
HAL Id: hal-01276324
https://hal.science/hal-01276324v3

Submitted on 8 Oct 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Explore First, Exploit Next: The True Shape of Regret
in Bandit Problems

Aurélien Garivier, Pierre Ménard, Gilles Stoltz

To cite this version:
Aurélien Garivier, Pierre Ménard, Gilles Stoltz. Explore First, Exploit Next: The True Shape
of Regret in Bandit Problems. Mathematics of Operations Research, 2019, 44 (2), pp.377-399.
�10.1287/moor.2017.0928�. �hal-01276324v3�

https://hal.science/hal-01276324v3
https://hal.archives-ouvertes.fr


MATHEMATICS OF OPERATIONS RESEARCH
DOI: 10.1287/moor.2017.0928

INFORMS
doi 10.1287/moor.2017.0928

c© 2018 INFORMS

Authors are encouraged to submit new papers to INFORMS journals by means of
a style file template, which includes the journal title. However, use of a template
does not certify that the paper has been accepted for publication in the named jour-
nal. INFORMS journal templates are for the exclusive purpose of submitting to an
INFORMS journal and should not be used to distribute the papers in print or online
or to submit the papers to another publication.

Explore First, Exploit Next:
The True Shape of Regret in Bandit Problems
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1. Introduction. After the works of Lai and Robbins [21] and Burnetas and Katehakis [9],
it is widely admitted that the growth of the cumulative regret in a bandit problem is a logarithmic
function of time, multiplied by a sum of terms involving Kullback-Leibler divergences. The asymp-
totic nature of the lower bounds, however, appears clearly in numerical experiments, where the
logarithmic shape is not to be observed on small horizons (see Figure 1, left). Even on larger hori-
zons, the second-order terms keep a large importance, which causes the regret of some algorithms
to remain way below the “lower bound” on any experimentally visible horizon (see Figure 1, right;
see also Garivier et al. [16]).

First contribution: a folk result made rigorous. It seems to be a folk result (or at least,
a widely believed result) that the regret should be linear in an initial phase of a bandit problem.
However, all references that we were pointed out exhibit such a linear behavior only for limited
bandit settings; we discuss them below, in the section about literature review. We are the first to
provide linear distribution-dependent lower bounds for small horizons that hold for general bandit
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Figure 1. Expected regret of Thompson [24] Sampling (blue, solid line) on a Bernoulli bandit problem with param-
eters (µa)16a66 = (0.05, 0.04, 0.02, 0.015, 0.01, 0.005); expectations are approximated over 500 runs.

Versus the Lai and Robbins [21] lower bound (red, dotted line) for a Bernoulli model; here kl denotes the Kullback-
Leibler divergence (5) between Bernoulli distributions.

Left : the shape of regret is not logarithmic at first, rather linear.
Right : the asymptotic lower bound is out of reach unless T is extremely large.

problems, with no restriction on the shape or on the expectations of the distributions over the
arms.

Thus we may draw a more precise picture of the behavior of the regret in any bandit problem.
Indeed, our bounds show the existence of three successive phases: an initial linear phase, when
all the arms are essentially drawn uniformly; a transition phase, when the number of observations
becomes sufficient to perceive differences; and the final phase, when the distributions associated
with all the arms are known with high confidence and when the new draws are just confirming the
identity of the best arms with higher and higher degree of confidence (this is the famous logarithmic
phase). This last phase may often be out of reach in applications, especially when the number of
arms is large.

Second contribution: a generic tool for proving distribution-dependent bandit lower
bounds. On the technical side, we provide simple proofs, based on the fundamental information-
theoretic inequality (6) stated in Section 2, which generalizes and simplifies previous approaches
based on explicit changes of measures. In particular, we are able to re-derive the asymptotic
distribution-dependent lower bounds of Lai and Robbins [21], Burnetas and Katehakis [9] and
Cowan and Katehakis [14] in a few lines. This may perhaps be one of the most striking contributions
of this paper. As a final set of results, we offer non-asymptotic versions of these lower bounds for
large horizons, and exhibit the optimal order of magnitude of the second-order term in the regret
bound, namely, − ln(lnT ).

The proof techniques come to the essence of the arguments used so far in the literature and they
involve no unnecessary complications; they only rely on well-known properties of Kullback-Leibler
divergences.

1.1. Setting. We consider the simplest case of a stochastic bandit problem, with finitely many
arms indexed by a∈ {1, . . . ,K}. Each of these arms is associated with an unknown probability dis-
tribution νa over R. We assume that each νa has a well-defined expectation and call ν = (νa)a=1,...,K

a bandit problem.
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At each round t> 1, the player pulls the arm At and gets a real-valued reward Yt drawn indepen-
dently at random according to the distribution νAt . This reward is the only piece of information
available to the player.

Strategies. A strategy ψ associates an arm with the information gained in the past, possibly
based on some auxiliary randomization; without loss of generality, this auxiliary randomization is
provided by a sequence U0,U1,U2, . . . of independent and identically distributed random variables,
with common distribution the uniform distribution over [0,1]. Formally, a strategy is a sequence
ψ = (ψt)t>0 of measurable functions, each of which associates with the said past information,
namely,

It =
(
U0, Y1,U1, . . . , Yt,Ut

)
,

an arm ψt(It) =At+1 ∈ {1, . . . ,K}, where t> 0. The initial information reduces to I0 =U0 and the
first arm is A1 =ψ0(U0). The auxiliary randomization is conditionally independent of the sequence
of rewards in the following sense: for t> 1, the randomization Ut used to pick At+1 is independent
of It−1 and Yt.

Regret. A typical measure of the performance of a strategy is given by its regret. To recall its
definition, we denote by E(νa) = µa the expected payoff of arm a and by ∆a its gap to an optimal
arm:

µ? = max
a=1,...,K

µa and ∆a = µ?−µa .

The number of times an arm a is pulled until round T by a strategy ψ is referred to as

Nψ,a(T ) =
T∑

t=1

I{At=a} =
T∑

t=1

I{ψt−1(It−1)=a} .

The expected regret of a strategy ψ equals, by the tower rule (see details below),

Rψ,ν,T = Tµ?−Eν

[
T∑

t=1

Yt

]
=Eν

[
T∑

t=1

(
µ?−µAt

)
]

=
K∑

a=1

∆aEν
[
Nψ,a(T )

]
. (1)

In the equation above, the notation Eν refers to the expectation associated with the bandit problem
ν = (νa)a=1,...,K ; it is made formal in Section 2.

To show (1), we use that by the definition of the bandit setting, the distribution of the obtained
payoff Yt only depends on the chosen arm At and is independent from the past random draws of
the Y1, . . . , Yt−1. More precisely, conditionally on At, the distribution of Yt is νAt so that

Eν
[
Yt |At

]
= µAt , thus Eν [Yt] =Eν

[
Eν
[
Yt |At

]]
=Eν

[
µAt
]
,

where we used the tower rule for the second set of equalities.

1.2. The general asymptotic lower bound: a quick literature review. We consider a
bandit model D, i.e., a collection of possible distributions νa associated with the arms. (That is, D
is a subset of the set of all possible distributions over R with an expectation.) Lai and Robbins [21]
and later Burnetas and Katehakis [9] exhibited asymptotic lower bounds and matching asymptotic
upper bounds on the normalized regret Rψ,ν,T/ lnT , respectively in a one-parameter case and in a
more general, multi-dimensional parameter case, under mild conditions on D. We believe that the
extension of these bounds to any, even non-parametric, model was a known or at least conjectured
result (see, for instance, the introduction of Cappé et al. [11]). It turns out that recently, Cowan and
Katehakis [14] provided a clear non-parametric statement, though under additional mild conditions
on the model D, which, as we will see, are not needed.
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In the sequel, we denote by KL the Kullback-Leibler divergence between two probability distri-
butions. We also recall that we denoted by E the expectation operator (that associates with each
distribution its expectation).

To state the bound for the case of an arbitrary model D, we will use the following key quantity
Kinf introduced by Burnetas and Katehakis [9, quantity (3)–(b) on page 125].

The key quantity Kinf. For any given νa ∈D and any real number x,

Kinf(νa, x,D) = inf
{

KL(νa, ν
′
a) : ν ′a ∈D and E(ν ′a)>x

}
;

by convention, the infimum of the empty set equals +∞. When the considered strategy is uniformly
fast convergent in the sense of Definition 1 (stated later in this paper), then, for any suboptimal
arm a,

lim inf
T→∞

Eν
[
Nψ,a(T )

]

lnT
>

1

Kinf(νa, µ?,D)
. (2)

Note that by the convention on the infimum of the empty set, this lower bound is void as soon as
there exists no ν ′a ∈D such that E(ν ′a)>µ

?.

Previous partial simplifications of the proof of (2). We re-derive the above bound in a
few lines in Section B.1.

There had been recent attempts to clarify the exposition of the proof of this lower bound, together
with the desire of dropping the mild conditions that were still needed so far on the model D. We
first mention that Cowan and Katehakis [14] provided a more general and streamlined approach
than the original expositions by Lai and Robbins [21] and Burnetas and Katehakis [9].

The case of Bernoulli models was discussed in Bubeck [5] and Bubeck and Cesa-Bianchi [6].
Only assumptions of uniform fast convergence of the strategies are required (see Definition 1) and
the associated proof follows the original proof technique, by performing first an explicit change of
measure and then applying some Markov–Chernoff bounding. More recently, Jiang [18, Section 2.2]
presented a proof (only in the Bernoulli case) not relying on any explicit change of measure but with
many additional technicalities with respect to our exposition, including some Markov bounding of
well-chosen events. We have been referred to this PhD dissertation only recently, after completing
the present paper.

As far as general bandit models are concerned, we may cite Kaufmann et al. [19, Appendix B]:
they deal with the case of any model D but with the restriction that only bandit problems ν with
a unique optimal arm should be considered. They still use both an explicit change of measure –to
prove the chain-rule equality in (6)– and then apply as well some Markov–Chernoff bounding to
the probability of well-chosen events. With a different aim, Combes and Proutière [13] presented
similar arguments.

We also wish to mention the contribution of Wu et al. [25], though their focus and aim are
radically different. With respect to some aspects, their setting and goal is wider or more general:
they developed non-asymptotic problem-dependent lower bounds on the regret of any algorithm, in
the case of more general limited feedback models than just the simplest case of multi-armed bandit
problems. Their lower bounds can recover the asymptotic bounds of Burnetas and Katehakis [9],
but only up to a constant factor as they acknowledge in their contribution. These lower bounds are
in terms of uniform upper bounds on the regret of the considered strategies, which is in contrast
with the lower bounds we develop in Section 3. Therein, we need some assumptions on the strategies
–extremely mild ones, though: some minimal symmetry– and do not need their regret to be bounded
from above. However, the main difference with respect to this reference is that its focus is limited
to specific bandit models, namely Gaussian bandits models, while Burnetas and Katehakis [9] and
the present paper do not impose such a restriction on the bandit model.
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1.3. Other bandit lower bounds: a brief literature review. In this paper, we are mostly
interested in general distribution-dependent lower bounds, that hold for all bandit problems, just
like (2). We do target generality. This is in contrast with many earlier lower bounds in the multi-
armed bandit setting, which are rather of the following form, which we will refer to as (well-chosen):

“There exists some well-chosen, difficult bandit problem such that all strategies suffer a regret
larger than [...].” (well-chosen)

Specific examples and pointers for this kind of bounds are given below. An interesting variation is
provided by Mannor and Tsitsiklis [23, Theorem 10], who state that for all strategies, there exists
some well-chosen, difficult Bernoulli bandit problem such that the regret is linear at first and then,
logarithmic.

On the contrary, we will issue statements of the following form, which we will refer to as (all):
“For all bandit problems, all (reasonable) strategies suffer a regret larger than (...).” (all)

Sometimes, but not always, we will have to impose some mild restrictions on the considered strate-
gies (like some minimal symmetry, or some notion of uniform fast convergence); this is what we
mean by requiring the strategies to be “reasonable”.

We discuss briefly below two other sets of regret lower bounds. We are pleased to mention that
our fundamental inequality was already used in at least one subsequent article, namely by Garivier
et al. [16], to prove in a few lines matching lower bounds for a refined analysis of explore-then-
commit strategies.

The distribution-free lower bound. This inequality states that for the model D=M
(
[0,1]

)

of all probability distributions over [0,1], for all strategies ψ, for all T > 1 and all K > 2,

sup
ν
Rψ,ν,T >

1

20
min

{√
KT, T

}
; (3)

see Auer et al. [3], Cesa-Bianchi and Lugosi [12], and for two-armed bandits, Kulkarni and
Lugosi [20]. We re-derive the above bound in Section B.1 of the appendix. This re-derivation follows
the very same proof scheme as in the original proof; the only difference is that some steps (e.g., the
use of chain-rule equality for Kullback-Leibler divergences) are implemented separately as parts
of the proof of our general inequality (6). In particular, the well-chosen difficult bandit problems
used to prove this bound are composed of Bernoulli distributions with parameters 1/2 and 1/2+ε,
where ε is carefully tuned according to the values of T and K. This bound therefore rather falls
under the umbrella (well-chosen).

Lower bounds for sub-Gaussian bandit problems in the case when µ? or the gaps ∆
are known. This framework and the exploitation of this knowledge was first studied by Bubeck
et al. [7]. They consider a bandit model D containing only sub-Gaussian distributions with param-
eter σ2 6 1; that is, distributions νa, with expectations µa ∈R, such that

∀λ∈R,
∫

R
exp
(
λ(y−µa)

)
dνa(y)6 exp

(
λ2

2

)
. (4)

Examples of such distributions include Gaussian distributions with variance smaller than 1 and
bounded distributions with range smaller than 2.

They study how much smaller the regret bounds can get when either the maximal expected payoff
µ? or the gaps ∆a are known. For the case when the gaps ∆a are known but not µ?, they exhibit a
lower bound on the regret matching previously known upper bounds, thus proving their optimality.
For the case when µ? is known but not the gaps, they offer an algorithm and its associated regret
upper bound, as well as a framework for deriving a lower bound; later work (see Bubeck et al. [8]
and Faure et al. [15]) point out that a bounded regret can be achieved in this case.
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We (re-)derive these two lower bounds in a few lines in Section B.2 of the appendix. In particular,

the well-chosen difficult bandit problems used are composed of Gaussian distributions N (µa,1),

with expectations µa ∈ {−∆,0,∆}. Only statements of the form (well-chosen), not of the form (all),

are obtained. Put differently, no general distribution-dependent statement like: “For all bandit

problems in which the gaps ∆ (or the maximal expected payoff µ?) are known, all (reasonable)

strategies suffer a regret larger than [...]” is proposed by Bubeck et al. [7]; only well-chosen, difficult

bandit problems are considered. This is in strong contrast with our general distribution-dependent

bounds for the initial linear regime, provided in Section 3.

1.4. Outline of our contributions. In Section 2, we present Inequality (6), in our opinion

the most efficient and most versatile tool for proving lower bounds in bandit models. We carefully

detail its remarkably simple proof, together with an elegant re-derivation of the earlier asymptotic

lower bounds by Lai and Robbins [21], Burnetas and Katehakis [9] and Cowan and Katehakis [14].

Some other earlier bounds are also re-derived in Appendix B, namely, the distribution-free lower

bound by Auer et al. [3] as well as the bounded-regret Gaussian lower bounds by Bubeck et al. [7]

in the case when µ? or the gaps ∆ are known.

The true power of Inequality (6) is illustrated in Section 3: we study the initial regime when

the small number T of draws does not yet permit to unambiguously identify the best arm. We

propose three different bounds (each with specific merits). They explain the quasi-linear growth

of the regret in this initial phase. We also discuss how the length of the initial phase depends on

the number of arms and on the gap between optimal and sub-optimal arms in Kullback-Leibler

divergence. These lower bounds are extremely strong as they hold for all possible bandit problems,

not just for some well-chosen ones.

Section 4 contains a general non-asymptotic lower bound for the logarithmic (large T ) regime.

This bound does not only contain the right leading term, but the analysis aims at highlighting

what the second-order terms depend on. Results of independent interest on the regularity (upper

semi-continuity) of Kinf are provided in its Subsection 4.2.

2. The fundamental inequality, and re-derivation of earlier lower bounds. We denote

by kl the Kullback-Leibler divergence for Bernoulli distributions:

∀p, q ∈ [0,1]2, kl(p, q) = p ln
p

q
+ (1− p) ln

1− p
1− q . (5)

We show in this section that for all strategies ψ, for all bandit problems ν and ν ′, for all σ(IT )–

measurable random variables Z with values in [0,1],

K∑

a=1

Eν
[
Nψ,a(T )

]
KL(νa, ν

′
a)> kl

(
Eν [Z], Eν′ [Z]

)
. (6)

Inequality (6) will be referred to as the fundamental inequality of this article. We will typically

apply it by considering variables of the form Z =Nψ,k(T )/T for some arm k. That the kl term in (6)

then also contains expected numbers of draws of arms will be very handy. Unlike all previous proofs

of distribution-dependent lower bounds for bandit problems, we will not have to introduce well-

chosen events and control their probability by some Markov–Chernoff bounding. Implicit changes of

measures will however be performed by considering bandit problems ν and ν ′ and their associated

probability measures Pν and Pν′ .
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Underlying probability measures. The proof of (6) will be based, among others, on an

application of the chain rule for Kullback-Leibler divergences. For this reason, it is helpful to

construct and define the underlying measures, so that the needed stochastic transition kernels

appear clearly.

By Kolmogorov’s extension theorem, there exists a measurable space (Ω,F) on which all prob-

ability measures Pν and Pν′ considered above can be defined; e.g., Ω = [0,1]×
(
R× [0,1]

)N
. Given

the probabilistic and strategic setting described in Section 1.1, the probability measure Pν over

this (Ω,F) is such that for all t> 0, for all Borel sets B ⊆R and B′ ⊆ [0,1],

Pν
(
Yt+1 ∈B, Ut+1 ∈B′

∣∣ It
)

= νψt(It)(B) λ(B′) , (7)

where λ denotes the Lebesgue measure on [0,1].

Remark 1. Equation (7) actually reveals that the distributions Pν should be indexed as well

by the considered strategy ψ. Because the important element in the proofs will be the dependency

on ν (we will replace ν by alternative bandit problems ν ′), we drop the dependency on ψ in the

notation for the underlying probability measures. This will not come at the cost of clarity as

virtually all events Aψ and random variables Zψ that will be considered will depend on ψ: we will

almost always deal with probabilities of the form Pν(Aψ) or expectations of the form Eν [Zψ].

2.1. Proof of the fundamental inequality (6). We let PITν and PITν′ denote the respective
distributions (pushforward measures) of IT under Pν and Pν′ . We add an intermediate equation

in (6),
K∑

a=1

Eν
[
Nψ,a(T )

]
KL(νa, ν

′
a) = KL

(
PITν , P

IT
ν′
)
> kl

(
Eν [Z], Eν′ [Z]

)
, (8)

and are left with proving a standard equality (via the chain rule for Kullback-Leibler divergences)

and a less standard inequality (following from the data-processing inequality for Kullback-Leibler

divergences).

Remark 2. Although this possibility is not used in the present article, it is important to note,

after Kaufmann et al. [19, Lemma 1], that (8) actually holds not only for deterministic values of

T but also for any stopping time with respect to the filtration generated by (It)t>1.

Proof of the equality in (8). This equality can be found, e.g., in the proofs of the

distribution-free lower bounds on the bandit regret, in the special case of Bernoulli distributions,

see Auer et al. [3] and Cesa-Bianchi and Lugosi [12]; see also Combes and Proutière [13]. We thus

reprove this equality for the sake of completeness only.

We use the symbol ⊗ to denote products of measures. The stochastic transition kernel (7) exactly

indicates that the conditional distribution of (Yt+1,Ut+1) given It equals

P(Yt+1,Ut+1) | It
ν = νψt(It)⊗λ .

Because the conditional distribution at hand takes such a simple form, the chain rule for Kullback-

Leibler divergences applies; it ensures that for all t> 0,

KL
(
PIt+1
ν , PIt+1

ν′

)
= KL

(
P(It,Yt+1,Ut+1)
ν , P(It,Yt+1,Ut+1)

ν′

)

= KL
(
PItν , P

It
ν′
)

+ KL
(
P(Yt+1,Ut+1) | It
ν , P(Yt+1,Ut+1) | It

ν′

)
, (9)
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where

KL
(
P(Yt+1,Ut+1) | It
ν , P(Yt+1,Ut+1) | It

ν′

)
=Eν

[
Eν
[
KL
(
νψt(It)⊗λ, ν ′ψt(It)⊗λ

) ∣∣∣ It
]]

=Eν
[
Eν
[
KL
(
νψt(It), ν

′
ψt(It)

) ∣∣∣ It
]]

=Eν

[
K∑

a=1

KL(νa, ν
′
a) I{ψt(It)=a}

]
.

Recalling that At+1 =ψt(It), we proved so far

KL
(
PIt+1
ν , PIt+1

ν′

)
= KL

(
PItν , P

It
ν′
)

+Eν

[
K∑

a=1

KL(νa, ν
′
a) I{At+1=a}

]
.

Iterating the argument and using that KL
(
PI0ν , P

I0
ν′
)

= KL
(
PU0
ν , P

U0
ν′
)

= KL(λ,λ) = 0 leads to the
equality stated in (8).

Proof of the inequality in (8). This is our key contribution to a simplified proof of the
lower bound (2). It is a consequence of the data-processing inequality (also known as contraction of
entropy), i.e., the fact that Kullback-Leibler divergences between pushforward measures are smaller
than the Kullback-Leibler divergences between the original probability measures; see Lemma 5 in
Appendix A for a statement and elements of proof.

We actually state our inequality in a slightly more general way, as it is of independent interest.

Lemma 1. Consider a measurable space (Γ,G) equipped with two distributions P1 and P2, and
any G–measurable random variable Z : Ω→ [0,1]. We denote respectively by E1 and E2 the expec-
tations under P1 and P2. Then,

KL(P1,P2)> kl
(
E1[Z],E2[Z]

)
.

Proof. We augment the underlying measurable space into Γ× [0,1], where [0,1] is equipped with
the Borel σ–algebra B

(
[0,1]

)
and the Lebesgue measure λ. We denote by G⊗B

(
[0,1]

)
the σ–algebra

generated by product sets in G×B
(
[0,1]

)
. Now, for any event E ∈ G⊗B

(
[0,1]

)
, by the consideration

of product distributions for the equality and by the data-processing inequality (Lemma 5) applied
to X = IE for the inequality, we have

KL(P1,P2) = KL
(
P1⊗λ, P2⊗λ

)
>KL

(
(P1⊗λ)IE , (P2⊗λ)IE

)
.

The distribution (Pj ⊗ λ)IE of IE under Pj ⊗ λ is a Bernoulli distribution, with parameter the
probability of E under Pj ⊗λ; therefore, using the notation kl, we have got so far

KL(P1,P2)>KL
(

(P1⊗λ)IE , (P2⊗λ)IE
)

= kl
(
(P1⊗λ)(E), (P2⊗λ)(E)

)
.

We consider E =
{

(γ,x)∈ Γ× [0,1] : x6Z(γ)
}

and note noting that for all j, by the Fubini-Tonelli
theorem,

(Pj ⊗λ)(E) =

∫

Ω

(∫

[0,1]

I{x6Z(γ)} dλ(x)

)
dPj(γ) =

∫

Ω

Z(γ)dPj(γ) =Ej[Z] .

This concludes the proof of this lemma. �
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2.2. Application: re-derivation of the general asymptotic distribution-dependent
bound. As a warm-up, we show how the asymptotic distribution-dependent lower bound (2) of
Burnetas and Katehakis [9] can be reobtained, for so-called uniformly fast convergent strategies.

Definition 1. A strategy ψ is uniformly fast convergent on a modelD if for all bandit problems
ν in D, for all suboptimal arms a, i.e., for all arms a such that ∆a > 0, for all 0<α6 1, it satisfies
Eν
[
Nψ,a(T )

]
= o(Tα).

Theorem 1. For all models D, for all uniformly fast convergent strategies ψ on D, for all
bandit problems ν, for all suboptimal arms a,

lim inf
T→∞

Eν
[
Nψ,a(T )

]

lnT
>

1

Kinf(νa, µ?,D)
.

Proof. Given any bandit problem ν and any suboptimal arm a, we consider a modified problem
ν ′ where a is the (unique) optimal arm: ν ′k = νk for all k 6= a and ν ′a is any distribution in D such
that its expectation µ′a satisfies µ′a > µ? (if such a distribution exists; see the end of the proof
otherwise). We apply the fundamental inequality (6) with Z = Nψ,a(T )/T . All Kullback-Leibler
divergences in its left-hand side are null except the one for arm a, so that we get the lower bound

Eν
[
Nψ,a(T )

]
KL(νa, ν

′
a)> kl

(
Eν
[
Nψ,a(T )

]

T
,
Eν′
[
Nψ,a(T )

]

T

)

>

(
1− Eν

[
Nψ,a(T )

]

T

)
ln

T

T −Eν′
[
Nψ,a(T )

] − ln 2 , (10)

where we used for the second inequality that for all (p, q)∈ [0,1]2,

kl(p, q) = p ln
1

q︸ ︷︷ ︸
>0

+(1− p) ln
1

1− q +
(
p lnp+ (1− p) ln(1− p)︸ ︷︷ ︸

>− ln 2

)
. (11)

The uniform fast convergence of ψ together with the fact that all arms k 6= a are suboptimal for ν ′

entails that

∀0<α6 1, 06 T −Eν′
[
Nψ,a(T )

]
=
∑

k 6=a

Eν′
[
Nψ,k(T )

]
= o(Tα) ;

in particular, T −Eν′
[
Nψ,a(T )

]
6 Tα for T sufficiently large. Therefore, for all 0<α6 1,

lim inf
T→∞

1

lnT
ln

T

T −Eν′
[
Nψ,a(T )

] > lim inf
T→∞

1

lnT
ln

T

Tα
= (1−α) .

In addition, the uniform fast convergence of ψ and the suboptimality of a for the bandit problem
ν ensure that Eν

[
Nψ,a(T )

]
/T → 0. Substituting these two facts in (10) we proved

lim inf
T→∞

Eν
[
Nψ,a(T )

]

lnT
>

1

KL(νa, ν ′a)
.

By taking the supremum in the right-hand side over all distributions ν ′a ∈D with µ′a >µ
?, if at least

one such distribution exists, we get the bound of the theorem. Otherwise, Kinf(νa, µ
?,D) = +∞ by

a standard convention on the infimum of an empty set and the bound holds as well. �



Garivier, Ménard, Stoltz: The True Shape of Regret in Bandit problems
10 Mathematics of Operations Research DOI: 10.1287/moor.2017.0928 c© 2018 INFORMS

3. Non-asymptotic bounds for small values of T . We prove three such bounds with
different merits and drawbacks. Basically, we expect suboptimal arms to be pulled each about
T/K of the time when T is small; when T becomes larger, sufficient information was gained for
identifying the best arm, and the logarithmic regime can take place.

The first bound shows that Eν
[
Nψ,a(T )

]
is of order T/K as long as T is at most of order

1/Kinf(νa, µ
?,D); we call it an absolute lower bound for a suboptimal arm a. Its drawback is that

the times T for which it is valid are independent of the number of arms K, while (at least in some
cases) one may expect the initial phase to last until T ≈K/Kinf(νa, µ

?,D).
The second lower bound thus addresses the dependency of the initial phase in K by consider-

ing a relative lower bound between a suboptimal arm a and an optimal arm a?. We prove that
Eν
[
Nψ,a(T )/Nψ,a?(T )

]
is not much smaller than 1 whenever T is at most of order K/KL(νa, νa?).

Here, the number of arms K plays the expected effect on the length of the initial exploration phase,
which should be proportional to K.

The third lower bound is a collective lower bound on all suboptimal arms, i.e., a lower bound on∑
a6∈A?(ν) Eν

[
Nψ,a(T )

]
where A?(ν) denotes the set of the A?ν optimal arms of ν. It is of the desired

order T (1−A?ν/K) for times T of the desired order K/Kmax
ν , where Kmax

ν is some Kullback-Leibler
divergence.

Minimal restrictions on the considered strategies. We prove these lower bounds under
minimal assumptions on the considered strategies: either some mild symmetry (much milder than
asking for symmetry under permutation of the arms, see Definition 3); or the fact that for subopti-
mal arms a, the number of pulls Eν

[
Nψ,a(T )

]
should decrease as µa decreases, all other distributions

of arms being fixed (see Definitions 2 and 4). These assumptions are satisfied by all well-performing
strategies we could think of: the UCB strategy of Auer et al. [2], the KL-UCB strategy of Cappé
et al. [11], Thompson [24] Sampling, EXP3 of Auer et al. [3], etc.

These mild restrictions on the considered strategies are necessary to rule out the irrelevant
strategies (e.g., always pull arm 1) that would perform extremely well for some particular bandit
problems ν. This is because we aim at proving distribution-dependent lower bounds that are valid
for all bandit problems ν: we prefer to impose the (mild) constraints on the strategies.

Note that the assumption of uniform fast convergence (Definition 1), though classical and well
accepted, is quite strong. Note that it is necessary for a strategy to satisfy some symmetry and to
be smarter than the uniform strategy in the limit (not for all T , see Definition 2) to be uniformly
fast convergent. Hence, the class of strategies we consider is essentially much larger than the subset
of uniformly fast convergent strategies.

3.1. Absolute lower bound for a suboptimal arm. The uniform strategy is the one that
pulls an arm uniformly at random at each round.

Definition 2. A strategy ψ is smarter than the uniform strategy on a model D if for all bandit
problems ν in D, for all optimal arms a?, for all T > 1,

Eν
[
Nψ,a?(T )

]
>
T

K
.

Theorem 2. For all models D, for all strategies ψ that are smarter than the uniform strategy
on D, for all bandit problems ν, for all arms a, for all T > 1,

Eν
[
Nψ,a(T )

]
>
T

K

(
1−

√
2TKinf(νa, µ?,D)

)
.

In particular,

∀T 6 1

8Kinf(νa, µ?,D)
, Eν

[
Nψ,a(T )

]
>

T

2K
.
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Proof. The definition of being smarter than the uniform strategy takes care of the lower bound
for optimal arms a: it thus suffices to consider suboptimal arms a. As in the proof of Theorem 1,
we consider a modified bandit problem ν ′ with ν ′k = νk for all k 6= a and ν ′a ∈D such that µ′a >µ

?,
if such a distribution ν ′a exists (otherwise, the first claimed lower bounds equals −∞). From (6),
we get

Eν
[
Nψ,a(T )

]
KL(νa, ν

′
a)> kl

(
Eν
[
Nψ,a(T )

]

T
,
Eν′
[
Nψ,a(T )

]

T

)
.

We may assume that Eν
[
Nψ,a(T )

]
/T 6 1/K; otherwise, the first claimed bound holds. Since a is

the optimal arm under ν ′ and since the considered strategy is smarter than the uniform strategy,
Eν′
[
Nψ,a(T )

]
/T > 1/K. Using that q 7→ kl(p, q) is increasing on [p,1], we thus get

kl

(
Eν
[
Nψ,a(T )

]

T
,
Eν′
[
Nψ,a(T )

]

T

)
> kl

(
Eν
[
Nψ,a(T )

]

T
,

1

K

)
.

Lemma 6 of Appendix A yields

Eν
[
Nψ,a(T )

]
KL(νa, ν

′
a)> kl

(
Eν
[
Nψ,a(T )

]

T
,

1

K

)
>
K

2

(
Eν
[
Nψ,a(T )

]

T
− 1

K

)2

,

from which follows, after substitution of the above assumption Eν
[
Nψ,a(T )

]
/T 6 1/K in the left-

hand side,
Eν
[
Nψ,a(T )

]

T
>

1

K
−
√

2T

K2
KL(νa, ν ′a) .

Taking the supremum of the right-hand side over all ν ′a ∈D such that E(ν ′a)>µ
? and rearranging

concludes the proof. �

3.2. Relative lower bound. Our proof will be based on an assumption of symmetry (milder
than requiring that if the arms are permuted in a bandit problem, the algorithm behaves the same
way, as in Definition 7).

Definition 3. A strategy ψ is pairwise symmetric for optimal arms on D if for all bandit
problems ν in D, for each pair of optimal arms a? and a?, the equality νa? = νa? entails that, for
all T > 1, (

Nψ,a?(T ), Nψ,a?(T )
)

and
(
Nψ,a?(T ), Nψ,a?(T )

)

have the same distribution.

Note that the required symmetry is extremely mild as only pairs of optimal arms with the same
distribution are to be considered. What the equality of distributions means is that the strategy
should be based only on payoffs and not on the values of the indexes of the arms.

Theorem 3. For all models D, for all strategies ψ that are pairwise symmetric for optimal
arms on D, for all bandit problems ν in D, for all suboptimal arms a and all optimal arms a?, for
all T > 1,

either Eν
[
Nψ,a(T )

]
>
T

K
or Eν

[
max

{
Nψ,a(T ), 1

}

max
{
Nψ,a?(T ), 1

}
]
> 1− 2

√
2T KL(νa, νa?)

K
.

In particular,

∀T 6 K

32KL(νa, νa?)
, either Eν

[
Nψ,a(T )

]
>
T

K
or Eν

[
max

{
Nψ,a(T ), 1

}

max
{
Nψ,a?(T ), 1

}
]
>

1

2
.
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That is, on average, in the small T regime, each suboptimal arm is played at least half the
number of times when an optimal arm was played.

Proof. For all arms k, we denote by N+
ψ,k(T ) = max

{
Nψ,k(T ), 1

}
. Given a bandit problem ν and

a suboptimal arm a, we form an alternative bandit problem ν ′ given by ν ′k = νk for all k 6= a and
ν ′a = νa? , where a? is an optimal arm of ν. In particular, arms a and a? are both optimal arms
under ν ′. By the assumption of pairwise symmetry for optimal arms, we have in particular that

Eν′

[
N+
ψ,a(T )

N+
ψ,a(T ) +N+

ψ,a?(T )

]
=Eν′

[
N+
ψ,a?(T )

N+
ψ,a?(T ) +N+

ψ,a(T )

]
=

1

2
.

The latter equality and the fundamental inequality (6) yield in the present case, through the choice
of Z =N+

ψ,a(T )
/(
N+
ψ,a(T ) +N+

ψ,a?(T )
)
,

Eν
[
Nψ,a(T )

]
KL(νa, ν

′
a)> kl

(
Eν

[
N+
ψ,a(T )

N+
ψ,a(T ) +N+

ψ,a?(T )

]
,

1

2

)
. (12)

The concavity of the function x 7→ x/(1 +x) and Jensen’s inequality show that

Eν

[
N+
ψ,a(T )

N+
ψ,a(T ) +N+

ψ,a?(T )

]
=Eν

[
N+
ψ,a(T )

/
N+
ψ,a?(T )

1 +N+
ψ,a(T )

/
N+
ψ,a?(T )

]
6

Eν
[
N+
ψ,a(T )

/
N+
ψ,a?(T )

]

1 +Eν
[
N+
ψ,a(T )

/
N+
ψ,a?(T )

] .

We can assume that Eν
[
N+
ψ,a(T )

/
N+
ψ,a?(T )

]
6 1, otherwise, the result of the theorem is obtained.

In this case, the latter upper bound is smaller than 1/2. Using in addition that p 7→ kl(p,1/2) is
decreasing on [0,1/2], and assuming that Eν

[
Nψ,a(T )

]
6 T/K (otherwise, the result of the theorem

is obtained as well), we get from (12)

T

K
KL(νa, ν

′
a)> kl

(
Eν
[
N+
ψ,a(T )

/
N+
ψ,a?(T )

]

1 +Eν
[
N+
ψ,a(T )

/
N+
ψ,a?(T )

] , 1

2

)
.

Pinsker’s inequality (in its classical form, see Appendix A for a statement) entails the inequality

T

K
KL(νa, ν

′
a)> 2

(
1

2
− r

1 + r

)2

, where r=Eν

[
N+
ψ,a(T )

N+
ψ,a?(T )

]
.

In particular,
r

1 + r
>

1

2
−
√
T KL(νa, ν ′a)

2K
.

Applying the increasing function x 7→ x/(1−x) to both sides, we get

r>
1−

√
2T KL(νa, ν ′a)/K

1 +
√

2T KL(νa, ν ′a)/K
>

(
1−

√
2T KL(νa, ν ′a)

K

)2

,

where we used 1/(1 + x) > 1− x for the last inequality and where we assumed that T is small
enough to ensure 1−

√
2T KL(νa, ν ′a)/K > 0. Whether this condition is satisfied or not, we have

the (possibly void) lower bound

r> 1− 2

√
2T KL(νa, ν ′a)

K
.

The proof is concluded by noting that by definition ν ′a = νa? . �
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3.3. Collective lower bound. In this section, for any given bandit problem ν, we denote by
A?(ν) the set of its optimal arms and by W(ν) the set of its worst arms, i.e., the ones associated
with the distributions with the smallest expectation among all distributions for the arms. We also
let A?ν be the cardinality of A?(ν).

We define the following partial order 4 on bandit problems: ν ′ 4 ν if

∀a∈A?(ν), νa = ν ′a and ∀a 6∈ A?(ν), E(ν ′a)6E(νa) .

In particular, A?(ν) =A?(ν ′) in this case. The definition models the fact that the bandit problem
ν ′ should be easier than ν, as non-optimal arms in ν ′ are farther away from the optimal arms
(in expectation) that in ν. Any reasonable strategy should perform better on ν ′ than on ν, which
leads to the following definition, where we measure performance in the expected number of times
optimal arms are pulled. (Recall that the sets of optimal arms are identical for ν and ν ′.)

Definition 4. A strategy ψ is monotonic on a model D if for all bandit problems ν ′ 4 ν in D,

∑

a?∈A?(ν′)

Eν′
[
Nψ,a?(T )

]
>

∑

a?∈A?(ν)

Eν
[
Nψ,a?(T )

]
.

Theorem 4. For all models D, for all strategies ψ that are pairwise symmetric for optimal
arms and monotonic on D, for all bandit problems ν in D, suboptimal arms are collectively sampled
at least

∑

a6∈A?(ν)

Eν
[
Nψ,a(T )

]
> T

(
1−

A?ν
K
−
A?ν
√

2T Kmax
ν

K
−

2A?νTKmax
ν

K

)
,

where Kmax
ν = min

w∈W(ν)
max

a?∈A?(ν)
KL(νw, νa?) .

In particular,

∀T 6 K

8A?νKmax
ν

,
∑

a6∈A?(ν)

Eν
[
Nψ,a(T )

]
>
T

2

(
1−

A?ν
K

)
.

To get a lower bound on the regret from this theorem, we use

Rψ,ν,T >

(
min

a 6∈A?(ν)
∆a

) ∑

a6∈A?(ν)

Eν
[
Nψ,a(T )

]
. (13)

Proof. We denote by w̃ some w ∈W(ν) achieving the minimum in the defining equation of Kmax
ν .

We construct two bandit models from ν. First, the model ν differs from ν only at suboptimal arms
a 6∈ A?(ν), which we associate with ν

a
= νw̃. By construction, ν 4 ν.

In the second model ν
˜

, each arm is associated with νw̃, i.e., ν
˜a

= νw̃ for all a∈ {1, . . . ,K}.
By monotonicity of ψ,

∑

a6∈A?(ν)

Eν
[
Nψ,a(T )

]
>

∑

a 6∈A?(ν)

Eν
[
Nψ,a(T )

]
.

We can therefore focus our attention, for the rest of the proof, on the Eν
[
Nψ,a(T )

]
. The strategy is

also pairwise symmetric for optimal arms and all arms of ν
˜

are optimal. This implies in particular

that Eν
˜
[
Nψ,1(T )

]
=Eν
˜
[
Nψ,a(T )

]
for all arms a, thus Eν

˜
[
Nψ,a(T )

]
= T/K for all arms a.
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Now, the bound (6) with Z =
∑

a?∈A?(ν)

Nψ,a?(T )

T
and the bandit models ν

˜
and ν gives

∑

a?∈A?(ν)

Eν
˜
[
Nψ,a?(T )

]
KL(νw̃, νa?)> kl

( ∑

a?∈A?(ν)

Eν
˜
[
Nψ,a?(T )

]
/T,

∑

a?∈A?(ν)

Eν
[
Nψ,a?(T )

]
/T

)

= kl

(
A?ν
K
,
∑

a?∈A?(ν)

Eν
[
Nψ,a?(T )

]
/T

)
.

By definition of Kmax
ν and w̃, and because Eν

˜
[
Nψ,a(T )

]
= T/K, we have

∑

a?∈A?(ν)

Eν
˜
[
Nψ,a?(T )

]
KL(νw̃, νa?)6

TA?νKmax
ν

K
,

which yields the inequality

TA?νKmax
ν

K
> kl

(
A?ν
K
, x

)
where x=

1

T

∑

a?∈A?(ν)

Eν
[
Nψ,a?(T )

]
.

We want to upper bound x, in order to get a lower bound on 1− x. We assume that x>A?ν/K,
otherwise, the bound (14) stated below is also satisfied. Pinsker’s inequality (actually, its local
refinement stated as Lemma 6 in Appendix A) then ensures that

TA?νKmax
ν

K
>

1

2x

(
A?ν
K
−x
)2

,

Lemma 2 below finally entails that

x6
A?ν
K

(
1 + 2TKmax

ν +
√

2TKmax
ν

)
. (14)

The proof is concluded by putting all elements together thanks to the monotonicity of ψ and the
definition of x: ∑

a6∈A?(ν)

Eν
[
Nψ,a(T )

]
>

∑

a 6∈A?(ν)

Eν
[
Nψ,a(T )

]
= T (1−x) . �

Lemma 2. If x∈R satisfies (x−α)2 6 βx for some α> 0 and β > 0, then x6 α+β+
√
αβ.

Proof. By assumption, x2− (2α+ β)x+α2 6 0. We have that x is smaller than the larger root
of the associated polynomial, that is,

x6
2α+β+

√
(2α+β)2− 4α2

2
=

2α+β+
√

4αβ+β2

2
.

We conclude with
√

4αβ+β2 6
√

4αβ+
√
β2. �

3.4. Numerical illustrations. In this section we illustrate some of the bounds stated above
for the initial linear regime, namely, the bounds of Theorems 2 and 4. It turned out that because of
the “or” statement in Theorem 3, its bound was less easy to illustrate. We need much more difficult
bandit problems than the one of Figure 1 in order to clearly observe the initial linear phase.

Theorem 2 is illustrated in Figure 2. We observe that in the bandit problems contemplated
therein, the expected numbers of pulls of the suboptimal arms considered indeed lie between
T/(2K) and T/K in the initial phase, as prescribed by the theorem. We see, however, that this
initial phase is probably longer than what was quantified.

Theorem 4 is illustrated in Figure 3. For a large number of arms, the regret lower bound (13)
deriving as a consequence of the considered theorem is larger than a bound based on the decom-
position of the regret (1) and Theorem 2.
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Figure 2. Expected number of pulls of the most suboptimal arm for Thompson [24] Sampling (blue, solid line) on
Bernoulli bandit problems, versus the lower bound (red, dashed line) of Theorem 2 for the model D of all Bernoulli
distributions; expectations are approximated over 1,000 runs.

Left : parameters (µa)16a62 = (0.5, 0.49), with characteristic time 1/
(
8Kinf(ν2, µ

?,D)
)
≈ 625.

Right : parameters (µa)16a67 = (0.05, 0.048, 0.047, 0.046, 0.045, 0.044, 0.043), with 1/
(
8Kinf(ν7, µ

?,D)
)
≈ 231.
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Figure 3. Expected regret of Thompson [24] Sampling (blue, solid line) on Bernoulli bandit problems, versus the
lower bound (red, dashed line) of Theorem 4 using (13) and the lower bound (black, dotted line) of Theorem 2
using (1), for the model D of all Bernoulli distributions; expectations are approximated over 3,000 runs.

Left : parameters (µa)16a610 = (0.05, 0.043, . . . , 0.043), with characteristic time K/
(
8A?ν Kmax

ν

)
≈ 1,250.

Right : parameters (µa)16a67 = (0.05, 0.048, 0.047, 0.046, 0.045, 0.044, 0.043), with K/
(
8A?ν Kmax

ν

)
≈ 1,619.

4. Non-asymptotic bounds for large T. We restrict our attention to well-behaved models
and uniformly super-fast convergent strategies. For a given model D, we denote by E(D) the
interior of the set of all expectations of distributions in D. That a model is well-behaved means
that the function Kinf is locally Lipschitz continuous in its second variable, as is made formal in
the following definition.

Definition 5. A model D is well behaved if there exist two functions εD :E(D)→ (0,+∞) and
ωD :D×E(D)→ (0,+∞) such that for all distributions νa ∈D and all x∈E(D) with x>E(νa),

∀ε < εD(x), Kinf(νa, x+ ε,D)6Kinf(νa, x,D) + εωD(νa, x) .

We could have considered a more general definition, where the upper bound would have been
any vanishing function of ε, not only a linear function of ε. However, all examples considered in
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this paper (see Section 4.2) can be associated with such a linear difference. Those examples of
well-behaved models include parametric families like regular exponential families, as well as more
massive classes, like the set of all distributions with bounded support (with or without a constraint
on the finiteness of support). Some of these examples, namely, regular exponential families and
finitely-supported distributions with common bounded support, were the models studied in Cappé
et al. [11] to get non-asymptotic upper bounds on the regret of the optimal order (2).

Definition 6. A strategy ψ is uniformly super-fast convergent on a model D if there exists a
constant Cψ,D such that for all bandit problems ν in D, for all suboptimal arms a, for all T > 2,

Eν
[
Nψ,a(T )

]
6Cψ,D

lnT

∆2
a

.

Uniform super-fast convergence is a refinement of the notion of uniform fast convergence based
on two considerations. First, that there exist such strategies, for instance, the UCB strategy of Auer
et al. [2] on any bounded model D, i.e., a model with distributions all supported within a common
bounded interval [m,M ]. Second, Pinsker’s inequality (see Appendix A) and Lemma 1 entail in
particular that for such bounded models D,

Kinf(νa, µ
?,D)> kl

(
µa−m
M −m,

µ?−m
M −m

)
>

2

(M −m)2
∆2
a ;

therefore, the upper bound stated in the definition of uniform super-fast convergence is still weaker
than the lower bound (2).

Note that Definition 6 could be relaxed even more: we are mostly interested therein in the
logarithmic growth rate lnT . We imposed the Cψ,D/∆

2
a upper bound mostly for simplicity and

readability of the calculations that lead to Theorem 5. It would be of course possible to rather
consider more abstract problem-dependent constants of the form Cψ,D(a, ν), at least as soon as
some minimal properties are assumed with respect to the behavior of such constants as functions
of the gap µ?−µa.

4.1. A general non-asymptotic lower bound. Throughout this subsection, we fix a strat-
egy ψ that is uniformly super-fast convergent with respect to a model D. We recall that we denote
by A?(ν) the set of optimal arms of the bandit problem ν and let A?ν be its cardinality. We adapt
the bounds (6) and (10) by using this time

Z =
1

T

∑

a?∈A?(ν)

Nψ,a?(T )

and kl(p, q)> p ln(1/q)− ln 2, see (11). For all bandit problems ν ′ that only differ from ν as far a
suboptimal arm a is concerned, whose distribution of payoffs ν ′a ∈D is such that µ′a =E(ν ′a)>µ

?,
we get

Eν
[
Nψ,a(T )

]
>

1

KL(νa, ν ′a)

(
Eν [Z] ln

1

Eν′ [Z]
− ln 2

)
. (15)

We restrict our attention to distributions ν ′a ∈D such that the gaps for ν ′ associated with optimal
arms a? ∈A?(ν) of ν satisfy ∆ = µ′a−µ? > ε, for some parameter ε > 0 to be defined by the analysis.
By uniform super-fast convergence, on the one hand,

Eν [Z] = 1− 1

T

∑

a 6∈A?(ν)

Eν
[
Nψ,a(T )

]
> 1− 1

T


Cψ,D

∑

a 6∈A?(ν)

1

∆2
a

lnT


 ;
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on the other hand,

Eν′ [Z] =
1

T

∑

a?∈A?(ν)

Eν′
[
Nψ,a(T )

]
6
A?ν Cψ,D

∆2

lnT

T
.

Denoting

H(ν) =
∑

a 6∈A?(ν)

1

∆2
a

(16)

and using that ∆> ε, a substitution of the two super-fast convergence inequalities into (15) and
an optimization over the considered distributions ν ′a leads to

Eν
[
Nψ,a(T )

]
>

1

Kinf(νa, µ? + ε,D)

(
1−Cψ,DH(ν)

lnT

T

)
ln

Tε2

A?ν Cψ,D lnT
− ln 2

Kinf(νa, µ? + ε,D)
. (17)

The obtained bound holds for all T > 2 (as in the definition of uniform super-fast convergence);
however, for small values of T , it might be negative, thus useless.

To proceed, we use the fact that the model D is well-behaved to relate Kinf(νa, µ
? + ε,D) to

Kinf(νa, µ
?,D). Since 1/(1 +x)> 1−x for all x> 0, we get by Definition 5

∀ε < εD(µ?),
1

Kinf(νa, µ? + ε,D)
>

1

Kinf(νa, µ?,D)

(
1− ε ωD(νa, µ

?)

Kinf(νa, µ?,D)

)
.

Now, we set ε= εT = (lnT )−4. Many other choices would have been possible, but this one is such
that εT 6 0.0005 already for T > 1000. Putting all things together, from (17), from the fact that
(1− a)(1− b)(1− c)> 1− (a+ b+ c) when 06 a, b, c6 1, and from the bound A?ν 6K, we get the
following theorem.

Theorem 5. For all uniformly super-fast convergent strategies ψ on well-behaved models D,
for all bandit problems ν in D, for all suboptimal arms a,

Eν
[
Nψ,a(T )

]
>

lnT

Kinf(νa, µ?,D)

(
1− (aT + bT + cT )

)
− ln 2

Kinf(νa, µ?,D)
, (18)

for all T > 2 large enough so that (lnT )−4 < εD(µ?) and

aT =
ωD(νa, µ

?)

Kinf(νa, µ?,D)
(lnT )−4 , bT =Cψ,DH(ν)

lnT

T
, cT =

ln
(
KCψ,D(lnT )9

)

lnT
,

are all smaller than 1, where H(ν) was defined in (16).

Remark 3. We have (aT + bT + cT ) lnT = O
(
ln(lnT )

)
. The non-asymptotic bound (18) is

therefore of the form

Eν
[
Nψ,a(T )

]
>

lnT

Kinf(νa, µ?,D)
−O

(
ln(lnT )

)
.

Note that the second-order term of typical non-asymptotic upper bounds (e.g., by Cappé et al. [11])
had long been of the form +(lnT )α for some α ∈ (0,1). But recently, Honda and Takemura [17,
Theorem 5] showed that at least for models containing distributions that have each a bounded
support, the second-order is of order − ln(lnT ). Our lower bound above thus shows the optimality
of the order of magnitude of this second-order term.

4.2. Two (and a half) examples of well-behaved models. We consider first distributions
with common bounded support (and the subclass of such distributions with finite support); and
then, regular exponential families. The latter and the subclass of distributions with finite and
bounded support are the two models for which Cappé et al. [11] could prove non-asymptotic upper
bounds matching the lower bound (2).
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Distributions with common bounded support. We denote by M
(
[0,M ]

)
the set of all

probability distributions over [0,M ], equipped with its Borel σ–algebra, and restrict our model to
such distributions with expectation not equal to M .

Lemma 3. In the model D=
{

m∈M
(
[0,M ]

)
:E(m)<M

}
, we have

∀m∈D, ∀µ? ∈ [0,M), ∀ε∈
(
0, (M −µ?)/2

)
,

Kinf(m, µ
? + ε,D)6Kinf(m, µ

?,D)− ln

(
1− 2ε

M −µ?
)
.

In particular, for all m∈D and µ? ∈ [0,M),

∀ε∈
(
0, (M −µ?)/4

)
, Kinf(m, µ

? + ε,D)6Kinf(m, µ
?,D) +

4ε

M −µ? .

Proof. We fix m, µ? and ε as indicated for the first bound; in particular, µ? + ε <M . Since m
is a probability distribution, it has at most countably many atoms; therefore, there exists some
x∈ (µ? + ε,M) such that m({x}) = 0 and x> (M +µ?)/2. In particular, m and the Dirac measure
δx at this point are singular measures.

We consider some m′ ∈ D such that E(m′) > µ? and m�m′ (i.e., m is absolutely continuous
with respect to m′). Such distributions exist and they are the only interesting ones in the defining
infimum of Kinf(m, µ

?,D). We associate with m′ the distribution

m′α = (1−α)m′+αδx , for the value α=
ε

x−µ? ∈ (0,1) .

The expectation of m′α satisfies

E
(
m′α
)
> (1−α)µ? +αx= µ? +α(x−µ?) = µ? + ε . (19)

Now, m�m′ entails that m�m′α as well, with respective densities satisfying (because m and δx
are singular)

dm

dm′α
=

1

1−α
dm

dm′
and

dm

dm′α
(x) = 0 .

Therefore,

KL(m,m′α) =

∫ (
ln

dm

dm′α

)
dm = ln

1

1−α +

∫ (
ln

dm

dm′

)
dm = ln

1

1−α + KL(m,m′) .

Since α decreases with x and x> (M +µ?)/2, we get α6 2ε/(M −µ?). We substitute this bound in
the inequality above and take the infimum in both sides, considering (19), to get the first claimed
bound. The second bound follows from the inequality − ln(1−x)6 2x for x∈ [0,1/2]. �

Remark 4. We denote by Mfin

(
[0,M ]

)
the subset of M

(
[0,M ]

)
formed by probability distri-

butions with finite support. The proof above shows that the bound of Lemma 3 also holds for the
model

D=
{

m∈Mfin

(
[0,M ]

)
:E(m)<M

}
.
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Regular exponential families. Another example of well-behaved models is given by regular
exponential families, see Lehmann and Casella [22] for a thorough exposition or Cappé et al. [11]
for an alternative exposition focused on multi-armed bandit problems.

Such a family D is indexed by an open set I = (m,M), where for each µ ∈ I there exists a
unique distribution νµ ∈ D with expectation µ. (The bounds m and M can be equal to ±∞.) A
key property of such a family is that the Kullback-Leibler divergence between two of its elements
can be represented1 by a twice differentiable and strictly convex function g : I→R, with increasing
first derivative ġ and continuous second derivative g̈> 0, in the sense that

∀ (µ,µ′)∈ I2, KL
(
νµ, νµ′

)
= g(µ)− g(µ′)− (µ−µ′) ġ(µ′) . (20)

In particular, µ′ 7→ KL
(
νµ, νµ′

)
is strictly convex on I, thus is increasing on [µ,M). This entails

that
∀ (µ,µ?)∈ I2 s.t µ<µ?, Kinf(νµ, µ

?,D) = KL
(
νµ, νµ?

)
. (21)

In the lemma below, we restrict our attention to ε > 0 such that µ? + ε∈ I, e.g., to ε <Bµ? where

Bµ? = min

{
M −µ?

2
, 1

}
. (22)

The minimum with 1 is considered merely for Bµ? to always have a finite value; otherwise, the
bound in the lemma below would be uninformative.

Lemma 4. In a model D given by a regular exponential family indexed by I = (m,M) and whose
Kullback-Leibler divergence (20) is represented by a function g, we have, with the notation (22),

∀µ<µ? of I, ∀0< ε<Bµ? , Kinf(νµ, µ
? + ε,D)6Kinf(νµ, µ

?,D) + ε
(
µ? +Bµ? −µ

)
Gµ?

where Gµ? = max
{
g̈(x) : µ? 6 x6 µ? +Bµ?

}
.

Proof. Since µ<µ?, we get by (20) and (21)

Kinf(νµ, µ
? + ε,D)−Kinf(νµ, µ

?,D)
= g(µ?)− g(µ? + ε)−

(
µ− (µ? + ε)

)
ġ(µ? + ε) + (µ−µ?) ġ(µ?)

= g(µ?)− g(µ? + ε) + ε ġ(µ?)︸ ︷︷ ︸
60

+
(
(µ? + ε)−µ

)(
ġ(µ? + ε)− ġ(µ?)

)
,

where the inequality is obtained by convexity of g. The proof is concluded by an application of the
mean-value theorem,

ġ(µ? + ε)− ġ(µ?)6 ε max
(µ?,µ?+ε)

g̈ ,

and the bound ε6Bµ? . �

The upper bound obtained on Kinf(νµ, µ
? + ε,D)−Kinf(νµ, µ

?,D) equals ε
(
µ? +Bµ? − µ

)
Gµ? .

The examples below propose concrete upper bounds for Gµ? in different exponential families. None
of these upper bounds actually involves Bµ? as various monotonicity arguments can be invoked.

Example 1. For Poisson distributions, we have I = (0,+∞) and

KL
(
νµ, νµ′

)
= µ′−µ+µ ln

µ

µ′
.

We may take g(µ) = µ lnµ−µ, so that g̈(µ) = 1/µ and Gµ? = 1/µ?.

1 This function g has an intrinsic definition as the convex conjugate of the log-normalization function b in the natural
parameter space Θ, where b can also be seen as a primitive of the expectation function Θ→ I. But these properties
are unimportant here.
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Example 2. For Gamma distributions with known shape parameter α> 0 (e.g., the exponen-
tial distributions when α= 1), we have I = (0,+∞) and

KL
(
νµ, νµ′

)
= α

(
µ

µ′
− 1− ln

µ

µ′

)
.

We may take g(µ) =−α lnµ, so that g̈(µ) = α/µ2 and Gµ? = α/(µ?)2.
Example 3. For Gaussian distributions with known variance σ2 > 0, we have I = (0,+∞) and

KL
(
νµ, νµ′

)
=

(µ−µ′)2

2σ2
.

We may take g(µ) = µ2/(2σ2), so that g̈(µ) = 1/σ2 and Gµ? = 1/σ2.
Example 4. For binomial distributions for n samples (e.g., Bernoulli distributions when n= 1),

we have I = (0, n) and

KL
(
νµ, νµ′

)
= µ ln

µ

µ′
+ (n−µ) ln

n−µ
n−µ′ .

We may take g(µ) = µ lnµ+(n−µ) ln(n−µ), so that g̈(µ) = n/
(
µ(n−µ)

)
. A possible upper bound

is

Gµ? 6
2n

µ?(n−µ?) .

This can be seen by noting that Bµ? 6 (n−µ?)/2 so that any µ∈ [µ?, µ?+Bµ? ] is such that µ> µ?

and n−µ> n−µ?−Bµ? > (n−µ?)/2.

Appendix A: Reminder of some elements of information theory. For the sake of
self-completeness we recall two selected basic facts pertaining to Kullback-Leibler divergences.

The data-processing inequality. The most elegant proof we are aware of relies on a condi-
tional Jensen’s inequality applied to t 7→ t ln t; see Ali and Silvey [1].

Lemma 5. Consider a measurable space (Γ,G) equipped with two distributions P1 and P2, any
other (Γ′,G′) measurable space, and any random variable X : (Γ,G)→ (Γ′,G′). Then,

KL
(
PX1 ,PX2

)
6KL(P1,P2) ,

where PX1 and PX2 denote the respective distributions of X under P1 and P2.

On local refinements of Pinsker’s inequality. Pinsker’s inequality reads, for Bernoulli
distributions, in its most classical form:

∀(p, q)∈ [0,1]2, kl(p, q)> 2(p− q)2 . (23)

The lemma below offers a local refinement of Pinsker’s inequality for Bernoulli distributions; the
classical form (23) follows by noting that x(1−x)6 1/4 for x∈ [0,1]. Cappé et al. [11, Lemma 3 in
Appendix A.2.1] offer an extension of this local refinement to any one-parameter regular exponential
family.

Lemma 6. For 06 p < q6 1, we have kl(p, q)>
1

2 max
x∈[p,q]

x(1−x)
(p− q)2 >

1

2q
(p− q)2 .
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Proof. We may assume that p > 0 and q < 1, since for p= 0, the result follows by continuity, and
for q= 1, the inequality is void, as kl(p,1) = +∞ when p < 1. The first and second derivative of kl
equal

∂

∂p
kl(p, q) = lnp− ln(1− p)− ln q+ ln(1− q) and

∂2

∂2p
kl(p, q) =

1

p
+

1

1− p =
1

p(1− p) .

By Taylor’s equality, there exists r ∈ [p, q] such that

kl(p, q) = kl(q, q)︸ ︷︷ ︸
=0

+(p− q) ∂

∂p
kl(q, q)

︸ ︷︷ ︸
=0

+
(p− q)2

2

∂2

∂2p
kl(r, q)

︸ ︷︷ ︸
=1/(r(1−r))

.

The proof of the first inequality is concluded by upper bounding r(1− r) by max
x∈[p,q]

x(1−x).

The second inequality follows from max
x∈[p,q]

x(1−x)6 max
x∈[p,q]

x6 q. �

Appendix B: Re-derivation of other earlier lower bounds In this section, we re-derive
the bounds discussed in Section 1.3, based on our fundamental inequality (6). We do so to illustrate
the power and the versatility of (6). However, we point out again that the lower bounds discussed
here are much weaker than the ones derived in the main body of the paper: in the terminology of
Section 1.3, they are of the form (well-chosen) rather than of the form (all).

B.1. Distribution-free lower bound. We consider the bound (3) recalled in Section 1.3.
More specifically, we re-prove Theorem A.2 of Auer et al. [3], from which the stated bound (3)
follows by optimization over ε.

Theorem 6. Consider the bandit model D=M
(
[0,1]

)
of all probability distributions over [0,1].

For all ε∈ (0,1/2), for all strategies ψ, there exists a bandit problem ν ′ in M
(
[0,1]

)
such that

Rψ,ν′,T > Tε

(
1− 1

K
− 1

2

√
T

K
ln

1

1− 4ε2

)
.

This problem ν ′ can be given by Bernoulli distributions, with parameters 1/2 for all arms but one,
for which the parameter is 1/2 + ε.

As a consequence, the worst-case regret of any strategy ψ against all bandit problems ν in
M
(
[0,1]

)
is lower bounded as announced in (3):

sup
ν
Rψ,ν,T > sup

ε∈(0,1/2)

Tε

(
1− 1

K
− 1

2

√
T

K
ln

1

1− 4ε2

)
>

1

20
min

{√
KT, T

}
.

The second inequality above is proved by a simple calculation indicated after the proof of The-
orem A.2 of Auer et al. [3]: pick ε = min

{√
K/T , 1

}
/4 and use − ln(1 − u) 6

(
4 ln(4/3)

)
u for

u∈ (0,1/4). The constant 1/20 can actually be improved into 1/8, see Cesa-Bianchi and Lugosi [12,
Theorem 6.11].

Proof. We fix a strategy and ε∈ (0,1/2). We denote by ν the bandit problem where all distribu-
tions are given by Bernoulli distributions with parameter 1/2. There exists an arm k ∈ {1, . . . ,K}
such that Eν

[
Nψ,k(T )

]
6 T/K, as these K numbers of pulls sum up to T . We define the bandit



Garivier, Ménard, Stoltz: The True Shape of Regret in Bandit problems
22 Mathematics of Operations Research DOI: 10.1287/moor.2017.0928 c© 2018 INFORMS

problem ν ′ by ν ′a = νa for a 6= k, that is, ν ′a is a symmetric Bernoulli distribution, while ν ′k is the
Bernoulli distribution with parameter 1/2 + ε. By (1), we have

Rψ,ν′,T =
∑

a 6=k

εEν′
[
Nψ,a(T )

]
= Tε

(
1− Eν′

[
Nψ,k(T )

]

T

)
. (24)

A direct computation of kl(1/2, 1/2 + ε) and the application of (6) indicate that

Eν
[
Nψ,k(T )

]

2
ln

1

1− 4ε2
=Eν

[
Nψ,k(T )

]
kl

(
1

2
,

1

2
+ ε

)
> kl

(
Eν
[
Nψ,k(T )

]

T
,
Eν′
[
Nψ,k(T )

]

T

)
.

Now, Pinsker’s inequality (in its classical form, see Appendix A) ensures that

Eν
[
Nψ,k(T )

]

2
ln

1

1− 4ε2
> kl

(
Eν
[
Nψ,k(T )

]

T
,
Eν′
[
Nψ,k(T )

]

T

)
> 2

(
Eν′
[
Nψ,k(T )

]

T
− Eν

[
Nψ,k(T )

]

T

)2

.

Solving for Eν′
[
Nψ,k(T )

]
/T , based on whether Eν′

[
Nψ,k(T )

]
/T is larger or smaller than

Eν
[
Nψ,k(T )

]
/T , we get, in all cases,

Eν′
[
Nψ,k(T )

]

T
6

Eν
[
Nψ,k(T )

]

T
+

1

2

√
Eν
[
Nψ,k(T )

]
ln

1

1− 4ε2
.

The proof is concluded by substituting the fact that Eν
[
Nψ,k(T )

]
6 T/K by definition of k, and by

combining the obtained inequality with (24). �

The short proof above actually re-uses absolutely all the original arguments of Auer et al. [3]: the
same Bernoulli distributions, the chain rule for Kullback-Leibler divergences, Pinsker’s inequality.
It is merely stated in a compact way, that puts under the same umbrella the distribution-dependent
and the distribution-free lower bounds for multi-armed bandit problems.

B.2. Lower bounds for the case when µ? or the gaps ∆ are known. We consider here
the second framework discussed in Section 1.3, with sub-Gaussian bandit problems. For simplicity,
and following Bubeck et al. [7], we restrict our attention to lower bounds for two-armed bandit
problems (i.e., for K = 2).

Known largest expected payoff µ? but unknown gap ∆. The lower bound stated in
Theorem 7 below corresponds to Theorem 8 of Bubeck et al. [7], later revisited by the authors,
see [8]. It turns out that, as hinted at in, e.g., Faure et al. [15, end of Section 1.4], the initially claimed
lnT dependency is incorrect and a bounded regret can be guaranteed. As shown in Theorem 9
in the next section, this bound on the regret can be as small as ln(1/∆)/∆. The lower bound we
could get using our techniques is of order 1/∆.

To state it, we restrict our attention to strategies ψ symmetric in some sense, e.g., in the sense of
Definition 3 stated later on. We actually need very little symmetry here: the considered strategies
ψ should just be such that in the bandit problem ν0 =

(
N (0,1), N (0,1)

)
, in which the two arms

have the same distribution,

Eν0

[
Nψ,1(T )

]
=Eν0

[
Nψ,2(T )

]
=
T

2
. (25)

Of course, all reasonable strategies are usually even more symmetric than that: they are usually
stable by permutations over the arms (i.e., they base their decisions only on the payoffs received,
not on the labeling of the arms).
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Theorem 7. For all ∆> 0 we consider ν∆ =
(
N (0,1), N (−∆,1)

)
and ν0 =

(
N (0,1), N (0,1)

)
.

For all strategies ψ that are symmetric in the sense of (25), for all ∆> 0, for all T > 1,

Eν∆
[
Nψ,2(T )

]
>

1

∆2 + 1/T
and Rψ,ν∆,T >

∆

∆2 + 1/T
.

In addition, for all strategies ψ and for all T such that Eν∆
[
Nψ,2(T )

]
> 1,

Eν∆
[
Nψ,2(T )

]
>min

{
2 ln2

∆2 + 2 ln(4T )/T
,
T

2

}
and Rψ,ν∆,T >min

{
2(ln2)∆

∆2 + 2 ln(4T )/T
,
T∆

2

}
.

Note that the constraint that Eν∆
[
Nψ,2(T )

]
> 1 is satisfied for all T >K by most of the reasonable

strategies, as the latter typically start by playing each arm once (in a random order).

Proof. We first note that Rψ,ν∆,T = ∆ Eν∆
[
Nψ,2(T )

]
. Inequality (6) entails that

∆2

2
Eν∆
[
Nψ,2(T )

]
=Eν∆

[
Nψ,2(T )

]
KL
(
N (−∆,1), N (0,1)

)

> kl

(
Eν∆
[
Nψ,2(T )

]

T
,
Eν0

[
Nψ,2(T )

]

T

)
= kl

(
Eν∆
[
Nψ,2(T )

]

T
,

1

2

)
, (26)

where we used respectively, for the two equalities, the closed-form expression for the Kullback-

Leibler divergences between Gaussian distribution with the same variance and the symmetry

assumption on the strategy. Pinsker’s inequality (in its classical form, see Appendix A), followed

by the inequality

∀x∈R, 2

(
1

2
−x
)2

>
1

2
− 2x ,

yields

∆2

2
Eν∆
[
Nψ,2(T )

]
> 2

(
1

2
− Eν∆

[
Nψ,2(T )

]

T

)2

>
1

2
− 2

Eν∆
[
Nψ,2(T )

]

T
.

Simple manipulations entail the first claimed bound on Eν∆
[
Nψ,2(T )

]
.

For the second one, given the form of the lower bound, which involves a minimum with T/2, it

suffices to consider the case when Eν∆
[
Nψ,2(T )

]
/T 6 1/2. We use that

kl(x, 1/2) = ln2−h(x) , where h(x) =−
(
x lnx+ (1−x) ln(1−x)

)

is the binary entropy function. Now, Calabro [10, page 8] indicates that h(x) 6 x ln(4/x) for all

x∈ [0,1/2], so that, restricting our attention to x> 1/T , we get

∀x∈ [1/T, 1/2], kl

(
x,

1

2

)
> ln 2−x ln

(
4

x

)
> ln 2−x ln(4T ) .

Substituting this inequality into (26), using that x= Eν∆
[
Nψ,2(T )

]
/T lies in [1/T, 1/2], concludes

the proof. �

The proof above, which is simple and direct, illustrates the interest of Inequality (6) over the

standard approaches used so far to prove lower bounds in the same or similar settings.
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Known gap ∆ but unknown largest expected payoff µ?. The lower bound stated in
Theorem 8 below corresponds to Theorem 6 of Bubeck et al. [7]. It shows the optimality of the
performance bound ln(T∆2)/∆ on the regret of the Improved–UCB strategy introduced by [4]
and further studied by [16]. The latter improved the constant in the leading term, which equals
ln(T∆2)/(2∆) when the gap ∆ between the expected payoffs between the two Gaussian arms with
variance 1 is known.

We denote by W the Lambert function: for all u > 0, there exists a unique v > 0 such that
u exp(u) = v, which is denoted by v =W (u). The Lambert function W is increasing on [0,+∞).
One may easily check that

∀x> e, ln(x)− ln
(
ln(x)

)
6W (x)6 ln(x) .

We state below two lower bounds: one for all strategies ψ, in terms of a maximum between two
regrets; and one for strategies that are symmetric and invariant by translation. These properties
of symmetry and invariance by translation are most natural requirements. To define them, for all
c∈R and all distributions ν, we denote by τc(ν) the distribution of Y + c when Y ∼ ν.

Definition 7. A strategy ψ for K–armed bandits is symmetric and invariant by transla-
tion of the payoffs if for all permutations σ of {1, . . . ,K}, all c ∈ R, and all T > 1, the dis-
tribution of

(
Nψ,1(T ), . . . ,Nψ,K(T )

)
in the bandit problem (ν1, . . . , νK) is equal to the one of(

Nψ,σ−1(1)(T ), . . . ,Nψ,σ−1(K)(T )
)

in the bandit problem
(
τc(νσ(1)), . . . , τc(νσ(K))

)
.

Theorem 8. We fix ∆> 0 and consider ν1 =
(
N (0,1), N (−∆,1)

)
and ν2 =

(
N (0,1), N (∆,1)

)
.

Then, for all strategies ψ, for all T > 1,

max
{
Rψ,ν1,T

, Rψ,ν2,T

}
>min

{
W
(
T∆2/1.2

)

2∆
,
T∆

2

}
. (27)

Or, alternatively, for all strategies ψ that are symmetric and invariant by translation of the payoffs,
for all T > 1,

Rψ,ν1,T
=Rψ,ν2,T

>
W
(
T∆2/1.2

)

2∆
.

Remark 5. We compare the obtained bound (27) to Theorem 6 of Bubeck et al. [7]. First,
the proof reveals that (27) holds for all distributions ν1 =

(
P0, N (−∆,1)

)
and ν2 =

(
P0, N (∆,1)

)

where P0 is a probability distribution with expectation 0. For instance, Bubeck et al. [7] considered
the Dirac mass δ0 at 0.

Second, Theorem 6 of Bubeck et al. [7] offers the bound

max
{
Rψ,ν1,T

, Rψ,ν2,T

}
>

ln
(
T∆2/2

)

4∆
. (28)

Asymptotically, as T →+∞, our bound (27) is smaller by a factor of 2. For small values of T (or
small values of ∆), the bound (28) is void as the logarithmic term is non-positive, while our bound
is always nonnegative. The second argument of the minimum in (27) is unimportant, as the regret
is always bounded by T∆.

Proof. We have Rψ,ν1,T
= ∆Eν1

[
Nψ,2(T )

]
and Rψ,ν2,T

= ∆Eν2

[
Nψ,1(T )

]
, so that it suffices to

lower bound

x=
1

T
max

{
Eν1

[
Nψ,2(T )

]
, Eν2

[
Nψ,1(T )

]}
.
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We assume below that the maximum is given by the first term; otherwise, the proof below should
be adapted by exchanging the roles of ν1 and ν2. Inequality (6) indicates that

2T∆2 x= 2∆2 Eν1

[
Nψ,2(T )

]
=Eν1

[
Nψ,2(T )

]
KL
(
N (−∆,1), N (∆,1)

)

> kl

(
Eν1

[
Nψ,2(T )

]

T
,
Eν2

[
Nψ,2(T )

]

T

)
= kl

(
x, 1− Eν2

[
Nψ,1(T )

]

T

)
.

Given the form of the lower bound in the theorem, which involves a minimum with T∆/2, we may
assume, with no loss of generality, that x6 1/2. Since kl(x, · ) is increasing on [x,1] and since

1− Eν2

[
Nψ,1(T )

]

T
> 1−x> 1

2
> x ,

by definition of x and the assumption x6 1/2, we get

2T∆2 x> kl(x, 1−x) = (1− 2x) ln
1−x
x

.

Note that the case x= 0 is excluded by the inequality above. A function study shows that

∀x∈ (0,1), (1− 2x) ln
1−x
x
> ln

1

2.4x
.

Substituting this lower bound and taking exponents, we are left with studying the inequality

exp
(
2T∆2 x

)
>

1

2.4x
, or equivalently, 2T∆2 x exp

(
2T∆2 x

)
>
T∆2

1.2
.

By definition of the Lambert function W , we rewrite this inequality as 2T∆2 x >W
(
T∆2/1.2

)
,

which concludes the proof of the first statement.
For the second statement, we note that the property of invariance by translation of the payoffs

ensures that

x=
Eν1

[
Nψ,2(T )

]

T
=

Eν2

[
Nψ,1(T )

]

T
.

Therefore, the fundamental inequality (6) directly gives in this case

2T∆2 x> kl

(
Eν1

[
Nψ,2(T )

]

T
,
Eν2

[
Nψ,2(T )

]

T

)
= kl(x, 1−x) ,

and we do not need to distinguish whether x is larger than 1/2 or not. The end of the proof of
the first statement of the theorem did not use that x6 1/2 and can still safely be followed for the
second statement. �

Appendix C: A finite-regret algorithm when µ? is known. In this section, and in this
section only, as we are discussing a specific strategy (described below in a box), we will not index
the regret, the number of times a given arm is pulled, etc., by the said specific strategy.

We consider the sub-Gaussian framework described in Section 1.3 and restrict our attention to
the case when µ? is known. We provide a refinement of the results of Bubeck et al. [7, Section 3],
already known by these authors themselves (see, e.g., Faure et al. [15]). The algorithm considered
below is inspired by Algorithm 1 of Bubeck et al. [7]. For each t> 1 and a ∈ {1, . . . ,K} such that
Na(t)> 1, we denote by

µ̂a,t =
1

Na(t)

t∑

s=1

Ys I{As=a}

the empirical mean of the rewards obtained between rounds 1 and t when playing arm a.
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Algorithm 1: An algorithm with bounded regret, thanks to the knowledge of µ?

Bandit problem: ν = (νa)a=1,...,K where each νa is sub-Gaussian in the sense of (4)

Parameters: the value of µ? = max
a=1,...,K

µa

For: each t∈ {1, . . . ,K}, do: play arm t.

For: each round t>K + 1,

1. Let Ct =

{
a∈ {1, . . . ,K} : µ̂a,t−1−µ? >−

√
4 lnNa(t− 1)

Na(t− 1)

}
be the set of candidate arms;

2. If Ct 6= ∅, play an arm At at random in Ct, update t := t+ 1;

3. If Ct = ∅, play At = 1, At+1 = 2, . . . , At+K = t+K − 1, update t := t+K.

We use the notation introduced before (1), but, as indicated above, without the indexations in
the considered strategy.

Theorem 9. For all bandit problems ν = (νa)a=1,...,K where each distribution νa is sub-Gaussian
in the sense of (4), the regret of the algorithm above is bounded by

Rν,T 6
∑

a:∆a>0

(
36 ln(17/∆a)

∆a

+ 3∆a

)
.

Proof. We fix an optimal arm a?. In view of (1), it suffices to bound Eν
[
Na(T )

]
for each sub-

optimal arm a. Each arm is played once between 1 and K. For all t>K + 1, a suboptimal arm a
can only be played if a ∈ Ct (step 2 of the second for loop) or if we are in a sequence where each
arm is played successfully (step 3 of the second for loop). In the latter case, the set of candidate
arms at round t− a+ 1 was empty. It did not contain a?. This optimal arm is played also once in
the sequence of pulls corresponding to step 3, at time t−a+a? + 1. At time t−a+a? we still had
Na?(t− a+ a?) =Na?(t− a+ 1), so that the condition for being a candidate was violated as well:

µ̂a?,t−a+a? −µ? 6−
√

4 lnNa(t− a+ a?)

Na(t− a+ a?)
.

All in all, we proved the inclusion: for t>K + 1,

{At = a} ⊆
{
At = a and µ̂a,t−1−µ? >−

√
4 lnNa(t− 1)

Na(t− 1)

}

∪
{
At−a+a? = a? and µ̂a?,t−a+a? −µ? 6−

√
4 lnNa(t− a+ a?)

Na(t− a+ a?)

}
.

We now only sketch the next argument, as we proceed similarly to all multi-armed bandit analyses,
by resorting to Doob’s optional sampling theorem, which asserts that the rewards Ys obtained at
those rounds s when As = a are independent and identically distributed according to νa. We denote
by µa,n the empirical average of the first n rewards obtained by arm a during the game. Then,

Eν
[
Na(T )

]
6 1 +

T∑

t=K+1

P

{
At = a and µ̂a,t−1−µ? >−

√
4 lnNa(t− 1)

Na(t− 1)

}

+
T∑

t=K+1

P

{
At−a+a? = a? and µ̂a?,t−a+a? −µ? 6−

√
4 lnNa(t− a+ a?)

Na(t− a+ a?)

}

6 1 +
∑

n>1

P

{
µa,n−µ? >−

√
4 lnn

n

}
+
∑

n>1

P

{
µa?,n−µ? 6−

√
4 lnn

n

}
. (29)
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As indicated already in Bubeck et al. [7], for each arm a, the sub-Gaussian assumption on νa,
together with a Crámer–Chernoff bound, indicates that for all n> 1 and all ε > 0,

max
{
P
{
µa,n−µa > ε}, P

{
µa,n−µa 6−ε}

}
6 exp

(
−nε

2

2

)
. (30)

We substitute this inequality in the bound (29) obtained above. On the one hand, for a?,

∑

n>1

P

{
µa?,n−µ? 6−

√
4 lnn

n

}
6
∑

n>1

n−2 6 2 . (31)

On the other hand, for a, we rewrite µ? = µa + ∆a and get

∑

n>1

P

{
µa,n−µ? >−

√
4 lnn

n

}
=
∑

n>1

P

{
µa,n−µa >∆a−

√
4 lnn

n

}
.

To upper bound the latter sum, we denote by n0 the smallest integer k> 3, if it exists, such that:

∆a−
√

4 lnk

k
>

∆a

2
, that is,

√
4 lnk

k
6

∆a

2
. (32)

As x 7→
√

(lnx)/x is decreasing on [3,+∞), we have

∀n> n0, ∆a−
√

4 lnn

n
>

∆a

2
,

and thus

∑

n>1

P

{
µa,n−µa >∆a−

√
4 lnn

n

}
6 n0− 1 +

∑

n>n0

P
{
µa,n−µa >

∆a

2

}
.

Note that the above inequality also holds with n0 = 2 when no k > 3 satisfies (32). We use (30)
and a comparison to an integral to get

∑

n>n0

P
{
µa,n−µa >

∆a

2

}
6
∑

n>n0

exp

(
−n∆2

a

8

)
6

∫
+∞

n0−1

exp

(
−x∆2

a

8

)
dx6

8

∆2
a

.

Substituting the above bounds and (31) into (29), we showed so far that

Eν
[
Na(T )

]
6 n0 + 2 +

8

∆2
a

.

The proof is concluded by upper bounding n0, based on (32). If ∆a 6 4
√

(ln3)/3, then the n0

defined in (32) exists. In this case, we denote by x0 ∈ [3,+∞) the real number such that

√
4 lnx0

x0

6
∆a

2
that is, x0 =

16 lnx0

∆2
a

.

We have n0 = dx0e6 x0 + 1. Since

x0 =
16 lnx0

∆2
a

=
32 ln

(
4/∆)

∆2
a

+
16

∆2
a

ln
(
lnx0

)
,
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we suspect that x0 should not be too much larger than 32 ln
(
4/∆)

/
∆2
a. Indeed, using the inequality

ln(u)6 u, we see that

x0 =
16 lnx0

∆2
a

=
160 lnx

1/10
0

∆2
a

6
160x

1/10
0

∆2
a

, thus x0 6

(
160

∆2
a

)10/9

.

Therefore,

x0 =
16 lnx0

∆2
a

6
16

∆2
a

ln

(
160

∆2
a

)10/9

6
16× (10/9)× 2

∆2
a

ln
13

∆2
6

36

∆2
a

ln
13

∆2
.

When the n0 defined in (32) does not exist and we take n0 = 2, we may still bound n0 by 1 plus
the bound above on x0 (as the latter is larger than 1). The theorem follows, after substitution of
all the bounds, together with the inequality 86 36 ln(17)− 36 ln(13). �
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