surface
problem for a liquid metal column of cross-section area S0 = π, considering
four distributed currents of density I = 0.5 as shown in Fig. 1. The surface
tension σ = 1.0 × 10−4 and µ0 = 1.0. For the inverse problem we consider
two cases, named Ex1a and Ex1b, for meshes of cells of size D = 0.05 and
D = 0.02 respectively, defined in the region shown in Fig. 1. The results
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obtained are shown in Fig. 2. The evolution of the objective function along
the iterative process is shown in Fig. 3.

(a) (b)

Figure 1: Example 1. (a) Initial configuration of the direct free-surface problem. (b)
Target shape and exact solution. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: boundary of the mesh of cells.

(a) (b)

Figure 2: Example 1. (a) Solution for a mesh of cells of size D = 0.05. (b) Solution
for a mesh of cells of size D = 0.02. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: equilibrium shape.
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Figure 3: Example 1. Evolution of the objective function.

6.2. Example 2

This example is similar to the previous one, with the only difference that
the distributed currents were defined for a density I = 0.8. Figure 4 shows
the target shape in this case. As in the previous example, two cases are
considered, named Ex2a and Ex2b, for meshes of cells of size D = 0.05 and
D = 0.02 respectively, defined in the region shown in Fig. 4. The results
obtained are shown in Fig. 5. The evolution of the objective function along
the iterative process is shown in Fig. 6.
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(a) (b)

Figure 4: Example 2. (a) Initial configuration of the direct free-surface problem. (b)
Target shape and exact solution. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: boundary of the mesh of cells.

(a) (b)

Figure 5: Example 2. (a) Solution for a mesh of cells of size D = 0.05. (b) Solution
for a mesh of cells of size D = 0.02. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: equilibrium shape.
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Figure 6: Example 2. Evolution of the objective function.

6.3. Example 3

In this case, six distributed currents of density I = 0.4 are considered as
shown in Fig. 7. For the inverse problem we consider two cases, named Ex1a
and Ex1b, for meshes of cells of size D = 0.05 and D = 0.02 respectively,
defined in the region shown in Fig. 7. The results obtained are shown in
Fig. 8. The evolution of the objective function along the iterative process is
shown in Fig. 9.
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(a) (b)

Figure 7: Example 3. (a) Initial configuration of the direct free-surface problem. (b)
Target shape and exact solution. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: boundary of the mesh of cells.

(a) (b)

Figure 8: Example 3. (a) Solution for a mesh of cells of size D = 0.05. (b) Solution
for a mesh of cells of size D = 0.02. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: equilibrium shape.
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Figure 9: Example 3. Evolution of the objective function.

6.4. Example 4

This example is similar to the previous one, with the only difference that
the distributed currents were defined for a density I = 0.8. Figure 10 shows
the target shape in this case. For the inverse problem we consider two cases,
named Ex4a and Ex4b, for meshes of cells of size D = 0.05 and D = 0.02
respectively, defined in the region shown in Fig. 10. The results obtained are
shown in Fig. 11. The evolution of the objective function along the iterative
process is shown in Fig. 12.
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(a) (b)

Figure 10: Example 4. (a) Initial configuration of the direct free-surface problem. (b)
Target shape and exact solution. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: boundary of the mesh of cells.

(a) (b)

Figure 11: Example 4. (a) Solution for a mesh of cells of size D = 0.05. (b) Solution
for a mesh of cells of size D = 0.02. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: equilibrium shape.
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Figure 12: Example 4. Evolution of the objective function.

6.5. Example 5

The target shape of this example is the round rectangle depicted in
Fig. 13. The current density I = 0.2, σ = 1.0 × 10−4 and µ0 = 1.0. We con-
sider two cases, named Ex5a and Ex5b, for meshes of cells of size D = 0.05
and D = 0.02 respectively, defined in the region shown in Fig. 13. Two fic-
titious points of maximum curvature were defined in this example with the
purpose of satisfying the compatibility equation. The results obtained are
shown in Fig. 14. The evolution of the objective function along the iterative
process is shown in Fig. 15.

(a) (b)

Figure 13: Example 5. (a) Description of the problem geometry. (b) Target shape. Dashed
line: target shape, thin solid line: boundary of the mesh of cells, black dots: fictitious
points of maximum curvature.
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(a) (b)

Figure 14: Example 5. (a) Solution for a mesh of cells of size D = 0.05. (b) Solution
for a mesh of cells of size D = 0.02. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: equilibrium shape.
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Figure 15: Example 5. Evolution of the objective function.

6.6. Example 6

The target shape of this example is depicted in Fig. 16. The current
density I = 0.2, σ = 1.0 × 10−4 and µ0 = 1.0. We consider two cases,
named Ex6a and Ex6b, for meshes of cells of size D = 0.05 and D = 0.02
respectively, defined in the region shown in Fig. 16. The results obtained are
shown in Fig. 17. The evolution of the objective function along the iterative
process is shown in Fig. 18.
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(a) (b)

Figure 16: Example 6. (a) Description of the problem geometry. (b) Target shape. Dashed
line: target shape, thin solid line: boundary of the mesh of cells.

(a) (b)

Figure 17: Example 6. (a) Solution for a mesh of cells of size D = 0.05. (b) Solution
for a mesh of cells of size D = 0.02. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: equilibrium shape.
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Figure 18: Example 6. Evolution of the objective function.

6.7. Example 7

The target shape of this example is depicted in Fig. 19. The current
density I = 0.2, σ = 1.0 × 10−4 and µ0 = 1.0. We consider two cases,
named Ex7a and Ex7b, for meshes of cells of size D = 0.05 and D = 0.02
respectively, defined in the region shown in Fig. 19. Two fictitious points
of maximum curvature were defined in this example with the purpose of
satisfying the compatibility equation. The results obtained are shown in
Fig. 20. The evolution of the objective function along the iterative process
is shown in Fig. 21.
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(a) (b)

Figure 19: Example 7. (a) Description of the problem geometry. (b) Target shape. Dashed
line: target shape, thin solid line: boundary of the mesh of cells, black dots: fictitious
points of maximum curvature.

(a) (b)

Figure 20: Example 7. (a) Solution for a mesh of cells of size D = 0.05. (b) Solution
for a mesh of cells of size D = 0.02. Black area: positive inductors, gray area: negative
inductors, dashed line: target shape, thin solid line: equilibrium shape.
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Figure 21: Example 7. Evolution of the objective function.

6.8. Results summary

Table 1 resumes the information about the considered examples. For
each one the number of iterations performed by the optimization algorithm
is indicated as well as the final value of the objective function. Note that
the target shapes of examples 1 to 4 are solutions of direct free-surface prob-
lems considering known electric currents. Then, those currents constitute
exact solutions for the inverse problem considered here. However, as the
figures above shown, the inductors obtained by the optimization algorithm
are clearly different from the known exact solutions. This fact, instead of
indicating that the algorithm did not work properly, suggests that the in-
ductor design problem have multiple solutions. Table 1 shows that, for all
these examples, the optimization algorithm obtained approximated solutions
with a clearly lower value of the total intensity of current than the associ-
ated to the known exact solutions. Thus, the results obtained suggest the
idea that the optimization algorithm looks for an economic design, which is
consistent with the idea that inspires the use of the topological derivative:
the algorithm puts inductors in the location where they produce the largest
influence on the shape functional.

Examples 5 to 7 show that the proposed approach is also effective dealing
with truly inverse problems defined considering general shapes. The best
result was obtained for the Example 6, which, because of the symmetry of
the problem, exactly satisfies the compatibility equation (18). The examples
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5 and 7 required the definition of fictitious points of maximum curvature
to satisfy the compatibility equation. For these examples, the results of
the free-surface problem show that the equilibrium shapes have points of
maximum curvature in places where they should not be. The equilibrium
shapes obtained for these examples are, however, quite close to the target
shapes.

Table 1: Results summary.

Example NE TC NC Iter II IS IOF FOF

Ex1a 128 4692 16 9 0.160 0.110 1.209e-03 2.779e-06
Ex1b 128 29304 64 18 0.160 0.118 1.209e-03 3.681e-07
Ex2a 184 4624 16 9 0.256 0.176 4.773e-03 1.394e-05
Ex2b 184 28912 64 31 0.256 0.204 4.773e-03 1.103e-06
Ex3a 120 4724 16 24 0.192 0.112 2.747e-04 7.013e-07
Ex3b 120 29520 64 47 0.192 0.109 2.747e-04 1.292e-07
Ex4a 228 4688 16 14 0.384 0.208 1.663e-03 8.026e-06
Ex4b 228 29288 64 73 0.384 0.229 1.663e-03 9.936e-07
Ex5a 120 5744 32 42 – 0.143 7.059e-03 4.691e-06
Ex5b 120 36128 128 142 – 0.160 7.059e-03 1.056e-06
Ex6a 152 10228 32 29 – 0.161 1.066e-02 5.300e-06
Ex6b 152 64120 128 108 – 0.173 1.066e-02 8.523e-07
Ex7a 180 7864 32 40 – 0.216 5.258e-03 2.113e-05
Ex7b 180 49368 128 292 – 0.264 5.258e-03 8.129e-06

NE: number of elements, TC: total number of cells, NC: initial
number of cells that are selected to change the sign, Iter: number
of iterations performed, II: total intensity of the positive inductors
of the known exact solution. IS: total intensity of the positive
inductors of the solution obtained, IOF: initial value of the objective
function, FOF: final value of the objective function.

7. Conclusions

In this paper we have described a new method for the topology design of
inductors in electromagnetic casting. For the two-dimensional case, a new
formulation of the design problem based on the Kohn-Vogelius functional was
stated. The topological derivative of the Kohn-Vogelius functional regarding
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the introduction of small inductors was derived. A numerical procedure
that makes use of the topological derivative to construct the solution was
proposed.

Some examples presented show that the method proposed is effective to
design suitable inductors. For some examples with known exact solutions,
the method was able to obtain solutions with a clearly lower value of the
total intensity of current than that associated to the known solution. This
fact suggests that the use of topological derivatives gives the method the
intrinsic ability to choose an economical design among those belonging to
the set of solutions. Some other examples with unknown solutions were also
successfully resolved.

In summary, the method proposed is easy to code and can be successfully
used in the design of inductors in electromagnetic casting, considering general
geometries as objective.
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