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We study the aging behavior of a truncated version of the Random Energy Model evolving under Metropolis dynamics. We prove that the natural time-time correlation function defined through the overlap function converges to an arcsine law distribution function, almost surely in the random environment and in the full range of time scales and temperatures for which such a result can be expected to hold. This establishes that the dynamics ages in the same way as Bouchaud's REM-like trap model, thus extending the universality class of the latter model. The proof relies on a clock process convergence result of a new type where the number of summands is itself a clock process. This reflects the fact that the exploration process of Metropolis dynamics is itself an aging process, governed by its own clock. Both clock processes are shown to converge to stable subordinators below certain critical lines in their time-scale and temperature domains, almost surely in the random environment.

INTRODUCTION AND MAIN RESULTS

As evidenced by an extensive body of experiments, glassy systems are never in equilibrium on laboratory time scales [START_REF] Bouchaud | Out of equilibrium dynamics in spinglasses and other glassy systems[END_REF], [START_REF] Vincent | Ageing, rejuvenation and memory: the example of spin-glasses[END_REF]; instead, their dynamics become increasingly slower as time elapses. Termed aging, this pattern of behavior was most successfully accounted for, at a theoretical level, by Bouchaud's phenomenological trap models [START_REF] Bouchaud | Weak ergodicity breaking and aging in disordered systems[END_REF], [START_REF] Bouchaud | Aging on Parisi's tree[END_REF]. These are effective dynamics that, reviving ideas of Goldstein et al. [START_REF] Goldstein | Viscous liquids and the glass transition: A potential energy barrier picture[END_REF], model the long time behavior of spin glass dynamics in terms of thermally activated barrier crossing in a state space reduced to the configurations of lowest energy (see [START_REF] Bouchaud | Out of equilibrium dynamics in spinglasses and other glassy systems[END_REF] for a review). Main examples of microscopic systems that trap models aim to describe are Glauber dynamics on state spaces {-1, 1} n reversible with respect to the Gibbs measures associated to random Hamiltonians of mean-field spin glasses, such as the Random Energy Model (REM) and p-spin SK models [START_REF] Derrida | Random-energy model: limit of a family of disordered models[END_REF], [START_REF] Derrida | A generalization of the random energy model which includes correlations between energies[END_REF]. The link between such dynamics and their associated trap models is, however, simply postulated.

When trying to establish this link rigorously, a main question that arises is what Glauber dynamics to choose. While classical choices are Metropolis [START_REF] Metropolis | Equations of state calculations by fast computing machines[END_REF] or Heath-Bath dynamics [START_REF] Glauber | Time-dependent statistics of the Ising model[END_REF], most of the focus so far was on the so-called Random Hopping dynamics whose transition rates do not depend on the variation of energy along a given transition but only on the energy of its starting point [START_REF] Ben Arous | Glauber dynamics of the random energy model. I. Metastable motion on the extreme states[END_REF], [START_REF] Ben Arous | Glauber dynamics of the random energy model. II. Aging below the critical temperature[END_REF], [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF], [START_REF] Ben Arous | Universality of the REM for dynamics of mean-field spin glasses[END_REF], [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF], [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF], [START_REF] Bovier | Convergence to extremal processes in random environments and extremal ageing in SK models[END_REF], [START_REF] Ben Arous | Universality and extremal aging for dynamics of spin glasses on subexponential time scales[END_REF], [START_REF] Fontes | Convergence of symmetric trap models in te hypercube[END_REF]. Although physically unrealistic, the relative simplicity of this choice allowed important insights to be gained: a rigorous justification of the connection between the REM dynamics and trap models was given, first on times scales close to equilibrium [START_REF] Ben Arous | Aging in the random energy model[END_REF][START_REF] Ben Arous | Glauber dynamics of the random energy model. I. Metastable motion on the extreme states[END_REF][START_REF] Ben Arous | Glauber dynamics of the random energy model. II. Aging below the critical temperature[END_REF], later also on shorter (but still exponential in n) time scales [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF], and these results were partially extended to the p-spin SK models [START_REF] Ben Arous | Universality of the REM for dynamics of mean-field spin glasses[END_REF] on a sub-domain of times scales, albeit only in law with respect to the random environment and for p ≥ 3. The SK model itself (p = 2) could be dealt with on time scales that are sub-exponential in n and again in law with respect to the random environment [START_REF] Ben Arous | Universality and extremal aging for dynamics of spin glasses on subexponential time scales[END_REF]. A variant of the so-called Bouchaud's asymmetric dynamics in which the asymmetry parameter tends to zero as n ↑ ∞ is considered in [START_REF] Mathieu | Aging of asymmetric dynamics on the random energy model[END_REF] for the REM.

Beyond model-based analysis, a general aging mechanism was isolated that linked aging to the arcsine law for subordinators through the asymptotic behavior of a partial sum process called clock process. First implemented in [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF] in the setting of Random Hopping dynamics this mechanism was revisited in [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] and [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF] where, using a method developed by Durrett and Resnick [START_REF] Durrett | Functional limit theorems for dependent variables[END_REF] to prove functional limit theorems for dependent random variables, simple and robust criteria for convergence of clock processes to subordinators were given, suited for dealing with general Glauber dynamics. Applied to the Random Hopping dynamics of the REM [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF] and p-spin SK models [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF], [START_REF] Bovier | Convergence to extremal processes in random environments and extremal ageing in SK models[END_REF], these criteria allowed to improve all earlier results, turning statements previously obtained in law into almost sure statements in the random environment.

In the present paper the approach of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] is applied to Metropolis dynamics of the REM for which it was primarily intended, although only for a truncated version of the REM Hamiltonian. While the ultimate goal is of course to deal with the full REM, the truncated model does captures a number of features that are present in the activated dynamics of the full model, and enables us to clarify a number of issues on a problem for which nothing is known at a theoretical level and no computer simulations are available.

1.1. The setting. Before entering into the details, let us specify the model. Denote by V n = {-1, 1} n the n-dimensional discrete cube and let (g(x), x ∈ V n ) be a collection of independent standard Gaussian random variables, defined on a common probability space (Ω, F, P). We will refer to these Gaussians as to the random environment. The Hamiltonian or energy function of the standard REM simply is the random funtion

H REM n (x) ≡ √ ng(x) , x ∈ V n . (1.1)
Given a sequence u n > 0 (our truncation level) the truncated REM Hamiltonian then is

H n (x) ≡ √ ng(x), if g(x) ≤ -u n , 0, else; , x ∈ V n . (1.2) 
Here we follow the physical convention that the configurations of minimal energy are the most stable ones, that is to say, Gibbs measure at inverse temperature β > 0 is defined as G β,n (x) = e -βHn(x) /( x∈Vn e -βHn(x) ) , x ∈ V n .

(1.3)

We are interested in the single spin-flip continuous time Metropolis dynamics for this model. This is a Markov jump process (X n (t), t > 0) on V n that is usually defined through its jump rates, given by λ n (x, y) = 1 n e -β[Hn(y)-Hn(x)] + , if (x, y) ∈ E n , 0, else; (1.4) where a+ = max{a, 0}, E n = {(x, y) ∈ V n × V n : dist(x, y) = 1} is the set of edges of V n , and dist(x, x ) ≡ 1 2 n i=1 |x i -x i | is the graph distance on V n .

Equivalently, X n can be defined as a time change of its jump chain, namely, the discrete time chain, J n , that describes the trajectories of X n , through the relation

X n (t) = J( S ← n (t)), t ≥ 0, (1.5) 
where S ← n denotes the generalized right continuous inverse of S n , and S n , the so-called clock process, is the partial sum process that records the total time spent by X n along the trajectories of J n . Spelling out these objects explicitly, the jump chain is the Markov chain (J n (i), i ∈ N) on V n with one-step transition probabilities p n (x, y) = e -β[Hn(y)-Hn(x)] + y:(x,y)∈En e -β[Hn(y)-Hn(x)] + , if (x, y) ∈ E n ,

and p n (x, y) = 0 otherwise, and the clock process is given by

S n (k) = k-1 i=0 λ -1 n (J n (i))e n,i , k ≥ 1, (1.7) 
where (e n,i , n ∈ N, i ∈ N) is a collection of independent mean one exponential random variables, independent of J n , and the λ n (•)'s are the classical holding time parameters λ n (x) ≡ 1 n y:(x,y)∈En e -β[Hn(y)-Hn(x)] + , ∀x ∈ V n .

(1.8)

In the clock process-based aging mechanism, one aims to infer knowledge of the aging behavior of X n as n ↑ ∞ from the asymptotic behavior of the properly rescaled clock process, using relation (1.5). To formulate this more precisely let K n (t) be a nondecreasing right continuous function with range {0, 1, 2, . . . } and let c n be a nondecreasing sequence. Both K n (t) and c n are time scales. Consider the re-scaled clock process S n (t) = c -1 n S n (K n (t)) , t ≥ 0.

(1.9) This is a doubly stochastic object: on the one hand, for each fixed realization of the random environment (that is, of the random Hamiltonian H n ), S n is a partial sum process with increasing paths that increase only by jumps and whose increments depend on the J n (i)'s and the e n,i 's; on the other hand, both the λ n (•)'s and the law of J n depend on the random environment. One then asks whether there exist time scales K n (t) and c n that make S n converge weakly, as n ↑ ∞, as a sequence of random elements in Skorokhod's space D([0, ∞)), P-almost surely in the random environment. Such a result will be useful for deriving aging information if it enables one to control the behavior of the two-time correlation functions that are used in theoretical physics to quantify this phenomenon, the natural choice in mean-field models being the two-time overlap function

C n (t, s) = n -1 X n (c n t), X n (c n (t + s) (1.10)
where (•, •) denotes the inner product in R n . Clearly, how successful this can be strongly depends on the topology in which weak convergence of S n is obtained. Normal aging is then said to occur if, for some convergence mode,

lim n→∞ C n (t, s) = C ∞ (t/s) (1.11)
for some non trivial function C ∞ (see [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] for more general aging behaviors). The key idea put forward in [START_REF] Ben Arous | The arcsine law as a universal aging scheme for trap models[END_REF] is that if S n converges to an α-stable subordinator with α ∈ (0, 1) then (1.11) is nothing but a manifestation of the self-similarity of such subordinators, as captured by the Dynkin-Lamperti arcsine law Theorem.

For future reference, we denote F J and F X , respectively, the σ-algebra generated by the variables J n and X n . We write P for the law of the process J n , conditional on the σ-algebra F, i.e. for fixed realizations of the random environment. Likewise we call P the law of X n conditional on F. If the initial distribution, say µ n , has to be specified we write P µn and P µn . Expectation with respect to P, P , and P are denoted by E, E, and E, respectively.

1.2. Results. We must now specify the truncation level in (1.2). Given c > 0, we let u n ≡ u n (c ) be the sequence defined through P(g(x) ≤ -u n (c )) = n -c .

(1.12)

Viewing the vertices of V n as independently occupied with probability (1.12), one sees that this probability increases from 0 to 1 as c decreases from +∞ to 0, and so, the set of occupied vertices evolves from the empty set to the entire V n . Set

V n ≡ {x ∈ V n | x is occupied} \ I n , (1.13) 
where I n is the set of isolated occupied vertices, namely, x ∈ I n if it is occupied but none of its n neighbors is. Our results are closely tied to the graph properties of this set. Let us only mention here that c will be chosen larger than three. This precludes the emergence of a giant connected component and guarantees that, P-almost surely, the graph of V n is made of an exponentially large number (≈ O(2 n /n 2c -1 )) of small, disjoint connected components of size smaller than n. In explicit form, the sequence u n obeys

u n (c ) = √ 2c log n -log log n+log 4π
.

(

Hence, the truncation only prunes energies such that -H REM n (x) √ 2c n log n, while activated aging typically involves energies of size -H REM n (x) ≥ γn, γ > 0, that is to say, of the order of max x∈Vn (-H REM n (x)). We are concerned with finding sequences c n and K n for which the rescaled clock process (1.9) converges for some (ideally, the smallest possible) c . Note that in physical terms, c n is the time scale on which the continuous time process X n is observed, while K n (t) is the total number of steps the discrete time chain J n takes during the period of observation. In all previously mentioned works on mean-field spin glasses (that is, the REM and p-spin SK models with p ≥ 3) where convergence of (1.9) could be proved, this was on time scales of the form c n ∼ exp(βγn), γ > 0. Furthermore, K n invariably had to be chosen of the form K n (t) = a n t , where a n is defined through a n P(w n (x) ≥ c n ) ∼ 1, and where w n (x) denotes the Boltzmann weight of the considered model; in the standard REM, this is

w n (x) ≡ exp{-βH REM n (x)} , x ∈ V n . (1.15)
Finally, a common α-stable subordinator emerged as the limit of the clock processes. As might reasonably be expected, the physical time scale, c n , on which activated aging occurs in Metropolis dynamics is the same as in the Random Hopping dynamics. What does differ, however, is the choice of K n . Given a sequence a n , we now set

K n (t) ≡ min k ≥ 1 k-1 i=0 1 {Jn(i)∈Vn\V n } = a n t , t ≥ 0.
(1. [START_REF] Černý | Hitting time of large subsets of the hypercube[END_REF] This is the number of steps J n must take in order to take a n t steps outside V n . Our first theorem states that the resulting rescaled clock process (1.9) converges to the same limiting subordinator as in the Random Hopping dynamics, for the very same sequences a n and c n , and in the same β range. For 0 ≤ ε ≤ 1 and 0 < β < ∞, set

β c (ε) = √ ε2 log 2,
(1.17) α(ε) = β c (ε)/β. (1.18) Throughout this paper the initial distribution is the uniform distribution on V n \ V n .

Theorem 1.1. Assume that c > 3. Given 0 < ε < 1 let a n and c n be defined through

lim n→∞ log a n n log 2 = ε, a n P(w n (x) ≥ c n ) ∼ 1. (1.19)
Then, for all 0 < ε < 1 and all β > β c (ε), P-almost surely,

S n ⇒ J 1 S ∞ (1.20)
where S ∞ is a stable subordinator with zero drift and Lévy measure ν defined through

ν(u, ∞) = u -α(ε) α(ε)Γ(α(ε)), u > 0, (1.21) 
and where ⇒ J 1 denotes weak convergence in the space D([0, ∞)) of càdlàg functions equipped with the Skorokhod J 1 -topology.

In the rest of the paper the symbol ⇒ J 1 (sometimes only ⇒) has the same meaning as in Theorem 1.1.

Let us now elucidate the meaning of K n . There is a clear parallel between the definitions (1.16) and (1.7) of K n and S n . Like S n , K n is similar to a time, each step of the chain J n lasting one time unit. Just like S n also, it is a function of an underlying 'faster chain', namely, the chain J n observed only at its visits to V n \ V n . Thus K n can be viewed as the total time spent by the chain J n along the first a n t steps of that fast chain -in other words, as a clock process for J n . One may probe this parallel further by asking if there exist sequences b n for which the rescaled process b -1 n K n converges. As the next theorem shows, the nature of the limit undergoes a transition at the critical value β = 2β c (ε/2). Theorem 1.2. Assume that c > 3 and, given 0 < ε < 1, let a n be as in Theorem 1.1.

(i) If β > 2β c (ε/2), let b n be defined through √ na n P(w n (x) ≥ (n -1)b n ) ∼ 1. Then, for all 0 < ε < 1 and all β > 2β c (ε/2), P-almost surely, b -1 n K n ⇒ J 1 S † ∞ , (1.22) 
where S † ∞ is a stable subordinator with zero drift and Lévy measure ν † defined through

ν † (u, ∞) = u -2α(ε/2) 2α(ε/2)Γ(2α(ε/2)), u > 0. (1.23) (ii) If 0 < β < 2β c (ε/2), set b n = a n exp(n(β/2) 2 )/(β √ πn).
Then, for all 0 < ε < 1 and all β < 2β c (ε/2), P-almost surely,

(b -1 n K n (t), t ≥ 0) P -a.s. -→ n→∞ (t, t ≥ 0), (1.24) 
where convergence holds in the space C([0, ∞)) of continuous functions equipped with the topology of the uniform convergence on compact sets.

Remark. A transition similar to that of Theorem 1.2 is present in S n at the critical value β = β c (ε). Since in the region β < β c (ε) activated aging is interrupted we leave out the explicit statement.

The occurence of stable subordinators as limits of both S n and b -1 n K n above the critical lines β = β c (ε) and β = 2β c (ε/2), 0 < ε < 1, respectively, can be explained through a single, universal mechanism which is best described as an exploration mechanism of a set of extreme accessible states whose effective waiting times are heavy tailed. What gives rise to this mechanism, however, is very different depending on whether one considers S n or b -1 n K n . Let us briefly explain this. When dealing with S n , the processes at work are analogous to those already present in the Random Hopping dynamic of the REM: the set of extreme accessible states identifies with the vertices such that w n (x) ∼ c n , and most such vertices belong to the set I n of isolated occupied vertices of (1.13), but J n typically does not revisit the elements of I n twice so that the associated effective waiting times typically coincide with the exponential holding times λ -1 n (x)e n,i = w n (x)e n,i (see (1.7)) and these, scaled down by c n , are asymptotically heavy tailed with parameter α(ε).

This is in sharp contrast with the mechanisms that govern the behavior of b -1 n K n . Viewing the set V n ∪ I n as the level set of the REM's landscape, and its disjoint components as separated valleys, K n can be interpreted as the sum of the sojourn times in the valleys of size ≥ 2 that J n visits along its path. Thus holding times now arise dynamically from metastable trapping times in local valleys. The analysis of these times reveals that the set of extreme accessible states is the set of pairs (x, y) ∈ E n such that min(w n (x), w n (y)) ∼ b n , that their effective waiting times have exponential tails of mean value min(w n (x), w n (y)), and that, scaled down by b n , these waiting times are asymptotically heavy tailed with parameter 2α(ε/2).

Below the critical line β = 2β c (ε/2), 0 < ε < 1, this picture breaks down. The leading contributions to b -1 n K n no longer come from extreme events but from typical events that consist of visits to valleys whose effective mean waiting times have finite mean values. Note that even here, the jump chain does not resemble the symmetric random walk. In fact, our results show that on the time scales of activated aging, Metropolis dynamics never can be reduced to the Random Hopping dynamics, just as the latter cannot be reduced to Bouchaud's phenomenological trap model. Despite this Bouchaud's trap model does correctly predict the aging behavior of both dynamics: Theorem 1.3 (Correlation function). Let C n (t, s) be defined in (1.10). Under the hypothesis of Theorem 1.1, for all ρ ∈ (0, 1), t > 0 and s > 0, P-almost surely,

lim n→∞ P C n (t, s) ≥ 1 -ρ = sin απ π t/(t+s) 0 u α(ε)-1 (1 -u) -α(ε) du. (1.25)
Remark. The convergence statement of Theorem 1.2, (i), is of course is a manifestation of the fact that above the critical line the jump chain is itself an aging process. This can be quantified using e.g. the function

C n (t, s) = n -1 J n ( b n t ), J n ( b n (t + s)
for which a statement similar to (1.25) can be proved with 2α(ε/2) subsituted for α(ε).

Let us highlight the content of the next two sections. What we need to know about the random graph induced by the truncation (1.12) is collected in Section 2. In Section 3 we isolate two processes, called the front end and back end clock processes (hereafter FECP and BECP), that are central to the proofs of Theorem 1.1 and Theorem 1.2, (i). We show that the processes S n , respectively K n , can be written as the sum of FECP, respectively BECP, and remainders. Based on this we decompose the proofs of Theorem 1.1 and Theorem 1.2, (i) into proving on the one hand that FECP and BECP converge, and showing on the other hand that the remainders are asymptotically negligeable. This strategy strongly relies on two abstract theorems (Theorem 8.2 in Section 8 and Theorem 9.1 in Section 9) that give sufficient conditions for FECP and BECP to converge to Lévy subordinators. The proof of Theorem 1.2, (ii) is simpler and relies on classical techniques (standard meanvariance calculations after suitable trunctations). Being rather long, we do not present it here to save space. It is given in full detail in an extended version of this work that can be found on arXiv (see http://arxiv.org/pdf/1402.0388.pdf). The organisation of the rest of the paper is detailed at the end of Section 3.

Acknowledgement. I am indebted to an unknown referee for pointing out the faulty use of a comparison argument between continous and discrete time chains in the initial proof of Proposition 6.1.

RANDOM GRAPH PROPERTIES OF THE REM'S LANDSCAPE

Given V ⊆ V n we denote by G ≡ G(V ) the undirected graph which has vertex set V and edge set consisting of pairs of vertices {x, y} in V with dist(x, y) = 1. This short section is concerned with the graph properties of the level sets

V n (ρ) = {x ∈ V n | w n (x) ≥ r n (ρ)} , (2.1) 
where, given ρ > 0, the truncation level r n (ρ) is the sequence defined through

2 ρn P(w n (x) ≥ r n (ρ)) = 1. (2.2)
This is a convenient reparametrization of (1.12), that is, (1.12) follows from (2.2) by taking

ρ = ρ n ≡ c log n n log 2 , r n (ρ n ) ≡ exp(β √ nu n (c )). (2.3) 
Viewing the vertices of V n as independently occupied with probability 2 -ρn , questions on G(V n (ρ)) reduce to questions on random subgraphs of the hypercube graph

Q n ≡ G(V n ).
2.1. Component structure of V n (ρ). The set V n (ρ) of occupied vertices can be decomposed into components that we classify according to their connectedness and size. We call

C ⊆ V n (ρ) a connected component of size |C| if the subgraph G(C) ⊆ G(V n (ρ)) is con- nected.
By convention, all connected components have size ≥ 2. We call isolated occupied vertices of V n (ρ) components of size 1. Given V n (ρ), V n can uniquely be decomposed into

V n = N n (ρ) ∪ I n (ρ) ∪ ∪ L l=1 C n,l (ρ) , L ≡ L n (ρ), (2.4) 
where N n (ρ) is the set of all non occupied vertices, I n (ρ) is the set of all isolated occupied ones, and

C n,l (ρ), 1 ≤ l ≤ L, is a collection of disjoint connected components satisfying G(V n (ρ)) = ∪ L l=1 G(C n,l (ρ)), C n,l (ρ) ∩ C n,k (ρ) ∀l = k. (2.5)
As ρ decreases, the set V n (ρ) grows and the graph G(V n (ρ)) potentially acquires new edges. Little is known about such graphs compared to those obtained by selecting edges independently. It is chiefly known [START_REF] Bollobás | On the evolution of random Boolean functions[END_REF] that the size of the largest C n,l (ρ) undergoes a transion near the value ρ ≈ log n n log 2 , with a unique "giant" componant of size O(n -1 2 n ) emerging slightly below this value. We are interested here in choosing ρ in such a way as to garantee that the size of the largest C n,l (ρ) remains small compared to n. This is done using the next lemma. Define

Ω n (m) = ω ∈ Ω max 1≤l≤L |C n,l (ρ)| < m , m = 2, 3, . . . (2.6) 
In what follows ρ ≡ ρ n > 0 and m ≡ m n > 1 are, respectively, positive and integer valued sequences. To keep the notation simple we do not make this explicit. 

Lemma 2.1. If ρ ≥ ρ + n (m) ≡ 1 m 1 + (m+2) log n+log m! n log 2 then P lim inf n→∞ Ω n (m) = 1. Proof of Lemma 2.1. Call (χ n (x), x ∈ V n ), χ n (x) ≡ 1 {wn(x)≥rn(ρ)} ,
(x) = 1) = 1 -P (χ n (x) = 0) = 2 -ρn . Set P Ω c n (m) = 1 -P Ω n (m) = P ∃ Cn⊆Vn(ρ):|Cn|=m G(C n ) is connected . By indepen- dence, if |C n | = m then P G(C n ) is connected = P x∈Cn χ n (x) = 1 = (2 -ρn ) m .
Furthermore the number of connected components of size m is at most m!n m 2 n . To see this choose a vertex x 0 ∈ V n , and grow a connected component that contains x 0 by adding vertices one by one: since x 0 has n nearest neighborgs there are n ways to add a first vertex, yielding a connected component of size 2; since a connected component of size two has less than 2n nearest neighbors there are at most 2n ways to add a second vertex, yielding a connected component of size 3, and so on and so forth. Hence, there are at most n(2n)(3n) . . . (n(m -1)) ways of growing a component of size m that contains x 0 , and since there are 2 n ways of choosing the vertex x 0 , the claim follows. Thus, for

ρ ≥ ρ + n (m), P Ω c n (m) ≤ m!n m 2 (1-mρ)n ≤ m!n m 2 (1-mρ + n (m))n ≤ n -2 , so that n≥1 P Ω c n (m) < ∞.
The lemma now follows from the first Borel-Cantelli Lemma.

2.2.

Truncation and related quantities. Throughout the rest of this section we assume that c > 2 in (1.12). This will guarantee that a number of needed properties hold true. Stronger conditions on c > 2 will be needed from Section 6 and beyond. According to (2.4)-(2.5), for ρ = ρ n as in (2.3), V n be decomposed in a unique way into

V n = N n ∪ I n ∪ ∪ L l=1 C n,l , L ≡ L(ρ n ), (2.7) 
where

N n ≡ N n (ρ n ), I n ≡ I n (ρ n ), and C n,l ≡ C n,l (ρ n ), 1 ≤ l ≤ L . By construction H n (x) = 0 if and only if x ∈ N n (see (1.
2) and (1.12)). Furthermore V n in (1.13) becomes

V n = ∪ L l=1 C n,l . (2.8)
Lemma 2.2. Assume that c > 2. There exists Ω ⊂ Ω with P (Ω ) = 1 such that on Ω , for all but a finite number of indices n the following holds:

2 ≤ C n,l ≤ {ρ n [1 -2c -1 (1 + O(log n/n))]} -1 , 1 ≤ l ≤ L . (2.9)
Furthermore,

|I n | = 2 n n -c (1 -n -(c -1) )(1 + O(n -2(c -1) ) + o(n -c )), (2.10) |V n (ρ n )| = V n \ N n = 2 n n -c (1 + o(n -c )), (2.11) 
L l=1 C n,l = |V n (ρ n ) \ I n | = 2 n n -2c +1 (1 + O(n -(c -1) )), (2.12) 
and, setting

∂ d A ≡ {y ∈ V n \ A : dist(y, A) = d} where A ⊂ V n and d = 1, 2, . . . , n C n,l (1 -O( 1 log n )) ≤ ∂C n,l ≤ n C n,l , (2.13 
)

|∂C n,l ∩ ∂x| ≥ n(1 -O( 1 log n )) for all x ∈ C n,l , (2.14) n C n,l (1 -O( 1 log n )) ≤ x∈C n,l y∈∂C n,l :{x,y}∈En 1 ≤ n C n,l . (2.15)
Finally, for any integer constant κ > 1 and all x ∈ V n \ V n ,

P( 1≤l≤L |∂x ∩ ∂C n,l | ≥ κ ) ≤ n -√ κ (2c -3) + n - √ κ +1(2c -1)+2 , (2.16 
) 

P( 1≤l≤L |∂ 2 x ∩ ∂C n,l | ≤ n/ log n) ≤ e -(2c -3) √ n log n . ( 2 
(n -d n (x) -( C n,l -1)) ≥ x∈C n,l (n -2 C n,l
) and the lower bound in (2.13) follows from (2.9). Eq. (2.14) is proved in the same way since |∂C n,l ∩ ∂x| = n -d(x) for x ∈ C n,l . Finally, the upper bound of (2.13) is immediate.

We now prove (2.16) and (2.17). Given x ∈ V n and i ∈ {1, . . . , n}, denote by x i the vertex obtained by flipping the i-th coordinate of x. Similarly, given i 1 , . . . , i k ∈ {1, . . . , n} denote by x i 1 ...i k the vertex obtained by flipping the coordinates i 1 , . . . , i k successively. Thus, a coordinate that appears a even number of times in the sequence i 1 . . . i k is unchanged, and the distance dist(x, x i 1 ...i k ) is equal to the number of distinct indices. With this notation

1≤l≤L |∂x ∩ ∂C n,l | = n j 0 =1 m(j 0 )1 {x j 0 ∈∂V n } (2.19) 
where m(j 0 ) ≡ 1≤l≤L 1 {x j 0 ∈∂C n,l } . Since either {∀ j 0 m(j 0 ) ≤ κ 1 } or {∃ j 0 m(j 0 ) > κ 1 }, writing κ = κ 1 κ 2 , the probability in (2.16) is bounded above by

P(|∂x ∩ ∂V n | ≥ κ 2 ) + P(∃ j 0 m(j 0 ) > κ 1 ). (2.20) Now |∂x ∩ ∂V n | = n j 0 =1
1 {∃1≤j 1 =j 2 =j 0 ≤n:χn(x j 0 j 1 )=1,χn(x j 0 j 1 j 2 )=1} and

P(|∂x ∩ ∂V n | ≥ κ ) = k≥κ 2 n k q k n (1 -q n ) n-k (2.21)
where q n = P(∃1 ≤ j 1 = j 2 = j 0 ≤ n : χ n (x j 0 j 1 ) = 1, χ n (x j 0 j 1 j 2 ) = 1). Using Poincaré inclusion-exclusion formula to evaluate q n then yields, given that 2c > 3,

P(|∂x ∩ ∂V n | ≥ κ 2 ) = n κ 2 (n-1)(n-2) 2n 2c κ 2 (1 + o(1)). (2.22) 
Next, the second probability in (2.20) is bounded above by

P ∃ j 0 ,(j 1 ,j 1 ),...,(j κ 1 +1 ,j κ 1 +1 ) ∀ 1≤i≤κ 1 +1 χ n (x j 0 j i ) = 1, χ n (x j 0 j i j i ) = 1 (2.23)
where the (j i , j i )'s are are such that the vertices {x j 0 j i , x j 0 j i j i , 1 ≤ i ≤ κ 1 + 1} are all distinct and distinct from x j 0 . Thus, by independence, is proved in the same way.

P(∃ j 0 m(j 0 ) > κ 1 ) ≤ n 2 n κ 1 +1 n -2(κ 1 +1)c (2.
We conclude this section with two elementary lemmata that are repeatedly needed. The first expresses the function r n (ρ) defined through (2.2). Lemma 2.3. For all ρ > 0, possibly depending on n, such that ρn ↑ ∞ as n ↑ ∞,

r n (ρ) = exp nββ c (ρ) -(β/2β c (ρ)) log(β 2 c (ρ)n/2) + log 4π + o(β/β c (ρ)) . (2.25)
In particular, for ρ n as in (2.3) and c > 2,

r n ρ n = exp β √ 2c n log n - n log n log log n 2 √ 2c + O(1)
.

(2.26)

Proof. Denote by Φ and φ the standard Gaussian distribution function and density, respectively. Setting b n = 2 ρn and

B n = log r n (ρ)/β √ n, (2.2) becomes b n 1-Φ(B n ) = 1.
It is shown in [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF] (see paragraph below (2.20)) that (B n -B n )B n = o(1) where B n is defined through b n φ(Bn) Bn = 1. Eq. (2.25) then readily follows from the well known fact that (see [START_REF] Cramér | Mathematical Methods of Statistics[END_REF], p. 374)

B n = (2 log b n ) 1 2 -1 2 (log log b n + log 4π)/(2 log b n ) 1 2 + O(1/ log b n ).
Lemma 2.4. There exists a subset Ω 0 ⊆ Ω with P Ω 0 = 1 such that on Ω 0 , for all but a finite number of indices n the following holds: for all 1 ≤ l ≤ L e -β min{max(Hn(y),Hn(x)) | {x,y}∈G(C 

(1)) = 2 n 2 -n n -2 = n -2 which is summable, hence P(Ω ∞ (1)) = 1. Next, P(Ω c n (2)) ≤ n2 n-1 2 -n (r n (ρ(2))) 2 ≤ n -2
which is also summable, and so P(Ω ∞ (2)) = 1. Taking Ω 0 ≡ Ω ∞ (1) ∩ Ω ∞ (2) and using (2.25) to bound r n (ρ(1)) and r n (ρ(2)) yields the claim of the lemma.

FRONT END AND BACK END CLOCK PROCESSES, AND PROOFS OF THE THEOREMS

OF SECTION 1.

In this section we formally define the front end and back end clock processes, and show how they relate to the clock processes S n and K n . These relations are then used to decompose the proofs of Theorem 1.1 and Theorem 1.2 into five main steps. Let C n,l , 1 ≤ l ≤ L , be the collection of connected components defined through (2.7) and set

V • n ≡ V n \ ∪ 1≤l≤L C n,l . (3.1) 
3.1. Front end clock process. We call front end clock process the process defined through

S • n (k • ) = k • -1 i=0 λ -1 n (J • n (i))e • n,i , k • ∈ N, (3.2) 
where (e • n,i , n ∈ N, i ∈ N) are independent mean one exponential random variables and where, introducing the times of consecutive visits of

J n to V • n , T • n,0 = inf{i ≥ 0 | J n (i) ∈ V • n } , (3.3) T • n,j+1 = inf{i > T • n,j | J n (i) ∈ V • n }, j = 0, 1, 2, . . . , (3.4) 
(J • n (i), i ∈ N) is the reversible Markov chain on V • n obtained by setting J • n (i) ≡ J n (T • n,i ). Note that J • n has transition matrix elements p • n (x, y) = P x J n (T • n,1 ) = y , x, y ∈ V • n , (3.5) 
and invariant measure

π • n (x) = π n (x) x ∈V • n π n (x ) , x ∈ V • n , (3.6) 
where π n denotes the invariant measure of J n (see (6.8) for its expression). We call J • n the front chain and denote by (Ω J • , F J • , P • ) its probability space. The associated graph, G • (V • n ), is described in (6.11).

3.2.

Back end clock process. The description of this process involves three time sequences. The first two are the intertwined sequences of consecutive hitting times of V n \V • n and their ensuing exit times. Namely, set

T n,0 = 0, T n,0 = inf{i > 0 | J n (i) / ∈ V • n }, if J n (0) ∈ V • n , 0, if J n (0) / ∈ V • n , (3.7) 
and, for j = 0, 1, 2, . . . ,

T n,j+1 = inf{i > T n,j | J n (i) ∈ V • n } , (3.8) 
T n,j+1 = inf{i > T n,j+1 | J n (i) / ∈ V • n }. (3.9) Clearly, 0 = T n,0 ≤ T n,0 < T n,1 ≤ T n,1 < • • • < T n,j ≤
T n,j < . . . . Clearly also, to each j there corresponds an i such that

T • n,i-1 < T n,j = T • n,i-1 + 1 < T • n,i . Merging T •
n,i i≥0 and T n,j j≥0 into a single sequence, T † n,j j≥0 , and arranging its elements in increasing order of magnitude,

0 ≤ T † n,0 < T † n,1 < • • • < T † n,j < . . . . (3.10) 
we define the back end clock process through

S † n (k † ) = k † -1 i=0 Λ † n (i), k † ∈ N, (3.11) 
where, denoting by (J † n (i), i ∈ N) the chain on V n obtained by setting

J † n (i) ≡ J n (T † n,i ), Λ † n (i) = T n,j+1 -T n,j , if J † n (i) / ∈ V • n and i k=0 1 {J † n (k) / ∈V • n } = j, 0, if J † n (i) ∈ V • n .
(3.12)

Clearly, J † n is Markovian with one-step transitions probabilities, p † n (x, y), as follows: when it is at x ∈ V • n , J † n chooses its next step according to the transition probabilities of

J n , p † n (x, y) = p n (x, y), x ∈ V • n , y ∈ V n , (3.13) 
and when it enters ∪ 1≤l≤L C n,l , say at a vertex of C n,l , it exits in just one step through one of the boundary points ∂C n,l ; that is, for all x ∈ C n,l , y ∈ ∂C n,l , and

1 ≤ l ≤ L , p † n (x, y) = P x (J(T n,l ) = y), (3.14) 
where

T n,l = inf{i > 0 | J n (i) ∈ ∂C n,l }.
Clearly also, the increments Λ † n (i) of the clock at the times of the visits of J † n (i) to ∪ 1≤l≤L C n,l are the sojourn times of J n in the sets C n,l being visited. In other words, Λ † n (i) is equal in distribution to some T n,l . Summarizing our definitions, FECP (3.2) records the total time spent by the proces X n in V • n along the first k • steps of J • n whereas BECP (3.11) records the total time spent by the chain J n in ∪ 1≤l≤L C n,l along the first k † steps of J † n . The chains J † n and J • n differ in that J † n does visit the sets C n,l , and steps out of these sets right after stepping in, while J • n straddles over the C n,l 's, never entering them. Technically, this makes the two chains very different objects. In particular, J • n is reversible but J † n isn't.

3.3.

Rewriting the clock process. Our aim is to express the processes K n and S n defined in (1.16) and (1.9), respectively, using FECP and BECP. We first deal with K n . For a n as in (1.16) let k † n (t) be defined through

k † n (t) = min k ≥ 1 k-1 i=0 1 {J † n (i)∈V • n } = a n t , t ≥ 0, (3.15) 
and, taking

k † = k † n (t) in (3.11), set S † n (t) = b -1 n S † n (k † n (t)), t ≥ 0, (3.16) 
where b n is a sequence to be chosen (and ultimately chosen as in Theorem 1.2). K n (t) can then be writen as

K n (t) = a n t + b n S † n (t), t ≥ 0. (3.17)
To see this write K n (t) = Kn(t)-1 i=0

1 {Jn(i)∈V • n } + Kn(t)-1 i=0 1 {Jn(i) / ∈V •
n } and note that

Kn(t)-1 i=0 1 {Jn(i) / ∈V • n } = k † n (t)-1 i=0 Λ † n (i) = b n S † n (t), (3.18 
)

Kn(t)-1 i=0 1 {Jn(i)∈V • n } = k † n (t)-1 i=0 1 {J † n (i)∈V • n } = a n t ≡ k • n (t), (3.19) 
where we introduced the notation k • n (t) for later convenience. In words, when

J n takes K n (t) steps, J † n takes k † n (t) steps, of which k • n (t) are visits of J † n to V • n .
To deal with the clock process S n we likewise split the sum in (1.9) in two terms according to whether

J n (i) ∈ V • n or J n (i) / ∈ V • n .
From the above definitions and those of J † n and J • n we have that on the one hand, writing d = for equality in distribution,

Kn(t)-1 i=0 λ -1 n (J n (i))e n,i 1 {Jn(i)∈V • n } d = k † n (t)-1 j=0 λ -1 n (J † n (j))e † n,j 1 {J † n (i)∈V • n } (3.20) d = k • n (t)-1 j=0 λ -1 n (J • n (j))e • n,j 1 {J • n (i)∈V • n } (3.21) = S • n ( a n t ), (3.22) 
where (e † n,j ) and (e • n,j ) are families of independent mean one exponential random variables, and S • n is the front end clock process (3.2). On the other hand,

Kn(t)-1 i=0 λ -1 n (J n (i))e n,i 1 {Jn(i) / ∈V • n } (3.23) d = k † n (t)-1 j=0 
Λ † n (j)-1 i=0 λ -1 n (J n (T n,j + i))e n,j,i 1 {J † n (j) / ∈V • n } (3.24) ≡ k † n (t)-1 j=0 Λ † n (j) (3.25)
where the last line defines Λ † n (j), and where (e n,j,i ) are independent mean one exponential random variables. If we now set, for t ≥ 0,

S • n (t) ≡ c -1 n S • n ( a n t ), (3.26) 
S n (t) ≡ c -1 n k † n (t)-1 j=0 Λ † n (j), (3.27) 
the rescaled clock process (1.9) can be rewritten as

S n (t) d = S • n (t) + S n (t). (3.28)
Here the rescaled front end clock process, S • n (t), records the time spent by the process X n during its visits to the set V • n , while the remainder term, S n (t), records the time spent in its complement. The back end clock process b n S † n (t) is the time needed to actually be able to observe a transition of the chain J n from one vertex of V • n to the next. 

= 2β c (ε/2), 0 < ε < 1. As in Section 1.2 the initial distribution of J n is the uniform distribution on V • n . By (6.6), this is nothing but the invariant measure, π • n , of J • n . Thus J • n and J † n also start in π • n . The first theorem shows that k † n (t) behaves like k • n (t) = a n t for large n. Theorem 3.1. Assume that c > 2.
For all 0 < t < ∞, any constant c • > 0, and any sequence a n > 0 we have that on Ω , for all but a finite number of indices n,

P π • n 1 ≤ k † n (t)/k • n (t) ≤ 1 + n -c• ≥ 1 -n -2(c -1)+c• (1 + O(n -(c -1) )). (3.29) 
The next two theorems are the building blocks of the proof of Theorem 1.1. The first establishes convergence of the front end clock process, S • n . The second implies, in particular, that the contribution of S n to (3.28) vanishes as n diverges.

Theorem 3.2 (Front end clock process). Assume that c > 3. Let the sequences a n and c n be as in Theorem 1.1. Then, for all 0 < ε < 1 and β > β c (ε), P-almost surely,

S • n ⇒ J 1 S • ∞ , (3.30) 
where S • ∞ is a subordinator with zero drift and Lévy measure ν • = ν defined in (1.21). Theorem 3.3 (Remainder). Assume that c > 2. Let the sequences a n and c n be as in Theorem 1.1. Then, for all 0 < ε < 1 and β > β c (ε), P-almost surely,

lim sup n→∞ P π • n ρ ∞ S n (•), S • n (•) > n 1-c /2 = 0, (3.31) 
where ρ ∞ is Skorohod metric on D([0, ∞)).

We now turn to the back end clock process. The next result parallels Theorem 3.2.

Theorem 3.4 (Back end clock process above the critical line). Assume that c > 3. Let the sequence a n and b n be as in Theorem 1.1 and Theorem 1.2, (i), respectively. Then, for all 0 < ε < 1 and β > 2β c (ε/2), P-almost surely,

S † n ⇒ J 1 S † ∞ , (3.32) 
where S † ∞ is a stable subordinator with zero drift and Lévy measure ν † defined in (1.23). Assuming these theorems we may prove Theorem 1.1 and Theorem 1.2. The proof of Theorem 1.3 that also uses from Section 6 and Section 7 is postponed to Section 7.

Proof of Theorem 1.1. In view of (3.28) Theorem 1.1 is an immediate consequence of Theorem 3.2 and Theorem 3.3

Proof of Theorem 1.2. Recall the expression (3.17) of K n and notice that a n /b n ↓ 0 under the assumptions on a n and b n of Theorem 3.4 (use (2.25) to check this). Thus the first assertion of Theorem 1.2 is a an immediate consequence of Theorem 3.4. See the extended version of this paper on arXiv (http://arxiv.org/pdf/1402.0388.pdf) for the proof of the second assertion. See in particular Theorem 3.5 therein and its proof.

The rest of this paper is organized as follows. In Section 4 we focus on the increments of the process S n and prove an upper bound on their tail distribution. A similar analysis is carried out in Section 5 for the increments of the back end clock process S † n ; an explicit expression is also obtained for the distribution of the sojourn times of J n in sets C n,l of size 2. The properties of J • n (invariant measure, mixing time through spectral gap, mean local times) are studied in Section 6, where it is shown that J • n has several of the attributes of the symmetric random walk. Using these preparations, the proofs of Theorem 3.1 and Theorem 3.3, as well as that of Theorem 1.3 are carried out in Section 7. Those of Theorem 3.2 and Theorem 3.4 are carried out in Section 8 and Section 9, respectively.

DISTRIBUTION OF THE INCREMENTS OF THE PROCESS S n .

In this section we focus on the increments of the process S n , that is to say, on the quantities defined through (3.24)-(3.25) by

Λ † n (j) ≡ Λ † n (j)-1 i=0 λ -1 n (J n (T n,j + i))e n,j,i (4.1) if J † n (j) ∈ ∪ 1≤l≤L C n,l
, and Λ † n (j) = 0 otherwise. These are the sojourn times of the process X n in the sets C n,l (we may think of them as "effective holding times" in those sets). As expected, these times have exponential tails. For 1 ≤ l ≤ L , set

¯ n,l (0) = e -β min{Hn(x) | x∈C n,l } . (4.2) Proposition 4.1.
On Ω (for Ω as in Lemma 2.2), for all but a finite number of indices n, the following holds for all 1 ≤ l ≤ L : for all t ≥ 0 and all x in C n,l

P Λ † n (j) > t | J † n (j) = x ≤ e -t(1-|C n,l |/n)/¯ n,l (0) . (4.3) 
The next corollary is a key ingredient of the proof of Theorem 3.3.

Corollary 4.2. Assume that a n ≤ 2 n . On Ω , for all but a finite number of indices n,

P π • n ∃ 0≤j≤k † n (t)-1 ∃ 1≤l≤L Λ † n (j)1 {J † n (j)∈C n,l } > 2n¯ n,l (0) ≤ te -n + n -2(c -1)+c• (4.4
) where c • > 0 is a constant that can be chosen arbitrarily small. Proof of Proposition 4.1. Let C n,l , 1 ≤ l ≤ L , be the collection of connected components defined through (2.7). To each component C n,l we associate an absorbing Markov process X n,l with state space C n,l ∪ ∆, where the absorbing point, ∆, represents the boundary ∂C n,l ; its infinitesimal generator

L n,l = λ n,l (x, y) has entries λ n,l : {C n,l ∪ ∆} × {C n,l ∪ ∆} → R, given by λ n,l (x, y) =          λ n (x, y) if (x, y) ∈ G(C n,l ), y / ∈C n,l λ n (x, y ) if x ∈ C n,l , y = ∆, -y ∈Vn λ n (x, y ) if x = y ∈ C n,l , 0 else. (4.5) 
Thus X n,l can be viewed as the restriction of X n to C n,l , killed on the boundary ∂C n,l . We also call

L n,l = λ n,l (x, y) the sub-Markovian restriction of L n,l to C n,l , namely λ n,l : C n,l × C n,l → R, λ n,l (x, y) = λ n (x, y) if (x, y) ∈ G(C n,l ) -y ∈Vn λ n (x, y ) if x = y ∈ C n,l . (4.6) 
With this notation Λ † n (j) in (4.1) is nothing but the absorption time

Λ n,l ≡ inf{t > 0 | X n,l (t) = ∆} (4.7)
of the process X n,l started in X n,l (0) = J † n (j). Furthermore, for all x ∈ C n,l and t > 0,

P x Λ n,l > t = y∈C n,l (δ x , e tL n,l δ y ) (4.8)
where (•, •) denotes the inner product in R N , N ≡ |C n,l |, and δ x is the vector with components δ x (x ) = 1 if x = x and zero otherwise. Denoting by I N the identity and by R n,l = (r n,l (x, y)) the nonnegative matrix R n,l ≡ L n,l + I N , (4.8) can be written as

P x Λ n,l > t = ∞ k=0 t k k! e -t y∈C n,l (δ x , R k n,l δ y ). (4.9)
where, in explicit form, for each k ≥ 1,

y∈C n,l (δ x , R k n,l δ y ) = x 1 ∈C n,l r n,l (x, x 1 ) • • • x k ∈C n,l r n,l (x k-1 , x k ). (4.10)
Consider the last sum in (4.10) and observe that by (4.6) and (1.4), for all x k-1 ∈ C n,l ,

x k ∈C n,l r n,l (x k-1 , x k ) = 1 -x k / ∈C n,l λ n (x k-1 , x k ) (4.11) = 1 -(1 -|C n,l |n -1 )e βHn(x k-1 ) (4.12) ≤ 1 -(1 -|C n,l |n -1 )/¯ n,l (0) (4.13)
where ¯ n,l (0) is as in (4.2). Inserting (4.13) in (4.10) and iterating leads to

y∈C n,l (δ x , R k n,l δ y ) ≤ [1 -(1 -|C n,l |n -1 )/¯ n,l (0)] k (4.14)
which, in turn, inserted in (4.9) yields

P x Λ n,l > t ≤ e -t e t[1-(1-|C n,l |n -1 )/¯ n,l (0)] = e -t(1-|C n,l |n -1 )/¯ n,l (0) (4.15) 
and proves (4.3).

Proof of Corollary 4.2. By Proposition 4.1 with t = 2n¯ n,l (0), on Ω , for all but a finite number of indices n

P Λ † n (j) > 2n¯ n,l (0) | J † n (j) = x ≤ e -2n(1-o(1)) (4.16)
for all 1 ≤ l ≤ L and all x ∈ C n,l . Let A be the event in the left hand side of (4.4). By Theorem 3.1,

P π • n (A) ≤ P π • n (A, {k † n (t) ≤ a n t (1 + n -c• )}) + 2n -2(c -1)+c• , and by (4.16), on Ω , P π • n (A, {k † n (t) ≤ a n t (1 + n -c• )}) ≤ 2 a n t (1 + n -c• )e -2n(1-o(1)
) for all but a finite number of indices n. Since a n < 2 n , (4.4) follows.

DISTRIBUTION OF THE INCREMENTS OF THE BACK END CLOCK PROCESS S †

n . This section parallels Section 4, focusing this time on the increments, Λ † n , defined in (3.12), of the process S † n . Just as the Λ † n 's are the sojourn times of the process X n in the sets C n,l , the Λ † n 's are the sojourn times of the chain J n in those sets. For 1 ≤ l ≤ L , set n,l (0) = e -β min{max(Hn(y),Hn(x)) | {x,y}∈G(C n,l )} .

(5.1)

Proposition 5.1. (i) For each 1 ≤ l ≤ L such that |C n,l | = 2 we have, for all i > 0 and all x in C n,l , P Λ † n (j) > i | J † n (j) = x = 1 - 1 1+ n,l (0)/(n-1) i .
(5.2)

(ii) Furthermore, on Ω (for Ω as in Lemma 2.2), for all but a finite number of indices n, the following holds for all 1 ≤ l ≤ L : for all i ≥ 0 and all x in C n,l

P Λ † n (j) > i | J † n (j) = x ≤ e -i(n/ n,l (0)|C n,l |)(1-o(1)) . (5.3)
Proof of Proposition 5.1. Let C n,l , 1 ≤ l ≤ L , be the collection of connected components defined through (2.7). To each component C n,l we associate an absorbing Markov chain J n,l with state space C n,l ∪ ∆, where the absorbing point ∆ represents the boundary ∂C n,l ; its transition matrix P n,l = p n,l (x, y) has entries p n,l :

{C n,l ∪ ∆} × {C n,l ∪ ∆} → [0, 1], p n,l (x, y) =          p n (x, y) if (x, y) ∈ G(C n,l ), 1 -y ∈C n,l p n (x, y ), if x ∈ C n,l , y = ∆, 1, if x = y = ∆, 0,
else.

(5.4)

Thus J n,l can be viewed as the restriction of J n to C n,l , killed on the boundary ∂C n,l .

We also call Q n,l = (q n,l (x, y)) the sub-Markovian restriction of P n,l to C n,l , namely

q n,l : C n,l × C n,l → [0, 1], q n,l (x, y) = p n (x, y) if (x, y) ∈ G(C n,l ), 0, else. (5.5) 
Then, Λ † n (j) in (3.12) is equal in distribution to the absorption time

T n,l = inf{i ∈ N | J n,l (i) = ∆} (5.6)
of the process J n,l started in J n,l (0) = J † n (j). Furthermore, using the notation introduced below (4.8), we have that for all x ∈ C n,l and i > 0,

P x T n,l > i = y∈C n,l (δ x , Q i n,l δ y ). (5.7) 
When |C n,l | = 2, the right hand side of (5.7) is easily worked out by hand and gives (5.2). When |C n,l | > 2, we proceed as in (4.10) -(4.13), observing that for all 1 ≤ k ≤ i

x k ∈C n,l q n,l (x k-1 , x k ) = 1 -x k / ∈C n,l p n (x k-1 , x k ) (5.8) = 1 - (n -|C n,l |) (n -|C n,l |) + x k ∈C n,l
e -β max(Hn(y),Hn(x)) , (5.9)

≤ 1 -1 + |C n,l | n-|C n,l | n,l (0) -1 , (5.10) 
where n,l (0) is as in (5.1). Using this in (5.7) then yields

P x T n,l > i ≤ 1 -1 + |C n,l | n-|C n,l | n,l (0) -1 i (5.11)
which is tantamount to (5.3). The proof of the proposition is complete.

PROPERTIES OF THE EFFECTIVE JUMP CHAIN J • n

This section gathers needed results on the chain J • n . The first proposition, which is central to the strategy of Sections 8 and 9, states that J • n is fast mixing. Given a numerical constant 0 < C < ∞, define

• n = Cn 2(c +1) /(log n) 2 .
(6.1) Proposition 6.1. Assume that c > 1 + log 4. There exists 0 < C < ∞ such that the following holds. For all β > 0, there exists a subset Ω 1 ⊂ Ω with P (Ω 1 ) = 1 such that, on Ω 1 , for all but a finite number of indices n, for all pairs x ∈ V • n , y ∈ V • n , and all i ≥ 0,

P • π • n (J • n (i + • n ) = y, J • n (i) = x) -π • n (x)π • n (y) ≤ δ n π • n (x)π • n (y) , (6.2) 
where 0 ≤ δ n ≤ 2 -n .

Thus, the random variables J • n ( • n i), i ∈ N, are close to independent and distributed according to the invariant distribution π • n . The next proposition provides bounds on certain mean local times that are needed to control stretches of trajectories of length • n . Recall that I n is the set of isolated vertices in the partition (6.3) and, given a constant κ > 1, set

W n = x ∈ V • n | 1≤l≤L |∂x ∩ ∂C n,l | ≤ κ , 1≤l≤L |∂ 2 x ∩ ∂C n,l | ≤ n log n . (6.3) Proposition 6.2. Assume that c > 1.
There exists a subset Ω SRW ⊂ Ω with P (Ω SRW ) = 1 such that, on Ω SRW ∩ Ω , for all but a finite number of indices n, the following holds: there exist constants

0 < C • , C • < ∞ such that, for all κ > 0, (i) for all z ∈ I n ∩ W n , • n -1 l=1 P • (J • n (l + 2) = z | J • n (0) = z) ≤ C • log n , (6.4) 
(ii) for all 1 ≤ l ≤ L all z ∈ ∂C n,l and z ∈ ∂C n,l ∩ W n , • n -1 l=1 P • (J • n (l) = z | J • n (0) = z) ≤ C • log n . (6.5) 
SRW in Ω SRW above stands for Symmetric Random Walk. The reason for this will become clear from the proof (see Lemma 6.12). One may however already observe that the behavior of J • n in Proposition 6.1 and Proposition 6.2 is reminiscent of SRW (see e.g. Section 3 of [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF]) and as the next proposition shows, so is that of its invariant measure. Proposition 6.3. Assume that c > 2. For all β > 0,

π • n (x) = 1/|V • n |, x ∈ V • n , (6.6) 
where, on Ω , for all but a finite number of indices n,

|V • n | = 2 n 1 -n -2c +1 (1 + O(n -(c -1) )) . (6.7)
Let us immediately give the short proof of Proposition 6.3.

Proof. Because the process X n has a unique reversible invariant measure, G β,n , the jump chain also has unique reversible invariant measure, which is the measure defined on V n by

π n (x) = λ n (x)G β,n (x) x∈Vn λ n (x)G β,n (x) 
= y:(x,y)∈En e -β max(Hn(y),Hn(x)) x∈Vn y:(x,y)∈En e -β max(Hn(y),Hn(x)) .

(6.8)

By this and (3.

6) π • n (x) = (nW • β,n ) -1 y:(x,y)∈En e -β max(Hn(y),Hn(x)) , x ∈ V • n , where W • β,n = n -1 x∈V • n y:(x,y
)∈En e -β max(Hn(y),Hn(x)) . But by (2.7) and the definition (3.1) of V • n , max (H n (y), H n (x)) = 0 whenever one of the two vertices {x, y} lies in

V • n . Hence W • β,n = |V • n |, yielding (6.6). Since |V • n | = 2 n -L l=1
C n,l , (6.7) follows from (2.12).

Our last proposition contains a rough lower bound on hitting times at stationarity that is needed in the proof of Theorem 1.3. Write

T • (A) ≡ inf{i ∈ N | J • n (i) ∈ A}, A ⊆ V • n .
(6.9) Proposition 6.4. Assume that c > 2. On Ω , for all but a finite number of indices n, we have that for all A ⊆ V • n and for I n as in (2.7),

P • π • n (T • (A ∩ I n ) > t) ≥ (1 + o(1)) exp (-2t|A ∩ I n |/|V • n |) -O( 1 log n ), t > 0. (6.
10) The rest of this section is organized as follows. The proof of Proposition 6.1 is given in Subsection 6.2, and the proofs of Proposition 6.2 and Proposition 6.4 in Subsection 6.3 and Subsection 6.4, respectively. Needed estimates on the transition probabilities of J • n are given in Subsection 6.1.

6.1. Estimates on the transition probabilities. We now examine the transition probabilities (3.5) 

G • (V • n ) = G(V • n ) 1≤l≤L G (∂C n,l ) . (6.11) Proposition 6.5. For all (x, y) ∈ G(V • n ), p • n (x, y) = 1/n, (6.12) 
and, for all 1 ≤ l ≤ L and all (x, y) in G (∂C n,l ),

p • n (x, y) = m n,l (x)m n,l (y) z∈∂C n,l m n,l (z) (1 + o(1)), (6.13) 
where nm n,l (x) is the number of vertices of C n,l that are are distance one from x, (6.12). We now turn to (6.13). Let us first state two useful a priori relations

m n,l (x) ≡ n -1 | y ∈ C n,l | dist(y, x) = 1 |, x ∈ ∂C n,l . (6.14) Proof. Clearly, if (x, y) ∈ G(V • n ), p • n (x, y) = p n (x, y) = 1/n, yielding
p • n (x, y) = p • n (y, x) ∀(x, y) ∈ G • (V • n ), (6.15) m n,l (y) = x∈∂C n,l p • n (x, y) ∀y ∈ ∂C n,l . (6.16) 
Eq. (6.15) is reversibility. Eq. (6.16) follows from the relation y p • n (x, y) = 1, (6.12), (6.15), and the definition (6.14).

Given

A ⊆ V n write T (A) ≡ inf{i ∈ N | J n (i) ∈ A}. Also recall that for 1 ≤ l ≤ L , T n,l ≡ inf{i ∈ N | J n (i) ∈ ∂C n,l }. Then, for all (x, y) ∈ G (∂C n,l ), p • n (x, y) = z∈C n,l p n (x, z)P z J n (T n,l ) = y . (6.17)
The next lemma establishes that the exit distribution from C n,l is independent from the entrance point, provided that the exit probability is not too small. Lemma 6.6. For any two distinct vertices z and z in C n,l and any y ∈ ∂C n,l ,

P z J n (T n,l ) = y = (1 -˜ n )P z J n (T n,l ) = y + ˜ n , (6.18) 
where

˜ n ≤ |∂C n,l |/ n,l (1) 
.

Proof of Lemma 6.6. Note that for any two vertices z and z in C n,l ,

P z T n,l ≤ T (z) = y∈∂C n,l P z T (y) ≤ T (z ∪ (∂C n,l )) ≤ y∈∂C n,l πn(y) πn(z) (6.19) ≤ |∂C n,l | -1 n,l (1) 
, (6.20) where the inequality in (6.19) is reversibility. Next decompose the event {J n (T n,l ) = y} according to whether {T (z) ≥ T n,l } or {T (z) < T n,l }: by the strong Markov property,

P z T (z) < T n,l , J n (T n,l ) = y = P z T (z) < T n,l P z J n (T n,l ) = y , (6.21) 
whereas

P z T n,l ≤ T (z), J n (T n,l ) = y ≤ P z T n,l ≤ T (z) .
Eq. (6.18) now follows.

Now pick an arbitrary vertex z n,l ∈ C n,l and denote by L n,l the exit distribution

L n,l (y) = P z n,l J n (T n,l ) = y , y ∈ ∂C n,l . (6.22) 
Lemma 6.7. For all z ∈ C n,l and y ∈ ∂C n,l

P z J n (T n,l ) = y = (1 + o(1))L n,l (y). (6.23)
Proof of Lemma 6.7. We readily deduce from Lemma 6.6 that if y ∈ ∂C n,l is such that

L n,l (y) ≥ n˜ n , then P z J n (T n,l ) = y = (1 + o(1))L n,l (y), otherwise P z J n (T n,l ) = y < (n + 1)˜ n . (6.24) 
Let us prove by contradiction that L n,l (y) ≥ n˜ n for all y ∈ ∂C n,l . Assume that there exists y ∈ ∂C n,l such that L n,l (y) < n˜ n . Then, by (6.24) and (6.17),

p • n (x, y) ≤ (n + 1)˜ n z∈C n,l p n (x, z) = (n + 1)˜ n m n,l (x). (6.25)
Summing both sides over x ∈ ∂C n,l ,

x∈∂C n,l p • n (x, y) ≤ (n + 1)˜ n x∈∂C n,l m n,l (x) ≤ n 5 -1 n,l (1) n -1 . (6.26)
However, by (6.16),

x∈∂C n,l p • n (x, y) = m n,l (x) ≥ n -1
, which is a contradiction.

We are now ready to conclude the proof of 6.6. By (6.17) and (6.23),

p • n (x, y) = m n,l (x)L n,l (y)(1 + o(1)). (6.27)
Inserting this in (6.15) and summing both sides over x ∈ ∂C n,l we get

L n,l (y) = m n,l (y) x∈∂C n,l m n,l (x) (1 + o(1)), (6.28) 
and inserting this in turn in (6.27) yields (6.13). The proof of the proposition is done.

6.2. Proof of Proposition 6.1. Let

1 = ϑ • n (0) > ϑ • n (1) ≥ ϑ • n • • • ≥ ϑ n,l (|V • n | -1) > -1 (6.29)
denote the eigenvalues of the matrix with entries (3.5). Set

τ • n ≡ 1/(1 -ϑ • n (1)) and β • n ≡ 1/(1 + ϑ • n (|V • n | -1)
). The proof of Proposition 6.1, stated at the end of this subsection, relies the following upper bounds on τ • n and β • n .

Proposition 6.8. Assume that c > 1 + log 4. For all β > 0, there exists a subset Ω 2 ⊂ Ω with P (Ω 2 ) = 1 such that, on Ω 2 , for all but a finite number of indices n,

τ • n ≤ 1 2 n 2 (1 + o(1)), (6.30) 
and, for some constant 0 < C < ∞ depending on c ,

β • n ≤ Cn 2c +1 /(log n) 2 . (6.31)
Proof of the bound (6.30). The proofs of (6.30) relies on a well known bound taken from [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF] (see Proposition 1' p. 38) and expressed in terms of so-called "canonical paths". For each pair of distinct vertices x, y ∈ V • n , choose a path γ • x,y going from x to y in the graph

G • (V • n ).
Paths may have repeated vertices but a given edge appears at most once in a given path. Let Γ • n = {γ • x,y } denote a collection of paths (one for each pair {x, y}). Then

τ • n ≤ max e ρ -1 n (e) γ • x,y e γ • x,y π • n (x)π • n (y), (6.32) 
where the max is over all edges e = {x , y

} of G • (V • n ), ρ n (e) ≡ π • n,l (x )p • n (x , y )
, and the summation is over all paths γ • x,y in Γ • n that pass through e. The quality of the bound (6.32) now depends on making a judicious choice of the set of paths Γ • n . We will adopt a very clever choice made in [START_REF] Fontes | The spectral gap of the REM under Metropolis dynamics[END_REF] where Γ • n is constructed using paths that remain confined to the subgraph G(V • n ) in (6.11), and so, never use the edges of the graphs G (∂C n,l ).

• A choice of Γ • n .
We first construct a subset Γ n of paths in G(V n ) as follows. Given i ∈ {1, . . . n}, and given two vertices x and x ∈ V n such that x i = x i , let γ i x,x be the path obtained by going left to right cyclically from x to x , successively flipping the disagreeing coordinates, starting from the i-th coordinate. Set

Γ i n = γ i x,x , x, x ∈ V n , 1 ≤ i ≤ n.
These paths are ordered in an obvious way. Given x, x and γ x,x , let γ x,x be the set of vertices visited by the path γ x,x , and let γ int

x,x = γ x,x \ {x, x } be the subset of "interior" vertices. We next split the set of vertices V n into good ones and bad ones. Recalling (2.7), we say that a vertex is good if it belongs to N n ; otherwise it is bad. We say that a path γ is good if all its interior points γ int are good, and that a set of paths is good if all its elements are good.

The (random) set of path Γ n is then constructed as follows: (i) Consider pairs x and x such that dist(x, x ) ≥ n/ log n. If {γ i x,x , 1 ≤ i ≤ n} contains a good path, choose the first such for Γ n ; otherwise choose γ 1

x,x . (ii) Consider pairs x and x such that dist(x, x ) < n/ log n. If there is a good vertex x ∈ V n such that dist(x, x ) ≥ n/ log n and dist(x , x ) ≥ n/ log n, and if there are good paths, one in γ i

x,x , 1 ≤ i ≤ n and one in γ i x ,x , 1 ≤ i ≤ n , such that the union of these two good paths is a self avoiding path of length less than n, select this union as the path connecting x to x in Γ n (notice that this is a good path); otherwise choose γ 1

x,x . The key point of this construction is that Γ n is almost surely good. More precisely, set

Ω GOOD n = {Γ n is good }, n ≥ 1, and Ω GOOD = lim inf n→∞ Ω GOOD n .
Proposition 6.9 (Proposition 4.1 of [START_REF] Fontes | The spectral gap of the REM under Metropolis dynamics[END_REF]). If c > 1 + log 4 then P Ω GOOD = 1.

The set Γ •

n is now defined as the set

Γ • n ≡ γ x,y ∈ Γ n , x, y ∈ V • n (6.33)
obtained from Γ n by removing the paths whose endpoints lie in ∪ 1≤l≤L C n,l . Hence, on

Ω GOOD the paths of Γ • n only visit vertices in V • n following edges of G(V • n ).
This finishes our construction of Γ • n . Note that the paths constructed in this way have length smaller than n. Thus (6.32) yields

τ • n ≤ (n 2 /|V • n |) max e∈G(V • n ) |{γ ∈ Γ • n | e ∈ γ}| . (6.34) • Bound on τ • n .
From now on we assume that ω ∈ Ω GOOD so that, for all large enough n,

Γ • n ≡ Γ • n (ω) is good.
In that case a bad vertex can appear only at the ends of any path. Let us write τ

• n = (n 2 /|V • n |)(τ 1 n + τ 2 n ) , (6.35 
) where τ 1 n , repectively τ 2 n , is obtained by restricting the sum in (6.34) to paths connecting vertices at distance n/ log n or more apart, respectively, less than n/ log n apart.

On the one hand it is well known that (see e.g. Example 2.2, p. 45 in [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF])

τ 1 n ≤ 2 n-1 . (6.36)
On the other hand, arguing as in [START_REF] Fontes | The spectral gap of the REM under Metropolis dynamics[END_REF] (see Subsection 4.2.2, page 934) that the sum in τ 2 n is over a set of paths that connect vertices in a hypercube of dimension at most n/ log n around e, we have τ 2 n ≤ 2 2n/ log n . (6.37) Plugging (6.36) and (6.37) in (6.35), and using (6.7) of Proposition 6.3 to bound |V • n |, we we get that on Ω GOOD ∩ Ω , for large enough n,

τ • n ≤ n 2 2 -n 1 -n -2c +1 (1 + o(1)) -1 2 n-1 + 2 2n/ log n ≤ (n 2 /2)(1 + o(1)). (6.38)
which is the upper bound (6.30) on τ • n . Proof of the bound (6.31). Keeping (6.11) in mind, let γ •

x be a path in G • (V • n ) from x to x with an odd number of edges. Since J • n is an irreducible and aperiodic chain such paths exist. Let Γ ODD n be a collection of paths, one for each x ∈ V • n . For ρ n (e) as in (6.32) define the path length, |γ

• x |, through |γ • x | = e∈γ • x ρ -1 n (e).
Then, by Proposition 2 of [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF],

β • n ≤ 1 2 max e γ • x e |γ • x | π • n (x), (6.39) 
where the max is over all edges e = {x , y } of G • (V • n ), and the summation is over all paths γ •

x in Γ • n that pass through e. As for (6.32), the accuracy of this bound depends on how good a set of paths Γ ODD n we can find. Note that since the graph G(V n ) is bipartite, paths from x to x confined to the subgraph G(V

• n ) = G • (V • n )∩G(V n )
have an even number of edges. Thus paths with an odd number of edges must step across one of the components C n,l , that is, must use an edge of G (∂C n,l ). In order to construct such paths we first show that each vertex x ∈ V • n lies within a small distance (how small depending on c ) of some C n,l of size two. More precisely, denoting by B σ (x) = {y ∈ V n | dist(x, y) ≤ σ} the ball of radius σ > 0 centered at x ∈ V n we show that: Lemma 6.10. If σ > 2c + 5 and c > 1 then

P ∀ x∈Vn ∃ 1≤l≤L :|C n,l |=2 C n,l ∩ B σ (x) = ∅ ≥ 1 -e -n .
(6.40)

Proof of Lemma 6.10. Let G 2 be the set of undirected edges of G(V n ) and, for each {x, ȳ} in G 2 , define the variable

Z n (x, ȳ) ≡ χ n (x)χ n (ȳ) z∈(∂ x∪∂ ȳ)\{x,ȳ} (1 -χ n (z))
where 

χ n (x) ≡ 1 {wn(x)≥rn(ρ n )} . Note that Z n (x, ȳ) is a Bernoulli r.v. with P (Z n (x, ȳ) = 1) = 1 -P (Z n (x, ȳ) = 0) = n -2c (1 -n -c )
+ n ≡ {x ∈ V n | dist(1, x) = 2m, m ≥ 0}. Then G 2 = ∪ 1≤j≤n G j 2
where, for each

1 ≤ j ≤ n, G j 2 ≡ {{x, y} ∈ G 2 | x ∈ V + n , x j = -y j }
is the set of neighboring vertices that differ in exactly the j-th coordinate. It is not hard to see that there exists a covering V + n = ∪ 1≤i≤vn V +,i n of V + n by disjoint subsets, V +,i n , with the property that dist(x, x ) ≥ 6 for all pairs x and x in V +,i n and all i ≤ v n , where v n < 2n 4 , and such that

|V +,i n ∩ B σ (x)| ∼ n σ /v n for σ > 6. Using this covering, subdivide each G j 2 into v n disjoint sets, G j,i 2 ≡ {x, y} ∈ G 2 | x ∈ V +,i n , x j = -y j , i = 1, . . . , v n . (6.42) Then G j 2 = ∪ 1≤i≤vn G j,i 2 and S n,σ (x) = vn i=1 n j=1 S j,i n,σ (x), S j,i n,σ (x) ≡ {x,ȳ}∈G j,i 2 : x,ȳ∈Bσ(x) Z n (x, ȳ). (6.43)
Each S j,i n,σ (x) now is a sum of independent Bernoulli r.v.'s, and can be controlled using a classical concentration bound (see e.g. [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF]), yielding

P ∃ x∈Vn ∃ 1≤i≤vn ∃ 1≤j≤n S j,i n,σ (x) -p n N i n > 4ntN i n p n (1 -p n ) ≤ nv n 2 n e -nt (6.44) for all t > 0, provided that N i n p n (1 -p n ) > 4nt, where N i n = |V +,i n ∩ B σ (x)| is the number of terms in each S j,i n,σ (x). Since N i n = O(n σ /v n ), the latter condition is verified whenever σ -4 -2c > 1 and c > 1. In that case p n N i n ≥ O(n σ-4-2c ) > O(n) 1, and so p n N i n -nN i n p n (1 -p n )
1 for all large enough n. Choosing t = 2 in (6.44) then yields the claim of the lemma.

• A choice of Γ ODD n . We are now ready to construct the set of paths

Γ ODD n = {γ • x , x ∈ V • n }.
The notations and definitions introduced in the paragraph below (6.33) (for the construction of the set Γ n ) are used in several places but not always reminded.

Assume from now on that σ > 2c + 5 and c > 1. By Lemma 6.10 and Borel-Cantelli Lemma, there exists a subset Ω 2 ⊂ Ω with P (Ω 2 ) = 1 such that, on Ω 2 , for all but a finite number of indices n, each ball B σ (x) contains at least one vertex that belongs to a connected component C n,l of size two. Given x ∈ V • n let y ∈ B σ (x) be any such vertex (how to choose y will be specified later), and denote by D(x, y) the set of coordinates where x and y disagree. In order to construct the path γ •

x ∈ Γ ODD n we first construct a collection Γ n (x, y) = γi

x,y , i ∈ {1, . . . n} \ D(x, y) of n -|D(x, y)| paths going from x to y as follows. Given i ∈ {1, . . . n} \ D(x, y), let x i and y i be, respectively, the vertices obtained from x and y by flipping their i-th coordinate. Note that D(x, y) = D(x i , y i ) and recall that γ 1

x i ,y i denotes the path that goes left to right cyclically from x i to y i , successively flipping the disagreeing coordinates in D(x i , y i ), starting from the first. We then define γi

x,y as the path that first steps from x to x i , follows the path γ 1 x i ,y i from x i to y i , and takes a final step from y i to y. Clearly, Γ n (x, y) forms a collection of n -|D(x, y)| interior disjoint paths of length |D(x, y)|. Let us show that almost surely, each Γ n (x, y) contains at least log n good paths. For this set κ ≡ κ(n) = log n , and define

Ω ODD n (x, y) = {∃i 1 = • • • = i κ ∈ {1, . . . n} \ D(x, y) | γi j x,y is good for each 1 ≤ j ≤ κ }, Ω ODD n = x∈V • n y∈Bσ(x) Ω ODD
n (x, y), and Ω ODD = lim inf n→∞ Ω ODD n . We then have:

Lemma 6.11. P Ω ODD | Ω 2 = 1.
Proof of Lemma 6.11. Fix a realization ω ∈ Ω 2 of the random environment and consider Γ n (x, y). By construction, there exists j ∈ {1, . . . n} such that {y, y j } = C n,l for some l.

Hence γj x,y is bad. Consider now Γ n (x, y) \ {γ j x,y }. Clearly, this set forms a collection of n-|D(x, y)|-1 interior disjoint paths of length 3 ≤ |D(x, y)|+2 ≤ σ +2.The probability for a given vertex to be bad is n -c . Thus, the probability of a given path not to be good is at most (σ + 2)n -c and, for any given k-tuple {i 1 , . . . , i κ }, P(∃ 1≤j≤κ γi j x,y is not good) ≤ κ(σ + 2)n -c . Since there are at least n -|D(x, y)| -1 ≥ n -σ -1 interior disjoint paths, there are at least (n -σ -1)/κ mutually disjoint κ-tuples of such paths, two κ-tuples being disjoint if {i 1 , . . . , i κ } ∩ {i 1 , . . . , i κ } = ∅. By independence,

1 -P(Ω ODD n (x, y) | Ω 2 ) ≤ (κ(σ+2)n -c ) (n-σ-1)/κ . Thus 1-P(Ω ODD n | Ω 2 ) ≤ n σ 2 n (κ(σ+2)n -c ) (n-σ-1)/κ
, and since for κ = log n this is summable, the claim of the lemma follows from Borel-Cantelli Lemma.

On Ω ODD ∩ Ω 2 we construct the path γ •

x , using Γ n (x, y), as follows. Take any two good paths in Γ n (x, y), say γi 1

x,y and γi 2 x,y . These paths have equal number of edges, |D(x, y)| + 1, and enter ∂y at the vertices y i 1 and y i 2 , respectively. Because y belongs to a connected component C n,l of size two, {y i 1 , y i 2 } is an edge of the associated complete graph G (∂C n,l ) in (6.11). We then define γ •

x as the path that goes from x to y i 1 along the edges of γi 1

x,y (in |D(x, y)| steps), traverses C n,l along the edge {y i 1 , y i 2 } (in one step), and goes from y i 2 to x travelling backwards along the edges of γi 2

x,y (in again |D(x, y)| steps). Thus γ •

x is a path in G • (V • n ) from x to x with 2|D(x, y)| + 1 edges. We still have to specify how to choose the vertex y in the above construction, as well as the two good paths in Γ n (x, y). Note first that by (6.44), for each

x ∈ V • n , the ball B σ (x) contains np n 1≤i≤vn N i n (1 + o(1)) = O(n|B σ (x)|/n 2c
) occupied vertices, y, belonging to distinct connected components, C n,l , of size two. We may and will choose the pairs (x, y) in such a way that each of these components C n,l is traversed by

O(|B σ (0)|/ np n 1≤i≤vn N i n (1 + o(1)) = O(n 2c -1 ) paths γ •
x connecting that C n,l to vertices x at distance at most σ from it. Next, by Lemma 6.11, for each pair (x, y) as above there are at least κ = log n good paths in Γ n (x, y), and so, there are at least κ(κ -1)/2 ways to choose the edge of the complete graph G (∂C n,l ) through which γ • x steps across C n,l . Therefore, we may and will choose these two good paths in such a way that each of the (n -1)(n -2)/2 edges of G (∂C n,l ) connecting these two good paths is traversed by at most a fraction 2/κ(κ -1) of the total number of paths that cross C n,l (this can probably be improved but not easily since for a given y the set {i 1 , . . . , i κ } of good paths's indices generated by different pairs (x, y) are not independent subsets of {1, . . . , n}).

Our construction of Γ ODD n is now completed. Observe that it guarantees that there are at most O(n 2c -1 /(log n) 2 ) paths in Γ ODD n that contain a given edge in any given G (∂C n,l ).

• Bound on β • n . Assume that c > 1 and take σ > 2c + 5 in (6.40). Then, on Ω ODD ∩ Ω 2 , for all large enough n, paths in Γ ODD n have at most 2σ edges, and by (6.6) and (6.12)-(6.13) of Proposition 6.5,

|γ • x | = e∈γ • x ρ -1 n (e) ≤ (π • n (x)) -1 [4nσ + 2n(n -1)(1 + o(1))] . (6.45)
Furthermore, by construction,

max e γ • x e 1 ≤ max 1≤l≤L :|C n,l |=2 max e∈G (∂C n,l ) γ • x e 1 ≤ O(n 2c -1 /(log n) 2 ). (6.46)
Inserting the last two bounds in (6.39) yields the upper bound (6.31) on β • n . Taking Ω 2 = Ω ∩ Ω GOOD ∩ Ω ODD ∩ Ω 2 concludes the proof of Proposition 6.8.

Proof of Proposition 6.1. By (1.9) of Proposition 3 of [START_REF] Diaconis | Geometric bounds for eigenvalues of Markov chains[END_REF], for all x ∈ V • n and all l ∈ N,

P • x (J • n (l) = •) -π • n (•) T V ≤ 1-π • n (x) 4π • n (x) 1/2 max 1 -1 τ • n , 1 -1 β • n l (6.47)
where τ • n and β • n are defined below (6.29). From this, Proposition 6.8, and Proposition 6.3, it follows that if c > 1 + log 4 then, on Ω 1 ≡ Ω ∩ Ω 2 , for all n large enough, for all pairs x ∈ V • n , y ∈ V • n and all i ≥ 0, taking • n as in (6.1),

|P • x (J • n (i + • n ) = y) -π • n (y)| ≤ δ n π •
n (y) for some 0 ≤ δ n ≤ 2 -n provided that the constant C in (6.1) is chosen big enough. The proof of Proposition 6.1 is done. 6.3. Mean local times: proof of Proposition 6.2. Let J SRW n and P SRW denote, respectively, the symmetric random walk on V n (hereafter SRW) and its law. More precisely,

p SRW n (x, y) ≡ P SRW (J SRW n (1) = y | J SRW n (1) = x) = 1 n if dist(x, y) = 1, 0, else. (6.48)
We also write P SRW

x for the law of J SRW n started in x. The proof of Proposition 6.2 relies on three key properties of J SRW n that we state below in the form of three lemmata. Our first lemma provides an estimate on the hitting time of the set V n ≡ ∪ 1≤l≤L C n,l . For A ⊂ V n let T SRW (A) be the hitting time

T SRW (A) = inf {k ∈ N : J SRW n (k) ∈ A} . (6.49) 
Lemma 6.12. Assume that c > 1. There exists a subset Ω SRW ⊂ Ω with P (Ω SRW ) = 1 such that, on Ω SRW , for all but a finite number of indices n the following holds: for all sequences l n > 0 such that l n /n 2c ≤ C for some constant 0 < C < ∞,

max x∈Vn P SRW x (T SRW (V n \ x) ≥ l n ) -e -ln/n 2c ≤ C 1 n + 1 log n 2c + n log n n 2c
, (6.50)

where 0 < C < ∞ is a numerical constant.

Proof of Lemma 6.12. This is proved using Theorem 1.3 of [START_REF] Černý | Hitting time of large subsets of the hypercube[END_REF], proceeding in the same way as in Theorem 1.1 of [START_REF] Černý | Hitting time of large subsets of the hypercube[END_REF] on the hitting time of so-called percolation clouds. (In particular, one proceeds as in (6.42)-(6.43) to extract sums of independent Bernoulli random variables in the verification of the conditions of Theorem 1.3 of [START_REF] Černý | Hitting time of large subsets of the hypercube[END_REF].)

The next two lemmata bound the mean number of returns to a given vertex, z, respectively the mean local time in z, in a time interval of the form {3, . . . , m}, m ≤ n 2(c +1) . Lemma 6.13. For all m ≤ n 2(c +1) , all z ∈ V n , and a ∈ {0, 1, 2, 3},

m l=1 P SRW z (J SRW n (l + a) = z) ≤ c n b , b = 1, if a ∈ {0, 1} 2, if a ∈ {2, 3} , (6.51) 
where 0 < c < ∞ is a numerical constant.

Proof. The lemma is proved in exactly the same way as Proposition 3.2 of [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF].

Lemma 6.14. For all m ≤ n 2(c +1) and all y, z such that dist(y, z) = d ≥ 1,

m l=1 P SRW y (J SRW n (l) = z) ≤ c n d 1 d≤4 + c n 4 1 d≥5 , (6.52) 
where 0 < c < ∞ is a numerical constant.

Proof of Lemma 6.14. The proof draws on the results of [START_REF] Ben Arous | Elementary potential theory on the hypercube[END_REF] where a d -dimensional version of the Ehrenfest scheme, called lumping, was introduced and analyzed (hereafter and whenever possible we use the notations of [START_REF] Ben Arous | Elementary potential theory on the hypercube[END_REF]). Without loss of generality we may take y ≡ 1 to be the vertex all of whose coordinates take the value 1. Let γ Λ be the map (1.7) of [START_REF] Ben Arous | Elementary potential theory on the hypercube[END_REF] derived from the partition of Λ ≡ {1, . . . , n} into d = 2 classes, Λ = Λ 1 ∪ Λ 2 , defined through the relation: i ∈ Λ 1 if the i th coordinate of z is 1, and i ∈ Λ 2 otherwise. The resulting lumped chain,

X Λ n ≡ γ Λ (J SRW n ), has range Γ n,2 = γ Λ (V n ) ⊂ [-1, 1] 2 .
Note that the vertices y and z of V n are mapped, respectively, onto the corners 1 ≡ (1, 1) and x ≡ (1, -1) of [-1, 1] 2 . Denoting by P Λ the law of X Λ n , we have,

P SRW y (J SRW n (l) = z) = P Λ (X Λ n (l) = x | X Λ n (0) = 1). (6.53) Write τ x x = inf{k > 0 | X Λ n (0) = x , X Λ n (k) = x}.
Without loss of generality we may assume that 0 ∈ Γ n,2 (namely, both Λ 1 and Λ 2 have even cardinality). Then, decomposing (6.53) according to whether, starting from 1, X Λ n visits 0 before it visits x or not, we get:

P Λ (X Λ n (l) = x | X Λ n (0) = 1) = A + B, A = P Λ (X Λ n (l) = x, τ 1 0 < τ 1 x ), (6.54) B = P Λ (X Λ n (l) = x, τ 1 0 ≥ τ 1 x ). (6.55)
By Theorem 3.2 of [START_REF] Ben Arous | Elementary potential theory on the hypercube[END_REF], for all y, z such that dist(z, y) ≥ d,

B ≤ P Λ (τ 1 x ≤ τ 1 0 ) ≤ F n,2 (dist(z, y)) ≤ c 1 (n -d 1 d≤4 + n -d * 1 d≥5 ) (6.56) 
where

d * = d+4 2 if d is even, d * = d+3
2 if d is odd, and 0 < c 1 < ∞ is a constant. Of course A = 0 for all l such that l < n/2 since the chain X Λ n needs at least n/2 steps to travel from the vertex 1 to 0. To bound A when l ≥ n/2 we condition on the time of the last visit to 0 before time l, and bound the probability of the latter event by 1. This yields A ≤ lP Λ (τ 0

x < τ 0 0 ) = l Qn(x) Qn(0) P Λ (τ x 0 < τ x x ) ≤ l Qn(x) Qn(0) , (6.57)

where the equality in the middle is reversibility, and where Q n , defined in Lemma 2.2 of [START_REF] Ben Arous | Elementary potential theory on the hypercube[END_REF], denotes the invariant measure of X Λ n . We are thus left to estimate the ratio of invariant masses in (6.57). By (2.4) of [START_REF] Ben Arous | Elementary potential theory on the hypercube[END_REF] we get that Qn(x) Qn(0

) ≤ |{x ∈ V n | γ Λ (x ) = 0}| -1 ≤ e -c
2 n for some constant 0 < c 2 < ∞. Gathering our bounds we get that for all y, z such that dist(y, z) ≥ 4 c + 3,

P SRW y (J SRW n (l) = z) = A + B ≤ c 1 n -2( c +1)-1 + le -c 2 n ≤ c 3 n -2( c +1)-1 (6.58)
for some constant 0 < c 3 < ∞, so that for all m ≤ n 2(c +1) ,

m l=1 P SRW y (J SRW n (l) = z) ≤ c 3 n -1 . (6.59)
It remains to treat the cases 1 ≤ dist(y, z) ≤ 4 c + 2. To this end consider the event A z ≡ {∀i ≤ l dist(J SRW n (i), z) < 4 c + 3}. Decomposing its complement, A c z , on the place and time of the first visit of the chain to the ball of radius 4 c + 3, we get by the Markov property and (6.58) that

P SRW y (J SRW n (l) = z, A c z ) ≤ c 3 n -2( c +1)-1 . (6.60)
Next, by reversibility (the invariant measure of J SRW n being the uniform measure),

P SRW y (J SRW n (l) = z, A z ) = P SRW z (J SRW n (l) = y, A z ) ≤ P SRW z (A z ) . (6.61)
Let us thus estimate the probability P SRW z (A z ) that starting in z, the chain did not exit a ball of radius 4 c + 2 centered at z by time l. This means that every step it takes, the chain flips a coordinate of z in such a way that the total number of coordinates of z and J SRW n (i) that disagree is at most 4 c + 2 for each i ≤ l. If l ≥ 4 c + 2, this implies that (l -4 c + 2)/2 of its l steps (respectively, (l -4 c + 2 + 1)/2 of them) consist in flipping back a coordinate to its initial position if l -4 c + 2 is even (respectively, if l -4 c + 2 is odd). Each time such a backward flip occurs the chain chooses one in at most 4 c + 2 flipped coordinates. Thus, for all l ≥ 4 c + 2,

P SRW y (A z ) ≤ ((4 c + 2)/n) l-(4 c +2) 2 1 l even + ((4 c + 2)/n) l-(4 c +1) 2
1 l odd . (6.62) Plugging (6.62) in (6.61) yields that for all y, z such that

1 ≤ dist(y, z) ≤ 4 c + 2, m l=4 c +3 P SRW y (J SRW n (l) = z, A z ) ≤ c 4 n -1 , (6.63) 
for all m ≤ n 9 and some constant 0 < c 4 < ∞, while by simple combinatorics,

4 c +2 l=1 P SRW y (J SRW n (l) = z, A z ) ≤ 4 c +2 l=1 P SRW y (J SRW n (l) = z) ≤ c 5 n -1 , (6.64) 
for some 0 < c 5 < ∞. Combining (6.59), (6.63) and (6.64) finishes the proof.

We are now ready to give the proof of Proposition 6.2.

Proof of Proposition 6.2, (i). Given y ∈ V n denote respectively by P • y , P y , and P SRW y the laws of J • n , J n , and J SRW n started in y. The idea behing the proof is to decompose the paths of J n at visits to the set V n ≡ ∪ 1≤l≤L C n,l , and use that, away from this set, J n reduces to SRW. To this end recall (6.49) and set

T SRW, n ≡ inf {k ∈ N : J SRW n (k) ∈ V n } , (6.65) T n ≡ inf {i ∈ N | J n (i) ∈ V n } .
(6.66)

Let z ∈ I n be fixed. Since by definition J • n (i) ≡ J n (T • n,i ), we may write

• n -1 k=1 P • z (J • n (k + 2) = z) = • n -1 k=1 P z J n (T • n,k+2 ) = z = I 1 + I 2 (6.67)
where

I 1 ≡ • n -1 k=1 P z J n (T • n,k+2 ) = z, T n > k + 2 , (6.68) 
I 2 ≡ • n -1 k=1 P z J n (T • n,k+2 ) = z, T n ≤ k + 2 . (6.69)
In view of (3.3)-(3.4), T • n,i = i for all i ∈ {0, . . . , T n -1}. Hence

I 1 = • n -1 k=1 P z (J n (k + 2) = z, T n > k + 2) , (6.70) 
and since up to time T n the transition probabilities of J n are those of SRW,

I 1 ≤ • n -1 k=1 P SRW z (J SRW n (k + 2) = z) ≤ cn -2 , (6.71)
where the last inequality is (6.51).

To Bound I 2 note that the event {T n ≤ k + 2} can be written as the disjoint union

{T n ≤ k + 2} = ∪ i≤k+2 ∪ y∈V n {T n = i, J n (T n ) = y}. (6.72) Thus I 2 = • n -1 k=1 k+2 i=1 y∈V n P z J n (T • n,k+2 ) = z, T n = i, J n (T n ) = y . (6.73)
As above note that T • n,i = i for all i ∈ {0, . . . , T n -1 = i -1}, that T n = T • n,i-1 + 1, and that in the time interval {0, . . . , T n }, J n has the same transition probabilities as SRW. By this and the Markov property, the probability in (6.73) is equal to

P SRW z (T SRW, n = i, J SRW n (i) = y) P y J n (T • n,k+2-i ) = z . (6.74)
Consider now the last factor in (6.74). By construction, y ∈ V n . Hence, by (3.3),

P y J n (T • n,k+2-i ) = z = x L n,l (y, x)P x J n (T • n,k+2-i ) = z . (6.75)
where the sum is over x in ∂V n = ∪ 1≤l≤L ∂C n,l and where, in the notation of Lemma 6.7, L n,l (y, x) ≡ P y J n (T n,l ) = y , is the exit distribution from the set C n,l containing y. Thus in particular, x∈∂C n,l L n,l (y, x) = 1. For indices i, k such that k + 2 -i > 0, we rewrite the probability in the remaining term as

P x J n (T • n,k+2-i ) = z = J > k+2-i (x) + J < k+2-i (x)
where, for j ≥ 1,

J > j (x) ≡ P x J n (T • n,j ) = z, T n > j ≤ P SRW x (J SRW n (j) = z) , (6.76) 
J < j (x) ≡ P x J n (T • n,j ) = z, T n ≤ j . (6.77) 
(We reason as we did for I 1 to bound J > j (x) in (6.76).) Consider first the contribution to I 2 coming from the terms J > k+2-i (x), namely,

I > 2 ≡ • n -1 k=1 k+2 i=1 1≤l≤L y∈C n,l P SRW z (T SRW, n = i, J SRW n (i) = y) x∈∂C n,l L n,l (y, x)J > k+2-i (x).
To bound I > 2 we relax the sum over i and use the bound (6.76) to write

I > 2 ≤ • n i=1 1≤l≤L y∈C n,l P SRW z (T SRW, n = i, J SRW n (i) = y) R n,l (y) (6.78) 
where R n,l (y) = x∈∂C n,l L n,l (y, x)

• n -1

k=1 P SRW x (J SRW n (k) = z) . ( 6 

.79)

We now split the sum over x in (6.79) according to whether dist(x, z) = 1, dist(x, z) = 2, or dist(x, z) ≥ 3 and use (6.52) of Lemma 6.14 to bound the sum over k: this gives

R n,l ≤ c 2 d=1 n -d x∈∂C n,l :dist(x,z)=d L n,l (y, x) + c n -3 (6.80)
where, by Lemma 6.7 and (6.28), L n,l (y, x) = (1 + o(1))L n,l (x) ≤ (1 + o(1))n -1 for all x ∈ ∂C n,l . Hence, inserting (6.80) in (6.78),

I > 2 ≤ c n -3 + c 1 max 1≤l≤L P SRW z T SRW (C n,l ) ≤ T n ≤ • n 2 d=1 1≤l≤L |∂ d z ∩ ∂C n,l | n d+1 . (6.81) Throughout this proof 0 < c i < ∞, i = 1, 2, . . . are constants. Now by (6.3), on W n , 1≤l≤L |∂ 1 z ∩ ∂C n,l | ≤ κ and 1≤l≤L |∂ 2 z ∩ ∂C n,l | ≤ n/ log n. Thus I > 2 ≤ c n -3 + c 3 n -2 max 1≤l≤L P SRW z T SRW (C n,l ) ≤ T n ≤ • n . (6.82)
To bound the last probability we write

P SRW z T SRW (C n,l ) ≤ T n ≤ • n ≤ y∈C n,l • n -1 k=1 P SRW z (J SRW n (k) = y) (6.83)
and split the sum over y according to whether dist(y, z) = 2 or dist(y, z) ≥ 3. Using again (6.52) of Lemma 6.14, we then get

y∈C n,l :dist(y,z)=2 P SRW z (T SRW (y) ≤ T n ≤ • n ) ≤ max l |∂ 2 z ∩ C n,l |n -2 , (6.84) d≥3 y∈C n,l :dist(y,z)=d P SRW z (T SRW (y) ≤ T n ≤ • n ) ≤ max l |C n,l |n -3 , (6.85) Now max l |∂ 2 z ∩ C n,l | ≤ max l |C n,l | ≤ c 4 n/ log n
where the last inequality, valid on Ω , is (2.9) of Lemma 2.2. In view of this, plugging (6.84) and (6.85) in (6.83) and combining the result with (6.82), we finally get

I > 2 ≤ c n -3 + c 4 (n 3 log n) -1 . (6.86)
We now turn to the contribution to I 2 coming from the term J < k+2-i (x). Since J < k+2-i (x) is of the same nature as the probability appearing in (6.69), the straightforward idea is to iterate the decomposition (6.73)-(6.74). Doing so (6.67) becomes, for all m ≥ 3,

• n -1 k=1 P • z (J • n (k + 2) = z) = I 1 + I < 2 + • • • + I < m + I > m , (6.87) 
where, setting q i (x, y)

≡ P SRW x (T SRW, n = i, J SRW n (i) = y), I ≶ m ≡ • n -1 k=1 k+2 i 1 =1 l 1 y 1 q i 1 (z, y 1 ) x 1 L n,l 1 (y 1 , x 1 ) . . . . . . k+2-i 1 •••-i m-1 im=1 lm ym q im (x m-1 , y m ) xm L n,lm (y m , x m )J ≶ k+2-i 1 •••-im (x m ), for J > j (x), J < j (x)
as in (6.76), (6.77), and with the convention that empty sums are zero. To bound I > m we proceed as for I > 2 . More precisely, relaxing all sums over i j and pushing the sum over k to J > k+2-i 1 •••-im (x m ) the last term in the resulting bound is

• n -1 im=1 lm ym q im (x m-1 , y m ) • n -1 k=1 xm L n,lm (y m , x m )J > k+2-i 1 •••-im (x m
), (6.88) which is of the same form as the r.h.s. of (6.78), and is bounded in the same way, the only difference being that the initial condition z of the probability law appearing in (6.82) now becomes x m-1 . But unlike z, which is at distance at least two from C n,l , x m-1 may be at distance one only. Thus, the leading contribution to the r.h.s. of (6.83) now is y∈C n,l :dist(y,x m-1 )=1 P SRW

x m-1 (T SRW (y)

≤ T n ≤ • n ) ≤ max l |∂ x m-1 ∩ C n,l |n -1 , (6.89)
where again max l |∂ 1 z ∩ C n,l | ≤ max l |C n,l | ≤ c 4 n/ log n, and so,

I < m ≤ c 5 (n 2 log n) -1 . (6.90)
We now turn to I > m . Here we use that for large enough m the chain will typically not revisit V n m times before time • n . For this choose m = n 2 . Set n = 1/ log n and

I n = [ n n 2c , -1 n n 2c ]
. By Lemma 6.12,

max x∈Vn P SRW x (T SRW (V n \ x) / ∈ I n ) ≤ c 6 n on Ω SRW , for large enough n. Now, at least m = m-• n /( n n 2c ) indices i 1 , .
. . , i m in I > m must be smaller then n n 2c . This readily yields, using the rough bound

J > k+2-i 1 •••-im (x m ) ≤ 1, that I > m ≤ c 7 • n m n m m I < m .
Plugging this and (6.90) in (6.88) with m = n 2 , we get that

• n -1 k=1 P • z (J • n (k + 2) = z) ≤ c 8 (log n) -1 , (6.91)
which is valid on Ω SRW ∩ Ω for all but a finite number of indices n. The proof of assertion (i) of Proposition 6.2 is complete.

Proof of Proposition 6.2, (ii). The proof is a rerun of the proof of assertion (i). We now briefly indicate the main modifications. Let 1 ≤ l ≤ L and z, z ∈ ∂C n,l be given, and assume first that |z ∩ (∪ 1≤l =l ≤L ∂C n,l )| = 0, that is, z lies in the boundary of a unique component C n,l . As in (6.67) wecdecompose the probability in (6.5) into I 1 + I 2 where I 1 and I 2 are the analogues of (6.68) and (6.69), respectively. Arguing as in (6.70)-( 6.71) to bound I 1 , but using (6.51) of Lemma 6.13 if z = z and (6.52) of Lemma 6.14 if z = z ,

I 1 ≤ • n -1 k=1 P SRW z (J SRW n (k) = z ) ≤ c 1 n -1 (6.92)
for some constant 0 < c 1 < ∞. Turning to I 2 we write I 2 = I > 2 + I < 2 as in the proof of assertion (i). To deal with I > 2 we further distinguish two cases: (a) the chain visits V n \C n,l before visiting C n,l or (b) the converse occurs. The assumption that |∂z ∩ ∂V n | ≤ κ guarantees that in case (a) the contribution to I > 2 is at most O(1/(n 2 log n)), just as in (6.90) of assertion (ii). In case (b), the contribution to I > 2 is bounded above by the sum of p • n (z, z ) (this corresponds to k = 1) and

• n -1 k=2 k i=1 y∈C n,l P SRW z (T SRW, n = i, J SRW n (i) = y) x∈∂C n,l \z L n,l (y, x)J > k-i (x),
where J > k-i (x) is defined as in (6.76) with z substituted for z. Observing that each trajectory in the above quantity contains exactly one transition of the form p • n (z 1 , z 2 ), z 1 , z 2 ∈ ∂C n,l , we readily get that this term is at most

n -1 |∂C n,l ∩ ∂z | max p • n (z 1 , z 2 ) ≤ κ max p • n (z 1 , z 2 ) ≤ κ |C n,l |/n 3 = O(1/(n 2 log n))
, where the last equality, valid on Ω , follows from the bound p • n (z 1 , z 2 ) ≤ |C n,l |/n 2 together with (2.9) of Lemma 2.2. Iterating m = n 2 times as in (6.87), the sums of the contributions coming from case (b) is or order

O(1/ log n) + x 1 ,x 2 ,...x m-1 ∈∂C n,l \z p • n (z, x 1 )p • n (x 1 , x 2 ) . . . p • n (x m-1 , z ), (6.93)
where the sum is bounded above by

max x m-1 p • n (x m-1 , z ) ≤ |C n,l |/n 2 = O(1/n log n) on Ω .
Poceeding from there on as in the proof of assertion (i) readily yields the claim (6.5) of assertion (ii). The case where z belongs to the boundary of several sets C n,l 's is a little more involved but goes along the same lines. We skip the details. This concludes the proof of Proposition 6.2. 6.4. Hitting time at stationarity: proof of Proposition 6.4. Consider the continuous time Markov chain (J * n (t), t > 0) with jump chain (J • n (k), k ∈ N) and rate one exponential waiting times. That is, given a family (e * n,i , i ∈ N) of independent mean one exponential r.v.'s, independent of

J • n , J * n (t) = J • n (i) if s n (i) ≤ t < s n (i + 1
) for some i, (6.94)

where

s n (k) ≡ k-1 i=0 e * n,i , k ∈ N. Write P *
x for the law of J * n started in x. Let us first prove, that under the assumptions of Proposition 6.4, (6.10) holds for the continous time Markov chain J * n . For this we use results from [START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF]. Set B ≡ A ∩ I n and write

T * (B) ≡ inf{t > 0 | J * n (t) ∈ B}.
Then, by Theorem 3 and Lemma 2 of [START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF] we have,

P * π • n (T * (B) > t) ≥ 1 -τ • n q(B,B c ) 1-π • n (B) exp -t q(B,B c ) 1-π • n (B) , t > 0, (6.95)
where τ • n is as in (6.30) and where q(B,

B c ) = x∈B y / ∈B π • n (x)p • n (x, y) = π • n (B)
as follows from (6.12) and the fact that B ⊆ I n . By Proposition 6.3,

π • n (B) = |B|/|V • n | ≤ |I n |/|V • n | ≤ n -c (1 + o(1)), (6.96) 
where we used (6.7) and (2.10) in the last inequality. From this and (6.30), we get that

P * π • n (T * (B) > t) ≥ 1 -n -(c -2) (1 + o(1)) exp -t |B| |V • n | (1 + o(n -c
)) , t > 0. (6.97) The idea then is that for s n as in (6.94), T * (B) -T • (B) = s n (T • (B)) -T • (B), which should be small for T • (B) large. Indeed, a classical large deviation estimates yields that if 0 < m n ↑ ∞ is an integer valued sequence then for all ζ > 0

P * x (|s n (m n ) -m n | ≥ ζm n ) ≤ 2e -mn{ζ-log(1+ζ)} . (6.98)
We thus need an a priori lower bound on T • (B). To this end note that B ⊂ V n (ρ n ) so that by Theorem 1.1 of [START_REF] Černý | Hitting time of large subsets of the hypercube[END_REF], for ρ n as in (2.3) and any c such that n c n log n, we have for all l n ≤ n c / log n that

P • π • n (T • (B) > l n ) ≥ (1 -π • n (B)) inf x / ∈B P SRW x (T SRW (V n (ρ n ) \ x) ≥ l n ) ≥ 1 -O( 1 log n ).
where we used (6.96) in the last inequality. From this bound, (6.98), and (6.97) we get that for any ζ > 0,

P * π • n (T * (B) > t) ≤ P • π • n (T • (B) > t/(1 + ζ)) + 2e -ln{ζ-log(1+ζ)} + O( 1 log n
). (6.99) Taking e.g. ζ = 1/2 and l n = n c /2 yields (6.10) and finishes the proof of Proposition 6.4.

PROOF OF THEOREM 3.3 AND OF THEOREM 3.1

The proofs of Theorem 3.3 and of Theorem 3.1 hinge upon the next two lemmata. 7.1. Preparatory Lemmata. Let 0 < ρ < 1 and, for V n (ρ) defined in (2.1), set

C n,l (ρ) = C n,l if C n,l ∩ V n (ρ) = ∅, ∅ else. (7.1) Lemma 7.1. Assume that c > 2.
There exists a subset Ω 3 ⊂ Ω with P (Ω 3 ) = 1 such that on Ω 3 , for all but a finite number of indices n, for all

ρ n ≤ ρ ≤ 1 -3ρ n , ∪ 1≤l≤L C n,l (ρ) /|V • n | ≤ n -c +1 2 -nρ (1 + o(1)), (7.2) 
and, for m n,l (x) as in (6.14),

1≤l≤L x∈∂C n,l (ρ) π • n (x)m n,l (x) ≤ n -c +1 2 -nρ (1 + o(1)). (7.3) Lemma 7.2. Assume that c > 2.
On Ω , for all but a finite number of indices n,

π • n ∂ ∪ 1≤l≤L C n,l ≤ n -2(c -1) (1 + O(n -(c -1) )). (7.4)
Proof of Lemma 7.2. By (6.6), π

• n ∂(∪ 1≤l≤L C n,l ) ≤ n| ∪ 1≤l≤L C n,l |/|V • n |. By (2.
12) of Lemma 2.2 and (6.7) of Proposition 6.3, on Ω , for all but a finite number of indices n,

n| ∪ 1≤l≤L C n,l |/|V • n | = n |V n (ρ n ) \ I n | /|V • n | ≤ nn -2c +1 (1 + O(n -(c -1) )), (7.5) 
proving (7.4).

Proof of Lemma 7.1. Set k n ≡ max 2≤l≤L |C n,l (ρ)| and let

S n (k) ≡ L l=2 |C n,l (ρ)|1 {|C n,l (ρ)|=k} (7.6)
be the total number of vertices that belong to sets C n,l (ρ) that have cardinality k. Note that by (2.3) and (2.9) of Lemma 2.2, on Ω , for large enough n,

k n ≤ n/((c -2) log n). (7.7)
Now, on the one hand,

| ∪ 1≤l≤L C n,l (ρ)|/|V • n | = 1 |V • n | L l=2 |C n,l (ρ)| = 1 |V • n | k n k=2 S n (k). (7.8)
On the other hand, by (6.6)

1≤l≤L x∈∂C n,l (ρ) π • n (x)m n,l (x) ≤ 1 |V • n | k n k=2 S n (k), (7.9) 
where we used in the final inequality that by (6.14),

x∈∂C n,l (ρ) m n,l (x) = n -1 y∈C n,l (ρ) |∂C n,l (ρ) ∩ ∂y| ≤ |C n,l (ρ)| (7.10) since |∂C n,l (ρ) ∩ ∂y| ≤ n.
Let us now focus on the quantities S n (k), 2 ≤ k ≤ k n . We claim that if c > 2 there exists a subset Ω ⊂ Ω with P (Ω ) = 1 such that, on Ω , for all but a finite number of indices n, for all

ρ n ≤ ρ ≤ 1 -3ρ n , S n (2) ≤ n -c +1 2 n(1-ρ) (1 + O(n -(c -1)
)), (7.11)

S n (3) ≤ n -2(c -1) 2 n(1-ρ) (1 + O(n -(c -1)
)), (7.12) and, for all

4 ≤ k ≤ k n , S n (k) ≤ n -1 n -c +1 2 n(1-ρ) (1 + O(n -(c -1) )). (7.13)
We first prove (7.11). For this let us introduce the variables χ ρ (x) ≡ 1 {wn(x)≥rn(ρ)} , χ ,ρ n (x) ≡ 1 {rn(ρ n )≤wn(x)<rn(ρ)} , and χ n (x) ≡ 1 {wn(x)≥rn(ρ n )} . They are Bernoulli r.v.'s with

P (χ ρ (x) = 1) = 2 -ρn , P (χ n (x) = 1) = n -c
, and P (χ ,ρ n (x) = 1) = n -c -2 -ρn respectively, that inherit the independence of the variables (w n (x), x ∈ V n ). We then may write

S n (2) = S 0 n (2) + S 1 n (2)
where, for G 2 defined below (6.40),

S 0 n (2) ≡ C={x,y}∈G 2 (Y n (x, y) + Y n (y, x)), (7.14) 
S 1 n (2) ≡ C={x,y}∈G 2 Z n (x, y), (7.15) 
and

Y n (x, y) ≡ χ ρ n (x)χ ,ρ n (y) z∈(∂x∪∂y)\{x,y} (1 -χ n (z)), (7.16 
)

Z n (x, y) ≡ χ ρ n (x)χ ρ n (y) z∈(∂x∪∂y)\{x,y} (1 -χ n (z)). (7.17) 
To bound S 0 n (2) and S 1 n (2) we proceed as in the proof of Lemma 6.10, i.e. we decompose

G 2 into G 2 = ∪ 1≤j≤n ∪ 1≤i≤vn G j,i 2 , v n < 2n 4
, where the G j,i 2 's are defined in (6.42), and use a concentration bound to estimate the sum (of now independent r.v.'s) over each G j,i 2 . Doing this we readily get that 1) and 1) and for all

ES 0 n (2) = n(n -c -2 -ρn )2 n(1-ρ) (1 -n -c ) 2(n-
P |S 0 n (2) -ES 0 n (2)| ≥ 2n ES 0 n (2) ≤ nv n e -n . (7.18) Similarly, ES 1 n (2) = n2 n(1-2ρ) (1 -n -c ) 2(n-
ρ n ≤ ρ ≤ (1 -4ρ n )/2, P |S 1 n (2) -ES 1 n (2)| ≥ 2n ES 1 n (2) ≤ nv n e -n . (7.19) 
For ρ > (1 -4ρ n )/2 we simply use that by Tchebychev's first order order inequality,

P S 1 n (2) ≥ 2 -nρ/2 ES 0 n (2) ≤ 2 -nρ/2 . (7.20)
From the assumptions that ρ n ≤ ρ ≤ 1 -3ρ n and c > 1 it then immediately follows that (7.11) holds true with a probability larger than 1 -c 0 n 5 e -c 1 n for some constants 0 < c 0 , c 1 < ∞. Thus, by Borel-Cantelli Lemma, it holds on a subset of Ω of full measure, for all but a finite number of indices n. One proves (7.12) in a similar way. When 4 ≤ k ≤ k n we do not need such a refined control on S n (k): we simply write

S n (k) ≤ k B⊂Vn 1 {∃x∈B:χ ρ n (x) y∈B\x χ ,ρ n (y)=1} z∈∂B (1 -χ n (z)), (7.21)
where the sum is over all subsets B ⊂ V n such that |B| = k, and such that the graph G(B) is connected. Since the number of such sets is bounded above by

(k -1)!n k-1 2 n , ES n (k) ≤ k!n k-1 n -c (k-1) 2 n(1-ρ)
, and a first order order Tchebychev inequality yields

P S n (k) ≥ n -1 ES 0 n (2) ≤ k!nn -(c -1)(k-2) . (7.22)
where the last equality follows from Corollary 7.6 and the definition of k • n (t) (see (3.19)). It remains to bound the last sum in (7.29). Since k • n (t) = a n t is deterministic, a first order Tchebychev inequality entails that for all c • > 0,

P π • n ant -1 i=1 1 {J • n (i-1)∈∂(∪ 1≤l≤L C n,l )} ≥ n -c• a n t ≤ n c• π • n ∂(∪ 1≤l≤L C n,l ) .
Inserting (7.4) of Lemma 7.2 in the right hand side above, and combining the resulting bound with (7.26) and (7.29), we get that on Ω , for all but a finite number of indices n, 

P π • n k † n (t) ≥ k • n (t) 1 + n -c• ≤ n -2(c -1)+c• (1 + O(n -(c -1) )). ( 7 
P π • n ρ 1 S n (•), S • n (•) > n 1-c /2 ≤ P π • n sup 0≤t≤1 S n (t) > n 1-c /2 . (7.31)
Theorem 3.3 then is an immediate consequence of the lemma below.

Lemma 7.7. Assume that c > 2 and that β > β c (ε). Then P-almost surely,

lim sup n→∞ P π • n sup 0≤t≤1 S n (t) > n 1-c /2 = 0. (7.32)
Proof of Lemma 7.7. Since S n is nondecreasing,

P π • n sup 0≤t≤1 S n (t) > ≤ P π • n S n (1) > (7.33) 
for all > 0. Introducing the event

A ≡ ∀ 0≤j≤k † n (1)-1 ∀ 1≤l≤L Λ † n (j)1 {J † n (j)∈C n,l } ≤ n2¯ n,l (0) (7.34) 
we have by Corollary 4.2 that on Ω , for all but a finite number of indices n,

P π • n S n (1) > ≤ e -n + n -2(c -1)+c• + P π • n S n (1) > , A , (7.35) 
where c • > 0 is arbitrary. From the definitions (3.27) and (3.12) of S n and Λ † n (i), and since

Λ † n (i) is non zero if and only if J † n (i) ∈ ∪ 1≤l≤L C n,l , we see that on A, S n (1) = c -1 n L l=1 k † n (1)-1 j=1 Λ † n (j)1 {J † n (j)∈C n,l } (7.36) ≤ 2c -1 n L l=1 k † n (1)-1 j=1 n¯ n,l (0)1 {J † n (j)∈C n,l } . (7.37) 
Therefore,

P π • n S n (1) > , A ≤ P π • n 2nc -1 n L l=1 ¯ n,l (0) k † n (1)-1 j=1 1 {J † n (j)∈C n,l } > . (7.38) 
The problem we still face is that the quantity ¯ n,l (0) appearing in (7.38) can be very large compared to c n . However, sets C n,l such that this happens will typically not be visited. More precisely, for C n,l (ρ) as in (7.1), one may choose the parameter 0 < ρ < 1 in a such a way that the event

A ≡ ∀ 1≤j≤k † n (1)-1 J † n (j) / ∈ ∪ 1≤l≤L C n,l (ρ) , (7.39) 
has probability close to one. Indeed

P π • n A c = P π • n A c = 1≤l≤L E π • n k † n (1)-1 j=0 1 {J † n (j)∈C n,l } (7.40) = 1≤l≤L E π • n k • n (1)-1 i=1 1 {J • n (i-1)∈∂C n,l ,J • n (i)∈∂C n,l } (7.
41) where (7.41) follows from Corollary 7.5. Note that for all x ∈ ∂C n,l ,

P π • n J • n (i -1) = x, J • n (i) ∈ ∂C n,l = π • n (x)P x (J • n (1) ∈ ∂C n,l ) = π • n (x)m n,l (x) 
, (7.42) where m n,l (x) is defined in (6.14). Inserting this in (7.41), it follows from (7.3) of Lemma 7.1 that on Ω 3 , for all but a finite number of indices n,

P π • n A c ≤ k • n (t) 1≤l≤L x∈∂C n,l (ρ) π • n (x)m n,l (x) (7.43) ≤ k • n (t)n -c +1 2 -nρ (1 + o(1)) = n2 -nρ 2 nεn-nρ n (1 + o(1)
). (7.44) where we wrote ε n ≡ log an n log 2 ; thus by 1.19, lim n→∞ ε n = ε, 0 < ε < 1. Assume from now on that ω ∈ Ω 3 and take ρ ≡ ε n -ρ n /2. Then

P π • n S n (1) > , A ≤ P π • n A c + P π • n S n (1) > , A, A ≤ n2 -nρ n /2 (1 + o(1)) + P π • n A , (7.45) 
where, recalling from (2.1) that

V n (ε n -ρ n /2) = {x ∈ V n | w n (x) ≥ r n (ε n -ρ n /2)}, A ≡ 2nc -1 n 1≤l≤L : C n,l ∩Vn(εn-ρ n /2)=∅ ¯ n,l (0) k † n (1)-1 j=1 1 {J † n (j)∈C n,l } > . (7.46) 
Again, we wish to express this event in terms of the chain J 

(t), for each 1 ≤ l ≤ L , k † n (1)-1 j=1 1 {J † n (j)∈C n,l } d = k • n (1)-1 i=1 1 {J • n (i-1)∈∂C n,l ,J • n (i)∈∂C n,l } . (7.47) 
Then, by Tchebychev inequality, (7.47), and (7.42),

P π • n A ≤ 2n a n c n 1≤l≤L : C n,l ∩Vn(εn-ρ n /2)=∅ max x∈C n,l w n (x) x∈∂C n,l π • n (x)m n,l (x). (7.48) 
We next decompose the sum in (7.48) according to the size of max x∈C n,l w n (x): given K > 0 to be chosen later define, for 0 ≤ k ≤ K,

I k ≡ 1 ≤ l ≤ L | r n ε n -k+2 2 ρ n ≤ max x∈C n,l w n (x) ≤ r n ε n -k+1 2 ρ n . ( 7 
.49) By this and the choices of a n and c n from Theoreom 1.1, (7.48) becomes

P π • n A ≤ 2n -1 0≤k≤K Q n,k + R n , (7.50) 
where

Q n,k = 2 nεn r -1 n (ε n )r n ε n -k+1 2 ρ n l∈I k x∈∂C n,l π • n (x)m n,l (x), (7.51) 
R n = 2 nεn r -1 n (ε n )r n ε n -K+2 2 ρ n 1≤l≤L x∈∂C n,l π • n (x)m n,l (x). (7.52) Now, l∈I k x∈∂C n,l π • n (x)m n,l (x) ≤ 1≤l≤L x∈∂C n,l εn- k+2 2 ρ n π • n (x)m n,l (x) ≤ n -c +1 2 -n(εn-k+2 2 ρ n) (1 + o(1)) (7.53)
where the last inequality is (7.3) of Lemma 7.1. Inserting (7.53) in (7.51),

Q n,k ≤ n2 kn 2 ρ n r -1 n (ε n )r n ε n -k+1 2 ρ n . (7.54) Using (2.25), the bound √ 1 -x -1 ≤ -1 2 x(1 + 1 4
x), 0 < x < 1, and the assumption that

β > β c (ε), so that α(ε n ) ≡ β c (ε n )/β < 1 for large enough n, it follows from (7.54) that Q n,k ≤ c 0 n2 -nρ n /α(εn) 2 -nρ n (1/α(εn)-1) k 2 (7.55) for some constant 0 < c 0 ≡ c 0 (ε n , β) < ∞. Similarly, by (7.3) with ρ = ρ n , 1≤l≤L x∈∂C n,l π • n (x)m n,l (x) ≤ n -2c +1 (1 + o(1)) (7.56) and R n ≤ n2 nεn-2nρ n r -1 n (ε n )r n ε n -K+2 2 ρ n . (7.57) Now choose K = 2ε n 1 -1 16 /ρ n . Then K+2 2 ρ n ≥ ε n 1 -1 16 and, using (2.25), R n ≤ n2 nεn-2nρ n r -1 n (ε n )r n ε n /16 ≤ n2 -nεn/4-2nρ n (7.58)
for all β > β c (ε n ). Inserting (7.55) and (7.58) in (7.50),

P π • n A ≤ 4 -1 c 0 n 2-c /α(εn) + n -2(c -1) 2 -nεn/4 (7.59)
for all n large enough. Finally, combining (7.35), (7.45), and (7.59), we obtain that for all β > β c (ε), on Ω ∩ Ω 3 , for all but a finite number of indices n,

P π • n S n (1) > ≤ e -n + n -2(c -1)+c• + 2n -(c -2)/2 + 4 -1 c 0 n 2-c /α(εn) + n -2(c -1) 2 -nεn/4 (7.60) 
for all > 0, where c • > 0 is arbitrarily small, and where

lim n→∞ ε n = ε, 0 < ε < 1.
Since by assumption c > 2, choosing = n -(c -2)/2 yields the claim of Lemma 7.7.

The proof of Theorem 3.3 is now complete. 

S n (•) ≡ c -1 n S n ( a n • ) and S n (•) = c -1 n S n (K n (•)). The set R c n = [0, ∞) -R n can be decomposed in a canonical way into R c n = ∪ s∈ J S n (s -), S n (s)
where J denotes the set of jump times of S n , and S n (s -) the left limit at s.

Clearly, J = {i/a n | i ∈ N}. Similarly, R c n = [0, ∞) -R n can be decomposed into R c n = ∪ s∈J S n (s -), S n (s 
) where J denotes the set of jump times of S n . In view of the definition (1.16) of K n and (3.10),

J = {T † n,i /a n | i ∈ N} ⊆ J .
That is, by construction, R c n and R c n differ only at the times of visits of X n to V n , the increments of S n along the stretches of trajectory that traverse V n being lumped into single increments of S n . In particular, it follows from the definitions (3.4), (3.8), and (3.9) that J ∩ J {T 

• n,i /a n | i ∈ N} ≡ J • , and R c n -∪ s∈J • S n (s -), S n (s) ⊆ R c n -∪ s∈J • S n (s -), S n (s) (7.61) = ∪ j S n (T n,j ), S n (T n,j+1 -1) . ( 7 
m S n (T n,j ), S n (T n,j+1 -1) 
d = c -1 n Λ † n (j) (7.63) 
where equality holds in distribution. Sums of such terms are of the form S n (t ) (see (3.27)). Now, it follows from Lemma 7.7 that with a probability that goes to 1 as n ↑ ∞, S n (t )

decays to zero as fast as t n 1-c /2 . This, (7.62), and (7.63) readily implies that for all

0 < T < ∞, m ( R c n -R c n ) ∩ [0, T ) → 0, n → ∞, (7.64) 
Thus, as n ↑ ∞, R n and R n coincide on any bounded interval with probability going to 1.

From now on the proof follows classical arguments. Let A ρ n (t, s) be the event A ρ n (t, s) ≡ {C n (t, s) ≥ 1 -ρ}. Clearly, for all ρ ∈ (0, 1), A ρ n (t, s) ⊇ { R n ∩ (t, t + s) = ∅}. By our earlier observations, for all t, s > 0, { R n ∩ (t, t + s) = ∅} = {R n ∩ (t, t + s) = ∅} with probability going 1. Thus

lim n→∞ P π • n ( R n ∩ (t, t + s) = ∅) = lim n→∞ P π • n (R n ∩ (t, t + s) = ∅)
and by Theorem 1.1, proceeding as in the proof of Theorem 1.6 in [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF],

lim n→∞ P π • n (R n ∩ (t, t + s) = ∅) = P({S ∞ (u), u > 0} ∩ (t, t + s) = ∅)
where, by the arcsine law for stable subordinators (see e.g. Theorem 1.8 of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF]), the last probability is equal to the right hand side of (1.25).

Let us now prove that

lim n→∞ P π • n A ρ n (t, s) ∩ { R n ∩ (t, t + s) = ∅} = 0.
Invoking as before Lemma 7.7, we can substitute R for R n in the above probability. Consider the set T n ( )

≡ {x ∈ I n | w n (x) ≥ c n }, > 0. By Theorem 1.1, if R n ∩ (t, t + s) = ∅
then with a probability that tends to one as n ↑ ∞ and ↓ 0 there exists u -≤ u + such that on the one hand c

-1 n S n (K n (u -) -1) < t < c -1 n S n (K n (u -)) while c -1 n S n (K n (u + )) < t < c -1 n S n (K n (u + ) + 1)
on the other, and these two increments correspond to visits to vertices z -and z + in T n ( ) (that is to say, with probability one, the points t and t + s lie in constancy intervals of the process, and such intervals are produced, asymptotically, by visits to T n ( )). Let us now argue that, firstly, starting from a given vertex z -∈ T n ( ), the chain J • n quickly moves at a distance greater than nρ/2 from it, and secondly, that it does not visit any vertex in {z ∈ T n ( ) | dist(z -, z) ≤ nρ/2} in the ensuing Ca n steps, for any 0 < C < ∞, 0 < ρ < 1, and small > 0. For this we use three results of Section 6. By Proposition 6.1, the chain J • n started in z -reaches stationarity in • n ∼ n 2(c +1) /(log n) 2 steps, and by Proposition 6.3,

π • n ({z ∈ V • n | dist(z -, z) > nρ/2}) ≥ 1 -exp{-nI(ρ)}, where I(ρ) > 0 if 0 < ρ < 1.
This proves the first claim. The second claim is an immediate consequence of Proposition 6.4. The proof of Theorem 1.3 is done.

CONVERGENCE OF THE FRONT END CLOCK PROCESS: PROOF OF THEOREM 3.2

The proofs of Theorem 3.2 and Theorem 3.4 rely on a method developped by Durrett and Resnick [START_REF] Durrett | Functional limit theorems for dependent variables[END_REF] that provides sufficient conditions for partial sum processes to converge to Lévy processes. We use their results in a specialized form suitable for our applications which is taken from [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF], where this method was first applied to the study of clock processes in random environment; see also [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF] where it was implemented in more generality.

8.1.

A convergence theorem for FECP. Consider the rescaled front end clock process (3.26),

S • n (t) = c -1 n S • n ( a n t ), t ≥ 0. (8.1) 
Theorem 8.1 below is the corner stone of the proof of Theorem 3.2. It deduces convergence of S • n to a subordinator from a set of four conditions which we now formulate. Note that these conditions refer to given sequences of numbers a n and c n , as well as a given realization of the random environment. For t > 0 and u > 0 define

h u n (y) = x∈V • n p • n (y, x) exp{-uc n λ n (x)} , y ∈ V • n , (8.2) 
and, recalling the notation k

• n (t) = a n t , ν J • n ,t n (u, ∞) = k • n (t)-1 j=0 h u n (J • n (j)), (8.3) 
σ J • n ,t n (u, ∞) = k • n (t)-1 j=0 [h u n (J • n (j))] 2 . (8.4) 
Condition (C0). For all v > 0,

x∈V • n π • n (x)e -vcnλn(x) = o(1) . (8.5) 

Condition (C1).

There exists a σ-finite measure ν • on (0, ∞) satisfying ∞ 0 (1∧u)ν • (du) < ∞ such that, for all t > 0 and all u > 0,

P • π • n ν J • n ,t n (u, ∞) -tν • (u, ∞) < = 1 -o(1) , ∀ > 0 . (8.6) 
Condition (C2). For all u > 0 and all t > 0,

P • π • n σ J • n ,t n (u, ∞) < = 1 -o(1) , ∀ > 0 . (8.7) 
Condition (C3). For all t > 0, lim

↓0 lim sup n↑∞ k • n (t)E • π • n 1 {λ -1 n (J • n (0))e • 0 ≤cn } c -1 n λ -1 n (J • n (0))e • 0 = 0. (8.8) 
Theorem 8.1. Let the initial distribution of J • n be its invariant measure π • n . For all sequences a n and c n for which Conditions (C0), (C1), (C2), and (C3) are verified P-almost surely,

S • n ⇒ J 1 S • ∞ (8.9) 
P-almost surely, where S • ∞ is the Lévy subordinator with zero drift and Lévy measure ν • .

Proof. This is a restatement of Theorem 1.2 of [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF] specialized to the case where θ n , the "bloc length", is equal to one. (Theorem 1.2 of [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF] is itself a generalization of Theorem 1.1 of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] with a more workable Condition (C3).)

To verify the conditions of Theorem 8.1 we follow a by now well established twostep strategy that was first proposed in [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF], and was used later in [START_REF] Bovier | Convergence of clock processes in random environments and ageing in the p-spin SK model[END_REF]. The first step consists in using the mixing property and mean local time estimates of Proposition 6.1 and Proposition 6.2, respectively, to prove an almost sure ergodic theorem for the quantities (8.3) and (8.4) 

π J • n ,t n (x) = (k • n (t)) -1 k • n (t)-1 j=0 1 {J • n (j)=x} , x ∈ V • n . (8.10) 
Then (8.3) and (8.4) can be rewritten as

ν J • n ,t n (u, ∞) = k • n (t) y∈V • n π J • n ,t n (y)h u n (y), (8.11) 
σ J • n ,t n (u, ∞) = k • n (t) y∈V • n π J • n ,t n (y) [h u n (y)] 2 .
(8.12)

One readily sees, using reversibility, that

E • π • n ν J • n ,t n (u, ∞) = k • n (t) x∈V • n π • n (x)h u n (x) = (k • n (t)/a n )ν • n (u, ∞), (8.13) 
E • π • n σ J • n ,t n (u, ∞) = k • n (t) x∈V • n π • n (x) [h u n (x)] 2 = (k • n (t)/a n )σ • n (u, ∞), (8.14) 
where

ν • n (u, ∞) = a n |V • n | x∈V • n e -ucnλn(x) , (8.15) 
σ • n (u, ∞) = a n |V • n | x∈V • n x ∈V • n p •,2 n (x,
x )e -ucn(λn(x)+λn(x )) . (8.16)

Here p •,2 n (•, •) denotes the 2-steps transition probabilities of J • n . Note that since H(x) = 0 for all x ∈ V • n \ I n , where I n is the set of isolated vertices in the partition (2.7), we have

λ n (x) = e βHn(x) , if x ∈ I n , 1, if x ∈ V • n \ I n . (8.17) 
Theorem 8.2. Assume that c > 3. Let ρ • n > 0 be a decreasing sequence satisfying ρ • n ↓ 0 as n ↑ ∞. There exists a sequence of subsets

Ω EG n ⊂ Ω with P [(Ω EG n ) c ] < • n /(ρ • n a n ) + n -2 , for •
n as in (6.1), and such that on Ω EG n the following holds for all large enough n: for all t > 0, all u > 0, and all > 0,

P • π • n ν J • n ,t n (u, ∞) -(k • n (t)/a n )ν • n (u, ∞) ≥ ≤ -2 [C 1 tΘ n,1 (u) + t 2 Θ n,2 (u) 
] (8.18) for some constant 0 < C 1 < ∞, where

Θ n,1 (u) ≡ • n e -ucn [1 + ν • n (u, ∞)] + σ • n (u, ∞) + ν • n (2u, ∞) n log n + ρ • n [Eν • n (u, ∞)] 2 , (8.19) Θ n,2 (u) ≡ 2 -n [ν • n (u, ∞)] 2 .
(8.20) Moreover, for all t > 0, all u > 0, and all > 0,

P • π • n σ J • n ,t n (u, ∞) ≥ ≤ t (1 + o(1))σ • n (u, ∞). (8.21)
Proof of Theorem 8.2 . The upper bound (8.21) simply results from a first order Tchebychev inequality and (8.14). The proof of (8.18) is more involved. It relies on a second order Tchebychev inequality, that is, using (8.13), we bound the left hand side of (8.18) from above by

-2 (k • n (t)) 2 x∈V • n y∈V • n h u n (x)h u n (y)E • π • n π J • n ,t n (x) -π • n (x) π J • n ,t n (y) -π • n (y) . (8.22)
In view of (8.10), setting

∆ ij (x, y) = P • π • n (J • n (i) = x, J • n (j) = y) -π • n (x)π • n (y)
, the expectation in (8.22) may be rewritten as

E • π • n π J • n ,t n (x) -π • n (x) π J • n ,t n (y) -π • n (y) = k • n (t)-1 i=0 k • n (t)-1 j=0 ∆ ij (x, y). (8.23) 
For • n defined in (6.1) we now break the sum in the r.h.s. of (8.23) into three terms:

I (1) 1 = 2 0≤i≤k • n (t)-1 i+ • n ≤j≤k • n (t)-1 ∆ ij (x, y) , I (1) 2 = 0≤i≤k • n (t)-1 1 {i=j} ∆ ij (x, y) , (8.24) I (1) 3 = 2 0≤i≤k • n (t)-1 i<j<i+ • n ∆ ij (x, y) .

Consider first I

(1)

1 . By Proposition 6.1,

I (1) 1 ≤ δ n (k • n (t)) 2 π • n (x)π • n (y) ≤ 2 -n (k • n (t)) 2 π • n (x)π • n (y). (8.25) 
Turning to the term I

2 , we have,

I (1) 2 = 1≤i≤k • n (t) ∆ ii (x, x)1 {x=y} = k • n (t)π • n (x)(1 -π • n (x))1 {x=y} , (8.26) 
where we used that

P • π • n (J • n (i) = x) = π • n (x). Finally, I (1) 3 
≤ 2 k • n (t)-1 i=0 • n -1 l=1 P • π • n (J • n (i) = x, J • n (i + l) = y) = 2k • n (t)π • n (x) • n -1 l=1 p •,l n (x, y) (8.27) 
where p •,l n (•, •) denote the l-steps transition probabilities of J • n . Combining our bounds on (I), I

3 with (8.22) we get that, for all > 0,

P • π • n ν J • n ,t n (u, ∞) -E • π • n ν J • n ,t n (u, ∞) ≥ ≤ -2 [I (2) 1 + I (2) 2 + I (2) 3 ] , (8.28) 
where

I (2) 1 = 2 -n (k • n (t)) 2 x∈V • n y∈V • n h u n (x)h u n (y)π • n (x)π • n (y) , I (2) 2 = k • n (t) x∈V • n y∈V • n h u n (x)h u n (y)π • n (x)(1 -π • n (x))1 {x=y} , (8.29) 
I (2) 3 = 2k • n (t) x∈V • n y∈V • n h u n (x)h u n (y)π • n (x) • n -1 l=1 p •,l n (x, y).
In view of (8.13)- (8.14),

I (2) 1 ≤ 2 -n (k • n (t)/a n ) 2 [ν • n (u, ∞)] 2 , (8.30) 
I (2) 2 ≤ (k • n (t)/a n )σ • n (u, ∞). (8.31)
To deal with the third term in (8.29) note first that by (8.2),

y∈V • n p •,l n (x, y)h u n (y) = z∈V • n p •,l+1 n (x, z)e -ucnλn(z) , (8.32) 
so that

x∈V • n π • n (x)h u n (x)p •,l+1 n (x, z) = y∈V • n e -ucnλn(y) x∈V • n π • n (x)p • n (x, y)p •,l+1 n (x, z) = y∈V • n e -ucnλn(y) π • n (y)p •,l+2 n (y, z) , (8.33) 
Then, for all u > 0,

ν REM n (u, ∞) = a n |V n | x∈Vn e -u/γn(x) , (8.55) σ REM n (u, ∞) = a n |V n | x∈Vn x ∈Vn p SRW, (2) 
n (x, x )e -u(1/γn(x)+1/γn(x )) , (8.56) where p SRW, (2) n (•, •) denotes the 2-steps transition probabilities of J SRW n (see (6.48)). For later use (namely, for the treatment of Condition (C3)) we also define, for all > 0,

η REM n ( ) = a n |V n | x∈Vn γ n (x)
1 -e -/γn(x) . (8.57)

The functions ν REM n , σ REM n , and η REM n are well understood. We know in particular that:

Proposition 8.6. Given 0 < ε < 1 let a n and c n be as in Theorem 1.1. Let ν be as in (1.21) and assume that β > β c (ε). Then, there exists a subset Ω REM ⊂ Ω with P(Ω REM ) = 1 such that, on Ω REM , the following holds:

lim n→∞ ν REM n (u, ∞) = ν(u, ∞), ∀u > 0, (8.58 
)

lim n→∞ nσ REM n (u, ∞) = ν(2u, ∞), ∀u > 0, (8.59) 
and lim

→0 lim n→∞ η REM n ( ) = 0. (8.60) 
Throughout this section we set ε n ≡ log an n log 2 ; thus by 1.19, lim n→∞ ε n = ε, 0 < ε < 1. Proof. Eq. (8.58) and (8.59) are proved in Proposition 5.1, (i), in Section 5.1 of [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF]. The proof of (8.60) is elementary: by simple Gaussian calculations, Eη REM n ( ) ≤ c 1-α(εn) ↓ 0 as n ↑ ∞ and ↓ 0, where 0 < c < ∞ is a constant, and P (|η REM n ( ) -Eη REM n ( )| > n -1 ) ≤ n 3 a n /|V n |, which is summable under our assumptions on a n . Since η REM n ( ) is a monotonic function of > 0, arguing e.g. as in (9.119) yields the claim (8.60).

Our next lemma establishes that ν • n and σ • n are very close to ν REM n and σ REM n . Lemma 8.7. On Ω 3 , for all but a finite number of indices n, for all u > 0, εn) .(8.62) Proof of Lemma 8.7 . The proof hinges on the observation that c n λ n (x) = 1/γ n (x) for all x in the subset I n of the decomposition (2.7). This enables us to rewrite ν

|ν • n (u, ∞) -ν REM n (u, ∞)| ≤ 2n -2c +1 ν REM n (u, ∞) + 2a n e -un 2 + 2n -c +1+2α(εn) , (8.61) |σ • n (u, ∞) -σ REM n (u, ∞)| ≤ 2n -2c +1 σ REM n (u, ∞) + 4a n e -un 2 + 2n -c +1+2α(
• n (u, ∞) as ν • n (u, ∞) = (|V n |/|V • n |)ν REM n (u, ∞) + I 1 -I 2 -I 3 (8.63)
where

I 3 ≡ (a n /|V • n |) x∈∪ L l=1 C n,l
e -u/γn(x) , (8.64)

I 1 ≡ (a n /|V • n |) x∈V • n \I n e -ucnλn(x) ≤ a n e -ucn , (8.65) 
I 2 ≡ (a n /|V • n |) x∈V • n
\I n e -u/γn(x) ≤ a n e -ucn/rn(ρ n ) . (8.66)

The bounds on I 1 and I 2 follow from the fact that on V • n \ I n ≡ N n , λ n (x) = 1 and w n (x) < r n (ρ n ). In order to bound I 3 recall 2.1 and set W n (ρ) ≡ (∪ L l=1 C n,l ) ∩ V (ρ) and W c n (ρ) ≡ (∪ L l=1 C n,l ) ∩ V c (ρ) for some ρ > 0. Then, on W c n (ρ), by (2.25) of Lemma 2.3, One also sees that for this choice of ρ, 4ρ n < ρ < 1 -4ρ n for all 0 < ε < 1 and large enough n. Therefore Lemma 7.1 applies, yielding

wn(x) cn ≤ rn(ρ) rn(εn) = exp{nββ c (1)( √ ε n - √ ρ) -β log n 2βc(1) ( 1 √ ε n -1 √ ρ ) + o(
|W n (ρ)| /|V • n | ≤ n -c +1 2 -nρ (1 + o(1)), (8.69) 
on Ω 3 , for all n large enough. Assume from now on that ω ∈ Ω 3 . By (8.68) and (8.69),

I 3 ≤ a n e -un 2 + 2n -c +1 2 n(εn-ρ) ≤ a n e -un 2 + 2n -c +1 n 2βc(εn)/β , (8.70) 
where we used that 

ε n -ρ = ( √ ε n - √ ρ)( √ ε n + √ ρ) ≤ 2 √ ε n 2 log n nββc ( 
|/|V • n | = 1 + n -2c +1 (1 + O(n -(c -1)
)), as follows from (6.7). The proof of (8.62) follows the same pattern, using the additionnal observation that p •,2 n (x, x ) = p SRW,2 n (x, x ) for all x, x in I n × I n . This follows from Proposition 6.5 and the fact that, by construction, I n ∩ ∂C n,l = ∅ for all 1 ≤ l ≤ L . We skip the details. 

η • n ( ) ≡ a n E • π • n 1 {λ -1 n (J • n (0))e • 0 ≤cn } c -1 n λ -1 n (J • n (0))e • 0 (8.73) = a n |V • n | x∈V • n c -1 n λ -1 n (x) 1 -e -cnλn(x) (8.74)
arising in (8.8), to its counterpart in the random hopping dynamics of the non truncated REM, η REM n ( ), defined in (8.57). For this we simply write that since 

λ n (x) = 1 on V • n \ I n and c n λ n (x) = 1/γ n (x) on I n , η • n ( ) ≤ a n c n + a n |V • n | x∈I n γ n (x) 1 -e -/γn(x) ≤ a n c n + |V n | |V • n | η REM n ( ). ( 8 
S † n (t) = b -1 n S † n (k † n (t)), t ≥ 0. (9.1) 
Theorem 9.1 below parallels Theorem 8.1 for FECP, namely, it gives three sufficient conditions for the sequence S † n to converge to a subordinator when the initial distribution of

J † n is the invariant measure π • n of J • n .
As before these conditions refer to given sequences of numbers a n and b n , and a given realization of the random environment. For u > 0 define

hu n (y) = 1≤l≤L x∈C n,l p n (y, x)P x (T n,l > b n u) , y ∈ V • n , (9.2) 
where T n,l is the exit time (5.6). (Note that hu

n (y) = 0 unless y ∈ ∪ 1≤l≤L ∂C n,l .) For k • n (t) as in (3.19) define, for t > 0 and u > 0, νJ • n ,t n (u, ∞) = k • n (t)-1 j=0 hu n (J • n (j)), (9.3 
) σJ • n ,t n (u, ∞) = k • n (t)-1 j=0 hu n (J • n (j)) 2 .
(9.4)

Condition (A1).

There exists a σ-finite measure ν † on (0, ∞) satisfying ∞ 0 (1∧u)ν † (du) < ∞ such that, for all t > 0 and all u > 0,

P • π • n νJ • n ,t n (u, ∞) -tν † (u, ∞) < = 1 -o(1) , ∀ > 0 . (9.5) 
Condition (A2). For all u > 0 and all t > 0, where for ≥ 0, S †,

P • π • n σJ • n ,t n (u, ∞) < = 1 -o(1) , ∀ > 0 . (9.6) Condition (A3). For all t > 0, lim ↓0 lim sup n↑∞ k • n (t) |V • n | 1≤l≤L x∈C n,l E x 1 {b -1 n T n,l ≤ } b -1 n T n,l = 0. ( 9 
n (t) = k † n (t)-1 i=0 Z n,i 1 {Z n,i ≤ } . By Theorem 3.1 with c • = 1, on Ω ,
for all but a finite number of indices n, all 0 < t < ∞, and all ≥ 0,

P † π • n S †, n (t) > ≤ P † π • n kn(t)-1 i=0 Z n,i 1 {Z n,i ≤ } > + n -2(c -1)+1 (1 + o(1)), (9.20) 
where

k n (t) ≡ k • n (t)(1 + n -1 ) = a n t (1 + n -1
) . By Tchebychev inequality,

P † π • n kn(t)-1 i=0 Z n,i 1 {Z n,i ≤ } > ≤ -1 kn(t)-1 i=1 E † π • n 1 {Z n i ≤ } Z n i , (9.21) 
and the right hand side of (9.21) is equal to 

1≤l≤L x∈C n,l E x 1 {b -1 n T n,l ≤ } b -1 n T n,l kn(t)-1 i=1 E † π • n 1 {J † n (i)=x} . ( 9 
E † π • n 1 {J † n (i)=x} = y∈∂C n,l ∩∂x p n (y, x) kn(t)-1 i=1 E † π • n 1 {J † n (i-1)=y} ≤ y∈∂C n,l ∩∂x p n (y, x) kn(t)-1 i=1 π • n (y) ≤ (k n (t) -1)/|V • n | (9.23)
where the last inequality follows from (6.6) and the fact that, for y ∈ ∂C n,l ∩ ∂x and x ∈ C n,l , p n (y, x) = n -1 . Combining (9.21), (9.22), and (9.23), the probability in the left hand side of (9.21) is bounded above by

-1 (1 + n -1 )(k • n (t)/|V • n |) 1≤l≤L x∈C n,l E x 1 {b -1 n T n,l ≤ } b -1 n T n,l . (9.24) 
Inserting this bound in (9.20) yields the claim that Condition (A3) implies Condition (D3) of Theorem 2.1 of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] Having established that, on Ω , the conditions of Theorem 2.1 of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] are verified whenever those of Theorem 9.1 are verified, the proof of Theorem 9.1 is complete. 9.2. An ergodic theorem for BECP. To prove that Conditions (A1) and (A2) of Theorem 9.1 are satisfied we closely follow the strategy of Subsection 8.2 and first prove an ergodic theorem for the quantities νJ

• n ,t n (u, ∞) and σJ • n ,t n (u, ∞) defined in (9.
3) and (9.4). Clearly, for π J • n ,t n (x) as in (8.10), (9.3) and (9.4) can be rewritten as

νJ • n ,t n (u, ∞) = k • n (t) y∈V • n π J • n ,t n (y) hu n (y), (9.25 
) σJ • n ,t n (u, ∞) = k • n (t) y∈V • n π J • n ,t n (y) hu n (y) 2 . (9.26)
Before stating our main theorem, let us express the mean values of (9.25) and (9.26) with respect to the law P

• π • n . Given x ∈ C n,l , 1 ≤ l ≤ L , denote by Q u n,l (x) ≡ P x (T n,l > b n u), u > 0, (9.27) 
the tail distribution of the exit time T n,l given that the set C n,l is entered in x, and define

ν• n (u, ∞) = a n 2 n 1≤l≤L x∈C n,l Q u n,l (x), (9.28) 
σ= n (u, ∞) = a n n2 n 1≤l≤L x∈C n,l Q u n,l (x) 2 , (9.29) σ• n (u, ∞) = a n 2 n 1≤l≤L 1≤l ≤L x∈C n,l x ∈C n,l Q u n,l (x)Q u n,l (x ) n -2 |∂x ∩ ∂x | . (9.30)
Lemma 9.2. Assume that c > 2. Then on Ω , for all but a finite number of indices n,

E • π • n νJ • n ,t n (u, ∞) = (1 + o(1))(k • n (t)/a n )ν • n (u, ∞), (9.31) 
E • π • n σJ • n ,t n (u, ∞) = (1 + o(1))(k • n (t)/a n )σ • n (u, ∞). (9.32)
The main theorem of this section controls the fluctuations of νJ 

n ⊂ Ω with P Ω EG n c < 2 6 • n /(ρ • n na n ) + n -2
, and such that on Ω EG n the following holds for all large enough n: for all t > 0, all u > 0, and all > 0,

P • π • n νJ • n ,t n (u, ∞) -E • π • n νJ • n ,t n (u, ∞) ≥ ≤ -2 [C 3 tΘ n,3 (u) + t 2 Θ n,4 (u 
)] (9.33) for some constant 0 < C 3 < ∞ and where, for ς = n (u) as in Lemma 9.5,

Θ n,3 (u) ≡ σ• n (u, ∞) + σ= n (u, ∞) + 1 log n Eσ = n (u, ∞) + ρ• n ς = n (u) 2 , (9.34) 
Θ n,4 (u) ≡ 2 -n [ν • n (u, ∞)] 2 . ( 9 
.35) Moreover, for all t > 0, all u > 0, and all > 0,

P • π • n σJ • n ,t n (u, ∞) ≥ ≤ t (1 + o(1))σ • n (u, ∞). ( 9 

.36)

We now prove, in this order, Lemma 9.2 and Theorem 9.3.

Proof of Lemma 9.2. By (9.2), (9.25), and (9.27),

E • π • n νJ • n ,t n (u, ∞) = k • n (t) y∈V • n π • n (y) hu n (y) (9.37) = k • n (t) y∈V • n π • n (y) 1≤l≤L x∈C n,l p n (y, x)Q u n,l (x) 
, (9.38) and since both x and y belong to V 

• n , p n (y, x) = n -1 if dist(x, y) = 1 and is zero else. Thus y∈V • n p n (y, x) = n -1 |∂x ∩ ∂C n,l | and E • π • n νJ • n ,t n (u, ∞) = (k • n (t)/|V • n |) 1≤l≤L x∈C n,l n -1 |∂x ∩ ∂C n,l |Q u n,l ( 
i , 1 ≤ i ≤ 3, we get that for all > 0, P

• π • n νJ • n ,t n (u, ∞) -E • π • n νJ • n ,t n (u, ∞) ≥ ≤ -2 [I (2) 1 + I (2) 2 + I (2) 3 ]. ( 9 

.40)

We are thus left to bound I

i , 1 ≤ i ≤ 3. By (9.25) and (9.31), 

I (2) 1 = 2 -n E • π • n νJ • n ,t n (u, ∞) 2 ≤ 2 -n (k • n (t)/a n ) 2 [ν • n (u, ∞)]
(x) ≥ b ± n ) ∼ 1.
The conditions of Lemma 9.7 are thus satisfied with ε = ε/2, yielding (9.67). Since clearly lim n→∞ s n = 0, it follows from (9.64) that

lim n→∞ Eν •,(2) n (u, ∞) = ν † (u, ∞).
(9.69) 

• The case 3 ≤ k ≤ k n . Recall that Q u n,C ( 
•,(k) n (u, ∞) ≤ k a n 2 n C ∈G 2 C∈G k :C ⊂C x∈C χ n (x)e -u/γn(C ) , (9.74) 
valid on Ω , for all but a finite number of indices n, and this in turns implies that

E[ν •,(k) n (u, ∞)] ≤ k(k -2)!n -(c -1)(k-2) v n (u; ān , bn ), (9.75) 
where ān ≡ √ na n , bn ≡ (n -1)b n . Again one sees that these sequences (that differ but slightly from the choices made in (9.68)) satisfy the conditions of Lemma 9.7 with ε = ε/2. Thus lim n→∞ E v n (u; ān , bn ) = ν † (u, ∞). (9.76)

Since by assumption c > 2 we may use (7.23) to sum (9.75) over k, which gives 

3≤k≤k n E[ν •,(k) n (u, ∞)] ≤ 4n -(c -1) E v n (u; ān , bn ) . (9.77) Now set ∆ n (u) ≡ k≥3 ν•,(k) n (u, ∞) = ν• n (u, ∞) - ν•,(2) n (u, ∞) > 0. ( 9 
• n (u, ∞) -E[ν • n (u, ∞)] = ν•,(2) n (u, ∞) -E[ν •,(2) n (u, ∞)] + {∆ n (u) -E[∆ n (u)]} (9.80)
where ∆ n (u) is defined in (9.78), and we take

V n,1 (u) ≡ E v n (u; ān , bn ) + e -β √ 8εn log n , (9.81) V n,2 (u) ≡ E v n (u; a + n , b + n ) , (9.82) 
where φn (u,

L 1 , L 2 ) ≡ 2n 4 a n L 2 W n,2 (2u)/2 n + 4n -c W n,1 (u)/L 1 , ψ n (u, L 1 , L 2 , L 3 ) ≡ φn (u, L 1 , L 2 ) + 2 8 W 2 n,3 ( 
u)/(a n L 3 ), and where for each n and 1 ≤ i ≤ 3, W n,i (u) are positive decreasing functions, while for each u > 0, under the assumptions of Lemma 9.8, 

lim n→∞ W n,1 (u) = lim n→∞ W n,2 (u) = 2ν † (2u, ∞), (9.94) lim n→∞ W 2 n,3 (u) = [ν † (u, ∞)] 2 . ( 9 
(u, ∞) = σ= n (u, ∞) + σ = n (u, ∞) where σ= n (u, ∞) = a n n2 n 1≤l≤L x∈C n,l Q u n,l (x) 2 , (9.96) σ = n (u, ∞) = a n n 2 2 n 1≤l =l ≤L x∈C n,l x ∈C n,l Q u n,l (x)Q u n,l ( 
• n (u, ∞), substituting |C n,l | 2 Q 2u n,l (x) for [ x∈C n,l Q u n,l (x)] 2 . This yields lim n→∞ nE[σ = n (u, ∞)] = 2ν † (2u, ∞), ∀u > 0. (9.98)
Similarly, (9.92) is a rerun of the proof of Lemma 9.9. Let us now establish that

E[σ = n (u, ∞)] ≤ 2 8 a -1 n [W n,3 (u)] 2 (9.99) 
for some positive decreasing function W n,3 (u) of u > 0, that satisfies

lim n→∞ W n,3 (u) = ν † (u, ∞), ∀u > 0. (9.100) For this write σ = n (u, ∞) = 2≤k,k ≤k n σ =,(k,k ) n (u, ∞)
where, with the notation of (9.62),

σ =,(k,k ) n (u, ∞) ≡ a n n 2 2 n (1) C,C φ(C, C ) (2) 
x,x Q u n,C (x)Q u n,C (x ). (9.101)

Here the first sum, Σ (1) , is over all C ∈ G k and C ∈ G k such that dist(C, C ) = 2, the second one, Σ (2) , is over all x ∈ C and x ∈ C such that dist(x, x ) = 2, and φ(C, C ) ≡ y∈C∪C χ n (y) y ∈∂C∪∂C χ n (y ). Thus C ∩ C = ∅, so that that Q u n,C (x) and Q u n,C (x ) are independent random variables for all x ∈ C, x ∈ C , and averaging out, 

E 2≤k,k ≤k n σ =,(k,k ) n (u, ∞) ≤ a -1 n [W n,3 (u)] 2 s (3) n s (4) 
n ≤ 2 i (1 + 2 i+1 n -2(c -1) ). Inserting this in (9.102) and using Lemma 9.7 proves the claim (9.99)-(9.100). This immediately implies that lim n→∞ nE[σ = n (u, ∞)] = 0, ∀u > 0, (9.106) and that, under the assumptions and with the notation of (9.99)-(9.100), for all u > 0, We now prove Lemma 9.5.

P σ = n (u, ∞) -E[σ = n (u, ∞)] ≥ 2 8 [W n,3 ( 
Proof of Lemma 9.5. Let us establish first that for all m ≥ 1, if c > 2,

E I (3) 
2,m ≤ n -1 a -2 n 2 n [W n,3 (u)] 2 2 5 (1 + 2 4 n -2(c -1) ) 2 , (9.108)

where W n,3 (u) > 0 is a decreasing function satisfying lim n→∞ W n,3 (u) = ν † (u, ∞) for all u > 0. For this note that I 

C,C φ(C, C ) (2) x,x (3) 
y,y Q u n,l (x)Q u n,l (x )f •,m n (x, x ; y, y ). (9.110)

Here the first sum, Σ (1) , is over all C ∈ G k and C ∈ G k such that C ∩ C = ∅, the second one, Σ (2) , is over all x ∈ C and x ∈ C , and the third one, Σ (3) , is over all y ∈ ∂C and y ∈ ∂C . Since C ∩ C = ∅, Q u n,C (x) and Q u n,C (x ) are independent random variables for all x ∈ C, x ∈ C . Thus we see, using (9.105), that for all k, k ≥ 2,

E I (3),(k,k ) 2,m ≤ (kk ) 2 (na n ) -2 n -c [(k-2)+(k -2)] [W n,3 (u)] 2 (1) C,C (2) x,x (3) 
y,y f •,m n (x, x ; y, y ), (9.111) where W n,3 (u) is given by (9.103) for some sequences ān , bn for which the assumptions of Lemma 9.7 are verified -hence it has the properties claimed in the line below (9.108). To deal with the sums in (9.111) 

x,x

y,y f The lemma now follows by a first order Tchebychev inequality. 9.3.3. Proof of Proposition 9.6. The proof of Proposition 9.6 is now a mere formality.

Recall that c > 2 and that a n obeys (9.52) for some 0 < ε < 1. Choose L 1 = n -1-(c -2)/2 and L 2 = 7 log n in Lemma 9.9. Then na n L 2 /2 n = o(1), lim n→∞ φ n (u, L 1 , L 2 ) → 0, and n (2n 5 e -L 2 +2L 1 ) < ∞, so that by Lemma 9.8, Lemma 9.9, and Borel-Cantelli Lemma, lim (9.119)

We prove in the same way, using the monotonicity of σ• n (u, ∞), Lemma 9.10, and Lemma 9.11 (with L 1 and L 2 as above and L 3 = n -2 , so that lim n→∞ nψ n (u, L 1 , L 2 , L 3 ) = 0 and n (2n 5 e -L 2 + 2L 1 + 2L 3 ) < ∞) that there exists a subset Ω where the last equality follows from Lemma 2.1 (i) of [START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF]. On the other hand ϕ (y) ≤ y for all y > 0. This and integration by part yields, setting F n (v) = ān P(w n (x) ≥ v bn ), where, as in (9.101), the sum Σ (1) is over all C ∈ G 2 and C ∈ G 2 such that dist(C, C ) = 2. We bound (9.138) in just the same way as Eη n,2 ( ), namely, using (9.131) in (9.138) gives Observing that the right hand side of (9.133) (and a fortiori the r.h.s. of (9.128)) is an upper bound on ā2 n E[Z n (C)], and that the sum Σ (1) contains at most 4!n 4 2 n-1 terms, we obtain

E ā2 n ϕ ([1 + o n,2 (1) 
I = n ≤ 2 a n 2 n [1 + o n,1 (1) 
I = n ≤ 4!(1 -n -c ) 3 n 2-c 2 -n 2 -n/6 + 2 1-(2αc( ε 2 )+o (1)) 2 . 
(9.143) Combining (9.140) and (9.143) now yields (9.129).

Since n 2 n a n /2 n < ∞ it follows from (9.128), Borel-Cantelli Lemma (through a second order Tchebychev inequality), and (9.129) that lim n↑∞ η n,2 ( ) = 2 1-2αc(ε/2) Palmost surely, for all ε > 0. Observing that η n,2 ( ) is a monotonic function of , and arguing as in the proof of Proposition 9.6 (see (9.118)-(9.119)), we obtain that lim ↓0 lim sup n↑∞ η n,2 ( ) = 0, P-almost surely.

(9.144)

• The terms 3 ≤ k ≤ k n . Note that η n ( ) -η n,2 ( ) > 0. Our strategy is to bound E(η n ( ) -η n,2 ( )) from above and use a first order Tchebychev inequality to infer from it P-a.s. convergence of η n ( ) -η n,2 ( ) to zero. Since where the second line follows from the bounds ϕ (y) ≤ and ϕ (y) ≤ y, both valid for all y > 0, and where the last line defines the terms A

n,l (x) and A

n,l (x). For i = 1, 2, let

. 30 ) 7 . 4 .

 3074 This readily implies the claim of Theorem 3.1. Proof of Theorem 3.3. By definition of the Skorohod topology on D[0, ∞), it is enough to show this result with ρ ∞ replaced by ρ r , the Skorohod metric on D[0, r], for r > 0 arbitrary. Choosing r = 1 for convenience we get

7. 5 .

 5 Proof of Theorem 1.3. Denote respectively by R n and R n the ranges of the processes

  .62) Next, denoting by m the Lebesgue measure, it follows from (3.24)-(3.25) that

Proof of Proposition 8 . 5 . 8 . 4 .

 8584 The proposition is now an immediate consequence of Lemma 8.7 and Proposition 8.6. Conclusion of the proof of Theorem 3.2. We are now ready to show that under the assumptions of Theorem 1.1, taking for initial distribution the invariant measure π • n of J • n , the conditions of Theorem 8.1 are satisfied P-almost surely. Firstly, by Theorem 8.2 and Proposition 8.5, Conditions (C1) and (C2) are satisfied P-almost surely. That is, P-almost surely the following holds: for all u > 0 and all t > 0,lim n→∞ ν J • n ,t n (u, ∞) = tν • (u, ∞) in P • -probability, (8.71) lim n→∞ σ J • n ,t n (u, ∞) = 0 in P • -probability. (8.72) Next, in view of (8.15), (8.5) reads ν • n (v, ∞)/a n = o(1), and so, by (8.52) of Proposition 8.5, Condition (C0) is satisfied. It remains to check Condition (C3). As in the proof of Proposition 8.5, we do this by comparing the quantity

. 7 ) 9 . 1 .

 791 Theorem Choose for initial distribution the invariant measure π • n of J • n . For all sequences a n and b n for which Conditions (A1), (A2), and (A3) are verified P-almost surely,S † n ⇒ J 1 S † ∞(9.8)P-almost surely, where S † ∞ is the Lévy subordinator with zero drift and Lévy measure ν † .

  x) in (9.62) stands for Q u n,l (x) with C n,l ≡ C. Similarly, denote by n,C (0) the quantity n,l (0) from (5.1) with C n,l ≡ C. By (5.3) of Proposition 5.1, (ii), on Ω , for all but a finite number of indices n,Q u n,C (x) ≤ e -{u(n-1)bn/ n,C (0)} (1 + o(1)), ∀x ∈ C,(9.70)(since for k ≥ 3 and large enough n, k(n -1)/n(1 -o(1)) > 1). Note that by (5.1), e -{u(n-1)bn/ n,C (0)} = max {x,y}∈G(C) e -{u(n-1)bn/ min(wn(y),wn(x))} (9.71)≤ {x,y}∈G(C) e -u/γn({x,y}) , (9.72) where we now set γn (C ) = min x∈C w n (x)/(n -1)b n , C ∈ G 2 . (9.73) Combining these observations yields the bound ν

  3 (u) ≡ E v n (u; ān , bn ) + e -β √ 8εn log n (9.103)for some sequences ān , bn chosen as in Lemma 9.7, and wheres (i) n = 2≤k≤k n k i (k -1)!n -(c -1)(k-2) , i ≥ 1. (9.104)To see this, reason that there are at most2 n (k -1)!n k-1 sets C ∈ G k , that for each C ∈ G k there are at most n 2 k (k -1)!n k -1 sets C ∈ G k such that dist(C, C ) = 2, that Σ (2)contains at most kk terms, and that, proceeding as in (9.70)-(9.74) to bound the terms Q u n,C when k > 2, and proceeding as in (9.64)-(9.67) when k = 2, we haveE φ(C, C )Q u n,C (x)Q u n,C (x ) ≤ (kk ) 2 (na n ) -2 n -c [(k-2)+(k -2)] [W n,3 (u)]2 , (9.105) for some sequences ān , bn for which the assumptions of Lemma 9.7 are verified, and all k, k ≥ 2. Now for c > 2, by (7.23), s

  u)] 2 /(a n L 3 ) ≤ 2L 3 . (9.107) Lemma 9.10 now follows from (9.98) and (9.106), and (9.93) of Lemma 9.11 follows from(9.92), (9.100), and (9.107).

  in(9.46) is very similar to the quantity σ = n (u, ∞) defined in(9.97). This prompts us to writeI (3) 2,m = 2≤k,k ≤k n I (3),(k,k ) 2,m (9.109)where, for φ(C, C ) as in (9.101),

  , observe that given any C ∈ G k , x ∈ C, and y ∈ ∂C,f •,m n (x; y) ≡ C ∈G k x ∈C y ∈∂C f •,m n (x, x ; y, y ) (9.112) = p n (x, y) y ∈V • n (4) C x ∈C p n (y , x )p •,m n (y, y ) (9.113)where the sum Σ(4) is over allC ∈ G k such that C ∩ ∂y = ∅. Indeed if C ∩ ∂y = ∅ then p n (y , x ) = 0 for all x ∈ C . Now x ∈C p n (y , x ) ≤ 1 while the number of terms in Σ (4) is at most k !n k . Thus f •,m n (x; y) ≤ k !n k p n (x, y) y ∈V • n p •,m n (y, y ) ≤ k !n k p n (x, y),(9.114)From this we readily get

  , ∞) = ν † (u, ∞), Palmost surely,(9.118) for all u > 0. Because ν• n (u, ∞) is a sequence of monotonic functions of u > 0 whose limit, ν † (u, ∞), is continuous, (9.118) entails the existence of a subset Ω LLN 1 ⊂ Ω with the property that P(Ω LLN 1 ) = 1, and such that onΩ LLN 1 , lim n→∞ ν• n (u, ∞) = ν † (u, ∞), ∀u > 0.

LLN 2 ⊂ 4 . 9 . 4 . 2 . 2 n•

 249422 Ω of full measure such that, on Ω LLN 2 , lim n→∞ nσ • n (u, ∞) = 2ν † (2u, ∞), ∀u > 0. Conclusion of the proof of Theorem 3.4. It suffices to prove that under the assumptions of Theorem 3.4, Conditions (A1), (A2), and (A3) of Theorem 9.1 are verified P-almost surely when ν † in Condition (A1) is as in (1.23).9.4.1. Verification of Conditions (A1) and (A2). It immediately follows Lemma 9.2, Theorem 9.3, Proposition 9.6, and Lemma 9.10 that under the assumptions therein, P-almost surely, for all u > 0 and all t > 0,lim n→∞ νJ • n ,t n (u, ∞) = tν † (u, ∞) in P • -probability, , ∞) = 0 in P • -probability. (9.122)Conditions (A1) and (A2) are thus satisfied P-almost surely. Verification of Condition (A3). This still requires a little work. Given > 0, defineη n,k ( ) ≡ a n 1≤l≤L 1 {|C n,l |=k} x∈C n,l A n,l (x), k ≥ 2,(9.123)where, givenx ∈ C n,l , 1 ≤ l ≤ L , A n,l (x) ≡ E x 1 {b -1 n T n,l ≤ } b -1 n T n,l .(9.124)One readily sees that Condition (A3) will be verified P-almost surely if lim ↓0 lim sup n↑∞ k≥2 η n,k ( ) = 0, P-a.s.. (9.125) Note that η n,k ( ) is of the form (9.60) with Q u n,l (x) replaced by A n,l (x) and hence, as in (9.62), may be written asη n,k ( ) ≡ a n 2 n C∈G k x∈C χ n (x) x ∈∂C χ n (x ) x∈C A n,C (x),(9.126) where A n,C (x) stands for A n,l (x) with C n,l ≡ C. As in the proof of Lemma 9.8 we note that on Ω , k n ≤ n (c -2) log n for all large enough n, and treat the terms k = 2 and 3 ≤ k ≤ k n separately. Throughout the proof we set ān = √ na n , bn = b n (n -1), and define γ n (C ) = min x∈C w n (x)/ bn , C ∈ G 2 .(9.127) The term k = 2. Let us establish that for all large enough n and small enough , the mean and variance of η n,2 ( ) obeyEη n,2 ( ) ≤ 2 -n/6 + 2 1-(2αc( ε 2 )+o(1)) ,(9.128)E (η n,2 ( ) -Eη n,2 ( )) 2 ≤ 2 a n 2 n 2 -n/6 + 4 2-(2αc( ε 2 )+o(1)) .(9.129)We first prove (9.128). By Proposition 5.1, (i), and integration by parts, for all x ∈ C,A n,C (x) ≤ 1 wn(x)/(n-1) i (9.130) ≤ [1 + o n,1 (1)]ϕ [1 + o n,2(1)]min x∈C w n (x)/ bn (9.131) where |o n,i (1)| ≤ O(r -1 n (ρ n )), i = 1, 2, and ϕ (y) = y(1 -e -/y ), y ≥ 0. (9.132) Plugging (9.131) in (9.126) yields Eη n,2 ( ) ≤ [1 + o n,1 (1)]E ā2 n ϕ ([1 + o n,2 (1)]γ n (C)) 1 {γn(C)≥rn(ρ n )/ bn} . (9.133) Now for > r n (ρ n )/ bn split 1 {γn(C)≥rn(ρ n )/ bn} into 1 {γn(C)≥ } + 1 {rn(ρ n )/ bn≤γn(C)< } . On the one hand, observing that ϕ (y) ≤ for all y > 0, we have E ā2 n ϕ ([1 + o n,2 (1)]γ n (C)) 1 {γn(C)≥ } ≤ ā2 n P (γ n (C) ≥ ) = 1-2(αc( ε 2 )+o(1)) , (9.134)

2 3n 2 n 2 E

 22 ]γ n (C)) 1 {rn(ρ n )/ bn≤γn(C)< } ≤ [1 + o n,2 (1)] rn(ρ n )/ bn F 2 n (y)dy. (9.135) Given 0 < δ < 1, split the domain of integration in (9.135) into [r n (ρ n )/ bn , b-δ n ] ∪ [ b-δ n , ]. Using that F 2 n (y) ≤ ā2n on the first domain, and using Lemma 2.1 (ii) of[START_REF] Gayrard | Aging in reversible dynamics of disordered systems. II. Emergence of the arcsine law in the random hopping time dynamics of the REM[END_REF] on the 2nd,rn(ρ n )/ bn F 2 n (y)dy ≤ ā2 n α n = α c ( ε 2 ) + o(1). By definition of ān , bn , (2.25), and the assumption thatβ > 2β c (ε/2), we get ā2 n b-δ n ≤ exp {n [β 2 c (ε/2)(1 -2δ(1 + o(1)))]}. Hence, choosing δ = 2/3, rn(ρ n )/ bn F 2 n (y)dy ≤ 2 -n/6 + [2αc(ε/2)+o(1)] . Collecting our bounds we arrive at(9.128).Turning to the variance we haveE (η n,2 ( ) -Eη n,2 ( )) 2 = a C∈G 2 [Y n (C) -EY n (C)] 2 ,(9.137)whereY n (C) ≡ x∈C χ n (x) x ∈∂C χ n (x ) x∈C A n,C (x), C ∈ G 2 .Observing that Y n (C) and Y n (C ) are independent whenever C = C and ∂C ∩ ∂C = ∅, and that Y n (C)Y n (C ) = 0 whenever C = C and C ∩ C = ∅, we readily get that E (η n,2 ( ) -Eη n,2 ( )) 2 ≤ I = n + I = n , (E[Y n (C)Y n (C )] -[EY n (C)][EY n (C )]), (9.139)

]E ā2 n ϕ 2 ([ 1 +

 21 o n,2[START_REF] Aldous | Inequalities for rare events in time-reversible Markov chains. I. In Stochastic inequalities[END_REF]]γ n (C)) 1 {γn(C)≥rn(ρ n )/ bn} , (9.140) and proceeding as in (9.133)-(9.136) to evaluate (9.133), we obtain (9.129). To BoundI = E[Z n (C)]E[Z n (C )]∆ n (C, C ) (9.141)whereZ n (C) ≡ x∈C χ n (x) x∈C A n,C (x),and∆ n (C, C ) ≡ E[ y∈∂C∪∂C χ n (y)] -E[ x∈∂C χ n (x)]E[ x ∈∂C χ n (x )] = (1 -n -c ) 3 (1 -(1 -n -c)). (9.142)

0

  < η n ( ) -η n,2 ( ) = k n k=3 η n,k ( ),(9.145)it suffices to bound each Eη n,k ( ).As in the proof of Lemma 9.8 we denote by n,C (0) the quantity n,l (0) from (5.1) with C n,l ≡ C. Similarly T n,C and A n,C (x) stand for T n,l and A n,l (x), respectively, with C n,l ≡ C. Using Proposition 5.1, (ii) and proceeding as in (9.130)-(9.131), we get that on Ω , for all but a finite number of indices n, for all x ∈ C,A n,C (x) ≤ [1 + o(1)]ϕ [1 + o(1)]k n,C (0)/ bn (9.146) ≤ [1 + o(1)] 1 {k n,C (0)≥ bn } + (k n,C (0)/ bn )1 {k n,C (0)< bn } (9.147) ≡ [1 + o(1)](A(1)n,l (x) + A(2)n,l (x)) (9.148)

  |V n (ρ n )| = x∈Vn χ n (x), |I n | = x∈Vn χ n (x) y∈Vn:(x,y)∈En (1 -χ n (y)), in C n,l has at least n -d n (x)nearest neighbors vertices in ∂C n,l , and that no two vertices in C n,l can have more than one common nearest neighbor vertex in ∂C n,l . Hence ∂C n,l ≥ x∈C n,l

	Proof. The claim of (2.9) follows from Lemma 2.1. Next,
		(2.18)
	and L l=1 C n,l = x∈Vn χ n (x)[1 -y∈Vn:(x,y)∈En (1 -χ n (y))], where, as in the proof of
	Lemma 2.1, χ n (x) ≡ 1 {wn(x)≥rn(ρ n )} are i.i.d. Bernoulli r.v. with P (χ n (x) = 1) = n -c .
	From these expressions (2.11), (2.10), and (2.12) are easily obtained. Turning to (2.15)
	note that the sum therein can be written as x∈C n,l	(n -d n (x)) where d n (x) denotes the
	degree of the vertex x in the graph G(V n (ρ n )). This, the bound 1 ≤ d n (x) ≤ C n,l ,
	and (2.9) yield the desired result. To prove the lower bound of (2.13) reason that each
	vertex x	
		.17)

  | max (x,y)∈En min(w n (x), w n (y)) ≤ r n (ρ(2))}, and Ω ∞ (2) ≡ lim inf n→∞ Ω n (2).

	n,l )} ≤ e βn	√	log 2(1+2 log n/n log 2) ,	(2.27)
	e -β min{Hn(x) | x∈C n,l } ≤ e βn	√	2 log 2(1+2 log n/n) .	(2.28)
	Proof. Set ρ(1) ≡ 1 + 2 log n/n log 2, Ω n (1) ≡ {ω ∈ Ω | max x∈Vn w n (x) ≤ r n (ρ(1))},
	and Ω ∞ (1) ≡ lim inf n→∞ Ω n (1). Further set ρ(2) ≡ 1 2 (1 + 3 log n/n log 2), Ω n (2) ≡
	{ω ∈ Ω By independence and (2.2), P(Ω c n			

  3.4. Proof of Therorem 1.1 and Therorem 1.2. The proofs of Theorem 1.1 and Theorem 1.2 rely on four theorems stated below. Each of them controls one of the processes k †

n (t), S • n (t), S n (t), and S † n (t) above, respectively below, the critical line β

  of J • n . In what follows we denote by G (A) the complete graph on A with self-loops. Let G • (V • n ) be the graph with vertex set V • n such that (x, y) is an egde of the graph if and only if p •

n (x, y) > 0. In view of (3.4)-(3.5),

  in (6.40) is non empty if and only if S n,σ (x) > 1. Let us thus evaluate S n,σ (x). Clearly, this is a sum of dependent random variables. To cope with this difficulty we split it into disjoint sums as follows. Let 1 denote the vertex of V n all of whose coordinates are 1 and set V

2(n-1) 

≡ p n . By (2.7), {x, ȳ} is a connected component of size two if and only if Z n (x, ȳ) = 1. Thus, the total number of such components intersecting the ball B σ (x) is

S n,σ (x) = {x,ȳ}∈G 2 : {x,ȳ}∩∈Bσ(x) =∅ Z n (x, ȳ),

(6.41)

and the intersection

  . This is done in Subsection 8.2 (see Theorem 8.2). It then enables us to reduce Conditions (C1) and (C2) of Theorem 8.1 to laws of large numbers in the random environment. This second step is carried out in Subsection 8.3 (see Proposition 8.5). The proof is completed in Subsection 8.4. 8.2. An ergodic theorem for FECP. Let π

	J • n ,t n (x) denote the average number of visits of
	J • n to x during the first k • n (t) steps,

  1) . Eq. (8.61) now easily follows observing that, by (2.25) and (2.26) of Lemma 2.3, c n c n /r n ρ n n 2 , and using that |V n

  C3) are satisfied P-almost surely, it follows from Theorem 8.1 that, for our choices of a n , c n , β, and c , P-almost surely,

	Since all four conditions (C0), (C1), (C2), and (S • n ⇒ J 1 S • ∞	(8.77)
	where S • ∞ is a subordinator with zero drift and Lévy measure ν • = ν defined in (1.21).
	The proof of Theorem 3.2 is complete.	
	9. CONVERGENCE OF THE BACK END CLOCK PROCESS BELOW THE CRITICAL
	TEMPERATURE: PROOF OF THEOREM 3.4	
	9.1. A convergence theorem for BECP. Consider the rescaled process (3.16),	
				.75)
	From this, (6.7), and (8.60) it follows that, under the assumptions of Proposition 8.6,
	lim →0	lim n→∞	η • n ( ) = 0, P-almost surely.	(8.76)
	Therefore Condition (C3) is satisfied P-almost surely.	

  Assume that c > 3. Let ρ• n > 0 be a decreasing sequence satisfying ρ• n ↓ 0 as n ↑ ∞.There exists a sequence of subsets Ω

	and provides an upper bound on	σJ • n ,t n	• n ,t n in terms of the random (in the environment) quanti-around its mean value
	ties ν• n , σ• n , and σ= n .		
	Theorem 9.3. EG

  x). (9.39) The claim of (9.31) now follows from (2.14) and (6.7). Eq. (9.32) is proved in a similar way. We skip the details.

	Proof of Theorem 9.3 . A first order Tchebychev inequality and (9.32) readily yield (9.36). As in Theorem 8.2, proving concentration of νJ • n ,t n (u, ∞) is more involved. Since (9.25) is nothing but (8.11) with h u n replaced by hu n , the proof naturally starts in the same way as the proof of (8.18) of Theorem 8.2. More precisely, substituting hu n for h u n in the definition
	(8.29) of the quantities I

  One then readily checks that for a n , b n as in (9.52), lim n→∞

	log a ± n n log 2 = ε/2, lim n→∞	a ± n 2 n = 0,
	and a ± n P(w n	
	2 ,	(9.41)

  x )|∂x ∩ ∂x |. (9.97) Comparing (9.96) to (9.28), we see that nσ= n (u, ∞) differs from ν• n (u, ∞)in that the term in square brackets is squared. However, examining the proof of 9.8 (see (9.63)-(9.66) and (9.70) -(9.74)) we also see that nσ = n (u, ∞) can be controlled in exactly the same way as ν

  ≤ 2 i (1 + 2 i+1 n -2(c -1) ) whenever c > 2.Eq. (9.108) now immediately follows. Invoking (6.7) of Proposition 6.3 we get that on Ω , for all but a finite number of indices n, if c > 2,

	where s	(i) n is defined in (9.104) and obeys s	(i)	
		(a n /|V • n |)	• n -1 m=1	E I 2,m ≤ 2 5 (1 + o(1)) (3)	• n na n	[W n,3 (u)] 2 .	(9.117)
						n s (3) n ,	(9.116)

•,m n (x, x ; y, y ) ≤ (k -1)!n k-1 k !n k ,

(9.115)

and inserting this bound in (9.111) and (9.109) successively yields

E I (3) 2,m ≤ n -1 a -2 n 2 n [W n,3 (u)] 2 s (2)

n

√ 2c log n + O 1 √ log n

One easily checks that if c > 2 then, for all m ≥ 3 and all K ≤ n, K k=m k!n -(c -1)(k-2) ≤ (m! + 1)n -(m-2)(c -1) .

(7.23)

Therefore P ∪ 4≤k≤k n {S n (k) ≥ n -1 ES 0 n (2)}} ≤ 25n -2(c -1)+1 , which is summable when c > 2. By Borel-Cantelli Lemma we conclude that on a subset of Ω of full measure, for all but a finite number of indices n, (7.13) holds true for all 4 ≤ k ≤ k n . This concludes the proof of the claim (7.11)- (7.13). Now, by (7.11)- (7.13) and (6.7), on Ω 3 ≡ Ω ∩ Ω , for all large enough n,

), (7.24) where the last equality follows from (7.7). Inserting (7.24) in (7.8) and in (7.9) yields (7.2) and (7.3), respectively. The proof of Lemma 7.1 is done.

Elementary properties of the chains J †

n and J • n . For easy reference we gather here a few elementary properties of the chains J † n and J • n . We state them without proof: recalling that J • n (i) ≡ J n (T • n,i ) and J † n (i) ≡ J n (T † n,i ) they are immediate consequences from the definitions of the sequences T † n,j and T • n,j (see (3.3)-(3.10)). Lemma 7.3. To each j ≥ 0 there corresponds a unique i ≤ j such that:

. From Lemma 7.3, (i), we derive two descriptions of the event {J † n (j) ∈ C n,l }, j > 0, 1 ≤ l ≤ L . The first consists in saying that a visit of J † n to C n,l must be immediately preceded and followed by a visit to ∂C n,l .

Corollary 7.4. {J † n (j) ∈ C n,l } = {J † n (j -1) ∈ ∂C n,l , J † n (j) ∈ C n,l , J † n (j + 1) ∈ ∂C n,l }. The second expresses the fact that when J † n (j) enters C n,l , J • n (i) straddles over it.

Corollary 7.5. To each j ≥ 0 there corresponds a unique i ≤ j such that T † n,j = T • n,i-1 +1, and so

Note finally that by Lemma 7.3, (ii), the chain J † n observed only when it visits V • n is nothing but the chain J • n itself:

We now want to replace the chain J † n and the quantity k † n (t) in the right hand side of (7.26) by, respectively, J • n and k • n (t). Note that by Corollary 7.4, for each j ≥ 1,

From this and the fact that

where the last equality follows by reversibility. Hence,

where the last line defines f n (y, z). In view of (8.17), we have

)

where the equality above is reversibility. It thus remains to bound the term

where, distinguishing the cases z = y and z = y, and for W n defined in (6.3), I 

Proof. By (6.3),

Thus, by a first order Tchebychev inequality, (8.43), and (2.16)-(2.17), for all η > 0,

In view of (6.1), choosing κ = [(c + 2)/(c -1)] 2 and η = Eν • n (2u, ∞)/ log n yields the claim of the lemma. Lemma 8.4. Let ρ • n > 0 be a decreasing sequence satisfying ρ • n ↓ 0 as n ↑ ∞. There exists a sequence of subsets Ω

Proof. By definition of I n , dist(y, z) ≥ 2 for all y ∈ I n and z ∈ I n such that y = z. Thus E e -ucn(λn(y)+λn(z)) 1 {y∈I n ,z∈I n } 1 {x =z} ≤ E e -ucn(λn(y)+λn(z)) 1 {dist(y,z)≥2} (8.46)

where we used independence in the second line. Therefore, by a first order Tchebychev inequality, for all η > 0,

The lemma now easily follows.

Gathering our bounds we conclude that under the assumptions of Proposition 6.2, Lemma 8.4, and Lemma 8.3, on

3,n , for all but a finite number of indices n, , that now only depend on the randomness of the environment. Our next step consists in proving laws of large numbers for ν • n and σ • n . Proposition 8.5. Under the assumptions and with the notation of Theorem 1.1 there exists a subset Ω LLN ⊂ Ω with P(Ω LLN ) = 1 such that, on Ω LLN , the following holds: for all u > 0, Proof of Theorem 9.1. The proof of Theorem 3.4 relies on Theorem 2.1 of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF], which is itself a specialization of Theorem 4.1 of [START_REF] Durrett | Functional limit theorems for dependent variables[END_REF] to processes with non-negative increments. Throughout we fix a realisation ω ∈ Ω of the random environment but do not make this explicit in the notation. With the notations of Subsection 3.2 define, for i ≥ 0,

Thus, by (3.11) and (9.1),

12) that Z n,0 = 0. We may thus apply Theorem 2.1 of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF] to the sum (9.10).

To this end let {F † n,i , n ≥ 1, i ≥ 0} be the array of sub-sigma fields defined (with obvious notation) by

Now for all 1 ≤ l ≤ L and all x ∈ C n,l ,

where, by (3.13),

In view of (9.2) it follows from (9.11), (9.12), (9.13) and (9.14) that

It remains to notice that the chain J † n observed only when it takes values in V • n is nothing but the chain J • n , and that J • n takes k • n (t) steps when J † n takes k † n (t) steps (see (3.19)). Thus,

where the first equality holds in distribution and the last is (9.3). Combining (9.15) and (9.16) now yields

Similarly, we get kn(t)-1 i=1

From (9.17) and (9.18) it follows that Conditions (A2) and (A1) of Theorem 9.1 are exactly the Conditions (D1) and (D2) of Theorem 2.1 of [START_REF] Gayrard | Convergence of clock process in random environments and aging in Bouchaud's asymmetric trap model on the complete graph[END_REF]. To see that Condition (A3) implies Condition (D3) we have to establish that (9.7) implies

and by (9.26) and (9.32),

The term I

(2)

3 is a little more involved. We may write it in the form

where, setting f •,m n (x, x ; y, y ) ≡ p n (y, x)p n (y , x )p •,m n (y, y ), and for W n given in (6.3),

x ; y, y ), (9.44)

x ; y, y ), (9.45)

0,m first. It follows from Proposition 6.2, (ii) that on Ω SRW , for all but a finite number of indices n, for all x, x ∈ C n,l ,

(Here we used that p n (y, x) = p n (y, x) if both x and y belong to V • n .) From this and Proposition 6.3 we readily get that if c > 2 then on Ω SRW ∩ Ω , for large enough n,

The next two lemmata bound the contribution to (9.43) coming from I

1,m and I

2,m .

Lemma 9.4. There exists a sequence of subsets

Proof. As is Lemma 8.3, this follows from a first order Tchebychev inequality and (2.16), using that Q u n,l (x ) is independent from the variables in ∂y ∩ ∂V n and ∂y 2 ∩ ∂V n . Lemma 9.5. Assume that c > 2. Let ρ• n > 0 be a decreasing sequence satisfying ρ• n ↓ 0 as n ↑ ∞.There exists a sequence of subsets

where ς = n (u) is a positive decreasing function of u > 0 that satisfies

The proof of lemma 9.5 is given in Subsection 9.3.2.

Equipped with 9.48 and Lemma 9.5 we conclude that under the assumptions and with the notations of Proposition 6.2, Lemma 9.5, and Proposition 6.3, on Ω SRW ∩Ω

2,n ∩Ω , for all but a finite number of indices n, (9.30), and (9.29), respectively. However, the complexity of these objects (note in particular that they are sums of correlated random variables) makes this task much more arduous than in FECP.

Proposition 9.6. Given 0 < ε < 1 let the sequences a n and b n be defined through

Assume that c > 2 and let ν † be as in (1.23). Then, there exists a subset Ω LLN ⊂ Ω with P(Ω LLN ) = 1 such that, on Ω LLN , the following holds: for all u > 0, 

Convergence properties of ν•

n . As stated in the next two lemmata ν• n concentrates around its mean, and the mean as a limit. Lemma 9.8. Assume that c > 2. If a n and b n satisfy (9.52) for some 0 < ε < 1, then

Lemma 9.9. For all L 1 > 0 and L 2 ≥ 0 such that na n L 2 /2 n = o(1), for all u > 0,

where

V n,1 (u)/L 1 , and where for each n, V n,1 (u) and V n,2 (u) are positive decreasing functions, while for each u > 0, under the assumptions of Lemma 9.8,

We saw in Subsection 7.1 (see (7.7)

for all large enough n. We may thus restrict the range of

Then (9.60) can be written as

where From this we easily derive the bounds

where s n = n-1 rn(ρ n ) and where, setting b

(9.66) By Lemma 9.7,

To see this note that, setting a

where v n (u; a + n , b + n ) and v n (u; ān , bn ) are as in (9.68) and (9.75), respectively. Eq. (9.59) then follows from (9.69) and (9.76). Note that ∆ n (u) > 0. Thus, by (9.79),

(9.83)

Let us now establish that for all L 2 ≥ 0 such that na n L 2 /2 n = o(1), 

To bound the last probability we again proceed as in the proof of Lemma 6.10 and, using (6.42), split S n into 2n disjoint sums,

Each S j,i n now is a sum of independent random variables, and can be controlled using Bennett's bound [START_REF] Bennett | Probability inequalities for the sum of independent random variables[END_REF] for the tail behavior of sums of random variables, which we specialize as follows: if (X(i), i ∈ I) is a family of i.i.d. centered random variables that satisfies

2u) ≡ B 2 (this follows from (9.64)-(9.68) and the rough bound

In view of (9.67) this choice is permissible for all n large enough whenever na n L 2 /2 n = o(1). Eq. (9.89) holds true for each 1 ≤ j ≤ n and 1 ≤ i ≤ v n , where v n ≤ 2n 4 (see (6.42)), and combined with (9.87) yields

which, by (9.86), is tantamount to (9.84). Combining (9.83) and (9.84) then yields (9.58) and concludes the proof of Lemma 9.9.

Convergence properties of σ•

n and related functions. We have: Lemma 9.10. Under the assumption and with the notation of Lemma 9.8,

.91) Lemma 9.11. For all L 1 , L 3 > 0 and L 2 ≥ 0 such that na n L 2 /2 n = o(1), for all u > 0,

n,k ( )] observe that by (5.1) 

and averaging out,

n,k ( )] ≤ k(k -2)!n -(c -1)(k-2) ān P(w n (0) > bn /kn) 2 , (9.151)

where ān , bn are as before (see the line below (9.75)). A simple Gaussian tail estimate gives ān P(w n (0) > bn /n) 2 ≤ (kn/ ) 2α(ε/2)(1+o( 1)) , and so

n,k ( )] ≤ k(k -2)!n -(c -1)(k-2) (kn/ ) 2α(ε/2)(1+o(1)) . (9.152)

To bound E[η 

n,k ( )], we get that for some constant 0 < c 0 ≡ c 0 (β, ε) < ∞. Since by assumption c > 3 and 1 -2α c ( ε 2 ) + o(1) > 0 for all n large enough, the r.h.s. of (9.157) is summabe in n. Combining this and (9.145) yields that 0 < η n ( ) -η n,2 ( ) → 0 P-a.s., for all ε > 0. Since each η n,k ( ) in (9.126) is a monotonic function of , so is η n ( ) -η n,2 ( ), and thus, arguing again as in the proof of Proposition 9.6, lim ↓0 lim sup n↑∞ (η n ( ) -η n,2 ( )) = 0, P-a.s.. Having established that all three conditions of Theorem 9.1 are satisfied P-almost surely with ν † given by (1.23), the proof of Theorem 3.4 is done.