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Abstract

In this article, one gives a classification of the solutions to the one di-
mensional nonlinear focusing Schrödinger equation (NLS) by considering
the modulus of the solutions in the (x, t) plan in the cases of orders 3
and 4. For this, we use a representation of solutions to NLS equation as
a quotient of two determinants by an exponential depending on t. This
formulation gives in the case of the order 3 and 4, solutions with respec-
tively 4 and 6 parameters. With this method, beside Peregrine breathers,
we construct all characteristic patterns for the modulus of solutions, like
triangular configurations, ring and others.

1



1 Introduction

The rogue waves phenomenon currently
exceed the strict framework of the study
of ocean’s waves [1, 2, 3, 4] and play a
significant role in other fields; in non-
linear optics [5, 6], Bose-Einstein con-
densate [7], superfluid helium [8], at-
mosphere [9], plasmas [10], capillary
phenomena [11] and even finance [12].
In the following, we consider the one
dimensional focusing nonlinear equa-
tion of Schrödinger (NLS) to describe
the phenomena of rogue waves. The
first results concerning the NLS equa-
tion date from the Seventies. Precisely,
in 1972 Zakharov and Shabat solved
it using the inverse scattering method
[13, 14]. The case of periodic and al-
most periodic algebro-geometric solu-
tions to the focusing NLS equation were
first constructed in 1976 by Its and Kotl-
yarov [15, 16]. The first quasi rational
solutions of NLS equation were con-
structed in 1983 by Peregrine [17]. In
1986 Akhmediev, Eleonskii and Kula-
gin obtained the two-phase almost pe-
riodic solution to the NLS equation and
obtained the first higher order analogue
of the Peregrine breather[18, 19, 20].
Other analogues of the Peregrine brea-
thers of order 3 and 4 were constructed
in a series of articles by Akhmediev et
al. [21, 22, 23] using Darboux trans-
formations.
The present paper presents multi-para-
metric families of quasi rational solu-
tions of NLS of order N in terms of de-
terminants of order 2N dependent on
2N − 2 real parameters.
The aim of this paper is to try to dis-
tinguish among all the possible confi-
gurations obtained by different choices
of parameters, one those which have a
characteristic in order to try to give a
classification of these solutions.

2 Expression of solu-

tions of NLS equa-

tion in terms of a ra-

tio of two determi-

nants

We consider the focusing NLS equation

ivt + vxx + 2|v|2v = 0. (1)

To solve this equation, we need to con-
struct two types of functions fj,k and
gj,k depending on many parameters. Be-
cause of the length of their expressions,
one defines the functions fν,µ and gν,µ
of argument Aν and Bν only in the ap-
pendix.
We have already constructed solutions
of equation NLS in terms of determi-
nants of order 2N which we call solu-
tion of order N depending on 2N − 2
real parameters. It is given in the fol-
lowing result [24, 25, 26, 27] :

Theorem 2.1 The functions v defined
by

v(x, t) =
det((njk)j,k∈[1,2N ])

det((djk)j,k∈[1,2N ])
e2it−iϕ (2)

are quasi-rational solution of the NLS
equation (1) depending on 2N − 2 pa-
rameters ãj, b̃j, 1 ≤ j ≤ N − 1, where

nj1 = fj,1(x, t, 0),

njk =
∂2k−2fj,1
∂ǫ2k−2 (x, t, 0),

njN+1 = fj,N+1(x, t, 0),

njN+k =
∂2k−2fj,N+1

∂ǫ2k−2 (x, t, 0),
dj1 = gj,1(x, t, 0),

djk =
∂2k−2gj,1
∂ǫ2k−2 (x, t, 0),

djN+1 = gj,N+1(x, t, 0),

djN+k =
∂2k−2gj,N+1

∂ǫ2k−2 (x, t, 0),
2 ≤ k ≤ N, 1 ≤ j ≤ 2N

(3)
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The functions f and g are defined in
(9),(10), (11), (12).

3 Patterns of quasi ra-

tional solutions to the

NLS equation

The solutions vN to NLS equation (2)
of order N depending on 2N − 2 pa-
rameters ãj , b̃j (for 1 ≤ j ≤ N − 1)
has been already explicitly constructed
and can be written as

vN (x, t) =
n(x, t)

d(x, t)
exp(2it)

= (1−αN

GN (2x, 4t) + iHN (2x, 4t)

QN (2x, 4t)
)e2it

with

GN (X,T ) =
∑N(N+1)

k=0 gk(T )X
k,

HN (X,T ) =
∑N(N+1

k=0 hk(T )X
k,

QN (X,T ) =
∑N(N+1

k=0 qk(T )X
k.

For order 3 these expressions can be
found in [28]; in the case of order 4,
they can be found in [29]. In the fol-
lowing, based on these analytic expres-
sions, we give a classification of these
solutions by means of patterns of their
modulus in the plane (x; t).

3.1 Patterns of quasi ratio-

nal solutions of order 3

with 4 parameters

3.1.1 P3 breather

If we choose all parameters equal to 0,
ã1 = b̃1 = . . . = ãN−1 = b̃N−1 = 0, we
obtain the classical Peregrine breather
given by

Figure 1: Solution P3 to NLS, N=3,
ã1 = b̃1 = ã2 = b̃2 = 0.

3.1.2 Triangles

To shorten, the following notations are
used : for example the sequence 1A3+
1T3 means that the structure has one
arc of 3 peaks and one triangle of 3
peaks.
If we choose ã1 or b̃1 not equal to 0
and all other parameters equal to 0, we
obtain triangular configuration with 6
peaks.

Figure 2: Solution 1T6 to NLS, N=3,
ã1 = 104, b̃1 = 0, ã2 = 0, b̃2 = 0.
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Figure 3: Solution 1T6 to NLS, N=3,
ã1 = 0, b̃1 = 104, ã2 = 0, b̃2 = 0.

3.1.3 Rings

If we choose ã2 or b̃2 not equal to 0, all
other parameters equal to 0, we obtain
ring configuration with peaks.

Figure 4: Solution 1R5 + 1 to NLS,
N=3, ã1 = 0, b̃1 = 0, ã2 = 106, b̃2 = 0.

Figure 5: Solution 1R5 + 1 to NLS,
N=3, ã1 = 0, b̃1 = 0, ã2 = 0, b̃2 = 105.

3.1.4 Arcs

If we choose ã1 and ã2 not equal to
0 and all other parameters equal to 0

(and vice versa, b̃1 and b̃2 not equal to
0 and all other parameters equal to 0),
we obtain deformed triangular config-
uration which can call arc structure.

Figure 6: Solution 1A3 + 1T3 to NLS,
N=3, ã1 = 0, b̃1 = 104, ã2 = 0, b̃2 =
5× 106.

Figure 7: Solution 1A3 + 1T3 to NLS,
N=3, ã1 = 106, b̃1 = 0, ã2 = 1010,
b̃2 = 0.

3.2 Patterns of quasi ratio-

nal solutions of order 4

with 6 parameters

3.2.1 P4 breather

If we choose all parameters equal to 0,
ã1 = b̃1 = . . . = ãN−1 = b̃N−1 = 0, we
obtain the classical Peregrine breather
given in the following figure
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Figure 8: Solution P4 to NLS, N=4,
ã1 = b̃1 = ã2 = b̃2 = ã3 = b̃3 = 0.

3.2.2 Triangles

To shorten, we use the notations de-
fined in the previous section.
If we choose ã1 or b̃1 not equal to 0
and all other parameters equal to 0, we
obtain triangular configuration with 10
peaks.

Figure 9: Solution 1T10 to NLS, N=4,
ã1 = 103, b̃1 = 0, ã2 = 0, b̃2 = 0,
ã3 = 0, b̃3 = 0.

3.2.3 Rings

If we choose ã2 or ã3 not equal to 0
and all other parameters equal to 0 (or
vice versa b̃2 or b̃3 not equal to 0 and
all other parameters equal to 0), we ob-
tain ring configuration with 10 peaks.

Figure 10: Solution 2R5/5 to NLS,
N=4, ã1 = 0, b̃1 = 0, ã2 = 105, b̃2 = 0,
ã3 = 0, b̃3 = 0.

Figure 11: Solution 1R7 + P2 to NLS,
N=4, ã1 = 0, b̃1 = 0, ã2 = 0, b̃2 = 0,
ã3 = 108, b̃3 = 0.

3.2.4 Arcs

If we choose two parameters non equal
to 0, ã1 and ã2, or ã1 and ã3 not equal
to 0, or ã2 and ã3 and all other pa-
rameters equal to 0 (or vice versa for
parameters b), we obtain arc configu-
ration with 10 peaks1.

Figure 12: Solution 2A3/4I + T3 to
NLS, N=4, ã1 = 103, b̃1 = 0, ã2 = 106,
b̃2 = 0, ã3 = 0, b̃3 = 0.

1In the following notations 2A4/3I, I

meaning Reversed
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Figure 13: Solution 2A3/4I + T3 to
NLS, N=4, ã1 = 103, b̃1 = 0, ã2 = 106,
b̃2 = 0, ã3 = 0, b̃3 = 0, sight top.

Figure 14: Solution 2A4/3 + 1T3 to
NLS, N=4, ã1 = 103, b̃1 = 0, ã2 = 0,
b̃2 = 0, ã3 = 5× 107, b̃3 = 0.

Figure 15: Solution 2A4/3 + 1T3 to
NLS, N=4, ã1 = 103, b̃1 = 0, ã2 = 0,
b̃2 = 0, ã3 = 5× 107, b̃3 = 0, sight top.

Figure 16: Solution 2A3/4 + 1T3 to
NLS, N=4, ã1 = 0, b̃1 = 0, ã2 = 106,
b̃2 = 0, ã3 = 3× 108, b̃3 = 0.

Figure 17: Solution 2A3/4 + 1T3 to
NLS, N=4, ã1 = 0, b̃1 = 0, ã2 = 106,
b̃2 = 0, ã3 = 3× 108, b̃3 = 0, sight top.

3.2.5 Triangles inside rings

If we choose three parameters non equal
to 0, ã1, ã2 and ã3 and all other param-
eters equal to 0 (or vice versa for pa-
rameters b), we obtain ring with inside
triangle.

Figure 18: Solution 1A7+1T3 to NLS,
N=4, ã1 = 103, b̃1 = 0, ã2 = 103, b̃2 =
0, ã3 = 109, b̃3 = 0.
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Figure 19: Solution 1A7+1T3 to NLS,
N=4, ã1 = 103, b̃1 = 0, ã2 = 103, b̃2 =
0, ã3 = 109, b̃3 = 0, sight top.

4 Conclusion

We recall one more time that the solu-
tions at order 3 and 4 to the equation
NLS dependent on 4 and 6 parameters
were given for the first time by V.B.
Matveev [49]. The solutions and their
deformations presented here by the au-
thors were built later by a completely
different method [28], [29].
We have presented here patterns of mo-
dulus of solutions to the NLS focusing
equation in the (x, t) plane.
These study can be useful at the same
time for hydrodynamics as well for non-
linear optics; many applications in these
fields have been realized, as it can be
seen in recent works of Chabchoub et
al. [50] or Kibler et al. [51].
This study try to bring all possible types
of patterns of quasi rational solutions
to the NLS equation.
We see that we can obtain 2N−1 diffe-
rent structures at the order N .
Parameters a or b give the same type
of structure. For a1 6= 0 (and other pa-
rameters equal to 0), we obtain trian-
gular rogue wave; for aj 6= 0 (j 6= 1 and
other parameters equal to 0) we get
ring rogue wave; in the other choices
of parameters, we get in particular arc
structures (or claw structure).
This type of study have been realized

in preceding works. Akhmediev et al
study the order N = 2 in [52], N = 3
in [53]; the case N = 4 was studied in
particular (N = 5, 6 were also stud-
ied) in [54, 55] showing triangle and
arc patterns; only one type of ring was
presented. The extrapolation was done
until the order N = 9 in [56]. Ohta
and Yang [57] presented the study of
the case cas N = 3 with rings and tri-
angles. Recently, Ling and Zhao [58]
presented the cases N = 2, 3, 4 with
rings, triangle and also claw structures.
In the present study, one sees appear-
ing richer structures, in particular the
appearance of a triangle of 3 peaks in-
side a ring of 7 peaks in the case of
order N = 4; to the best of my knowl-
edge, it is the first time that this con-
figuration for order 4 is presented.
In this way, we try to bring a better
understanding to the hierarchy of NLS
rogue wave solutions.
It will be relevant to go on this study
with higher orders.
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Appendix

Parameters and functions

We consider the terms λν satisfying the
relations for 1 ≤ j ≤ N

0 < λj < 1, λN+j = −λj ,
λj = 1− 2ǫ2j2,

with ǫ a small number intended to tend
towards 0.
The terms κν , δν , γν are functions of
the parameters λν , 1 ≤ ν ≤ 2N . They
are given by the following equations,
for 1 ≤ j ≤ N :

κj = 2
√

1− λ2
j , δj = κjλj ,

γj =
√

1−λj

1+λj
,

(4)

κN+j = κj , δN+j = −δj ,
γN+j = 1/γj .

(5)

The terms xr,ν r = 3, 1 are defined by

xr,j = (r − 1) ln
γj−i

γj+i
,

xr,N+j = (r − 1) ln
γN+j−i

γN+j+i
.

(6)

The parameters eν are given by

ej = iaj − bj , eN+j = iaj + bj , (7)

where aj and bj are chosen in the form

aj =
∑N−1

k=1 ãkǫ
2k+1j2k+1,

bj =
∑N−1

k=1 b̃kǫ
2k+1j2k+1,

1 ≤ j ≤ N,

(8)

with ãj , b̃j ,, 1 ≤ j ≤ N − 1, 2N − 2,
arbitrary real numbers.
The functions fν,1 and gν,1, 1 ≤ ν ≤ N
are defined by (here k = 1) :

f4j+1,1 = γ4j−1
k sinA1,

f4j+2,1 = γ4j
k cosA1,

f4j+3,1 = −γ4j+1
k sinA1,

f4j+4,1 = −γ4j+2
k cosA1,

(9)

f4j+1,N+1 = γ2N−4j−2
k cosAN+1,

f4j+2,N+1 = −γ2N−4j−3
k sinAN+1,

f4j+3,N+1 = −γ2N−4j−4
k cosAN+1,

f4j+4,N+1 = γ2N−4j−5
k sinAN+1,

(10)

g4j+1,1 = γ4j−1
k sinB1,

g4j+2,1 = γ4j
k cosB1,

g4j+3,1 = −γ4j+1
k sinB1,

g4j+4,1 = −γ4j+2
k cosB1,

(11)

g4j+1,N+1 = γ2N−4j−2
k cosBN+1,

g4j+2,N+1 = −γ2N−4j−3
k sinBN+1,

g4j+3,N+1 = −γ2N−4j−4
k cosBN+1,

g4j+4,N+1 = γ2N−4j−5
k sinBN+1.

(12)

The argumentsAν andBν of these func-
tions are defined by 1 ≤ ν ≤ 2N :

Aν = κνx/2 + iδνt− ix3,ν/2− ieν/2,
Bν = κνx/2 + iδνt− ix1,ν/2− ieν/2.
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