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Abstract

Remote sensing observations meet some limitations when used to study

the bulk atmospheric composition of the giant planets of our solar system.

A remarkable example of the superiority of in situ probe measurements is il-

lustrated by the exploration of Jupiter, where key measurements such as the

determination of the noble gases abundances and the precise measurement

of the helium mixing ratio have only been made available through in situ
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measurements by the Galileo probe. This paper describes the main scientific

goals to be addressed by the future in situ exploration of Saturn placing the

Galileo probe exploration of Jupiter in a broader context and before the fu-

ture probe exploration of the more remote ice giants. In situ exploration of

Saturn’s atmosphere addresses two broad themes that are discussed through-

out this paper: first, the formation history of our solar system and second, the

processes at play in planetary atmospheres. In this context, we detail the rea-

sons why measurements of Saturn’s bulk elemental and isotopic composition

would place important constraints on the volatile reservoirs in the protosolar

nebula. We also show that the in situ measurement of CO (or any other dise-

quilibrium species that is depleted by reaction with water) in Saturn’s upper

troposphere would constrain its bulk O/H ratio. We compare predictions of

Jupiter and Saturn’s bulk compositions from different formation scenarios,

and highlight the key measurements required to distinguish competing theo-

ries to shed light on giant planet formation as a common process in planetary

systems with potential applications to most extrasolar systems. In situ mea-

surements of Saturn’s stratospheric and tropospheric dynamics, chemistry

and cloud-forming processes will provide access to phenomena unreachable to

remote sensing studies. Different mission architectures are envisaged, which

would benefit from strong international collaborations, all based on an en-

try probe that would descend through Saturn’s stratosphere and troposphere

under parachute down to a minimum of 10 bars of atmospheric pressure. We

finally discuss the science payload required on a Saturn probe to match the

measurement requirements.
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1. Introduction

Giant planets contain most of the mass and the angular momentum of

our planetary system and must have played a significant role in shaping its

large scale architecture and evolution, including that of the smaller, inner

worlds (Gomes et al., 2005). Furthermore, the formation of the giant planets

affected the timing and efficiency of volatile delivery to the Earth and other

terrestrial planets (Chambers and Wetherill, 2001). Therefore, understand-

ing giant planet formation is essential for understanding the origin and evo-

lution of the Earth and other potentially-habitable environments throughout

our solar system. The origin of the giant planets, their influence on planetary

system architectures, and the plethora of physical and chemical processes at

work within their atmospheres, make them crucial destinations for future

exploration. Because Jupiter and Saturn have massive envelopes essentially

composed of hydrogen and helium and (possibly) a relatively small core, they

are called gas giants. Meanwhile, Uranus and Neptune also contain hydro-

gen and helium atmospheres but, unlike Jupiter and Saturn, their H2 and He

mass fractions are smaller (5 to 20%). They are called ice giants because their

density is consistent with the presence of a significant fraction of ices/rocks

in their interiors. Despite this apparent grouping into two classes of giant

planets, the four giant planets likely exist on a continuum, each a product of

the particular characteristics of their formation environment. Comparative

planetology of the four giants in the solar system is therefore essential to
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reveal the potential formational, migrational, and evolutionary processes at

work during the early evolution of the early solar nebula.

Much of our understanding of the origin and evolution of the outer planets

comes from remote sensing by necessity. However, the efficiency of this tech-

nique has limitations when used to study the bulk atmospheric composition

that is crucial to the understanding of planetary origin, namely due to degen-

eracies between the effects of temperatures, clouds and abundances on the

emergent spectra, but also due to the limited vertical resolution. In addition,

many of the most common elements are locked away in a condensed phase in

the upper troposphere, hiding the main volatile reservoir from the reaches of

remote sensing. It is only by penetrating below the “visible” weather layer

that we can sample the deeper troposphere where those most common ele-

ments are well mixed. A remarkable example of the superiority of in situ

probe measurements is illustrated by the exploration of Jupiter, where key

measurements such as the determination of the noble gases abundances and

the precise measurement of the helium mixing ratio have only been possible

through in situ measurements by the Galileo probe (Owen et al., 1999).

The Galileo probe measurements provided new insights into the formation

of the solar system. For instance, they revealed the unexpected enrichments

of Ar, Kr and Xe with respect to their solar abundances, which suggested that

the planet accreted icy planetesimals formed at temperatures possibly as low

as 20–30 K to allow the trapping of these noble gases. Another remarkable

result was the determination of the Jovian helium abundance using a dedi-

cated instrument aboard the Galileo probe (von Zahn et al., 1998) with an

accuracy of 2%. Such an accuracy on the He/H2 ratio is impossible to derive
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from remote sensing, irrespective of the giant planet being considered, and

yet precise knowledge of this ratio is crucial for the modelling of giant planet

interiors and thermal evolution. The Voyager mission has already shown that

these ratios are far from being identical, which presumably results from slight

differences in their histories at different heliocentric distances. An important

result also obtained by the mass spectrometer onboard the Galileo probe was

the determination of the 14N/15N ratio, which suggested that nitrogen present

in Jupiter today originated from the solar nebula essentially in the form of

N2 (Owen et al., 2001). The Galileo science payload unfortunately could not

probe to pressure levels deeper than 22 bars, precluding the determination

of the H2O abundance at levels representative of the bulk oxygen enrichment

of the planet. Furthermore, the probe descended into a region depleted in

volatiles and gases by unusual “hot spot” meteorology (Orton et al., 1998;

Wong et al., 2004), and therefore its measurements are unlikely to represent

the bulk planetary composition. Nevertheless, the Galileo probe measure-

ments were a giant step forward in our understanding of Jupiter. However,

with only a single example of a giant planet measurement, one must wonder

whether from the measured pattern of elemental and isotopic enrichments,

the chemical inventory and formation processes at work in our solar system

are truly understood. In situ exploration of giant planets is the only way

to firmly characterize the planet compositions in the solar system. In this

context, a Saturn probe is the next natural step beyond Galileo’s in situ ex-

ploration of Jupiter, the remote investigation of its interior and gravity field

by the JUNO mission, and the Cassini spacecraft’s orbital reconnaissance of

Saturn.
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In situ exploration of Saturn’s atmosphere addresses two broad themes.

First, the formation history of our solar system and second, the processes at

play in planetary atmospheres. Both of these themes are discussed through-

out this paper. Both themes have relevance far beyond the leap in under-

standing gained about an individual giant planet: the stochastic and posi-

tional variances produced within the solar nebula, the depth of the zonal

winds, the propagation of atmospheric waves, the formation of clouds and

hazes and disequilibrium processes of photochemistry and vertical mixing are

common to all planetary atmospheres, from terrestrial planets to gas and ice

giants and from brown dwarfs to hot exoplanets.

This paper describes the main scientific goals to be addressed by the

future in situ exploration of Saturn placing the Galileo probe exploration

of Jupiter in a broader context and before the future in situ exploration of

the more remote ice giants. These goals will become the primary objectives

listed in the forthcoming Saturn probe proposals that we intent to submit in

response to future opportunities within both ESA and NASA. Section 2 is de-

voted to a comparison between known elemental and isotopic compositions of

Saturn and Jupiter. We describe the different formation scenarios that have

been proposed to explain Jupiter’s composition and discuss the key measure-

ments at Saturn that would allow disentangling these interpretations. We

also demonstrate that the in situ measurement of CO (or any other disequi-

librium species that is depleted by reaction with water) at Saturn could place

limits on its bulk O/H ratio. In Section 3, we discuss the motivation for the

in situ observation of the atmospheric processes (dynamics, chemistry and

cloud formation) at work in Saturn’s atmosphere. Section 4 is dedicated to a
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short description of the mission designs that can be envisaged. In Section 5,

we provide a description of high-level specifications for the science payload.

Conclusions are given in Section 6.

2. Elemental and Isotopic Composition as a Window on Saturn’s

Formation

The giant planets in the solar system formed 4.55 Gyr ago from the same

material that engendered the Sun and the entire solar system. The envelopes

of giant planets are dominated by hydrogen and helium, the two most abun-

dant elements in the Universe. Protoplanetary disks, composed of gas and

dust, are almost ubiquitous when stars form, but their typical lifetimes do

not exceed a few million years. This implies that the gas giants Jupiter and

Saturn had to form rapidly to capture their hydrogen and helium envelopes,

more rapidly than the tens of millions of years needed for terrestrial planets

to reach their present masses. Due to formation at fairly large radial dis-

tances from the Sun, where the solid surface density is low, the ice giants

Uranus and Neptune had longer formation timescales (slow growth rates)

and did not manage to capture large amounts of hydrogen and helium before

the disk gas dissipated. As a result, the masses of their gaseous envelopes

are small compared to their ice/rock cores.

A comparative study of the properties of these giant planets thus gives

information on spatial gradients in the physical/chemical properties of the

solar nebula as well as on stochastic effects that led to the formation of the

solar system. Data on the composition and structure of the giant planets,

which hold more than 95% of the non-solar mass of the solar system, remain
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scarce, despite the importance of such knowledge. The formation of giant

planets is now largely thought to have taken place via the core accretion

model in which a dense core is first formed by accretion and the hydrogen-

helium envelope is captured after a critical mass is reached (Mizuno, 1980;

Pollack et al., 1996). When the possibility of planet migration is included

(Lin and Papaloizou, 1986; Ward, 1997), such a model can explain the or-

bital properties of exoplanets, although lots of unresolved issues remain (Ida

and Lin, 2004; Mordasini et al., 2012). However, an alternative scenario

for the formation of giant planets is the disk instability model (Boss, 1997,

2001), in which the giant planets form from the direct contraction of a gas

clump resulting from local gravitational instability in the disk. In principle,

measurements of atmospheric bulk elemental enrichments and isotopic ratios

would help us to distinguish between these competing formation scenarios.

Formation and evolution models indicate that the total mass of heavy

elements present in Jupiter may be as high as 42 M⊕, whereas the mass of

the core is estimated to range between 0 and 13 M⊕ (Saumon and Guillot,

2004). In the case of Saturn, the mass of heavy elements can be as large as

35 M⊕ with a mass varying between 0 and 10 M⊕ in the envelope and the

core mass ranging between 0 and 20 M⊕ (Helled and Guillot, 2013). Direct

access to heavy materials within giant planet cores to constrain these models

is impossible, so we must use the composition of the well-mixed troposphere

to infer the properties of the deep interiors. It is difficult for remote sounding

to provide the necessary information because of a lack of sensitivity to the

atmospheric compositions beneath the cloudy, turbulent and chaotic weather

layer. These questions must be addressed by in situ exploration, even if the
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NASA JUNO mission will try to address them remotely.

The availability of planetary building blocks (metals, oxides, silicates,

ices) is expected to vary with position within the original nebula, from re-

fractories in the warm inner nebula to a variety of ices of water, CH4, CO,

NH3, N2 and other simple molecules in the cold outer nebula. Turbulent

radial mixing, and the evolution of the pressure-temperature gradient in the

disk could have led to distinct regions where some species dominated over

others (e.g., the water ice snowline or N2 over NH3). Furthermore, both in-

ward and outward migration of the giants during their evolution could have

provided access to different material reservoirs at different epochs. A giant

planet’s bulk composition therefore depends on the timing and location of

planet formation, subsequent migration and the delivery mechanisms for the

heavier elements. By measuring a giant planet’s chemical inventory, and

contrasting it with measurements of (i) other giant planets, (ii) primitive

materials found in comets and asteroids, and (iii) the elemental abundances

of our parent star and the local interstellar medium, we can reveal much

about the conditions at work during the formation of our planetary system.

It should be noted, however, that when atmospheric measurements are

used to infer the planetary composition and reveal information on the planet’s

origin, one has to assume that the atmospheric composition represents the

bulk planetary composition. This is a fairly good assumption if the mea-

surements probe the convective region, and if the planet is fully convective.

Within a fully convective planet the materials are expected to be homoge-

neously mixed, and therefore, we do not expect large differences in composi-

tion with depth. However, if the planet is not fully convective and homoge-
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neously mixed, the information of its atmospheric composition cannot solely

be used to infer the bulk composition.

In the case of Saturn (as well as Jupiter) compositional inhomogeneities

can be the outcome of the formation process (e.g. Pollack et al., 1996) and/or

the erosion of a primordial core that could mix with the surrounding metallic

hydrogen (Guillot, 2004; Wilson and Militzer, 2011, 2012). In addition, it is

possible that double diffusive convection occurs in the interiors of giant plan-

ets (e.g. Leconte and Chabrier, 2012, 2013). If a molecular weight gradient is

maintained throughout the planetary envelope, double-diffusive convection

would take place, and the thermal structure would be very different from the

one that is generally assumed using adiabatic (i.e., fully convective) models,

with much higher center temperatures and a larger fraction of heavy ele-

ments. In this case, the planetary composition can vary substantially with

depth and therefore, a measured composition of the envelope would not rep-

resent the overall composition. While standard interior models of Saturn

assumed three layers and similar constraints in terms of the helium to hy-

drogen ratio, they can differ in the assumption on the distribution of heavy

elements within the planetary envelope. While Guillot and collaborators (e.g.

Saumon and Guillot, 2004; Helled and Guillot, 2013) assume homogeneous

distribution of heavy elements apart from helium, which is depleted in the

outer envelope due to helium rain (a process that seems to be related also to

neon depletion), interior structure models by Nettelmann and collaborators

(Fortney and Nettelmann, 2010; Nettelmann et al., 2013) allow the abun-

dance of heavy elements to be discontinuous between the molecular and the

metallic envelope. At present, it is not clear whether there should be a dis-
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continuity in the composition of heavy elements, and this question remains

open.

2.1. Jupiter and Saturn’s Composition

The abundances and isotopic ratios of most significant volatiles measured

at Jupiter and Saturn are given in Tables 1 and 2. We refer the reader to the

papers of Atreya et al. (2003), Teanby et al. (2006) and Fletcher et al. (2012)

for a more exhaustive list of disequilibrium species identified (or for other

minor species presumably identified) in Jupiter’s and Saturn’s atmospheres.

Only upper limits on the abundances of hydrogen halides have been derived

from the remote detection of these species in Saturn’s atmosphere, implying

the need of a probe to get improved in situ measurements.

The abundances of CH4, NH3, H2O, H2S, Ne, Ar, Kr and Xe have been

measured by the Galileo Probe Mass Spectrometer (GPMS) in Jupiter’s at-

mosphere (Mahaffy et al., 2000; Wong et al., 2004). The value of H2O abun-

dance reported for Jupiter in Table 1 corresponds to the deepest measurement

made by the probe (at 17.6–20.9 bar) and is probably much smaller than the

planet’s bulk water abundance, which remains unknown (Atreya et al., 2003;

Wong et al., 2004). The Juno mission, which will arrive at Jupiter in 2016,

may provide an estimate of the tropospheric O/H ratio. The He abundance

in Jupiter has also been measured in situ by a Jamin-Mascart interferome-

ter aboard the Galileo probe (Helium Abundance Detector; hereafter HAD)

with a better accuracy level than the GPMS instrument (von Zahn et al.,

1998). PH3 is the only species of our list of Jupiter measurements whose

abundance has been determined remotely by the Cassini Composite Infrared

Spectrometer (CIRS) during the spacecraft 2000–2001 encounter (Fletcher et
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al., 2009a). PH3 is a disequilibrium species at its sampling level in Jupiter’s

atmosphere (see Sec. 3), implying that its bulk abundance is probably higher

than the measured one. Isotopic measurements presented for Jupiter in Ta-

ble 2 have also been performed by the GPMS instrument aboard the Galileo

probe (Niemann et al., 1996, 1998; Mahaffy et al., 2000; Atreya et al., 2003;

Wong et al., 2004).

In the case of Saturn, only the abundances of CH4, PH3, NH3 and H2O,

and indirectly that of H2S, have been measured. The abundance of CH4

has been determined from the analysis of high spectral resolution observa-

tions from CIRS (Fletcher et al., 2009b). Similarly to Jupiter, PH3 has been

determined remotely in Saturn from Cassini/CIRS observations at 10 µm

(Fletcher et al., 2009a). Other measurements of PH3 have been made from

ground based observations at 5 µm (de Graauw et al., 1997), but the spectral

line data at these wavelengths is less robust and accurate than those at 10

µm. There is also a degeneracy with the location, extent, opacity of Sat-

urn’s clouds at 5 µm which is not apparent at 10 µm. Moreover, considering

the fact that there is also terrestrial contamination in the 5 µm window for

groundbased observations and that the scattered sunlight may contribute at

5 µm, this leads us to believe that the data at 10 µm are more reliable. Inter-

estingly, we note that PH3 is easier to detect on Saturn compared to Jupiter

because this molecule dominates the upper tropospheric chemistry and am-

monia is locked away at deeper levels. The NH3 abundance is taken from

the range of values derived by Fletcher et al. (2011) who analyzed Saturn’s

tropospheric composition from Cassini/VIMS 4.6–5.1 µm thermal emission

spectroscopy. This determination is probably more reliable than those made
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in the microwave domain because of the absence of spectral lines at these

wavelengths (Briggs and Sackett, 1989; Laraia et al., 2013). Tropospheric

H2O has been inferred in Saturn via the Short Wavelength Spectrometer In-

strument onboard the Infrared Space Observatory (ISO-SWS) (de Graauw

et al., 1997). However, H2O is unsaturated at this altitude (∼3 bar level),

implying that its bulk abundance is higher than the measured one. The H2S

abundance is quoted from the indirect determination of Briggs and Sackett

(1989) who investigated the influence of models of NH3-H2S-H2O cloud decks

on Saturn’s atmospheric opacity at microwave wavelengths. The He abun-

dance in Saturn’s atmosphere derives from a reanalysis of Voyager’s infrared

spectrometer (IRIS) measurements (Conrath and Gautier, 2000). The only

isotopic ratios measured in Saturn are D/H in H2 (determination from ISO-

SWS, Lellouch et al., 2001) and 12C/13C in CH4 (Cassini/CIRS observations,

Fletcher et al., 2009b).

Table 3 summarizes the enrichments in volatiles relative to protosolar

values observed in Jupiter and Saturn. Note that protosolar abundances are

different from present-day solar photospheric abundances because elements

heavier than He are settling out of the photosphere over time. This mecha-

nism leads to a fractionation of heavy elements relative to hydrogen in the

solar photosphere, requiring the use of correction terms to retrieve the pro-

tosolar abundances (Asplund et al., 2009). For the sake of information, the

protosolar elemental abundances used in our calculations are detailed in Ta-

ble 4. C, N, P, S, Ar, Kr and Xe are all found enriched by a factor ∼2 to 4

in Jupiter. On the other hand, C, N and P (the only heavy elements a priori

reliably measured) are found enriched by factors of ∼10, 0.5–5 and 11.5 in
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Saturn. Helium is depleted compared to protosolar values in the two giants

because of its condensation into droplets that “rain out” in the giant plan-

ets deep interiors (Stevenson and Salpeter, 1977a,b; Fortney and Hubbard,

2003). The solution of neon in those droplets (Wilson and Militzer, 2010)

would also explain its apparent depletion in Jupiter but a similar measure-

ment has never been possible on Saturn. As mentioned above, oxygen is also

depleted compared to protosolar in the Jovian atmosphere but this measure-

ment results from the fact that the Galileo probe entry site was an unusually

dry meteorological system. As a result, the probe did not measure the deep,

well-mixed water mixing ratio (Wong et al., 2004), which is predicted to be

supersolar (Stevenson and Lunine, 1988; Gautier et al., 2001; Hersant et al.,

2004; Alibert et al., 2005; Mousis et al., 2009, 2012).

2.2. Indirect Determination of Saturn’s O/H Ratio

One of the main objectives of Saturn’s in situ exploration is the mea-

surement of the H2O abundance. However, depending on the O/H elemental

enrichment (Atreya et al., 1999), H2O is predicted to condense in the 12.6–

21 bar range and may remain out of reach for the probe we consider in this

paper that would be limited to ∼10 bar (see Sec. 4). Several disequilib-

rium species, like CO, can provide useful constraints on Saturn’s deep H2O

abundance. The upper tropospheric mole fraction of CO is representative

of the H2O abundance in the deep hot troposphere, where the two species

are in thermochemical equilibrium (Fegley and Lodders, 1994). It is thus

possible to derive the deep H2O abundance from CO observations using the

“quench level” approximation (e.g., Bézard et al. 2002), or more rigorously

using comprehensive thermochemical models (e.g., Visscher et al. 2010 and
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Cavalié et al. 2014).

We have adapted the model of Venot et al. (2012) to Saturn’s troposphere

to assess the relevance of measuring CO with an in situ probe. The thermo-

chemical kinetic network comes from the engine industry and was thoroughly

validated for high temperatures and pressures. The tropospheric thermal pro-

file has been constructed from a recent retrieval of the latitudinally-resolved

T (P ) structure representing a mean of Cassini’s prime mission (Fletcher et

al., 2009b). We used the nominal mixing ratios from Table 1 for He and CH4,

and adopted an upper limit of 10−9 for CO (Cavalié et al., 2009). We have

assumed a vertically constant eddy mixing coefficient Kzz ranging from 108

to 109 cm2·s−1 (Visscher et al., 2010). With Kzz=108 cm2·s−1, the deep at-

mospheric O/H ratio needs to be 62 times the protosolar value to reproduce

the CO upper limit. With Kzz=109 cm2·s−1, the O/H still needs to be 18

times protosolar (see Fig. 1), i.e., still much higher than Saturn’s C/H ratio

(9.9 times protosolar) but remains within the range of values predicted from

the theory arguing that volatiles formed clathrates and pure condensates in

the nebula (see Sec. 2.3.2). If we reversely set O/H ratio to the C/H one,

then the most favorable case for a detection of CO (Kzz=109 cm2·s−1) gives

an upper tropospheric mole fraction of CO of 4.1×10−10. Reaching such a

low value will remain very challenging for any ground-based facility. Besides,

a complication comes from the fact that the observable CO vertical profile is

largely dominated by an external source in the stratosphere (Cavalié et al.,

2010).

These results argue in favor of an in situ measurement of tropospheric CO

with a neutral mass spectrometer as a valuable complement to any attempt to
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directly measure the H2O abundance. However, CO has a molecular weight

very close to that of N2. This degeneracy is a serious issue because the N2

upper tropospheric mole fraction is expected to be around four orders of

magnitude higher than the one of CO. A mass spectrometer will therefore

need a mass resolution of m/∆m = 2, 500 to separate CO from N2 at equal

abundance, and about m/∆m = 15, 000 for the CO and N2 abundances

expected in Saturn’s atmosphere. More generally, any other disequilibrium

species that reacts with H2O, like PH3 and SiH4, is likely to provide additional

constraints on the deep H2O abundance of Saturn (Visscher and Fegley, 2005)

and it would be desirable to include the combustion reaction schemes of such

species (e.g., Twarowski 1995 and Miller 2004) in thermochemical models.

2.3. Isotopic Measurements at Saturn

As shown in Table 2, very little is known today concerning the isotopic

ratios in Saturn’s atmosphere. Only D/H (for H2 and methane) and 12C/13C

(for methane) ratios have been measured so far (Lellouch et al., 2001; Fletcher

et al., 2009b).

The case of D/H is interesting and would deserve further measurements

with smaller errors. Because deuterium is destroyed in stellar interiors and

transformed into 3He, the D/H value presently measured in Jupiter’s atmo-

sphere is estimated to be larger by some 5–10% than the protosolar value.

This slight enrichment would have resulted from a mixing of nebular gas with

deuterium-rich ices during the planet’s formation, as suggested by Guillot

(1999). For Saturn, the contribution of deuterium-rich ices in the present

D/H ratio could be higher (25–40%). An accurate measurement of the D/H

ratio in Saturn’s atmosphere could provide, consequently, some constraints
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on the relative contribution of deuterium-rich ices during the formation of

Saturn. Such a constraint is also based on the a priori knowledge of the

protosolar D/H ratio, which remains relatively uncertain. This ratio is esti-

mated from measurements of 3He/4He in the solar wind, which is corrected

for changes that occurred in the solar corona and chromosphere subsequently

to the evolution of the Sun’s interior, and to which the primordial 3He/4He

is subtracted. This latter value is estimated from the ratio observed in mete-

orites or in Jupiter’s atmosphere. The measurement of 3He/4He in Saturn’s

atmosphere would also complement, consequently, the scientific impact of

D/H measurement. In any case the smaller value of D/H measured by Lel-

louch et al. (2001) in Saturn’s atmosphere from infrared spectra obtained by

the Infrared Space Observatory (ISO) satellite and the Short Wavelength

Spectrometer (SWS) compared to Jupiter’s atmosphere (Niemann et al.,

1998) is surprising in the sense that it would suggest a lower relative contri-

bution of deuterium-rich ices in the formation of Saturn compared to Jupiter.

These values have, nevertheless, large errors and so far no clear conclusion

can be drawn.

The 14N/15N ratio presents large variations in the different planetary bod-

ies in which it has been measured and, consequently, remains difficult to

interpret. The analysis of Genesis solar wind samples (Marty et al., 2011)

suggests a 14N/15N ratio of 441 ± 5, which agrees with the in situ measure-

ments made in Jupiter’s atmospheric ammonia (Fouchet et al., 2000, 2004)

which probably comes from primordial N2 (Owen et al., 2001). Terrestrial

atmospheric N2, with a value of 272, appears enriched in 15N compared to

Jupiter and similar to the bulk of ratios derived from the analysis of comet
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81P/ Wild 2 grains (McKeegan et al., 2006). Measurements performed in Ti-

tan’s atmosphere, which is dominated by N2 molecules, lead to 167.7±0.6 and

147.5 ± 7.5 from the Cassini/INMS and Huygens/GCMS data, respectively

(Niemann et al., 2010; Mandt et al., 2009). Because of the low abundance

of primordial Ar observed by Huygens, it is generally assumed that N2 is

of secondary origin in Titan’s atmosphere and that N was delivered in a

less volatile form, probably NH3. Different mechanisms have been proposed

for the conversion of NH3 to N2. Isotopic fractionation may have occurred

for nitrogen in Titan’s atmosphere but the atmospheric model published by

Mandt et al. (2009) suggests that the current 14N/15N ratio observed in N2

is close to the value acquired by the primordial ammonia of Titan. This

statement is supported by the recent measurement of the 14N/15N isotopic

ratio in cometary ammonia (Rousselot et al., 2014). This ratio, comprised

between 80 and 190, is consistent with the one measured in Titan.

All these measurements suggest that N2 and NH3 result from the sepa-

ration of nitrogen into at least two distinct reservoirs, with a distinct 15N

enrichment, which never equilibrated. The reservoir containing N2 would

have a large 14N/15N ratio (like in Jupiter’s atmosphere, where the present

ammonia is supposed to come from primordial N2) and the one containing

NH3 a much lower value (like in Titan’s atmosphere, where the present N2

could come from primordial ammonia, and in cometary ammonia). In this

context measuring 14N/15N in Saturn’s atmosphere would be very helpful to

get more information about the origin of ammonia in this planet.

The cases of carbon, oxygen and noble gas (Ne, Ar, Kr, and Xe) isotopic

ratios are different because they should be representative of their primor-
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dial values. Only little variations are observed for the 12C/13C ratio in the

solar system irrespective of the body and molecule in which it has been mea-

sured. This ratio appears compatible with the terrestrial value of 89 (except

if isotopic fractionation processes occur, like for methane in Titan, but the

influence of these processes on this ratio is small). Table 2 provides the value

of 91.8 measured by Fletcher et al. (2009b) in Saturn with the Cassini/CIRS

but with large error bars. A new in situ measurement of this ratio should be

useful to confirm that carbon in Saturn is also representative of the protoso-

lar value (and different from the one present in the local Interstellar Medium

(ISM) because 13C is created in stars). The oxygen isotopic ratios also con-

stitute interesting measurements to be made in Saturn’s atmosphere. The

terrestrial 16O/18O and 16O/17O isotopic ratios are 499 and 2632, respec-

tively (Asplund et al., 2009). At the high accuracy levels possible with me-

teorites analysis these ratios present some small variations1. Measurements

performed for solar system objects like comets, far less accurate, match the

terrestrial 16O/18O value (with error bars being typically a few tens). How-

ever no 16O/18O ratio has been yet published for Saturn’s atmosphere. The

only 16O/18O measurement made so far for a giant planet (Noll et al., 1995)

was obtained from groundbased IR observations in Jupiter’s atmosphere and

had a very large uncertainty (1–3 times the terrestrial value).

1Expressed in δ units, which are deviations in part per thousand, they are typically a

few units.
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2.4. Interpretations of the Volatile Enrichments in Jupiter and Saturn

Several theories connecting the thermodynamic evolution of the protoso-

lar nebula to the formation conditions of the giant planets have been devel-

oped to interpret the volatile enrichments measured in Jupiter and Saturn.

The main scenarios proposed in the literature and their predictions for Sat-

urn’s composition are summarized below.

2.4.1. Amorphous Ice Scenario

The model proposed by Owen et al. (1999) is the first attempt to explain

of the volatile enrichments measured in Jupiter’s atmosphere. In this sce-

nario, volatiles present in Jupiter’s atmosphere were first acquired in amor-

phous ice at temperatures as low as 30 K in the protosolar nebula. This

hypothesis is based on the fact that formation scenarios of the protosolar

nebula invoke two reservoirs of ices, namely an inner and an outer reservoir,

that took part in the production of icy planetesimals. The first reservoir, lo-

cated within ∼30 Astronomical Units (AU) of the Sun, contains ices (mostly

water ice) originating from the ISM which, due to their proximity to the Sun,

were initially vaporized (Chick and Cassen, 1997). With time, the decrease

of temperature and pressure conditions allowed the water in this reservoir to

condense at ∼150 K at nebular pressure conditions in the form of (micro-

scopic) crystalline ice (Kouchi et al., 1994). The other reservoir, located at

larger heliocentric distances, is composed of ices originating from the ISM

that did not vaporize when entering into the disk. In this reservoir, water

ice was essentially in the amorphous form and the other volatiles remained

trapped in the amorphous matrix (Notesco and Bar-Nun, 2005). In this

context, to explain the accretion of amorphous planetesimals by the form-
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ing Jupiter, Owen et al. (1999) proposed that either the giant planet was

formed at large heliocentric distances where the temperature always favored

the preservation of amorphous ice in the disk, or the protosolar nebula was

much cooler at the current location of Jupiter (∼5 AU) than predicted by

current turbulent accretion disk models. In both cases, the icy material origi-

nated from the protosolar cloud and survived the formation of the protosolar

nebula. This is the fraction of the icy planetesimals that vaporized when en-

tering the envelopes of the growing Jupiter, which engendered the observed

volatile enrichments. If correct, this scenario predicts that the volatile en-

richments at Saturn should be in solar proportions, as seems to be the case

in Jupiter, given the size of the error bars of measurements.

2.4.2. Crystalline Ice Scenario

An alternative interpretation of the volatile enrichments measured in

Jupiter is the one proposed by Gautier et al. (2001) and subsequent pa-

pers by Hersant et al. (2004), Alibert et al. (2005) and Mousis et al. (2006).

These authors assumed that Jupiter’s building blocks formed in the inner 30

AU of the disk, in which the gas phase has been enriched at early epochs by

the vaporization of amorphous ice entering from the ISM. During the cooling

of this region of the disk, water vapor crystallized and trapped the volatiles

in the form of clathrates or hydrates in the 40–90 K range instead of con-

densing at lower temperatures. These ices then agglomerated and formed the

planetesimals that were ultimately accreted by the growing Jupiter. These

scenarios postulate that the amount of available crystalline water ice was

large enough (typically H2O/H2 ≥ 2 × (O/H)�) to trap the other volatiles

in the feeding zone of Jupiter and that the disk’s temperature at which the
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ices formed never decreased below ∼40 K.

Subsequent works have shown that it is possible to explain the volatile

enrichments in Jupiter via the accretion and the vaporization in its envelope

of icy planetesimals made from a mixture of clathrates and pure condensates

(Mousis et al., 2009, 2012). These planetesimals could have formed if the

initial disk’s gas phase composition was fully protosolar (including oxygen),

and if the disk’s temperature decreased down to ∼20 K at their formation

location. The model described in Mousis et al. (2009, 2012) is used here to

show fits of the volatile enrichments measured at Jupiter and Saturn, which

have been updated by using the recent protosolar abundances of Lodders et

al. (2009) (see Table 3). With this model, we first computed the composition

of planetesimals condensed from two extreme gas phase compositions of the

nebula, namely oxidizing and reducing states. In the oxidizing state, oxygen,

carbon, nitrogen are postulated to exist only in the molecular species H2O,

CO, CO2, CH3OH, CH4, N2, and NH3. We fixed CO/CO2/CH3OH/CH4 =

70/10/2/1 and N2/NH3 = 10 in the gas phase of the disk, values usually

used for the protosolar nebula (Mousis et al., 2009, 2012). In contrast, in

the reducing state, C exists only in CH4 form and N2/NH3 = 0.1 in the

gas phase (Johnson et al., 2012). In both cases, P is in the form of PH3

and the volatile fraction of S is assumed to exist in the form of H2S, with

H2S/H2 = 0.5 × (S/H2)�, the other fraction of S being essentially trapped in

the form of troilite mineral in the solar nebula (Pasek et al., 2005). Planetes-

imals formed during the cooling of the nebula from these two extreme gas

phase compositions are assumed to have been accreted by proto-Jupiter and

proto-Saturn and devolatilized in the envelopes during their growth phases.
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Once the composition of the planetesimals is defined, the adjustment of their

masses accreted in the envelopes of Jupiter and Saturn allows one to deter-

mine the best fit of the observed volatile enrichments.

Figures 2 and 3 represent the fits of the enrichments observed in Jupiter’s

and Saturn’s atmospheres, respectively. In the case of Jupiter, C, N, S,

Ar and Kr measurements are matched by our fits, irrespective of the redox

status of the protosolar nebula. Also, in both redox cases, the measured P

abundance is not matched by the fits but this might be due to the difficulty of

getting a reliable measurement since the mid-infrared spectrum is dominated

by tropospheric ammonia. Also the measured P is predicted to be lower than

its bulk abundance due to disequilibrium processes in the Jovian atmosphere

(Fletcher et al., 2009a). On the other hand, Xe is almost matched by our fit

in the reducing case only. The oxygen abundance is predicted to be 5.4–5.7

and 6.5–7.9 times protosolar in Jupiter in the oxidizing and reducing cases,

respectively.

In the case of Saturn, our strategy was to fit the measured C enrichment.

Interestingly, contrary to Jupiter, P is matched in Saturn, irrespective of

the redox status of the nebula. On the other hand, the P determination

is more robust in Saturn than in Jupiter because PH3 dominates the mid-

infrared spectrum. However, S is not matched by our model but this might

result from the lack of reliability of its determination. In addition, with

enrichments predicted to be ∼6–7 times and 11–14 times the protosolar value

in the oxidizing and reducing cases, respectively, our model overestimates the

amount of nitrogen present in Saturn’s atmosphere compared to observations

that suggest a more moderate enrichment, in the order of ∼0.5–4.6 times
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the protosolar value. One possibility that could explain this discrepancy is

that all NH3 and only a fraction of N2 would have been incorporated in

Saturn’s building blocks because of the limited amount of available water

favoring its efficient trapping in clathrates. The remaining fraction of N2

would have remained in the H2-dominated gas phase of Saturn’s feeding

zone as a result of the disk’s cooling down to temperatures higher than that

of N2 condensation or trapping in clathrates, as proposed by Hersant et al.

(2008). These conditions could lead to a moderate N enrichment comparable

to the measured one and to a 14N/15N ratio in the envelope very close to

the Jovian value. Our model also gives predictions of O, Ar, Kr and Xe

enrichments in the two redox cases. In particular, the oxygen abundance

is predicted to be 14.7–18.1 and 17.5–21.5 times protosolar in the oxidizing

and reducing cases, respectively. If the determination of N is confirmed at

Saturn, it would appear inconsistent with the scenario proposed by Owen

et al. (1999) because the latter predicts a uniform enrichment in volatiles in

the giant planet’s envelope, which is not the case here since C/N is found

to be at least ∼2 × (C/N)�. On the other hand, both scenarios predict the

same 14N/15N ratio at Jupiter and Saturn as the two planets accreted their

nitrogen essentially from the same volatile reservoirs.

2.4.3. Scenario of Supply of Refractory Carbonated Material

Lodders (2004) proposed the formation of Jupiter from refractory carbon-

ated materials, namely “tar”, placing its formation location on a “tar line”

in the protosolar nebula. This scenario was used to explain the elemental

abundances enrichments observed by Galileo after having normalized all the

heavy elements abundances with respect to Si instead of H2. By doing so,
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Lodders (2004) found that the relative abundances of Ar, Kr, Xe and P are

solar, C and possibly N are enriched, and H, He, Ne, and O are subsolar, with

the Galileo H2O determination assumed to be representative of the planet’s

bulk O/H. In this model, Ar, Kr and Xe would have been supplied to Jupiter

via direct gravitational capture of the solar nebula gas. To explain the Ar,

Kr and Xe enrichments in the Jovian atmosphere, Lodders (2004) proposed

that they would have been the consequence of the H2 and He depletion in

the envelope, which produced the metallic layer. If Saturn formed follow-

ing this scenario, a useful test would be the determination of the H2O bulk

abundance, which should be subsolar, as proposed by Lodders (2004) for

Jupiter.

2.4.4. Scenario of Disk’s Gas Phase Enrichment

To account for the enrichments in heavy noble gases observed in Jupiter’s

atmosphere, Guillot and Hueso (2006) proposed that Ar, Kr and Xe have

condensed at ∼20–30 K onto the icy amorphous grains that settled in the cold

outer part of the disk nebula midplane. These noble gases would have been

released in gaseous form in the formation region of giant planets at a time

when the disk would have been chemically evolved due to photoevaporation.

The combination of these mechanisms would have led to a heavy noble gas

enrichment relative to protosolar in the disk’s gas phase from which the giant

planets would have been accreted. In Guillot and Hueso (2006)’s scenario,

the noble gas enrichment would have been homogeneous in the giant planets

formation region. Therefore, their model predicts that the Ar, Kr and Xe

enrichments in Saturn’s atmosphere are similar to those observed in Jupiter,

which are between ∼1.8 and 3.5 times the protosolar value (see Table 3).
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These values are substantially smaller than those predicted by the model used

in Sec. 2.4.2, which are in the ∼4.8–14.6 times protosolar range, depending

on the considered species (see Fig. 3).

2.5. Summary of Key Measurements

Here we provide the “recommended” measurements in Saturn’s atmo-

sphere that would allow disentangling between i) the afore-mentioned giant

planets formation scenarios and ii) the different volatile reservoirs from which

the solar system bodies assembled:

• The atmospheric fraction of He/H2 with a 2% accuracy on the mea-

surement (same accuracy as the one made by the Jamin-Mascart inter-

ferometer aboard Galileo);

• The elemental enrichments in cosmogenically abundant species C, N,

S and O. C/H, N/H, S/H and O/H should be sampled with an ac-

curacy better than ± 10% (uncertainties of the order of protosolar

abundances).

• The elemental enrichments in minor species delivered by vertical mixing

(e.g., P, As, Ge) from the deeper troposphere (see also Sec. 3). P/H,

As/H and Ge/H should be sampled with an accuracy better than ±

10% (uncertainties of the order of protosolar abundances).

• The isotopic ratios in hydrogen (D/H), oxygen (18O, 17O and 16O), car-

bon (13C/12C) and nitrogen (15N/14N), to determine the key reservoirs

for these species (e.g., delivery as N2 or NH3 vastly alters the 15N/14N

ratio in the giant planet’s envelope). 13C/12C, 18O/16O and 17O/16O
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should be sampled with an accuracy better than ± 1%. D/H, 15N/14N

should be analyzed in the main host molecules with an accuracy of the

order of ± 5%.

• The abundances and isotopic ratios for the chemically inert noble gases

He, Ne, Xe, Kr and Ar, provide excellent tracers for the materials in

the subreservoirs existing in the protosolar nebula. The isotopic ratios

for He, Ne, Xe, Kr and Ar should be measured with an accuracy better

than ± 1%.

The depth of probe penetration will determine whether it can access the

well-mixed regions for key condensable volatiles. In the case of Saturn, a shal-

low probe penetrating down to 5–10 bar would in principle sample ammonia

and H2S both within and below their cloud bases, in the well-mixed regions

of the atmosphere to determine the N/H and S/H ratios, in addition to noble

gases and isotopic ratios. Note that the N determination could be a lower

limit because ammonia is highly soluble in liquid water. Rain generated in

the water cloud can provide a downward transport mechanism for ammonia,

so the ammonia abundance above the water cloud could be less than the

bulk abundance. Because the hypothesized water cloud is deeper than at

least ∼12.6 bar in Saturn (Atreya et al., 1999), the prospect of reaching the

deep O/H ratio remains unlikely if the probe would not survive beyond its de-

sign limit, unless a precise determination of the CO abundance (or any other

species limited by reactions with the tropospheric water) is used to constrain

H2O/H2 (see Sec. 2.2) and/or the probe is accompanied by remote sensing

experiments on a carrier spacecraft capable of probing these depths (e.g., the

Juno microwave radiometer, currently en route to Jupiter). Nevertheless,
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measuring elemental abundances (in particular He, noble gases and other

cosmogenically-common species) and isotopic ratios using a shallow entry

probe on Saturn will provide a vital comparison to Galileo’s measurements

of Jupiter, and a crucial “ground-truth” for the remote sensing investigations

by the Cassini spacecraft.

3. In situ Studies of Saturn’s Atmospheric Phenomena

The giant planets are natural planetary-scale laboratories for the study of

fluid dynamics without the complicating influences of terrestrial topography

or ocean-atmosphere coupling. However, remote sensing only provides access

to limited altitude ranges where spectral lines are formed and broadened.

Furthermore, the vertical resolution of “nadir” remote sensing is fundamen-

tally limited to the width of the contribution function (i.e., the range of al-

titudes contributing to the upwelling radiance at a given wavelength), which

can extend over a broad range of pressures. Ground-based observatories,

space telescopes and the visiting Pioneer, Voyager and Cassini missions have

exploited wavelengths from the ultraviolet to the microwave in an attempt to

reconstruct Saturn’s atmospheric structure in three dimensions. These stud-

ies have a limited vertical resolution and principally use visible and infrared

observations in the upper troposphere (just above the condensate clouds and

within the tropospheric hazes) or the mid-stratosphere near the 1 mbar level

via mid-infrared emissions. Regions below the top-most clouds and in the

middle/upper atmosphere are largely inaccessible to remote sensing, limit-

ing our knowledge of the vertical variations of temperatures, densities, hor-

izontal and vertical winds and waves, compositional profiles and cloud/haze
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properties. In situ exploration of Saturn would not only help constrain the

bulk chemical composition of this gas giant (e.g., Section 2), but it would

also provide direct sampling and “ground-truth” for the myriad physical and

chemical processes at work in Saturn’s atmosphere.

In the following sections we describe how an in situ probe, penetrating

from the upper atmosphere (µbar pressures) into the convective weather layer

to a minimum depth of 10 bar, would contribute to our knowledge of Saturn’s

atmospheric structure, dynamics, composition, chemistry and cloud-forming

processes. These results would be directly compared to our only other direct

measurement of a giant planet, from the descent of the 339-kg Galileo probe

into the atmosphere of Jupiter on December 7th 1995. The Galileo probe

entered a region of unusual atmospheric dynamics near 6.5◦N, where it is

thought that the meteorology associated with planetary wave activity con-

spired to deplete Jupiter’s atmosphere in volatiles (e.g., Showman and Dowl-

ing, 2000; Friedson, 1999), most notably preventing the probe from reaching

the depth of Jupiter’s well-mixed H2O layer after its 60-minute descent to

the 22 bar level, 150 km below the visible cloud-tops. In the decade that fol-

lowed, researchers have been attempting to reconcile global remote sensing

of Jupiter with this single-point measurement (e.g., Roos-Serote et al., 2000).

Along with the GPMS and HAD instruments, the probe carried a net flux

radiometer for the thermal profile and heat budget (NFR, Sromovsky et al.,

1998); a nephelometer for cloud studies (NEP, Ragent et al., 1998) and an

Atmospheric Structure Instrument (ASI, Seiff et al., 1998) to measure pro-

files of temperature, pressure and atmospheric density. Measurements of the

probe’s transmitted radio signal (driven by an ultra-stable oscillator) allowed

30



a reconstruction of the zonal winds with altitude (Doppler Wind Experiment,

DWE, Atkinson et al., 1998), and attenuation of the probe-to-orbiter signal

also provided information on the microwave opacity due to ammonia absorp-

tion (Folkner et al., 1998). Comparable in situ data for Saturn, in tandem

with the wealth of remotely-sensed observations provided by Cassini, would

enable a similar leap in our understanding of the solar system’s second giant

planet. Finally, from the perspective of comparative planetology, improving

our understanding of Saturn will provide a valuable new context for Galileo

probe’s measurements at Jupiter, enhancing our knowledge of this unique

class of planets.

3.1. Saturn’s Dynamics and Meteorology

Saturn’s atmosphere stands in contrast to Jupiter, with fewer large-scale

vortices and a more subdued banded structure in the visible, superimposed

onto hemispheric asymmetries in temperatures, cloud cover and gaseous com-

position as a result of Saturn’s seasonal cycles (unlike Jupiter, Saturn has a

considerable axial tilt of 26◦). See West et al. (2009), Fouchet et al. (2009),

Del Genio et al. (2009) and Nagy et al. (2009) for detailed reviews. De-

spite this globally-variable atmosphere in the horizontal, a single entry probe

would provide unique insights in the vertical dimension by characterising the

changing environmental conditions and dynamical state as it descends from

the stably-stratified middle atmosphere to the convectively-unstable tropo-

sphere. Although in situ probes may seem to provide one-dimensional ver-

tical results, a horizontal dimension is also provided by reconstructing the

probe trajectory during its descent, as it is buffeted by Saturn’s powerful jet

streams and eddies.
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3.1.1. Atmospheric Stability and Transition Zones

A key parameter that serves as a diagnostic of the local dynamical state

of the atmosphere is the Richardson number Ri:

Ri =
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where NB is the frequency with which an air parcel would oscillate verti-

cally due to buoyancy forces if perturbed from rest, also known as the Brunt

Väisälä frequency; θ is the potential temperature and ∂θ
∂z

the static stabil-

ity; g is the gravitational acceleration and u and v the zonal and meridional

velocities, respectively. An entry probe can measure continuous profiles of

these parameters as a function of altitude, enabling a study of stability and

instability regimes as a function of depth. Temperatures and densities in

the upper atmosphere can be determined via the deceleration caused by at-

mospheric drag, connecting the high temperature thermosphere at nanobar

pressures to the middle atmosphere at microbar and millibar pressures (e.g.,

Yelle and Miller, 2004). An atmospheric structure instrument would mea-

sure atmospheric pressures and temperatures throughout the descent to the

clouds, and from these infer atmospheric stability and densities (provided

the mean molecular weight is determined by another instrument; Seiff et

al., 1998; Magalhães et al., 2002). Upper atmospheric densities would be de-

duced from measured accelerations and from area and drag coefficients2. The

probe will sample both the radiatively-cooled upper atmosphere and also the

2Note that ablation sensors on the entry probe are needed to get the time-profile of

Thermal Protection System (TPS) mass loss and change in area during entry.
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convectively driven troposphere, precisely constraining the static stability,

radiative-convective boundary (i.e., how far down does sunlight penetrate?)

and the levels of the tropopause, stratopause, mesopause and homopause.

Thermal structure measurements of Saturn would be directly compared to

those on Jupiter to understand the energetic balance between solar heating,

thermal cooling, latent heat release, wave heating and internal energy for

driving the complex dynamics of all the different atmospheric layers on the

giant planets, and how this balance differs as a function of distance from the

Sun.

3.1.2. Wave Activity

Perturbations of the temperature structure due to vertical propagation

of gravity waves are expected to be common features of the stably strati-

fied middle atmospheres either on terrestrial planets or gas giants. Wave

activity is thought to be a key coupling mechanism between the convective

troposphere (e.g., gravity waves and Rossby/planetary waves generated by

rising plumes and vortices) and the stable middle/upper atmosphere, being

responsible for transporting energy and momentum through the atmosphere

and for phenomenon like the Quasi-Biennal Oscillation on Earth (Baldwin

et al., 2001), which is thought to have counterparts on Jupiter and Saturn

(Fouchet et al., 2008). Waves are a useful diagnostic of the background state

of the atmosphere, as their propagation relies on certain critical conditions

(e.g., the static stability and vertical shears on zonal winds, which cannot be

revealed by remote sensing alone). Energy and momentum transfer via waves

serve as a source of both heating and cooling for the hot thermospheres, whose

temperatures far exceed the expectations from solar heating alone, although
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the precise origins of the heating source has never been satisfactorily identi-

fied (e.g., Hickey et al., 2000; Nagy et al., 2009). The periodicity of gravity

waves measured by the Galileo probe on Jupiter permits the reconstruction

of the zonal wind profile from the lower thermosphere to the upper tropo-

sphere (Watkins and Cho, 2013), permitting identification of the homopause

(where molecular and eddy diffusion become comparable and gravity waves

break to deposit their energy), above which the atmosphere separates into

layers of different molecular species. Understanding the propagation, period-

icity and sources of wave activity on Saturn will reveal the properties of the

background medium and the coupling of the “weather layer” to the middle

atmosphere especially on how zonal and meridional circulations are forced by

eddy-mean flow interactions, and facilitate direct comparison with Jupiter.

3.1.3. Profiling Atmospheric Winds

In situ exploration would tackle one of the most enduring mysteries for

the giant planets - what powers and maintains the zonal winds responsi-

ble for the planetary banding, how deep do those winds penetrate into the

troposphere, and what are the wind strengths in the middle atmosphere?

Remote sensing of temperature contrasts (and hence wind shears via ther-

mal wind relationships), or inferences from the properties of atmospheric

plumes at the cloud-tops (e.g., Sánchez-Lavega et al., 2008) cannot directly

address this question. Remotely observed cloud motions are often ambigu-

ous due to uncertainties in the cloud location; the clouds themselves may be

imperfect tracers of the winds; and vertical temperature profiles (and hence

wind shears) are degenerate with the atmospheric composition. In situ mea-

surements of the vertical variation of winds and temperatures should resolve

34



these ambiguities. The Galileo probe’s DWE reported that jovian winds were

at a minimum at the cloud tops (where most of our understanding of zonal

winds and eddy-momentum fluxes originate from), and increased both above

(Watkins and Cho, 2013) and below (Atkinson et al., 1998) this level. In

the deep atmosphere, DWE demonstrated that Jupiter’s winds increased to

a depth of around 5 bars, and then remained roughly constant to the maxi-

mum probe depth of around 22 bars. Similar measurements on Saturn could

sample the transition region between two different circulation regimes - an

upper tropospheric region where eddies cause friction to decelerate the zonal

jets and air rises in cloudy zones, and a deeper tropospheric region where

the circulation is reversed and eddy pumping is essential to maintain the

jets and air rises in the warmer belts (e.g., Del Genio et al., 2009; Fletcher

et al., 2011). A single entry probe would potentially sample both regimes,

and reconciling these two views of tropospheric circulation on Saturn would

have implications for all of the giants. Finally, direct measurements of winds

in the middle atmosphere would establish the reliability of extrapolations

from the jets in the cloud tops to the stratosphere in determining the general

circulations of planetary stratospheres.

3.2. Saturn’s Clouds and Composition

In Section 2 we discussed the need for reliable measurements of bulk ele-

mental enrichments and isotopic ratios to study the formation and evolution

of Saturn. Vertical profiles of atmospheric composition (both molecular and

particulate) are essential to understanding the chemical, condensation and

disequilibrium processes at work, in addition to the deposition of material

from outside of the planet’s atmosphere. The Galileo probe compositional
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and cloud measurements revealed an unexpectedly dry region of the jovian

troposphere, depleted in clouds and volatiles (Atreya et al., 1999), which was

consistent with ground-based observations of the probe entry into a warm

cyclonic region (e.g., Orton et al., 1998). For this reason, the compositional

profiles measured by Galileo are not thought to be globally representative

of Jupiter’s atmosphere, leading to a desire for multiple entry probes for

different latitudes and longitudes in future missions. Nevertheless, a single

probe is essential for a more complete understanding of this class of giant

planets, to enhance our knowledge of Saturn and to provide a context for

improved interpretation of the Galileo probe’s sampling of Jupiter’s unusual

meteorology.

3.2.1. Clouds and hazes

A poor understanding of cloud and haze formation in planetary atmo-

spheres of our solar system may be the key parameter limiting our ability to

interpret spectra of extrasolar planets and brown dwarfs (e.g., Marley et al.,

2013). Although equilibrium cloud condensation models (ECCMs, Weiden-

schilling and Lewis, 1973) combined with the sedimentation of condensates

to form layers, have proven successful in explaining the broad characteristics

of the planets (methane ice clouds on ice giants, ammonia ice clouds on gas

giants), they remain too simplistic to reproduce the precise location, extent

and microphysics of the observed cloud decks. The Galileo probe results

defied expectations of equilibrium condensation by revealing clouds bases at

0.5, 1.3 and 1.6 bar, plus tenuous structure from 2.4-3.6 bar and no evidence

for a deep water cloud (Atreya et al., 1999; West et al., 2004). Ammonia ice

on Jupiter has only been spectroscopically identified in regions of powerful
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convective updrafts (e.g., Baines et al., 2002; Reuter et al., 2007), and water

ice has been detected in Voyager far-infrared spectroscopy (Simon-Miller et

al., 2000). The spectral signature of pure ammonia ice is likely obscured by

a coating or mixing with other products, such as photolytically produced hy-

drocarbons, hydrazine or diphosphine (e.g., Sromovsky and Fry, 2010; West

et al., 2004). The spectral properties of these mixtures are poorly known,

rendering cloud remote sensing highly ambiguous. Furthermore, Saturn’s

upper troposphere appears dominated by a ubiquitous haze whose compo-

sition has never been determined and is potentially unrelated to condensed

volatiles (although diphosphine, P2H4, a product of the UV destruction of

phosphine, remains an intriguing possibility). An ECCM applied to Saturn

with a 5× enhancement of heavy elements over solar abundances predicts

NH3 condensation at 1.8 bar, NH4SH near 4 bar and an aqueous ammonia

cloud (merging with a water ice cloud) near 20 bar (Atreya et al., 1999).

However, ammonia and water ice signatures have been identified only re-

cently, in the powerful updrafts associated with a powerful springtime storm

in 2010–2011 (Sromovsky et al., 2013).

The only way to resolve these questions is by in situ sampling of the

clouds and hazes formed in a planet’s atmosphere, using instruments de-

signed to measure the particle optical properties, size distributions, number

and mass densities, optical depth and vertical distribution. Combined with

the vertical profiles of condensable volatiles (e.g., NH3, H2S and H2O on Sat-

urn) and photochemically-produced species (hydrocarbons, hydrazine N2H4,

diphosphine), this would give an estimate of the composition of Saturn’s

condensation clouds and upper atmospheric hazes for the first time. Sat-
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urn’s atmosphere provides the most accessible cloud decks for this study after

Jupiter (condensates of NH3 and H2O are locked away at considerably higher

pressures on the ice giants); the most useful comparison to remote sensing

data (e.g., from Cassini); and the most similar composition to Jupiter for a

full understanding of gas giant clouds.

3.2.2. Atmospheric Chemistry and Mixing

Gaseous species can be removed from the gas phase by condensation;

modified by vertical mixing and photolysis; and deposited from exogenic

sources (icy rings, satellites, interplanetary dust, comets, etc.), causing abun-

dance profiles to vary with altitude and season. Indeed, all the giant planets

exhibit a rich chemistry due to the UV photolysis of key atmospheric species.

Their stratospheres are dominated by the hydrocarbon products of methane

photolysis (e.g., Moses et al., 2005), which descend into the troposphere to

be recycled by thermochemical conversion. On Jupiter, the Galileo probe

was able to measure hydrocarbon species in the 8–12 bar region, although

the balance of ethane (expected to be the most abundant hydrocarbon after

methane) to ethylene, propene, acetylene and propane led to suspicions that

the hydrocarbon detections were instrumental rather than of atmospheric

origin (Wong, 2009). Stratospheric measurements of hydrocarbons in their

production region were not performed, but would be possible on Saturn with

a probe. Saturn’s troposphere features saturated volatiles in trace amounts

above the cloud tops, but only ammonia gas is abundant enough for remote

detection. H2S and H2O profiles above the condensation clouds have never

been measured. In addition to the volatiles, Saturn’s troposphere features

a host of disequilibrium species, most notably phosphine, dredged up from
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the deeper, warmer interior by vigorous atmospheric mixing (e.g., Fletcher

et al., 2009a). The abundance of PH3 measured in the upper troposphere

is thought to represent the abundance at its thermochemical quench level,

where the vertical diffusion timescale is shorter than the thermochemical ki-

netics timescale. Measurements of additional trace species in the troposphere

(GeH4, AsH3, CO) provide constraints on the strength of atmospheric mix-

ing from deeper, warmer levels below the clouds. CO is of particular interest

because it could be used as a probe of the deep O/H ratio of Saturn (see

Section 2).

Detection of trace chemical species (HCN, HCP, CS, methanol, formalde-

hyde) and hydrogen halides (HCl, HBr, HF and HI, e.g., Teanby et al., 2006;

Fletcher et al., 2012) would reveal coupled chemistry due to lightning activ-

ity or shock chemistry due to planetary impacts. In addition, the presence

of oxygenated species in the upper stratosphere (CO, CO2, H2O) reveal the

strength of exogenic influx of materials (comets, interplanetary dust, e.g.,

Feuchtgruber et al., 1997; Cavalié et al., 2010) into the upper atmosphere of

Saturn. Sensitive mass spectrometry of these species, combined with probe

measurements of atmospheric temperatures and haze properties, could re-

veal the processes governing the soup of atmospheric constituents on the

giant planets. Once again, Saturn’s trace species are expected to be the

most accessible of the solar system giant after Jupiter, as volatiles and dise-

quilibrium species (e.g., PH3 and NH3) have so far eluded remote detection

on the ice giants.
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3.3. Summary of Key Atmospheric Measurements

A single entry probe would reveal new insights into the vertical struc-

tures of temperatures, density, chemical composition and clouds during de-

scent through a number of different atmospheric regions, from the stable

upper/middle atmosphere to the convective troposphere. It would directly

sample the condensation cloud decks and ubiquitous hazes whose composi-

tion, altitude and structure remain ambiguous due to the inherent difficulties

with remote sensing. Furthermore, it would show how Saturn’s atmosphere

flows at a variety of different depths above, within and below the condensate

clouds. Key measurements required to address the science described in this

section include:

• Continuous measurements of atmospheric temperature and pressure

throughout the descent to study (i) stability regimes as a function of

depth though transition zones (e.g., radiative-convective boundary);

(ii) atmospheric drag and accelerations; and (iii) the influence of wave

perturbations and cloud formation on the vertical temperature profile;

• Determination of the vertical variation of horizontal winds using Doppler

measurements of the probe’s carrier frequency (driven by an ultra-

stable oscillator) during the descent. This includes a study of the

depth of the zonal wind fields, as well as the first measurements of

middle atmospheric winds;

• Vertical profiling of a host of atmospheric species via mass spectrome-

try, including atmospheric volatiles (water, H2S and NH3 in their satu-

rated and sub-cloud regions); disequilibrium species (e.g., PH3, AsH3,
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GeH4, CO) dredged from the deeper atmosphere; photochemical species

(e.g., hydrocarbons and HCN in the troposphere and stratosphere; hy-

drazine and diphosphine in the upper troposphere) and exogenic inputs

(e.g., oxygenated species in the upper atmosphere);

• Measurements of the vertical structure and properties of Saturn’s cloud

and haze layers; including determinations of the particle optical prop-

erties, size distributions, number and mass densities, opacity, shapes

and, potentially, their composition.

With a single entry probe, the selected entry site must be carefully stud-

ied. Saturn’s equatorial zone is one potential site for a single entry probe

because of its meteorological activity that combines: the emergence of large-

scale storms (Sanchez-Lavega et al., 1991); vertical wind shears in the tropo-

sphere (Garćıa-Melendo et al., 2011); upwelling enhancing volatiles and dis-

equilbrium species (Fletcher et al., 2009a, 2011); and a global stratospheric

oscillation of the thermal field (Fouchet et al., 2008; Orton et al., 2008; Guer-

let et al., 2011). Additionally, the strength of its equatorial eastward jet (peak

velocities up to 500 m/s) poses one of the theoretical challenges to the under-

standing of the dynamics of fluid giant planets. Furthermore, a descent probe

into Saturn’s equatorial region could further constrain the influx of H2O orig-

inating from the Enceladus torus (Hartogh et al., 2011). However, it remains

an open question as to how representative the equatorial region would be

of Saturn’s global dynamics. Short of multiple entry probes targeted at dif-

ferent regions of upwelling and subsidence, near to narrow prograde jets or

broader retrograde jets, a mid-latitude atmospheric region might be a more

representative sample.
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4. Mission Architectures

The primary science objectives described in Sec. 2 and 3 may be ad-

dressed by an atmospheric entry probe that would descend under parachute,

and start to perform in situ measurements in the stratosphere to help char-

acterize the location and properties of the tropopause, and continue into the

troposphere to pressures of at least 10 bars. All of the science objectives, ex-

cept for the abundance of oxygen which may be only addressed partially, can

be achieved by reaching 10 bars. Previous studies have shown that depths

beyond 10 bars become increasingly more difficult to achieve for several tech-

nology reasons; for example: i) the descent time, hence the relay duration,

would increase and make the relay geometry more challenging; ii) the tech-

nology for the probe may change at pressures greater than 10 bars; iii) the

opacity of the atmosphere to radio-frequencies increases with depth and may

make the communication link even more challenging at higher pressures. Fu-

ture studies would be needed to conduct a careful assessment of the trade-offs

between science return and the added complexity of a probe that could op-

erate at pressures greater than 10 bars. Accelerometry measurements may

also be performed during the entry phase in the higher part of the strato-

sphere to probe the upper layers of the atmosphere prior to starting in situ

measurements under parachute.

A carrier spacecraft would be required to deliver the probe to the desired

atmospheric entry point at Saturn. We have identified three possible mission

configurations:

• Configuration 1: Probe + Carrier. The probe would detach from

the carrier spacecraft prior to probe entry. The carrier would follow
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the probe path and be destroyed during atmospheric entry, but may be

capable of performing pre-entry science. The carrier would not be used

as a radio relay to transmit the probe data to Earth. The probe would

transmit its data to the ground system via a direct-to-Earth (DTE) RF

link;

• Configuration 2: Probe + Carrier/Relay. The probe would de-

tach from the carrier several months prior to probe entry. Subsequent

to probe release, the carrier trajectory would be deflected to prepare

for over-flight phasing of the probe descent location for both probe data

relay as well as performing approach and flyby science;

• Configuration 3: Probe + Orbiter. This configuration would be

similar to the Galileo Orbiter/Probe mission. The probe would detach

from the orbiter several months prior to probe entry. As for Configu-

ration 2, subsequent to probe release, the orbiter trajectory would be

deflected to prepare for over-flight phasing of the probe descent loca-

tion. After probe relay during over-flight, the orbiter would be placed

in orbit around Saturn and continue to perform orbital science.

Configuration 1 would allow the carrier to perform months of approach

science and in situ pre-entry science. In this architecture, the probe data

transmission would rely solely on a Direct-to-Earth probe telecommunica-

tions link. In addition to being used as the probe relay data following com-

pletion of the probe mission, Configuration 2 would possibly also provide

the capability to perform months of approach science, but in addition flyby

science (for a few days). This configuration would allow many retransmis-
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sions of the probe data for redundancy. Configuration 3 would clearly be the

most capable, but most costly configuration. Trade-off studies will need to

be carried out to assess whether the supporting remote sensing observations

may be achievable during the approach phase and a single flyby or from an

orbiter. Any of the carrier options could provide context observations but an

orbiter could bring more science return in addition to supporting the probe

science. The only requirement is that those data be downlinked to Earth

while the spacecraft is still operating. For example, useful observations from

a Configuration 1 carrier could be made several hours before probe entry, and

downlink could be accomplished in the intervening time. Finally, it may be

worth studying if the emerging solar-sail propulsion technology (Janhunen

et al., 2014) can be considered for this option.

4.1. Atmospheric Entry Probe

An atmospheric entry probe at Saturn would in many respects resemble

the Jupiter Galileo probe. The concept was put forward for Saturn in the

KRONOS mission proposal (Marty et al. 2009). Giant Planet probe concept

studies have been studied by ESA in 20103. As an example, the KRONOS

probe had a mass of ∼337kg, with a 220kg deceleration module (aeroshell,

thermal protection system, parachutes and separation hardware) and a 117kg

descent module, including the probe structure, science instruments, and sub-

systems. It is anticipated that the probe architecture for this mission would

be battery powered and accommodate either a DTE link or a data relay to

the carrier or the orbiter. Trades would be done to assess the complexity

3http://sci.esa.int/sre-fp/47568-pep-assessment-study-internal-final-presentation/
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(and cost) of probe and telecomm link design as a function of operational

depth in the atmosphere. A representative payload for the Saturn probe that

would allow addressing the science objectives identified in Sec. 2 and 3 is

shown in Table 5.

4.2. Carrier or Orbiter

Alternative architectures for the carrier (Configuration 1 or 2) or the

orbiter (Configuration 3) would be considered, taking into account, if possible

and if technologically and programmatically sound, the heritage for outer

planet/deep space missions within either ESA or NASA. As an example, the

carrier or the orbiter may benefit from subsystems developed by either ESA

or NASA for previous outer planet missions (for example ESA/JUICE or

NASA/JUNO, or possibly NASA/ESA Cassini-Huygens).

4.3. Power Generation

It would be worth studying whether the proposed mission architectures

could be solely designed on batteries and solar power. It would require

qualification of the low-intensity low-temperature (LILT) solar array cells for

9.5 AU conditions. The probe would be powered with primary batteries as

were the Galileo and Huygens probes. In all three configurations, the carrier

(configuration 1 and 2) or the orbiter (configuration 3) would be equipped

with a combination of solar panels, secondary batteries and possibly a set of

primary batteries for phases that require a high power demand, for example

during the probe entry phase. Nuclear power would be considered for the

carrier or the orbiter only if available solar power technology would be found

to be unfeasible.
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4.4. Interplanetary Trajectory and Entry Zone of the Probe

Many trajectory options have been identified, using both direct and gravity-

assisted transfers to Saturn, and more will be identified in subsequent studies.

Trajectory selection will be based on the selected carrier option, launch vehi-

cle capabilities, and available probe thermal protection capability. The inter-

planetary trajectory and the probe entry location are inseparably linked. Sat-

urn’s extensive ring system presents a severe collision hazard to an inbound

probe. For various declinations of the spacecraft’s approach asymptote, some

latitudes will be inaccessible because the trajectories to deliver to those lati-

tudes would impact the rings. Also, although it is possible to adjust the incli-

nation of the approach orbit for purposes of accessing a desired latitude, this

approach can greatly increase the atmosphere-relative entry speeds, possibly

driving the mission to an expensive heat shield material technology develop-

ment. During the studies, the issues of probe entry locations, approach and

entry trajectories, and probe technologies must be treated together. Due to

Saturn’s large obliquity and the characteristics of reasonable Earth-to-Saturn

transfer trajectories, the best combinations change with time. Concerning

the probe entry zone, both equatorial and mid-latitude regions may be a rep-

resentative location from the scientific point of view (see a discussion in Sec.

3.3). Volatile-depleted regions are probably located at the cyclones in both

poles and may also be located at the so-called “storm-alley” (region of low

static stability able to develop updrafts and downdrafts). More generally,

the peaks of westward jets can be unstable based on the stability of the wind

system and eastward jets (particularly the anticyclonic branch of eastward

jets) might be good locations to retrieve the deep values of volatiles at higher
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levels in the atmosphere (Read et al., 2009). In any case, there are several

potential entry points and a dedicated study will be needed to assess their

relative merit.

4.5. International Collaboration

In this paper, we only consider ESA/Europe and NASA/USA collabora-

tions but collaborations with other international partners may be envisaged.

One of the key probe technologies for a Saturn probe that would be new for

European industry, is the heat shield material. Recent NASA studies con-

cerning entry system performance requirements versus thermal protection

system capability for a Saturn entry probe have been completed (Ellerby et

al., 2013). This example is used to illustrate that, should Europe be willing to

lead the probe development (as was so successfully done with Huygens), care-

ful consideration of trade-offs would have to be made for either development

of this new technology within Europe or for establishing an international col-

laboration with NASA. International collaboration may also be considered

for other mission elements, including the carrier (and of course the orbiter if

configuration 3 would be further studied), navigation, the probe data relay,

the ground segment, and science payload. All three configurations would be

achievable through different schemes of collaboration between Europe and

the USA. As an example, configurations 1 and 2 may take the form of a com-

bined ESA/Class-M and a NASA Discovery or New Frontiers collaboration,

if such a scheme were to become programmatically feasible as it is currently

not the case. Configuration 3 would be achievable through a collaboration

that would involve an ESA/Class M and a NASA/Flagship mission. We do

not put forward an ESA/Class L mission at this stage as the current ESA
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Cosmic Vision plan would not allow a new Class-L mission before the late

30’s/early 40’s.

5. Characteristics of a Possible Probe Model Payload

The scientific requirements discussed above can be addressed with a suite

of scientific instruments, which are given in Table 5 and discussed in the

following. Note that this list of instruments should not be considered as

a unique payload complement but as guideline for some of the instruments

we might wish to see on board. For example, an alternative to both the

nephelometer and net flux radiometer described below are elements of the

Huygens Descent Imager/Spectral Radiometer (DISR) (Tomasko et al., 2002)

that used the sun as a source. Ultimately, the payload of the Saturn probe

would be the subject of detailed mass, power and design trades, but should

seek to address the majority of the scientific goals outlined in Sec. 2 and 3.

5.1. Mass Spectrometry

The chemical and isotopic composition of Saturn’s atmosphere, and its

variability, will be measured by mass spectrometry. The gas analysis systems

for a Saturn Probe may benefit from a high heritage from instrumentation

already flown and having provided atmospheric composition and isotope in-

vestigations. The scientific objective for the mass spectrometric investigation

regarding Saturn’s formation and the origin of the solar system are in situ

measurements of the chemical composition and isotope abundances in the at-

mosphere, such as H, C, N, S, P, Ge, As, noble gases He, Ne, Ar, Kr, and Xe,

and the isotopes D/H, 13C/12C, 15N/14N, 3He/4He, 20Ne/22Ne, 38Ar/36Ar,

36Ar/40Ar, and those of Kr and Xe.
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At Jupiter, the Galileo Probe Mass Spectrometer (GPMS) experiment

(Niemann et al., 1992) was used, which was designed to measure the chemical

and isotopic composition of Jupiter’s atmosphere in the pressure range from

0.15 to 20 bar by in situ sampling of the ambient atmospheric gas. The GPMS

consisted of a gas sampling system that was connected to a quadrupole mass

spectrometer. The gas sampling system also had two sample enrichment

cells, allowing for enrichments of hydrocarbons by a factor 100 to 500, and

one noble gas analysis cell with an enrichment factor of about 10. Low

abundance noble gases can be measured by using an enrichment cell, as used

on the Galileo mission (Niemann et al., 1996). From GPMS measurements

the Jupiter He/H2 ratio was determined as 0.156 ± 0.006. To improve the

accuracy of the measurement of the He/H2 ratio and isotopic ratios by mass

spectrometry the use of reference gases will be necessary. On the Rosetta

mission the ROSINA experiment carries for each mass spectrometer a gas

calibration unit (Balsiger et al., 2007). Similarly, the SAM experiment on

the Curiosity rover can use either a gas sample from its on-board calibration

cell or utilize one of the six individual metal calibration cups on the sample

manipulation system (Mahaffy et al., 2012).

A major consideration for the mass spectrometric analysis is how to dis-

tinguish between different molecular species with the same nominal mass,

e.g. N2 and CO, from the complex mixture of gases in Saturn’s atmosphere.

There are two approaches available, one is high resolution mass spectrome-

try with sufficient mass resolution to resolve the isobaric interferences, and

the other is chemical pre-separation of the sample followed by low resolution

mass spectrometry.
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5.1.1. High Resolution Mass Spectrometry

Probably the first composition experiment with high resolution mass spec-

trometry is the ROSINA experiment on the Rosetta mission (Balsiger et

al., 2007) which has a Reflectron-Time-of-Flight (RTOF) instrument with

a mass resolution of about m/∆m = 5,000 at 50% peak height (Scherer et

al., 2006), Double-Focussing Mass Spectrometer (DFMS) with a mass reso-

lution of about m/∆m = 9,000 at 50% peak height, and a pressure gauge.

Determination of isotope ratios at the 1% accuracy level has been accom-

plished during the cruise phase. A time-of-flight instrument with even more

mass resolution has been developed for possible application in Titan’s at-

mosphere, which uses a multi-pass time-of flight configuration (Waite et al.,

2012). Typical mass resolutions are m/∆m = 13,500 at 50% peak height

and 8,500 at 20% peak height. In bunch mode the mass resolution can be

increased to 59,000 (at 50% peak height). Again, determination of isotope

ratios at the 1% accuracy level has been accomplished. An alternative multi-

pass time-of-flight instrument has been developed by Okumura et al. (2004),

which uses electric sectors instead of ion mirrors for time and space focussing.

Mass resolutions up to m/∆m = 350,000 have been reported (Toyoda et al.,

2003).

Recently, a new type of mass spectrometer, the Orbitrap mass spectrome-

ter, was introduced (Makarov, 2000; Hu et al., 2005), which uses ion confine-

ment in a harmonic electrostatic potential. The Orbitrap mass spectrometer

is a Fourier-Transform type mass spectrometer, and it allows for very high

mass resolutions in a compact package. For example, using an Orbitrap mass

spectrometer for laboratory studies of chemical processes in Titan’s atmo-
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sphere, mass resolutions of m/∆m = 100,000 have been accomplished up to

m/z = 400 (Hörst et al., 2012), and m/∆m = 190,000 at 50% peak height

and m/z = 56 in a prototype instrument for the JUICE mission (Briois et

al., 2013).

5.1.2. Low Resolution Mass Spectrometry with Chemical Pre-Processing

The alternative approach to high resolution mass spectrometry, which

was used successfully on many missions so far, is to use a simpler low res-

olution mass spectrometer together with a chemical processing of the sam-

ple to separate or eliminate isobaric interferences. One established way is

to use chromatographic columns with dedicated chemical specificity for a

separation of chemical substances before mass spectrometric analysis. The

Gas-Chromatograph Mass Spectrometer (GCMS) of the Huygens Probe is a

good example of such an instrument (Niemann et al., 2002, 2005, 2010). The

Huygens Probe GCMS has three chromatographic columns, one column for

separation of CO and N2 and other stable gases, the second column for sepa-

ration of nitriles and other organics with up to three carbon atoms, and the

third column for the separation of C3 through C8 saturated and unsaturated

hydrocarbons and nitriles of up to C4. The GCMS was also equipped with a

chemical scrubber cell for noble gas analysis and a sample enrichment cell for

selective measurement of high boiling point carbon containing constituents.

A quadrupole mass spectrometer was used for mass analysis with a mass

range from 2 to 141 amu, which is able to measure isotope ratios with an

accuracy of 1%. Newer examples of GCMS instrumentation are the Ptolemy

instrument on the Rosetta lander for the measurement of stable isotopes of

key elements (Wright et al., 2007), which uses an ion trap mass spectrometer,
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the COSAC instrument also on the Rosetta lander for the characterization of

surface and sub-surface samples (Goesmann et al., 2007), which uses a time-

of-flight mass spectrometer, and the SAM experiment on the Curiosity rover

(Mahaffy et al., 2012), which uses a classical quadrupole mass spectrometer.

5.1.3. Summary of Mass Spectrometry

So far in most missions the chemical pre-separation was the technique

used to avoid isobaric interferences in the mass spectra, with the exception of

the mass spectrometer experiment ROSINA on the Rosetta orbiter. Chemical

pre-separation works well, but by choosing chromatographic columns with

a certain chemical specificity one makes a pre-selection of the species to

be investigated in detail. This possibly is a limitation when exploring an

object where little is known. Also, gas chromatographic systems with several

columns are rather complex systems, both to build and to operate (see the

SAM instrument as a state-of-the art example of this technique (Mahaffy et

al., 2012)).

In recent years there has been a significant development of compact mass

spectrometers that offer high mass resolution, as outlined above, and these

developments are still ongoing. Thus, solving the problem of isobaric inter-

ferences in the mass spectra by mass resolution can be addressed by mass

spectrometry alone and one should seriously consider using high resolution

mass spectrometry for a future mission to probe Saturn’s atmosphere. After

all, no a priori knowledge of the chemical composition has to be assumed. In

addition, with modern time-of-flight mass spectrometers mass ranges beyond

1000 amu are not a problem at all, which would have been useful to investi-

gate Titan’s atmosphere. Nevertheless, some chemical pre-selection may still

52



be considered even for high resolution mass spectrometry. For example, the

cryotrapping technique, which has a long history in the laboratory, would

enable detection of noble gases at abundances as low as 0.02 ppb (Waite et

al., 2012).

5.1.4. Tunable Laser System

A Tunable Laser Spectrometer (TLS) (Durry et al., 2002) can be em-

ployed as part of a GC system to measure the isotopic ratios to a high

accuracy of specific molecules, e.g. H2O, NH3, CH4, CO2 and others. TLS

employs ultra-high spectral resolution (0.0005 cm−1) tunable laser absorp-

tion spectroscopy in the near infra-red (IR) to mid-IR spectral region. TLS

is a direct non-invasive, simple technique that for small mass and volume

can produce remarkable sensitivities at the sub-ppb level for gas detection.

Species abundances can be measured with accuracies of a few %, and isotope

determinations are with about 0.1% accuracy. With a TLS system one can

derive the isotopic ratios of D/H, 18O/16O, 13C/12C, 18O/16O, and 17O/16O.

For example, TLS was developed for application in the Mars atmosphere

(Le Barbu et al., 2004), within the ExoMars mission; a recent implementation

of a TLS system was for the Phobos Grunt mission (Durry et al., 2010),

and is on the SAM instrument (Webster and Mahaffy, 2011), which was

used to measure the isotopic ratios of D/H and of 18O/16O in water and

13C/12C, 18O/16O, 17O/16O, and 13C18O/12C16O in carbon dioxide in the

Martian atmosphere (Webster et al., 2013).
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5.2. Helium Abundance Detector

The Helium Abundance Detector (HAD), as it was used on the Galileo

mission (von Zahn and Hunten, 1992), basically measures the refractive index

of the atmosphere in the pressure range of 2–10 bar. The refractive index is

a function of the composition of the sampled gas, and since the jovian atmo-

sphere consists of mostly of H2 and He, to more than 99.5%, the refractive

index is a direct measure of the He/H2 ratio. The refractive index can be

measured by any two-beam interferometer, where one beam passes through a

reference gas and the other beam through atmospheric gas. The difference in

the optical path gives the difference in refractive index between the reference

and atmospheric gas. For the Galileo mission a Jamin-Mascart interferom-

eter was used, because of its simple and compact design, with an expected

accuracy of the He/H2 ratio of ± 0.0015. The accomplished measurement of

the He mole fraction gave 0.1350 ± 0.0027 (von Zahn et al., 1998), with a

somewhat lower accuracy when expected, but still better than is possible by

a mass spectrometric measurement.

5.3. Atmospheric Structure Instrument

The key in situ measurements by an Atmospheric Structure Instrument

(ASI) would be the accelerometry during the probe entry phase and pres-

sure, temperature and mean molecular weight during descent. The atmo-

spheric density is derived from these measurements. There is strong heritage

from the Huygens ASI experiment (HASI) of the Cassini-Huygens mission

(Fulchignoni et al., 2002). Furthermore, these types of sensors have been

selected for NASA’s Mars Science Laboratory (MSL) and are part of the me-

teorological package of ESA’s Exomars mission. In situ atmospheric structure
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measurements are essential for the investigation of the planet’s atmospheric

structure and dynamics. The estimation of the temperature lapse rate can

be used to identify the presence of condensation and possible clouds, to dis-

tinguish between saturated and unsaturated, stable and conditionally stable

regions. The variations in the density, pressure and temperature profiles

provide information on the atmospheric stability and stratification, on the

presence of winds, thermal tides, waves and turbulence in the atmosphere.

A typical Atmospheric Structure Instrument would consist of three primary

sensor packages: a three-axis accelerometer, a pressure profile instrument and

temperature sensors. It would start to operate right at the beginning of the

entry phase of the probe, sensing the atmospheric drag experienced during

entry. Direct pressure and temperature measurement could be performed by

the sensors having access to the atmospheric flow from the earliest portion

of the descent until the end of the probe mission at approximately 10 bar.

ASI data will also contribute to the analysis of the atmospheric composi-

tion, since it will monitor the acceleration experienced by the probe during

the whole descent phase. ASI will provide the unique direct measurements of

pressure and temperature through sensors having access to the atmospheric

flow.

5.3.1. Accelerometers

The accelerator package, a 3-axis accelerometer, should be placed as close

as possible to the center of mass of the entry probe. Like on Huygens, the

main sensor could be a highly sensitive servo accelerometer aligned along

the vertical axis of the Probe, with a resolution of 1 to 10×10−5 m s−2 with

an accuracy of 1%. Probe acceleration can be measured in the range of
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0–2000 m s−2 (Zarnecki et al., 2004). Assuming the HASI accelerometer

performance at Titan, a noise level of about 3×10−8 m s−2 is expected.

The exact performance achievable, in terms of the accuracy of the derived

atmospheric density, will also depend on the probe ballistic coefficients, entry

speed and drag coefficient.

5.3.2. Temperature sensors

As in the Huygens Probe, the temperature sensors will use platinum

resistance thermometers. These are exposed to the atmospheric flow and are

effectively thermally isolated from the support structure. The principle of

measurement is based on the variation of the resistance of the metallic wire

with temperature. TEM has been designed to have a good thermal coupling

between the sensor and the atmosphere and to achieve high accuracy and

resolution. Over the temperature range of 60–330 K these sensors maintain

an accuracy of 0.1 K with a resolution of 0.02 K.

5.3.3. Pressure Profile Instrument

The Pressure Profile Instrument (PTI) will measure the pressure during

the entire descent with an accuracy of 1% and a resolution of 10−6 bar.

The atmospheric flow is conveyed through a Kiel probe inside the probe

where the transducers and related electronic are located. The transducers

are silicon capacitive sensors with pressure dependant dielectricum. The

pressure sensor contains as dielectricum a small vacuum chamber between

the two electrode plates, with the external pressure defining the distance of

these plates. Detectors with diaphragms of different pressure sensitivity will

be utilized to cover the pressure range to ∼10 bar. The pressure is derived
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as a frequency measurement (within 3–20 kHz range) and the measurements

internally compensate for thermal and radiation influences.

5.4. Doppler Wind Experiment

The primary goal of a Doppler Wind Experiment (DWE) on a Saturn

probe would be to measure a vertical profile of the zonal (east-west) winds

along the probe descent path. A secondary goal of the DWE is to detect,

characterize, and quantify microstructure in the probe descent dynamics,

including probe spin, swing, aerodynamic buffeting and atmospheric turbu-

lence, and to detect regions of wind shear and atmospheric wave phenomena.

Because of the need for accurate probe and carrier trajectories for making

the Doppler wind measurement, the DWE must be closely coordinated with

the navigation and radiometric tracking of the carrier, and the probe en-

try and descent trajectory reconstructions. A Doppler Wind Experiment

could be designed to work with a probe DTE communication architecture

or a probe-to-relay architecture. Both options include ultra-stable oscillator

(USO) requirements and differ only in the angle of entry and DTE geometry

requirements. For relay, the system comprises a probe and a carrier USO

as part of the probe-carrier communication package. The experiment would

benefit from the heritage of both the Galileo and Huygens Doppler Wind

Experiments (Atkinson et al., 1998; Bird et al., 2002).

5.5. Nephelometer

The composition and precise location of cloud layers in Saturn are largely

unknown. They may be composed of ammonia, ammonium hydrosulfide, or

simply water. Because of this relative paucity of information on Saturn’s
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clouds, the demands we place on a cloud particle sensor, a nephelometer, are

significant. Such an instrument would have little heritage in planetary explo-

ration, beyond the one on the Galileo probe. There are similar laser driven,

fiber fed nephelometers used in very similar settings on Earth (e.g., Barkey

and Liou, 2001; Barkey et al., 1999; Gayet et al., 1997). However, these

were shrouded designs, which is mass-prohibitive on a planetary probe, and

they also did not attempt to measure the polarization ratio phase function,

because they knew their aerosols were water. The polarization modulation

technique that we are proposing was first described by Hunt and Huffman

(1973), and has been used in laboratory settings by several groups (e.g., Kuik

et al., 1991). While the precise implementation of the instrument is novel to

planetary science, and the polarization modulation technique is also new to

an in situ instrument, the technology needed to carry out this instrument is

all relatively modest. This nephelometer would measure not only the ampli-

tude phase function of the light scattered by the clouds from a laser source

on the probe, but also the polarization ratio phase function as well.

5.6. Net Energy Flux Radiometer

A Net Energy Flux Radiometer (NFR) measures the thermal profile and

heat budget in the atmosphere. Such a NFR instrument was part of the scien-

tific payload of the Galileo mission (Sromovsky et al., 1992), which measured

the vertical profile of upward and downward radiation fluxes in the region

between 0.44 to 14 bar region (Sromovsky et al., 1998). Radiation was mea-

sured in five wavelength bands, 0.3–3.5 µm (total solar radiation), 0.6–3.5 µm

(total solar radiation in methane absorption region), 3–500 µm (deposition

and loss of thermal radiation), 3.5–5.8 µm (water vapor and cloud struc-

58



ture), and 14–35 µm (water vapor). On Galileo, NFR found signatures of

NH3 ice clouds and NH4SH clouds (Sromovsky et al., 1998), however, water

fraction was found to be much lower than solar and no water clouds could

be indentified.

6. Conclusions

In this paper, we have shown that the in situ exploration of Saturn can

address two major science themes: the formation history of our solar system

and the processes at work in the atmospheres of giant planets. We provided a

list of recommended measurements in Saturn’s atmosphere that would allow

disentangling between the existing giant planets formation scenarios and the

different volatile reservoirs from which the solar system bodies were assem-

bled. Moreover, we illustrated how an entry probe would reveal new insights

concerning the vertical structures of temperatures, density, chemical compo-

sition and clouds during atmospheric descent. In this context, the top level

science goals of a Saturn probe mission would be the determination of:

1. the atmospheric temperature, pressure and mean molecular weight pro-

files;

2. the abundances of cosmogenically abundant species C, N, S and O;

3. the abundances of chemically inert noble gases He, Ne, Xe, Kr and Ar;

4. the isotopic ratios in hydrogen, oxygen, carbon, nitrogen, He, Ne, Xe,

Kr and Ar;

5. the abundances of minor species delivered by vertical mixing (e.g., P,

As, Ge) from the deeper troposphere, photochemical species (e.g., hy-
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drocarbons, HCN, hydrazine and diphosphine) in the troposphere and

exogenic inputs (oxygenated species) in the upper atmosphere;

6. the particle optical properties, size distributions, number and mass

densities, opacity, shapes and composition.

Additional in situ science measurements aiming at investigating the global

electric circuit on Saturn could be also considered (measurement of the Schu-

mann resonances, determination of the vertical profile of conductivity and

the spectral power of Saturn lightning at frequencies below the ionospheric

cutoff, etc).

We advocated that a Saturn mission incorporating elements of in situ

exploration should form an essential element of ESA and NASA’s future

cornerstone missions. We described the concept of a Saturn probe as the next

natural step beyond Galileo’s in situ exploration of Jupiter, and the Cassini

spacecraft’s orbital reconnaissance of Saturn. Several missions designs have

been discussed, all including a spacecraft carrier/orbiter and a probe that

would derive from the KRONOS concept previously proposed to ESA (Marty

et al., 2009). International collaborations, in particular between NASA/USA

and ESA/Europe may be envisaged in the future to enable the success of a

mission devoted to the in situ exploration of Saturn.
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Table 1: Compositions of the atmospheres of Jupiter and Saturn (major volatiles)
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(a)This is a lower limit; (b)this is an upper limit.
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Table 2: Isotopic ratios in Jupiter and Saturn
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Table 3: Enrichments in Jupiter and Saturn relatives to Protosun

Jupiter Saturn

Species E ∆E(a) E ∆E(a)

C 4.40 1.14 9.90 1.05

N 4.18 2.08 0.53–4.07 –

O(b) 0.42 0.15 ∼10−4 –

P 3.34 0.36 11.54 1.35

S 2.94 0.70 15.87 –

He 0.72 0.04 0.71 0.14

Ne(c) 0.12 – – –

Ar 2.62 0.86 – –

Kr 2.23 0.61 – –

Xe 2.18 0.61 – –
(a)Error is defined as (∆E/E)2 = (∆X/Xplanet)

2 + (∆X/XProtosun)2; (b)this is a

lower limit; (c)this is an upper limit.
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Table 4: Elemental abundances in the Sun and Protosun

Element Solar dex Protosolar dex ∆dex Protosolar X/H2 ∆(X/H2)

C 8.39 8.43 0.04 5.38 × 10−04 5.19 × 10−05

N 7.86 7.90 0.12 1.59 × 10−04 5.06× 10−05

O 8.73 8.77 0.07 1.18 × 10−03 2.06× 10−04

P 5.46 5.50 0.04 6.32× 10−07 6.10× 10−08

S 7.14 7.18 0.01 3.03× 10−05 7.05× 10−07

He 10.93 10.98 0.02 1.89× 10−01 8.90× 10−03

Ne 8.05 8.09 0.10 2.46× 10−04 6.37× 10−05

Ar 6.50 6.54 0.10 6.93× 10−06 1.80× 10−06

Kr 3.28 3.32 0.08 4.18× 10−09 8.45× 10−10

Xe 2.27 2.31 0.08 4.08× 10−10 8.26× 10−11

Data from Lodders et al. (2009) with values of corrections for protosolar

abundances (+0.05 dex (He) and +0.04 dex (others)) taken from Asplund et al.

(2009).
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Table 5: Measurement requirements

Instrument Measurement

Mass spectrometer Elemental and chemical composition

Isotopic composition

High molecular mass organics

Helium abundance detector Accurate He/H2 ratio

Atmospheric Structure Instrument Pressure, temperature, density, molecular weight profile

Doppler Wind Experiment Measure winds, speed and direction

Nephelometer Cloud structure

Solid/liquid particles

Net-flux radiometer Thermal/solar energy
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Figure 1: Mole fraction profiles in the troposphere of Saturn obtained with Venot et al.

(2012)’s model, targeting the 10−9 upper limit on the upper tropospheric CO mole fraction

obtained by Cavalié et al. (2009). The temperature profile in the troposphere is shown in

black solid line. Thermochemical equilibrium profiles are shown as black solid lines with

the same layout as their corresponding species. The model parameters are: O/H= 21

times solar, C/H= 9 times solar, and Kzz = 109 cm2·s−1. Condensation of H2O occurs

around the 20 bar level in this model.
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Figure 2: Ratio of Jovian to protosolar abundances. Black squares and black bars corre-

spond to measurements and their associated uncertainties. Blue and green bars correspond

to calculations assuming oxidizing and reducing conditions in the protosolar nebula, re-

spectively (see text). Arrows pointing up correspond to the possibility that the measured

oxygen and phosphorus abundances are lower than their bulk abundances, and arrow

pointing down to the fact that the measured Ne abundance is an upper limit.
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Figure 3: Ratio of Saturnian to protosolar abundances. Black squares and black bars

correspond to measurements and their associated uncertainties. The O value measured

in the troposphere would be close to zero on the utilized scale. Blue and green bars

correspond to calculations assuming oxidizing and reducing conditions in the protosolar

nebula, respectively (see text).
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