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Abstract

While Erlang’s formula has helped engineers to dimension telephone networks for over eighty years,
such a three-way “performance - demand - capacity” relationship is still lacking for data networks. It
may be argued that the enduring success of Erlang’s formula is essentially due to its simplicity: the
call blocking rate does not depend on the distribution of call duration but on overall demand only. In
this paper, we consider data networks and characterize those capacity allocations which have the same
insensitivity property, in the sense that performance of data transfers does not depend on precise traffic
characteristics such as the distribution of data volume but on overall demand only. We introduce the
notion of “balanced fairness” and prove some key properties satisfied by this insensitive allocation. It
is shown notably that the performance of balanced fairness is always better than that obtained if flows
are transmitted in a “store and forward” fashion, allowing simple formula applying to the latter to be
used as a conservative evaluation for network design and provisioning purposes.

1 Introduction

Erlang’s formula has helped engineers to dimension telephone networks for more than eighty years [10].
It gives the proportion of calls that are blocked, B, as a function of demand (call arrival rate × mean
call duration, A) and capacity (number of circuits, C) only:

B =
AC/C!

1 + A + . . . + AC/C!
.

In particular, Erlang’s formula is insensitive in the sense that the blocking probability does not depend
on the distribution of call durations. The only required assumption is that calls arrive as a Poisson
process, which is verified in practice as calls are generated by a large number of users with mutually
independent behaviors. This insensitivity property notably explains why Erlang’s formula is still used
for dimensioning current telephone networks, despite the fact that telephone traffic characteristics have
changed considerably since Erlang’s publication in 1917.

1.1 Data network provisioning

Such a simple three-way “performance - demand - capacity” relationship is not yet available for data net-
works. First, what is meant by performance depends on whether the considered application is time-critical
(e.g., voice, audio and video streaming, interactive games) or not (e.g., file transfers, Web browsing). In
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this paper, we consider the latter only, that is, those applications that require a succession of document
transfers and for which performance does not depend on the delay of individual packets but on the
transfer time of an entire document. These applications constitute the majority of traffic in current data
networks, the document transfer being typically controlled by TCP [12]. The corresponding flows are
often referred to as “elastic” as their rate varies with respect to the level of congestion in the network.
Thus the duration of an elastic flow does not only depend on its size (the volume of the data transfer)
but also on its rate which varies in a random way as new flows arrive and existing flows cease.

Like telephone traffic, demand in data networks (in bit/s) can be defined simply as the product of the
flow arrival rate by the mean flow size. Note, however, that the flow arrival process is not Poisson. Flows
are usually generated within sessions, each session being composed of a succession of flows separated
by an interval of inactivity generally referred to as “think-time”. A typical example is the succession
of Web pages downloaded by a user in a period of continuous activity. This may result in a strongly
correlated flow arrival process, depending on the number of flows in a session, the distribution of flow
sizes and think-time durations and their possible correlation [7, 22]. However, assuming that sessions are
generated independently by a large population of users, the session arrival process is well approximated
by a Poisson process. This has been recognized as one of the rare invariants of Internet traffic [22].

The way capacity is shared is not as simple as in telephone networks where a circuit is occupied
throughout the call holding time. Capacity allocation in data networks results from the complex in-
teraction of a number of packet-level mechanisms, including congestion control, scheduling and buffer
management, and has been the subject of considerable recent research [13, 15, 16, 17, 18, 20, 21]. These
studies generally consider a fixed number of long-lived flows and thus implicitly make a time-scale sepa-
ration assumption: the time-scale of packet-level dynamics (the time to attain the equilibrium capacity
allocation given a fixed number of flows) is so small compared to the time-scale of flow-level dynamics
(the time between successive flow arrivals) that flows can be assumed to last indefinitely. In this paper,
we also use the time-scale separation assumption, but to study the impact on performance of the ran-
dom nature of traffic at flow level. Specifically, we neglect packet-level dynamics in that the equilibrium
capacity allocation is assumed to be immediately attained on each flow arrival or flow departure. Under
this assumption, we study those capacity allocations which are insensitive for data traffic in the same way
Erlang’s formula is insensitive for telephone traffic: performance depends on demand and capacity only,
and not on precise traffic characteristics such as the flow size distribution or the structure of sessions.

The main motivation for studying insensitive allocations is to derive simple performance results for
data networks, depending on demand and capacity only and therefore robust with respect to evolutions
in the nature of user applications (Web, peer to peer,...). These allocations could then be used as design
objectives for future packet-level mechanisms. Simulations suggest, however, that the performance of
these allocations is generally close to that of well-known allocations such as max-min fairness [5, 6],
which has long been stated as an ideal objective for congestion control algorithms [2]. It is thus expected
that the results obtained in the present paper constitute a sufficiently accurate approximation of the
performance realized by existing packet-level mechanisms and that derived engineering guidelines can be
used for current data networks.

1.2 Related work

The first insensitivity result for elastic traffic was given in [19] for the case of a single bottleneck whose
capacity is fairly shared between flows in progress. The corresponding model is the processor sharing
queue. The mean duration T (s) of a flow of size s is then a very simple function of demand, A, and
capacity, C:

T (s) =
s

C − A
.
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Like Erlang’s formula, the only required assumption is that sessions arrive as a Poisson process [1, 7].
While this result is extremely simple and useful, it is not sufficient to evaluate the impact on performance
of multiple bottlenecks, given that most flows go through several links in data networks. Assuming flows
sharing the same links have the same rate, each route can then be represented as a processor sharing
queue, with a state-dependent service speed given by the capacity allocated to those flows on this route.
Using key properties of Whittle queueing networks [4], we proved in [5, 6] that for any network topology,
the capacity allocations that lead to insensitive performance are those for which the following balance
property holds:

For all pairs of flows f, g, the relative change in the capacity allocated to f when g is removed
is the same as the relative change in the capacity allocated to g when f is removed.

There is a continuum of allocations satisfying this property, each characterized by a so-called “balance
function”. Among these there is just one allocation for which in any state, the capacity of at least one
link is fully allocated. We refer to this unique insensitive allocation as “balanced fairness”. Balanced
fairness differs from well-known allocations such as max-min fairness [2] or proportional fairness [15]
except for very specific network topologies referred to as homogeneous “hypercubes”, in which case it
coincides with proportional fairness. These networks are the generalization of so-called homogeneous
lines and grids for which proportional fairness was indeed shown to be insensitive in the case of Poisson
flow arrivals [3]. For any other network topology, max-min fairness, proportional fairness and, more
generally, any capacity allocation based on the maximization of some utility function, are sensitive [6].
This means that the performance of these allocations cannot be evaluated without specific assumptions
on traffic characteristics, and explains why such performance results are so difficult to derive, even for
the simplest network topologies [11].

1.3 Contribution

While the performance of balanced fairness does not depend on detailed traffic characteristics, it is still
a complex function of demand on all routes and of the capacity of all links. This renders the exact
evaluation difficult to apply for network engineering purposes. It is necessary in this case to apply an
appropriate decomposition allowing provisioning decisions to be made locally. The main contribution of
the present paper is to demonstrate that such a decomposition is possible. Specifically, we prove that the
performance of balanced fairness on any given route is worse than that obtained if flows were transmitted
on a single isolated link of this route, and better than that obtained if flows were handled link by link on
this route in a “store and forward” fashion. Thus the mean duration Tr(s) of a flow of size s on route r
satisfies the inequalities:

max
l∈r

s

Cl − Al
≤ Tr(s) ≤

∑

l∈r

s

Cl − Al
, (1)

where Cl and Al denote the capacity and the overall demand of link l, respectively. These simple
performance bounds require per-link information only and coincide for single-link routes.

After describing the model in the next section, we introduce in Section 3 the notions of balance
and insensitivity. We notably show that the balance property is in fact equivalent to three milder
forms of insensitivity: insensitivity to the distribution of successive flow sizes and think-time durations,
insensitivity to the flow arrival process and time-scale insensitivity. We also prove the lower bound (1),
which holds for any insensitive allocation. In the following two sections, we define and give key properties
of the insensitive allocations referred to as “store and forward” and “balanced fairness”, and prove the
upper bound (1). Finally, we illustrate these results on some toy network topologies and conclude the
paper.
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2 Flow-level modeling of data networks

We first introduce a generic flow-level model of data networks. We then show how this model can be
represented by a processor sharing queueing network with state-dependent service speeds. For sake of
clarity, we show step by step the generality of the model, from the simplest case where flow arrivals are
Poisson and flow sizes exponential i.i.d. to the most general case where flows arrive in sessions with an
arbitrary distribution and correlation of successive flow sizes and think-time durations.

2.1 Data network model

We represent a data network as a set of L links where each link l has a capacity Cl > 0, l = 1, . . . , L.
A random number of flows compete for access to these links. Each flow is characterized by a volume of
information to be transferred (referred to as the flow size) on a route consisting of a set of links. The
flows are “elastic” in the sense that their duration depends on their rate which varies as new flows begin
and other cease. Specifically, a flow of size s arriving at time tstart on route r is completed at time tend

given by:

s =
∫ tend

tstart

c(t)dt,

where c(t) denotes the flow rate at time t, that is the capacity allocated to this flow on each link of route
r at time t, tstart ≤ t ≤ tend. This rate is limited by the capacity Cl of each link l ∈ r that is shared
between all flows in progress on route r and on other routes containing link l. It may additionally be
constrained by a fixed maximum limit representing external constraints such as the user’s access line.

Capacity allocation. We consider K classes of flow in this data network. Each class k is characterized
by a route rk consisting of a non-empty set of links and a per-flow rate limit ak > 0 we refer to as the
“access rate”. We adopt the convention that either ak < minl∈rk

Cl, in which case the access rate is
limiting, or ak = ∞. We denote by x = (x1, . . . , xK) the network state, where xk is the number of flows
of class k in progress. It is assumed that the total capacity φk allocated to flows of class k is equally
shared between these flows and depends on the network state x only. The allocation must satisfy the
capacity constraints:

∑

k:l∈rk

φk(x) ≤ Cl, l = 1, . . . , L and φk(x) ≤ xkak, k = 1, . . . , K. (2)

Traffic conditions. The evolution of the network state x does not only depend on the way capacity is
allocated between flows in progress but on traffic characteristics, i.e., on the way new flows are generated
and on the distribution of their size. The traffic characteristics considered in this paper are quite general
and described in detail in §2.3-2.4. It is sufficient at this stage to assume that the marked point process of
flow arrivals of each class, with marks corresponding to the flow sizes, is stationary and ergodic. Denote
by ρk the traffic intensity of class k. This corresponds to the mean volume of information offered by flows
of class k per unit of time. We denote by Al =

∑
k:l∈rk

ρk the overall traffic intensity at link l, and refer
to the usual traffic conditions as the inequalities:

Al < Cl, l = 1, . . . , L. (3)
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2.2 A processor sharing queueing network

We now introduce a queueing network of processor sharing nodes with state-dependent service speeds.
We show in §2.3-2.4 that this queueing network can represent the data network described in §2.1 with
virtually any traffic characteristics (arbitrary flow size distribution, correlated arrivals of flows within
sessions, etc).

Definition. Consider an open queueing network of N processor sharing nodes with state-dependent
speeds, that is, the service speed ψi of node i depends on the state y = (y1, . . . , yN ), where yi is the
number of customers in node i. We only assume that ψi(y) > 0 if and only if yi > 0. Exogenous arrivals
at node i form a Poisson process of rate νi. The services required at node i are exponential i.i.d. of mean
1/µi. After service completion at node i, a customer moves to node j with probability pij and leaves the
network with probability pi ≡ 1 −

∑
j pij . The routing matrix (pij) is assumed to be transient, so that

the effective arrival rate λi at node i is uniquely defined by the equations:

λi = νi +
∑

j

λjpji, i = 1, . . . , N.

We denote by ϱi = λi/µi the traffic intensity at node i.

Balance equations. The stochastic process Y = {Yt, t ≥ 0} that describes the evolution of the number
of customers at each node is an irreducible Markov process. Let fi be the unit vector with 1 in component
i and 0 elsewhere, for i = 1, . . . , N . When the network is in state y, the possible transitions are triggered
by the movement of a customer from node i to node j, in which case the next state is T j

i y ≡ y − fi + fj ,
a departure from node i, in which case the next state is Tiy ≡ y − fi, and an exogenous arrival at node
j, in which case the next state is T jy ≡ y + fj . The balance equations that an invariant measure χ must
satisfy are thus:

χ(y)
∑

i

(νi + ψi(y)µi) =
∑

i

χ(Tiy)νi +
∑

i,j

χ(T j
i y)ψj(T j

i y)µjpji +
∑

i

χ(T iy)ψi(T iy)µipi. (4)

This measure may be of infinite sum, in which case the Markov process Y is transient or null recurrent.
Otherwise, the Markov process Y is positive recurrent with stationary distribution:

lim
t→∞

Pr(Yt = y) =
χ(y)∑
y′ χ(y′)

.

2.3 Poisson flow arrivals

Consider the data network of §2.1 where flows of each class arrive as an independent Poisson process. This
may be represented by the above considered processor sharing queueing network, where each customer
corresponds to an ongoing flow in case of exponential flow size distributions, to a phase of an ongoing
flow in case of phase-type flow size distributions.

Exponential flow size distribution. If flows have exponential i.i.d. sizes, the corresponding processor
sharing queueing network has N = K nodes and no routing, i.e., pij = 0 for all i, j and ϱi = ρi for all
i. The service speed ψi of node i represents the total capacity φi allocated to flows of class i, which is
equally shared between these flows. A simple example is given in Figure 1.
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Figure 1: A data network represented as a processor sharing queueing network

Phase-type flow size distribution. Measurements of the size of flows in real data networks show
that their distribution is not exponential but typically much more variable [9]. The considered queueing
network allows phase-type distributions, which are known to form a dense subset within the set of all
distributions of nonnegative random variables. A phase-type distribution for flows of class k can be
represented simply by a set of consecutive nodes Sk ⊂ {1, . . . , N} such that νi > 0 for the first node
i ∈ Sk and for any node i ∈ Sk, pij = 0 for all nodes j except for j = i + 1, if i + 1 ∈ Sk (refer to Figure
2). As each node i ∈ Sk represents a phase of flows of class k, we have:

ψi(y) =
yi

xk
φk(x), with xk =

∑

i∈Sk

yi.

The traffic intensity of flows of class k is given by:

ρk =
∑

i∈Sk

ϱi.

Figure 2: A 3-phase distribution of flow sizes

2.4 Poisson session arrivals

As mentioned in Section 1, flows do not arrive as independent Poisson processes in data networks. They
are typically generated within sessions, each session being composed of a succession of flows separated by
an interval of inactivity which we call “think-time”. Again, the considered processor sharing network is
sufficiently general to account for this complex structure of traffic, provided sessions arrive as a Poisson
process and think-time durations do not depend on the network state (unlike flow durations).
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Exponential flow size and think-time duration distributions. We first consider the case where
successive flow sizes and think-time durations are all exponentially distributed. Think-times can simply
be represented by infinite server nodes, i.e., those nodes i in the set S0 ⊂ {1, . . . , N} such that:

ψi(y) = yi. (5)

We still denote by Sk ⊂ {1, . . . , N} the set of nodes representing flows of class k, i.e., such that:

ψi(y) =
yi

xk
φk(x), xk =

∑

i∈Sk

yi. (6)

A session can then be represented as a random walk of a customer in an alterning series of nodes in the
sets Sk, k ̸= 0, and in the set S0. That is, for any node i ̸∈ S0, we have pij = 0 for all nodes j ̸∈ S0,
and for any node i ∈ S0, we have pij = 0 for all nodes j ∈ S0. We assume without loss of generality that
νi = 0 and pi = 0 for all nodes i ∈ S0, which means that a session necessarily starts and ends with a flow
(and not a think-time). We say that a session is multi-class if its successive flows may belong to different
classes, and single-class otherwise. Again, the traffic intensity of flows of class k is simply given by:

ρk =
∑

i∈Sk

ϱi. (7)

Figure 3: Example of two types of session, composed of two and three flows, respectively

It is worth noting that the distribution of the number of flows per session may be perfectly general.
Successive flow sizes and think-time durations may also be correlated. Figure 3 gives an example of
two types of session, composed of two and three flows, respectively. The mean flow sizes may well be
higher for the first type of session for instance. In fact, arbitrary correlations between successive flow
sizes and think-time durations may be represented by considering as many session types as necessary and
introducing phase-type distributions.

Phase-type flow size and think-time duration distributions. As in §2.3, assume now that each
node represents a phase of a flow or a think-time (and not the flow or the think-time itself). We still
denote by S0 the set of nodes representing think-times, satisfying (5), and Sk the set of nodes representing
flows of class k, satisfying (6). Assume without loss of generality that successive phases of the same flow
or think-time consist of consecutive nodes. A session with phase-type distributions of flow sizes and
think-time durations can be represented as a random walk such that any visit of a customer to a node
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i ∈ Sk, k ̸= 0, can be followed by a visit to the node i+1 ∈ Sk if this node corresponds to a new phase of
the same flow, or a visit to a node j ∈ S0 representing the first phase of a think-time. Similarly, any visit
to a node i ∈ S0 can be followed by a visit to the node i+1 ∈ S0 if this node corresponds to a new phase
of the same think-time, or a visit to a node j ̸∈ S0 representing the first phase of a flow. New sessions
are represented by those nodes i ̸∈ S0 such that νi > 0, corresponding to the first phase of a flow. The
traffic intensity of flows of class k is still given by (7).

3 Insensitive allocations

We now characterize those capacity allocations for which performance is insensitive to the above described
traffic characteristics. Specifically, we prove in Theorems 1 and 2 that the insensitivity property is
equivalent to three milder forms of insensitivity, which all imply the balance property. We then give key
properties of these allocations, including the lower bound (1) in Proposition 1.

3.1 Balance property

Let ek be the unit vector with 1 in component k and 0 elsewhere, for k = 1, . . . , K.

Definition 1 (Balance property) The capacities φ1, . . . , φK are said to be balanced if:

φk(x)φk′(x − ek) = φk′(x)φk(x − ek′), ∀k, k′ ∀x such that xk > 0 and xk′ > 0.

Let ⟨x, x− ek1 , x− ek1 − ek2 . . . , x− ek1 − . . .− ekn−1 , 0⟩ be a direct path from state x to state 0, i.e.,
a path of length n where n ≡ |x| is the number of flows in state x. The balance property implies that for
any x ̸= 0, the expression

Φ(x) =
1

φk1(x)φk2(x − ek1)φk3(x − ek1 − ek2) . . . φkn(x − ek1 − . . . − ekn−1)
(8)

is independent of the considered direct path. Defining Φ(0) = 1, the capacities are uniquely characterized
by the function Φ, referred to as the balance function:

φk(x) =
Φ(x − ek)

Φ(x)
, ∀k, xk > 0. (9)

Conversely, if there exists a positive function Φ such that the capacities satisfy (9), it can be easily verified
that these capacities are balanced. We say that the capacities are balanced by Φ.

3.2 Sufficient condition for insensitivity

Consider an allocation for which the balance property holds. The processor sharing queueing network
introduced in §2.2 can represent virtually any traffic characteristics, provided session arrivals form a
Poisson process. In view of (5) and (6), it may be readily verified that the corresponding service speeds
ψ1, . . . , ψN are balanced by the function Ψ defined by:

Ψ(y) =
∏

i∈S0

1
yi!

×
K∏

k=1

(
xk

yi, i ∈ Sk

)
× Φ(x),

where we use the notation: (
xk

yi, i ∈ Sk

)
≡ xk!∏

i∈Sk
yi!

.
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The processor sharing queueing network is then a so-called Whittle network [23], for which an invariant
measure χ is simply given by:

χ(y) = Ψ(y)
N∏

i=1

ϱyi
i . (10)

Summing this expression over all states corresponding to xk flows of class k, we obtain in view of (7):

∑

y:
∑

i∈Sk
yi=xk

χ(y) =
∏

i∈S0

eϱi × Φ(x)
K∏

k=1

ρxk
k . (11)

Thus the invariant measures of the number of flows of each class are insensitive to any traffic characteristics
(flow size distribution, distribution of the number of flows per session, correlation between successive
flow sizes and think-time durations, etc) except the traffic intensities ρ1, . . . , ρK . This is actually a
direct consequence of the well-known insensitivity of Whittle networks [6]. We conclude that the balance
property indeed implies insensitivity.

3.3 Necessary condition for insensitivity

A key result is that the converse is also true: an allocation for which the invariant measures of the number
of flows of each class are insensitive to any traffic characteristics except the traffic intensities ρ1, . . . , ρK

is balanced [6]. In fact, each of the following milder forms of insensitivity implies the balance property:

(I1) Insensitivity to the flow size distribution: For Poisson flow arrivals, the invariant measures of
the number of flows of each class remain unchanged when for any class, the exponential distribution
of flow sizes is replaced by any phase-type distribution of same mean.

(I2) Insensitivity to the flow arrival process: For exponential i.i.d. flow sizes, the invariant mea-
sures of the number of flows of each class remain unchanged when for any class, the Poisson flow
arrivals are replaced by Poisson session arrivals with the same flow arrival rate.

(I3) Time-scale insensitivity: For Poisson flow arrivals and exponential i.i.d. flow sizes, the invariant
measures of the number of flows of each class remain unchanged when for any class, flow inter-arrival
times and flow sizes are multiplied by the same constant.

Theorem 1 Any allocation that satifies one of the properties (I1), (I2), (I3) is balanced.

The proof of Theorem 1, given in Appendix A, directly follows from the necessary condition for
insensitivity in processor sharing networks proved in [4]. Theorem 2 below, also proved in Appendix A, is
a stronger result than Theorem 1 since the properties (I1), (I2), (I3) correspond to respective particular
cases of the following properties:

(I1’) Insensitivity to the distribution of successive flow sizes and think-time durations: For
Poisson session arrivals, the invariant measures of the number of flows of each class remain un-
changed when for any class, the exponential distributions of successive flow sizes and think-time
durations are replaced by any phase-type distributions of same respective means.

(I2’) Insensitivity to the flow arrival process: For i.i.d. flow sizes, the invariant measures of the
number of flows of each class remain unchanged when for any class, the Poisson flow arrivals are
replaced by Poisson session arrivals with the same flow arrival rate.
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(I3’) Time-scale insensitivity: For Poisson single-class session arrivals, the invariant measures of the
number of flows of each class remain unchanged when for any class, session inter-arrival times and
successive flow sizes and think-time durations are multiplied by the same constant.

Theorem 2 Any allocation that satifies one of the properties (I1’), (I2’), (I3’) is balanced.

In view of Theorems 1 and 2 and §3.2, all six insensitivity properties above are equivalent.

3.4 Properties of insensitive allocations

In view of previous results, there exists a continuum of insensitive allocations, each characterized by a
positive function Φ according to (9). In the rest of the paper, we use the convention Φ(x) = 0 for any
x such that xk < 0 for some k. In view of the capacity constraints (2), Φ must satisfy the following
inequalities in any state x:

∑

k:l∈rk

Φ(x − ek)
Φ(x)

≤ Cl, l = 1, . . . , L, and
Φ(x − ek)

Φ(x)
≤ xkak, k = 1, . . . , K. (12)

Given a function Φ which satisfies these inequalities, it follows from (11) that the stability condition
for the corresponding allocation is:

∑

x

Φ(x)
K∏

k=1

ρxk
k < ∞, (13)

in which case the stationary distribution of the number of flows of each class is given by:

π(x) = π(0) × Φ(x)
K∏

k=1

ρxk
k , (14)

with

π(0) =

(
∑

x

Φ(x)
K∏

k=1

ρxk
k

)−1

. (15)

This corresponds to the stationary distribution of the Markov process describing the evolution of the
number of flows of each class for Poisson flow arrivals and exponential i.i.d. flow sizes.

Using the fact that mean sojourn time of a customer in any node of a Whittle network is proportional
to its quantity of service [4], we deduce that the mean duration Tk(s) of a class-k flow of size s is
proportional to s. Applying Little’s formula, we get:

Tk(s) = s × E[xk]
ρk

. (16)

The following performance bound proved in Appendix A holds for any insensitive allocation.

Proposition 1 For any class k, the mean duration of a class-k flow of size s satisfies:

Tk(s) ≥
s

ak
and Tk(s) ≥

s

Cl − Al
∀l ∈ rk.
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4 Store and forward

In this section, we introduce an insensitive allocation which has the property that the stationary distri-
bution of the number of flows of each class is the same as if flows were successively transferred on each
link of their route, in a “store and forward” fashion. In particular, the mean flow duration of each class
has a simple and explicit expression.

The insensitivity of the “store and forward” allocation actually follows from that of Kelly queueing
networks [14]. Thus, before defining the corresponding balance function ΦSF, we first successively in-
troduce an open and a closed Kelly queueing network. We shall deduce from the analysis of the latter
the capacity constraints (12), from the analysis of the former the stability condition and the mean flow
duration of each class.

4.1 An open Kelly queueing network

Consider a data network model different to that described in §2.1 in that flows of each class k are succes-
sively transmitted on an access link of capacity ak and on network links l ∈ rk instead of simultaneously
consuming capacity on each of these links. This model can then be represented by the following open
queueing network.

Definition. The network consists of processor sharing nodes 1, . . . , L of respective capacities C1, . . . , CL

and infinite server nodes 1, . . . , K with respective per-server capacities a1, . . . , aK . Note that the per-
server capacity of some of these infinite server nodes could be infinite in which case they contain no
customer with probability 1. Services at each node are exponential i.i.d. of unit mean. There are K
classes of customer. Customers of class k arrive as a Poisson process of rate ρk, visit the infinite server
node k and the processor sharing nodes l ∈ rk, in a fixed but arbitrary order, then leave the network.

Stationary distribution. This is an open Kelly queueing network, stable under the usual traffic
conditions (3). Let zk be the number of customers of class k visiting the infinite server node k and zkl the
number of customers of class k visiting the processor sharing node l, l ∈ rk. The stationary distribution
η of the Markov process Z = {Zt, t ≥ 0} that describes the evolution of the number of customers of each
class at each node (processor sharing nodes and infinite server nodes) is the same as if customers of each
class arrive as an independent Poisson process at each node:

η(z) = η(0) ×
K∏

k=1

1
zk!

(
ρk

ak

)zk

×
L∏

l=1

( ∑
k:l∈rk

zkl

zkl, k : l ∈ rk

) ∏

k:l∈rk

(
ρk

Cl

)zkl

. (17)

It follows from the insensitivity of Kelly networks that this stationary distribution does not depend
on the service distribution of each class of customer at each node, nor on possible correlations between
successive services required by the same customer, including the case where each customer requires the
same service at each node [14]. This represents the above considered data network where each flow is
successively transferred from link to link, in a “store and forward” fashion (see Figure 4). Denote by
Z(x) the set of states z corresponding to xk flows of class k, for each class k:

Z(x) =

⎧
⎨

⎩z : ∀k, zk +
∑

l∈rk

zkl = xk

⎫
⎬

⎭ (18)

11



The stationary distribution of the number of flows of each class is given by:

πSF(x) =
∑

z∈Z(x)

η(z) = πSF(0) × ΦSF(x)
K∏

k=1

ρxk
k , (19)

where

ΦSF(x) =
∑

z∈Z(x)

K∏

k=1

1
zk!

(
1
ak

)zk

×
L∏

l=1

( ∑
k:l∈rk

zkl

zkl, k : l ∈ rk

) ∏

k:l∈rk

(
1
Cl

)zkl

(20)

and

πSF(0) =

(
∑

x

ΦSF(x)
K∏

k=1

ρxk
k

)−1

.

The mean number of flows of class k is:

E[xk] = E[zk] +
∑

l∈rk

E[zkl] =
ρk

ak
+

∑

l∈rk

ρk

Cl − Al
. (21)

As in Section 2, any traffic characteristics may actually be represented: the stationary distribution of the
number of flows of each class is still given by (19). Now note that flows may additionally be divided into
an arbitrary number of “blocks” exactly as sessions are divided into an arbitrary number of flows, with
the constraint that each block must leave the network before the next block of the same flow can enter:
the stationary distribution of the number of blocks of each class at each link is still given by (17), as if
blocks of each class arrive as an independent Poisson process at each node.

Figure 4: A data network with “store and forward” transfers represented as a Kelly queueing network

4.2 A closed Kelly queueing network

Results of §4.1 suggest that an insensitive allocation can be derived from the above considered network
model with block transfers by letting the size of a block tend to zero so that flows are in fact emitted
continuously. Given a fixed number of ongoing flows of each class, this network behaves like a closed
queueing network, the transfer of successive blocks of a class-k flow being represented by cyclic visits of
the same customer to the infinite server node k and the processor sharing nodes l ∈ rk. The continuous
transfer rate of a flow is then determined by the steady state of this closed queueing network through
the rate at which the corresponding customer visits a particular node. This is a direct consequence of
(9) and expression (22) below.

12



Definition. Consider the same network as that of §4.1 except that there is a fixed number xk of
customers of class k, k = 1, . . . , K. The customers of class k visit the infinite server node k and the
processor sharing nodes l ∈ rk in a cyclic way, in a fixed but arbitrary order (each of these nodes is
visited exactly once in a cycle).

Stationary distribution. This is a closed Kelly network [14]. The stochastic process Z̃ = {Z̃t, t ≥ 0}
that describes the evolution of the number of customers of each class at each node is an irreducible
Markov process on the state space Z(x), given by (18). The stationary distribution of Z̃ is:

η̃(z) = η̃(0) ×
K∏

k=1

1
zk!

(
1
ak

)zk

×
L∏

l=1

( ∑
k:l∈rk

zkl

zkl, k : l ∈ rk

) ∏

k:l∈rk

(
1
Cl

)zkl

,

where

η̃(0) =

⎛

⎝
∑

z∈Z(x)

K∏

k=1

1
zk!

(
1
ak

)zk

×
L∏

l=1

( ∑
k:l∈rk

zkl

zkl, k : l ∈ rk

) ∏

k:l∈rk

(
1
Cl

)zkl

⎞

⎠
−1

≡ 1
ΦSF(x)

.

For any class k and any x such that xk > 0, the rate (number of visits per unit of time) at which the xk

customers of class k visit any node l ∈ rk is given by:

∑

z∈Z(x):zkl>0

η̃(z) × zkl∑
k′:l∈rk′

zk′l
× Cl =

ΦSF(x − ek)
ΦSF(x)

. (22)

As the rate at which customers visit a server cannot exceed the speed of this server, we deduce:

∑

k:l∈rk

ΦSF(x − ek)
ΦSF(x)

≤ Cl, l = 1, . . . , L, and
ΦSF(x − ek)

ΦSF(x)
≤ xkak, k = 1, . . . , K. (23)

As in §4.1, it follows from the insensitivity of Kelly networks that the stationary distribution of Z̃ does
not depend on the service distribution of each class of customer, nor on possible correlations between
successive services required by the same customer. In particular, it remains the same if each customer
requires the same service at each node in a cycle, which represents the transfer of the same block from
link to link.

4.3 Definition and properties

In the rest of the paper, we refer to store and forward as the insensitive allocation characterized by the
balance function ΦSF given by (20), which in view of (23) satisfies the capacity constraints (12). The
stability condition (13), which corresponds to that of the open queueing network considered in §4.1, is
satisfied under the usual traffic conditions (3). In this case, the stationary distribution, given by (19),
coincides with that one would obtain if flows were transferred in a “store and forward” way. In view of
(16) and (21), the mean duration of class-k flows of size s is simply given by:

T SF
k (s) =

s

ak
+

∑

l∈rk

s

Cl − Al
. (24)
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5 Balanced fairness

In this section, we define and give key properties of an allocation we refer to as “balanced fairness”
[5]. This is the most efficient insensitive allocation in the following two senses. First, this is the only
insensitive allocation such that in any state, a network link is saturated or a flow rate limit constraint
is attained. Second, we prove in Proposition 3 below that this is the insensitive allocation for which the
data network is empty with the highest probability. The main result of this paper is given in Theorem
4: the performance of balanced fairness is better than that of store and forward.

5.1 Definition

Consider the balance function ΦBF recursively defined by ΦBF(0) = 1 and:

∀x ̸= 0, ΦBF(x) = max

⎛

⎝max
l

⎧
⎨

⎩
1
Cl

∑

k:l∈rk

ΦBF(x − ek)

⎫
⎬

⎭ , max
k:xk>0

{
1

akxk
ΦBF(x − ek)

}⎞

⎠ . (25)

This function clearly satisfies the inequalities (12). The corresponding allocation will be referred to as
balanced fairness. Observe that in any state x ̸= 0, at least one of the inequalities (12) is an equality,
which means that a network link is saturated or a flow rate limit constraint is attained. This property
characterizes balanced fairness among insensitive allocations. The following result, which is a direct
consequence of definition (25), shows that balanced fairness is also the insensitive allocation with the
minimum balance function Φ such that Φ(0) = 1.

Proposition 2 Let Φ be any positive function such that Φ(0) = 1 and the inequalities (12) are satisfied.
We have:

∀x, Φ(x) ≥ ΦBF(x).

Proof. The proof is by induction on the total number of flows n =
∑K

k=1 xk. As Φ(0) = ΦBF(0) = 1, the
inequality is satisfied for n = 0. Now assume it is satisfied for n = m, m ≥ 0. Let x be any state with
n = m + 1 total number of flows. From (12) and (25), we get:

Φ(x) ≥ max

⎛

⎝max
l

⎧
⎨

⎩
1
Cl

∑

k:l∈rk

Φ(x − ek)

⎫
⎬

⎭ , max
k:xk>0

{
1

akxk
Φ(x − ek)

}⎞

⎠

≥ max

⎛

⎝max
l

⎧
⎨

⎩
1
Cl

∑

k:l∈rk

ΦBF(x − ek)

⎫
⎬

⎭ , max
k:xk>0

{
1

akxk
ΦBF(x − ek)

}⎞

⎠ = ΦBF(x).

✷

5.2 Properties

We first characterize the stability region, then show that balanced fairness is the insensitive allocation
for which the data network is empty with the highest probability.

Theorem 3 The stability condition (13) holds for balanced fairness under the traffic conditions (3).
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Proof. From Proposition 2,

ΦSF(x)
K∏

k=1

ρxk
k ≥ ΦBF(x)

K∏

k=1

ρxk
k .

The proof then follows from the fact that the stability condition (13) holds for store and forward under
the traffic conditions (3). ✷

Proposition 3 Consider any balanced allocation which does not coincide with balanced fairness and for
which the stability condition (13) holds. The probability that the network is empty for this allocation is
lower than for balanced fairness, i.e., π(0) < πBF(0).

Proof. As the considered allocation does not coincide with balanced fairness, it follows from Proposition
2 that the corresponding balance function Φ satisfies Φ(x) ≥ ΦBF(x) for all states x, and Φ(x) > ΦBF(x)
for at least one state x. The proof then follows from (15). ✷

Finally, we give in Theorem 4 the main result of this paper: the mean flow duration is always smaller
for balanced fairness than for store and forward. Lemmas 1 and 2 as well as Theorem 4 are proved in
Appendix B.

Lemma 1 Consider a class of flow k whose route consists of a single link l and is not subject to a rate
limit, i.e., such that rk = {l} and ak = ∞. Then in any state x such that xk > 0, balanced fairness
saturates link l, that is:

∀x, xk > 0, ΦBF(x) =
1
Cl

∑

k′:l∈rk′

ΦBF(x − ek′).

Lemma 2 Consider a class of flow k whose route consists of a single link l and is not subject to a rate
limit, i.e., such that rk = {l} and ak = ∞. Then, the mean number of class-k flows is:

E[xk] =
ρk

Cl − Al
.

Theorem 4 The mean duration of a class-k flow of size s satisfies:

TBF
k (s) ≤ T SF

k (s) =
s

ak
+

∑

l∈rk

s

Cl − Al
.

Theorem 4 allows a simple conservative evaluation of the performance of balanced fairness, requiring
per-link information only. In view of Proposition 1, this approximation will typically be accurate for a
given class k when there is a clearly identified bottleneck on route rk, i.e., a link l ∈ rk such that the
so-called “residual capacity” of this link, Cl − Al, is much smaller than that of any other link on route
rk, or when the flow rate limit ak is much smaller than the residual capacity of each link l ∈ rk.

6 Application to specific network topologies

In this section, we apply the previous results to specific network topologies. Specifically, we use (25) and
(14) to evaluate the performance of balanced fairness and compare it to that of store and forward. In
all graphs below, we plot the so-called flow throughput, defined as the ratio of the size s of a flow to its
mean duration, which is independent of s in view of (16). We consider toy network topologies like lines
and trees without flow rate limit where explicit expressions can be derived, and choose traffic conditions
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where the performance of balanced fairness significantly differs from that of store and forward. In any
more realistic scenario with a large number of routes and a large spectrum of link capacities and flow rate
limits, explicit expressions can hardly be derived for balanced fairness. Numerical evaluations are always
possible, however, and the difference between the performance of both allocations is typically much less
significant (refer to [8] where an efficient recursive algorithm was developed for such complex topologies).
This highlights the interest of the simple performance bounds derived in this paper.

6.1 Lines

Figure 5: A 2-link line

We refer to a line as a network composed of L links of respective capacities C1, . . . , CL, with one L-link
route and L single-link routes. For simplicity, we assume without loss of generality that the minimum
link capacity is equal to one. Denote by ρ0 the traffic intensity on the L-link route. Under the stability
condition ρ0 + ρl < Cl for all links l, the mean duration of a flow of size s on the L-link route is given by:

TBF
0 (s) =

s

1 − ρ0
+

L∑

l=1

(
s

Cl − ρl − ρ0
− s

Cl − ρ0

)
,

while for store and forward:

T SF
0 (s) =

L∑

l=1

s

Cl − ρl − ρ0
.
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Figure 6: Performance of balanced fairness and store and forward in a homogeneous 2-link line
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Note that, in view of Lemma 2, the flow throughput on single-link routes are the same. Figure 6
below compares for a line of two unit capacity links the flow throughput on the 2-link route obtained
with balanced fairness and store and forward, when ρ0 → 0 and ρ1 = ρ2. We observe that while store
and forward gives a good approximation of balanced fairness at high load, the difference is significant
at low load. This can be explained simply by the fact that the rate of a flow on the 2-link route in the
absence of any other flow is equal to 1 for balanced fairness, 1/2 for store and forward.

6.2 Trees

We refer to a tree as a network of L = K + 1 links: a trunk of unit capacity and K branches 1, . . . , K
of respective capacities C1, . . . , CK ≤ 1, with

∑
k Ck > 1. Route rk contains the trunk and branch k,

as illustrated in Figure 7. Tree networks may represent metropolitan area networks for instance, that
consist of several multiplexing stages before access to backbone networks.

Figure 7: Tree networks

For a 2-branch tree, the mean duration of a flow of size s on branch 1 is given by:

TBF
1 (s) =

s

1 − ρ1 − ρ2
+

s

C1 − ρ1
× C1(1 − C1)(C2 − ρ2)

ρ1(1 − C1)(C2 − ρ2) + C2(C1 − ρ1)(1 − ρ2)
,

while for store and forward:
T SF

1 (s) =
s

1 − ρ1 − ρ2
+

s

C1 − ρ1
.

In Figure 8, we compare balanced fairness and store and forward on a 2-branch tree with branches of
capacities C1 = 0.1 and C2 = 1, in the case ρ1 → 0. Note that, in view of Lemma 2, the flow throughput
on route 2 is the same for both allocations. The difference in the flow throughput on route 1 decreases
with the capacity of branch 1.

6.3 A single link with different flow rate limits

Finally, we consider a single unit capacity link with different flow rate limits a1, . . . , aK < 1. It proves
difficult to derive explicit performance results for balanced fairness. For store and forward, the mean
duration of a class-k flow of size s is simply:

T SF
k (s) =

s

ak
+

s

1 − ρ
,

where ρ =
∑K

k=1 ρk denotes the link load. Figure 9 compares the the performance of balanced fairness
and store and forward for two flow rate limits, a1 = 0.01 and a2 = 0.02, in the case ρ1 = ρ2. We observe
that store and forward provides a good conservative approximation of balanced fairness.
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Figure 8: Performance of balanced fairness and store and forward in a 2-branch tree (C1 = 0.1, C2 = 1)
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Figure 9: Performance of balanced fairness and store and forward for a single link with two flow rate
limits (a1 = 0.01, a2 = 0.02)

7 Conclusion

Insensitivity is key to the development of simple and robust engineering rules for data networks. We have
characterized in Theorems 1 and 2 the class of allocations which are insensitive. Balanced fairness refers
to the most efficient allocation in this class. While the performance of balanced fairness does not depend
on detailed traffic characteristics, it is still a complex function of demand on all routes and of the capacity
of all links. This renders the exact evaluation difficult to apply for pratical purposes. The main result of
the paper, given in Theorem 4, provides a simple conservative evaluation of the performance of balanced
fairness, requiring per-link information only. In particular, links can be dimensioned independently
to meet a partial response time target. The response time in a network realizing balanced fairness is
guaranteed to be less than the sum of the partial targets on the links of a given route.

An important question that has not been addressed in this paper is how to realize a balanced fair
allocation with a distributed congestion control algorithm. Similarly, it remains to evaluate the extent to
which the performance of balanced fairness constitutes a good approximation to that realized by existing
packet-level mechanisms. Preliminary results from work in progress suggest that accuracy is good and
that the store and forward bound is a useful practical tool for dimensioning current data networks.
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Appendix

A Insensitive allocations

Proof of Theorem 1. Consider the processor sharing network introduced in §2.3 representing the data
network with Poisson flow arrivals and exponential i.i.d. flow sizes, i.e., with N = K nodes and νi/µi = ρi

for i = 1, . . . , N . We refer to this processor sharing network as the initial network. From [4, Theorem 2],
the following insensitivity property (P) implies the balance property:

(P) The invariant measures of the Markov process describing the number of customers at each node
of the initial network remain unchanged when for any node i and for any αi, 0 < αi < 1, the
exponential i.i.d. services at node i are replaced by i.i.d. services, exponentially distributed of mean
1/αi × 1/µi with probability αi, null with probability 1 − αi.

The proof then follows from the fact that each property (I1), (I2), (I3) implies property (P):

(I1)⇒(P) Consider the initial network with 2-phase services, i.e., with K additional nodes j such that
Sk = {i, j} for any class k, with modified routing probability p̃ij = αi and modified service rates
µ̃i = m × µi and µ̃j = m/(m − 1) × αiµi, for some integer m > 1. Letting m tend to infinity, this
corresponds to the initial network where the services at any node i are replaced by exponentially
distributed services of mean 1/αi × 1/µi with probability αi, null services with probability 1 − αi.

(I2)⇒(I3) Consider the initial network with K additional infinite server nodes S0 representing think-
times and for any node i ̸∈ S0, modified exogenous arrival rates ν̃i = αiνi and routing probabilities
p̃ij = 1 − αi and p̃ji = 1 for some node j ∈ S0. Letting µj tend to infinity for all j ∈ S0,
this corresponds to the initial network where the arrival rates and service rates at any node i are
multiplied by the same constant αi.

(I3)⇒(P) Consider the initial network where the arrival rates and service rates at any node i are
multiplied by the same constant αi, 0 < αi < 1. This also corresponds to the initial network with
the same arrival rates but where the services at node i are replaced by exponentially distributed
services of mean 1/αi × 1/µi with probability αi, null services with probability 1 − αi.

✷

Proof of Theorem 2. As Theorem 2 of [4] holds for any routing probabilities, we conclude as in the
proof of Theorem 1 that (I1’) implies the balance property. In the following, we prove that (I2’) implies
the balance property. It can be shown in a very similar way that (I3’) implies the balance property.

Consider an allocation for which (I2’) holds. When flow arrivals are Poisson, the data network can be
modeled as in §2.3 by a processor sharing network where phases of flows of any class k are represented
by consecutive nodes Sk ⊂ {1, . . . , N}. Any invariant measure χ of the number of customers at each
node of this network satisfies the balance equations (4). Now consider the new processor sharing network
obtained by replacing the Poisson arrivals of flows of class 1 by Poisson session arrivals with the same
flow arrival rate, where each session consists of a geometrically distributed number of flows of mean 1/α1,
for some parameter α1, 0 < α1 < 1. Letting the tink-time durations tend to zero, this simply corresponds
to the initial network with modified arrival rate ν̃1 = α1ν1 at node 1 and routing probabilities p̃i1 = α1,
p̃i = (1 − α1)pi for all nodes i ∈ S1. From the insensitivity property (I2’), χ satisfies the corresponding
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balance equations (4):

χ(y)

⎛

⎝α1ν1 +
∑

i̸∈S1

νi +
∑

i

ψi(y)µi

⎞

⎠ = χ(T1y)α1ν1 +
∑

i̸∈S1

χ(Tiy)νi

+
∑

i∈S1

(χ(T i
i+1y)ψi(T i

i+1y)µipi,i+1 + χ(T i
1y)ψi(T i

1y)µiα1) +
∑

i,j ̸∈S1

χ(T j
i y)ψj(T j

i y)µjpji

+
∑

i∈S1

χ(T iy)ψi(T iy)µi(1 − α1)pi +
∑

i̸∈S1

χ(T iy)ψi(T iy)µipi.

Letting α1 tend to zero in these equations, observing that for any i ∈ S1 and any x1,
∑

y:
∑

i′∈S1
yi′=x1

χ(y)ψi(y) =
∑

y:
∑

i′∈S1
yi′=x1

(χ(T i
i+1y)ψi(T i

i+1y)pi,i+1 + χ(T iy)ψi(T iy)pi),

we obtain:
∑

y:
∑

i′∈S1
yi′=x1

χ(y)
∑

i̸∈S1

(νi + ψi(y)µi) =
∑

i̸∈S1

∑

y:
∑

i′∈S1
yi′=x1

χ(Tiy)νi

+
∑

i,j ̸∈S1

∑

y:
∑

i′∈S1
yi′=x1

χ(T j
i y)ψj(T j

i y)µjpji +
∑

i̸∈S1

∑

y:
∑

i′∈S1
yi′=x1

χ(T iy)ψi(T iy)µipi.

Applying successively the same reasoning to flows of class 2, 3, ..., K − 1, we prove that, for any fixed
x1, . . . , xK−1, the function

∑
y:

∑
i∈Sk

yi=xk,k ̸=K χ(y) is an invariant measure for the number of customers
at nodes SK , with service capacities given by:

∀i ∈ Sk, ψi(y) =
yi

xK
φK(x), xK =

∑

i∈SK

yi.

For any fixed x1, . . . , xK−1, these service capacities are balanced by the function:
(

xK

yi, i ∈ SK

) xK−1∏

n=0

1
φK(x − neK)

.

The corresponding queueing network is a Whittle network, so that:

∑

y:
∑

i∈Sk
yi=xk,k ̸=K

χ(y) ∝
(

xK

yi, i ∈ SK

) ∏

i∈SK

ϱyi
i ×

xK−1∏

n=0

1
φK(x − neK)

.

Summing this expression over all states y such that
∑

i∈SK
yi = xK , we get:

∑

y:
∑

i∈Sk
yi=xk

χ(y) ∝ ρxK
K

xK−1∏

n=0

1
φK(x − neK)

.

In particular, the service capacity φK satisfies (9) for the balance function Φ defined by:

Φ(x) =

∑
y:

∑
i∈Sk

yi=xk
χ(y)

∏K
k=1 ρxk

k

.

By symmetry, this property holds for any class k and the allocation is balanced. ✷
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Proof of Proposition 1. From (12), we have:

∀x, xk > 0, Φ(x) ≥ Φ(x − ek)
xkak

.

Using (14), we get:
E[xk] ≥

ρk

ak
.

Similarly, we know from (12) that for any link l ∈ rk:

∀x, Φ(x) ≥ 1
Cl

∑

k′:l∈rk′

Φ(x − ek′).

Using (14), we get:

E[xk] ≥
ρk

Cl
+

1
Cl

∑

k′:l∈rk′

ρk′E[xk],

so that
E[xk] ≥

ρk

Cl − Al
.

The proof follows from (16). ✷

B Balanced fairness

Proof of Lemma 1. The proof is by induction on the number of flows not in class k, n′ =
∑

k′ ̸=k xk′ .
The equality holds for n′ = 0 as the capacity constaints reduce to that of link l. Now assume it holds for
n′ = m, m ≥ 0. Let x be any state with n′ = m + 1 flows not in class k. From (12), we get for any link
l′ ̸= l:

1
Cl

∑

k′:l∈rk′

ΦBF(x − ek′) ≥ 1
Cl

∑

k′:l∈rk′

1
Cl′

∑

k′′:l′∈rk′′

ΦBF(x − ek′ − ek′′) =
1

Cl′

∑

k′′:l′∈rk′′

ΦBF(x − ek′′).

From (25), it remains to prove that for any class k′′ ̸= k such that xk′′ > 0:
1
Cl

∑

k′:l∈rk′

ΦBF(x − ek′) ≥ 1
xk′′ak′′

ΦBF(x − ek′′).

If l ̸∈ rk′′ , we have:
1
Cl

∑

k′:l∈rk′

ΦBF(x − ek′) ≥ 1
Cl

∑

k′:l∈rk′

1
xk′′ak′′

ΦBF(x − ek′ − ek′′) =
1

xk′′ak′′
ΦBF(x − ek′′).

Otherwise, we first consider the case where xk′′ > 1:
1
Cl

∑

k′:l∈rk′

ΦBF(x − ek′) ≥ 1
Cl

1
(xk′′ − 1)ak′′

ΦBF(x − 2ek′′) +
1
Cl

∑

k′ ̸=k′′:l∈rk′

1
xk′′ak′′

ΦBF(x − ek′ − ek′′)

≥ 1
Cl

∑

k′:l∈rk′

1
xk′′ak′′

ΦBF(x − ek′ − ek′′) =
1

xk′′ak′′
ΦBF(x − ek′′).

Now if xk′′ = 1:
1
Cl

∑

k′:l∈rk′

ΦBF(x − ek′) ≥ 1
Cl

∑

k′ ̸=k′′:l∈rk′

1
ak′′

ΦBF(x − ek′ − ek′′) =
1

ak′′
ΦBF(x − ek′′).

✷
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Proof of Lemma 2. From Lemma 1,

∀x, xk > 0, ΦBF(x) =
1
Cl

∑

k′:l∈rk′

ΦBF(x − ek′).

As in the proof of Proposition 1, we get from (14):

E[xk] =
ρk

Cl
+

1
Cl

∑

k′:l∈rk′

ρk′E[xk].

✷

Proof of Theorem 4. From the insensitivity property, we can assume without loss of generality that
flows have exponential i.i.d. sizes of unit mean and arrive as independent Poisson processes of intensities
ρ1, . . . , ρK . We introduce a new class 0 that shares the same resources as class k, i.e., such that r0 = rk

and a0 = ak. The Poisson arrival process of flows of class k in the original network is splitted into two
Poisson processes, one of intensity ερk for arrivals of flows of class 0 and another of intensity (1 − ε)ρk

for arrivals of flows of class k, where ε is a fixed parameter, 0 < ε < 1. We denote by x0 the number of
flows of class 0 in progress in this new network. As balanced fairness equally shares capacity between
flows sharing the same resources, the corresponding balance function is given by:

Φ̃BF(x0, x) =
(

x0 + xk

xk

)
ΦBF(x + x0ek).

In view of Theorem 3 and expression (14), the corresponding stationary distributions satisfy:

π̃BF(x0, x) =
(

x0 + xk

xk

)
εx0(1 − ε)xkπBF(x + x0ek).

Thus the steady-state probability that an ongoing flow of class 0 or k is a flow of class 0 is equal to ε
and, in view of (16), T̃BF

0 (s) = TBF
k (s), i.e., the mean duration of a class-0 flow of size s in the modified

network is equal to that of a class-k flow of size s in the original network, independently of ε.
We now consider another balanced allocation where the capacity allocated to flows of class 0 differs

from that allocated to flows of class k. We first introduce another modified network where those classes
l ∈ rk with routes r̂l = {l} and without rate limit are added to existing classes 1, . . . , K. We also add
a class 0 which is constrained by the rate limit ak only, i.e., such that r̂0 = ∅ and â0 = ak. We denote
by Φ̂BF the balance function associated with balanced fairness in this new modified network, defined for
any state (x̂, x), where x̂ = (x̂0, x̂l, l ∈ rk) gives the number of flows of each new class. If flows of any
new class have exponential i.i.d. sizes of unit mean and arrive as independent Poisson processes of same
intensity ερk, it follows from Theorem 3 that the stability condition (13) holds in this new network under
the usual traffic conditions (3) and from Lemma 2 that:

E[x̂l] =
ερk

Cl − Al
, l ∈ rk.

Now we consider the allocation balanced by the function Φ̃ defined by:

Φ̃(x0, x) =
∑

|x̂|=x0

Φ̂BF(x̂, x). (26)
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This function satisfies the capacity constraints (12) for the first modified network where class k is splitted
into classes 0 and k. This is immediate for any link l ̸∈ rk. For any link l ∈ rk, this follows from the
inequality:

Φ̂BF(x̂, x) ≥ 1
Cl

Φ̂BF(x̂ − êl, x) +
1
Cl

∑

k′:l∈rk′

Φ̂BF(x̂, x − ek′),

where êl denotes the unit vector with 1 in the component corresponding to new class l and 0 elsewhere,
and the equality: ∑

|x̂|=x0

Φ̂BF(x̂ − êl, x) =
∑

|x̂|=x0−1

Φ̂BF(x̂, x).

Similarly, the rate limit constraint on class 0 follows from the fact that for any x0 > 0:

Φ̂BF(x̂, x) ≥ 1
x̂0ak

Φ̂BF(x̂ − ê0, x) ≥ 1
x0ak

Φ̂BF(x̂ − ê0, x), 0 < x̂0 ≤ x0,

and ∑

|x̂|=x0

Φ̂BF(x̂ − ê0, x) =
∑

|x̂|=x0−1

Φ̂BF(x̂, x).

We deduce from the above properties that the stability condition (13) holds for this allocation under the
usual traffic conditions (3) and:

E[x0] = E[|x̂|] =
ερk

ak
+

∑

l∈rk

ερk

Cl − Al
.

In view of (16) and (24), T̃0(s) = T SF
k (s), i.e., the mean duration of a class-0 flow in the first modified

network for the allocation balanced by Φ̃ is equal to the mean duration of a class-k flow of size s in the
original network for the store and forward allocation, independently of ε.

To conclude the proof, we use Proposition 2:

∀x0, x, Φ̃(x0, x) ≥ Φ̃BF(x0, x).

It follows from (14) that the corresponding stationary distributions satisfy:

∀x0, x,
π̃(x0, x)
π̃ε(0)

≥ π̃BF(x0, x)
π̃BF(0)

,

where

π̃ε(0) =

(
∑

x0,x

(ερk)x0(1 − ε)xkΦ̃(x0, x)
K∏

k′=1

ρ
xk′
k′

)−1

and π̃BF(0) =

(
∑

x

ΦBF(x)
K∏

k′=1

ρ
xk′
k′

)−1

.

We deduce from (16) that
T̃0(s)
π̃ε(0)

≥ T̃BF
0 (s)

π̃BF(0)
.

The proof then follows from the fact that limε→0 π̃ε(0) = π̃BF(0). ✷
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