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We establish existence results of Hartmann-Stampacchia type for a class of variational-hemivariational inequalities on closed and convex sets (either bounded or unbounded) in a Hilbert space.

Introduction

Let Ω be a bounded open set in R N . Assume that K is a nonempty, closed, and convex (bounded or unbounded) set in H 1 0 (Ω). The first major result in the theory of variational inequalities is the following direct consequence of the Stampacchia theorem: for any f ∈ H -1 (Ω), there is a unique u ∈ K such that for all v ∈ K,

Ω ∇u • ∇(v -u) dx ≥ f, v -u . (1) 
The above result is often referred as the Hartman-Stampacchia theorem (see [START_REF] Hartman | On some nonlinear elliptic differential equations[END_REF]Lemma 3.1] or [START_REF] Kinderlehrer | An Introduction to Variational Inequalities[END_REF]Theorem I.3.1]). A simple proof of the Hartmann-Stampacchia theorem is due to Brezis and may be found in [START_REF] Kinderlehrer | An Introduction to Variational Inequalities[END_REF].

Several nonlinear and nonconvex extensions of (1) have been given in a nonsmooth framework by Fundos, Panagiotopoulos and Rȃdulescu [START_REF] Fundos | Existence theorems of Hartmann-Stampacchia type for hemivariational inequalities and applications[END_REF] and by Motreanu and Rȃdulescu [START_REF] Motreanu | Existence results for inequality problems with lack of convexity[END_REF]. We refer to [START_REF] Agarwal | Variational inequalities, coincidence theory, and minimax inequalities[END_REF], [START_REF] Agarwal | Ordinary and Partial Differential Equations. With Special Functions, Fourier Series, and Boundary Value Problems[END_REF], [START_REF] Kristály | Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems[END_REF], [START_REF] Motreanu | Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities[END_REF] for related results and applications.

In [START_REF] Fundos | Existence theorems of Hartmann-Stampacchia type for hemivariational inequalities and applications[END_REF] there are obtained Hartman-Stampacchia type properties for nonconvex inequality problems of the type: find u ∈ K such that for all

v ∈ K Ω ∇u • ∇(v -u) dx + Ω j 0 (x, u(x); v(x) -u(x)) dx ≥ 0,
where j 0 stands for the Clarke generalized directional derivative. The case of variationalhemivariational inequalities was studied in [START_REF] Hartman | On some nonlinear elliptic differential equations[END_REF] for the model problem:

find u ∈ K such that for all v ∈ K Ω ∇u • ∇(v -u) dx + Φ(v) -Φ(u) + Ω j 0 (x, u(x); v(x) -u(x)) dx ≥ 0,
where Φ is convex and lower semicontinuous.

In the present paper we are concerned with a more general class of inequality problems with lack of convexity. The main idea in the study we develop in this work is related with the previous nonlinear inequality problems but is also in strong relationship with the semilinear boundary value problem

-∆u = f (x, u) in Ω u = 0 on ∂Ω, (2) 
where

f : Ω × R → R is a Carathéodory function satisfying |f (x, t)| ≤ λ 1 |t| for all (x, t) ∈ Ω × R. (3) 
Here, λ 1 denotes the first eigenvalue of the Laplace operator (-∆) in H 1 0 (Ω). If ϕ 1 is a positive eigenfunction of (-∆) corresponding to λ 1 then, by our basic assumption (3), ϕ 1 (resp, -ϕ 1 ) is a super-solution (resp., a sub-solution) of problem [START_REF] Agarwal | Ordinary and Partial Differential Equations. With Special Functions, Fourier Series, and Boundary Value Problems[END_REF]. Thus, problem (2) has at least one solution. However, we point out that assumption (3) is very sensitive, in the sense that problem (2) has no longer solutions provided that f has a growth described by |f (x, t)| ≤ λ 1 |t| + C, for some C > 0. For instance, the linear Dirichlet problem

-∆u = λ 1 u + 1
in Ω u = 0 on ∂Ω does not have any solution, as can be easily seen after multiplication with ϕ 1 . We intend to show in the present paper that the growth assumption (3) can be used to obtain existence results for a general class of variational-hemivariational inequalities.

The main result

We first recall that if ϕ : H 1 0 (Ω) → R is a locally Lipschitz function then ϕ 0 (u; v) denotes the Clarke generalized derivative of ϕ at u ∈ H 1 0 (Ω) with respect to the direction v ∈ H 1 0 (Ω), that is,

ϕ 0 (u; v) = lim sup w→u λ↓0 ϕ(w + λv) -ϕ(w) λ .
Accordingly, Clarke's generalized gradient ∂ϕ(u) of ϕ at u is defined by

∂ϕ(u) = {ξ ∈ H -1 (Ω) ; ξ, v ≤ ϕ 0 (u; v), for all v ∈ H 1 0 (Ω)}. The function (u, v) -→ ϕ 0 (u, v) is upper semicontinuous and ϕ 0 (u; v) = max{ ζ, v ; ζ ∈ ∂ϕ(u)}
for all v ∈ H 1 0 (Ω). Then ∂ϕ(u) is a nonempty, convex, and weak * compact subset of H -1 (Ω).

We refer to the monograph Clarke [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF] for further properties of the generalized gradient of locally Lipschitz functionals.

In this paper we are concerned with the following inequality problem:

   find u ∈ K such that for all v ∈ K, Ω ∇u • ∇(v -u) dx + Ω f (x, u)(v -u) dx + Ω j 0 (x, u(x); v(x) -u(x)) dx ≥ 0. (4) Throughout we assume that f : Ω × R → R is a Carathéodory function such that sup x∈Ω lim sup t→±∞ f (x, t) t < λ 1 . (5) 
Observe that assumption (5) implies the existence of some µ ∈ (0, λ 1 ) and C > 0 such that for all (x, t)

∈ Ω × R, |f (x, t)| ≤ µ |t| + C. (6) 
We assume that j

: Ω × R → R is a Carathéodory function such that |j(x, y 1 ) -j(x, y 2 )| ≤ k(x) |y 1 -y 2 | for all x ∈ Ω and y 1 , y 2 ∈ R, (7) 
for some function k ∈ L 2 (Ω), and there exist

h 1 ∈ L 2 (Ω) and h 2 ∈ L ∞ (Ω) such that |z| ≤ h 1 (x) + h 2 (x)|y| for all (x, y) ∈ Ω × R and all z ∈ ∂j(x, y). (8) 
Our main result in this paper is the following.

Theorem 2.1. Assume that K is a nonempty, closed, and convex set in H 1 0 (Ω) and that hypotheses (5), ( 7) and ( 8) are fulfilled. Then problem (4) has at least one solution.

We conclude this section by observing that condition ( 5) is very related to the growth assumption (3). However, due to the presence in (4) of the nonconvex term Ω j 0 (x, u(x); v(x) -u(x)) dx, we are not able to work under the same hypothesis, that is,

sup x∈Ω lim sup t→±∞ f (x, t) t ≤ λ 1 . (9) 
However, the techniques we use in what follows enable us to obtain the same result as stated in Theorem 2.1 provided that (9) holds, but

|f (x, t)| ≤ µ |t| + C for all (x, t) ∈ ω × R,
for some µ ∈ (0, λ 1 ), where ω ⊂ Ω and |ω| > 0.

An auxiliary result

Throughout this section we assume that Ω is bounded and we prove that the existence result stated in Theorem 2.1 is valid in this particular case. Let J : L 2 (Ω) → R be the mapping defined by J(u) = Ω j(x, u(x))dx. Our assumption [START_REF] Kristály | Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems[END_REF] implies that J is locally Lipschitz on L 2 (Ω) and for all u, v ∈ L 2 (Ω),

Ω j 0 (x, u(x); v(x))dx ≥ J 0 (u; v). (10) 
Since H 1 0 (Ω), we obtain that relation [START_REF] Kinderlehrer | An Introduction to Variational Inequalities[END_REF] holds for any u, v ∈ H 1 0 (Ω). We recall (see [START_REF] Fundos | Existence theorems of Hartmann-Stampacchia type for hemivariational inequalities and applications[END_REF]) that, in view of our assumptions [START_REF] Knaster | Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe[END_REF], [START_REF] Kristály | Variational Principles in Mathematical Physics, Geometry, and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems[END_REF], and ( 5), the mapping

H 1 0 (Ω) × H 1 0 (Ω) ∋ (u, v) -→ Ω j 0 (x, u(x); v(x)
)dx is weakly upper semicontinuous and for all v ∈ H 1 0 (Ω), the mapping

H 1 0 (Ω) ∋ u -→ Ω f (x, u)(v -u)dx is weakly continuous.
The main result of this section is the following.

Theorem 3.1. Assume that K is a nonempty, closed, convex, and bounded set in H 1 0 (Ω) and that hypotheses ( 5), ( 7) and ( 8) are fulfilled. Then problem (4) has at least one solution.

The proof of this existence property relies on the celebrated Knaster-Kuratowski-Mazurkiewicz principle. We first recall that if E is a vector space then a subset A of E is said to be finitely closed if its intersection with any finite-dimensional linear manifold L ⊂ E is closed in the Euclidean topology of L. Let X be an arbitrary subspace of E. A multivalued mapping G :

X → P(E) is called a KKM-mapping if conv {x 1 , . . . , x n } ⊂ n i=1 G(x i )
for any finite set {x 1 , . . . , x n } ⊂ X.

For the convenience of the reader we recall the KKM-principle of Knaster, Kuratowski, and Mazurkiewicz (see [START_REF] Dugundji | KKM maps and variational inequalities[END_REF] and [START_REF] Knaster | Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe[END_REF]). Theorem 3.2. Let E be a vector space, X be an arbitrary subspace of E, and G : X → P(E) be a KKM-mapping such that G(w) is finitely closed for any w ∈ X. Then the family {G(w)} w∈X has the finite intersection property.

Proof. We claim that it is enough to show that the inequality problem

   find u ∈ K such that for all v ∈ K, Ω ∇u • ∇(v -u) dx + Ω f (x, u)(v -u) dx + J 0 (u; v -u) dx ≥ 0 (11)
has a solution. This fact combined with relation [START_REF] Kinderlehrer | An Introduction to Variational Inequalities[END_REF] implies that problem (4) has at least one solution.

Returning to problem [START_REF] Motreanu | Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities[END_REF], let G : K → P(H 1 0 (Ω)) be the multivalued mapping defined as follows: for any w ∈ H 1 0 (Ω), let G(w) be the set of all v ∈ K such that

Ω ∇v • ∇(w -v)dx + Ω f (x, v)(w -v)dx + J 0 (v; w -v) ≥ 0.
Step 1. The set G(w) is weakly closed. Indeed, let us assume that v n ∈ G(w) and

v n ⇀ v in H 1 0 (Ω). Then Ω ∇v • ∇(v -w)dx ≤ lim inf n→∞ Ω ∇v n • ∇(v n -w)dx and lim n→∞ Ω f (x, v n )(w -v n )dx = Ω f (x, v)(w -v)dx .
now the upper semi-continuity of the mapping J 0 (• ; •) we obtain lim sup

n→∞ J 0 (v n ; w -v n ) ≤ J 0 (v; w -v). Therefore J 0 (v; w -v) ≥ -lim inf n→∞ -J 0 (v n ; w -v n ) .
Using these relations we conclude that if

v n ∈ G(w) and v n ⇀ v then Ω ∇v • ∇(w -v) dx + Ω f (x, v)(w -v) dx + J 0 (v; w -v) dx ≥ 0,
which shows that v ∈ G(w). Now, using the basic assumption that K is bounded, we deduce that G(w) is weakly closed.

Step 2. G is KKM-mapping.

Arguing by contradiction, we find w 1 , . . . , w n ∈ K and z ∈ conv {w 1 , . . . , w n } such that z / ∈ ∪ n j=1 G(w j ). This means that for all j = 1, . . . , n,

Ω ∇z • ∇(z -w j )dx + Ω f (x, z)(z -w j )dx + J 0 (z; w j -z) < 0.
This means that w j ∈ C, where

C := w ∈ K; Ω ∇z • ∇(z -w)dx + Ω f (x, z)(z -w)dx + J 0 (z; w -z) < 0 .
Since the mapping J 0 (u; •) is subadditive and positive homogeneous (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]), the set C is convex, hence z ∈ C, a contradiction.

Step 3. The family {G(w)} w∈K has the finite intersection property. This follows by combining Step 2 with Theorem 3.2 of Knaster, Kuratowski, and Mazurkiewicz. Thus, there exists u ∈ ∩ w∈K G(w) or, equivalently,

Ω ∇u • ∇(v -u)dx + Ω f (x, u)(v -u)dx + J 0 (u; v -u) ≥ 0,
for all v ∈ K. This concludes the proof of Theorem 3.1.

Proof of Theorem 2.1

We apply some ideas developed in [START_REF] Fundos | Existence theorems of Hartmann-Stampacchia type for hemivariational inequalities and applications[END_REF] and [START_REF] Motreanu | Existence results for inequality problems with lack of convexity[END_REF] which rely essentially on Theorem 3.1 combined with the possibility to approximate the set K with bounded sets having the same structure.

Without loss of generality we assume that 0 ∈ K. For any positive integer n, set

K n := {w ∈ K; w ≤ n} .
Thus, 0 ∈ K n for all n ≥ n 0 , where n 0 is a positive integer. Applying Theorem 3.1 we find

u n ∈ K n (n ≥ n 0 ) such that for all v ∈ K n , Ω ∇u n • ∇(v -u n )dx + Ω f (x, u n )(v -u n )dx + Ω j 0 (x, u n (x); v(x) -u n (x)) dx ≥ 0.
(12) We claim that the sequence (u n ) is bounded in H 1 0 (Ω). Arguing by contradiction and passing eventually to a subsequence, we can assume that u n H 1 0 (Ω) → ∞ as n → ∞. Taking now v = 0 as test function in relation [START_REF] Motreanu | Existence results for inequality problems with lack of convexity[END_REF] we obtain (using also our assumption ( 5))

u n 2 H 1 0 (Ω) = Ω |∇u n | 2 dx + Ω f (x, u n )u n dx ≤ Ω j 0 (x, u n (x); -u n (x)) dx . (13) 
Using now condition [START_REF] Knaster | Ein Beweis des Fixpunktsatzes für n-dimensionale Simplexe[END_REF] we find

Ω j 0 (x, u n (x); -u n (x)) dx ≤ Ω k(x) |u n (x)| dx ≤ k L 2 (Ω) u n L 2 (Ω) ≤ C k L 2 (Ω) u n H 1 0 (Ω) , (14) 
where C > 0 is a constant determined by the continuous embedding H 1 0 (Ω) ⊂ L 2 (Ω). On the other hand, our assumption [START_REF] Dugundji | KKM maps and variational inequalities[END_REF] implies

Ω f (x, u n )u n dx ≤ µ Ω u 2 n dx + C |Ω| ≤ µ λ 1 u n 2 H 1 0 (Ω) + C |Ω| . (15) 
Combining relations ( 13)-( 15) we obtain

1 - µ λ 1 u n 2 H 1 0 (Ω) -C |Ω| ≤ C k L 2 (Ω) .
Since µ ∈ (0, λ 1 ), this relation shows that the sequence (u n ) is bounded in H 1 0 (Ω). Thus, up to a subsequence, u n ⇀ u ∈ K in H 1 0 (Ω). To conclude the proof, it remains to show that u is solution of problem (4). As we have already observed in the proof of Theorem 3.2, it is enough to show that u verifies [START_REF] Motreanu | Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities[END_REF]. Fix v ∈ K. Thus, there is a positive integer N such that for all n ≥ N, v ∈ K n . Using now Theorem 3.1 we find that for all n ≥ N,

Ω ∇u n • ∇(v -u n )dx + Ω f (x, u n )(v -u n )dx + J 0 (u n ; v -u n ) ≥ 0 . (16) 
Next, since u n ⇀ u, we obtain

Ω f (x, u)(v -u)dx = lim n→∞ Ω f (x, u n )(v -u n )dx , (17) 
J 0 (u; v -u) ≥ lim sup n→∞ J 0 (u n ; v -u n ) (18) 
and

Ω ∇u • ∇(u -v)dx ≤ lim inf n→∞ Ω ∇u n • ∇(u n -v)dx , hence Ω ∇u • ∇(v -u)dx ≥ lim sup n→∞ Ω ∇u n • ∇(v -u n )dx . ( 19 
)
Using now relations (17)-( 19) and passing at "lim sup" in (16) we conclude that u solves problem [START_REF] Motreanu | Minimax Theorems and Qualitative Properties of the Solutions of Hemivariational Inequalities[END_REF], so u is a solution of (4). This completes the proof of Theorem 2.1.
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