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The first part of the present investigation focuses on the formulation of a novel stochastic model 
of uncertain properties of media homogenous in the mean which are represented as stationary 
processes. In keeping with standard spatial discretization methods (e.g., finite elements), the 
process is discrete. It is further required to exhibit a specified mean, standard deviation, and a 
global measure of correlation, i.e., correlation length. The specification of the random process is 
completed by imposing that it yields a maximum of the entropy. If no constraint on the sign of 
the process exists, the maximum entropy is achieved for a Gaussian process the autocovariance 
of which is constructed. The case of a positive process is considered next and an algorithm is 
formulated to simulate the non-Gaussian process yielding the maximum entropy. 
In the second part of the paper, this non-Gaussian model is used to represent the uncertain 
friction coefficient in a simple, lumped mass model of an elastic structure resting on a frictional 
support. The dynamic response of this uncertain system to a random excitation at its end is 
studied, focusing in particular on the occurrence of slip and stick. 

Keywords: Friction, uncertainty, microslip, stochastic process, maximum entropy, simulation. 

 

1 Introduction 

The modeling of uncertain geometric and/or 
material properties as random variables, 
stochastic processes, or random fields has 
received significant attention in the last 2 
decades, e.g., see Ghanem and Spanos (1991), 
Schueller (2007), Sachdeva et al. (2007) and 
Soize (2012) for discussion and some methods 
review. A key challenge in using such models 

in practical situation is the often dramatic lack 
of information available on the uncertainty. 
More specifically, the mean value of the 
geometric/material property considered is 
generally believed to be known from past 
experience and/or available data. However, 
even the level of uncertainty, e.g., standard 
deviation, is often less clearly known and may 
in fact be considered as a variable in a 
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parametric study. Sometimes, an upper and/or 
lower bound may also be known because of 
an acceptance/rejection test carried out on all 
samples. However, more detailed information 
is very often not available. 

This limited data does not permit the 
analyst to build a specific probabilistic model 
who is then forced to make additional 
assumptions. This perspective has led Soize 
(2000, 2001) to propose that the stochastic 
description of the uncertainty model be 
derived by maximizing the statistical entropy 
under constraints representing the true 
knowledge on the stochastic model. The 
maximization of the entropy induces a 
maximum spread of the uncertainty 
(consistently with the constraints) in the tail of 
the distribution and thus to the consideration 
of “wide-spread” uncertainty that provides a 
good perspective on the effects of variations 
of the system properties, even those that are 
“far” from the mean. Thus, this approach, also 
referred to as the nonparametric stochastic 
modeling approach, requires only partial 
knowledge of the system uncertainty 
complemented by the single assumption of 
maximization of entropy. 

In its original formulation (Soize, 2000, 
2001), the nonparametric stochastic modeling 
approach was used for characterization of the 
mass, damping, and stiffness matrices of 
reduced order/modal models, not to the 
detailed modeling of any specific property 
such as mass density or Young’s modulus. 
Such a characterization was carried out in 
later extension (Soize, 2006) to matrix-valued 
fields focusing in particular on the modeling 
of the elasticity tensor of random media. 

The present effort complement this work 
by addressing the modeling of scalar random 
properties, of variable or constant sign, of 
media homogenous in the mean as stationary 
processes. In keeping with standard spatial 
discretization methods (e.g., finite elements), 
the process is discrete. The proposed 
modeling relies on the specification of only 
the mean and standard deviation of the 

property as well as on a global measure of the 
correlation, i.e., a correlation length. The 
maximization of the entropy then provides the 
description of the process consistent with this 
prescribed information. 

The above stochastic modeling technique 
will be exemplified here on a property seldom 
considered and yet exhibiting well known 
uncertainty, i.e., friction. When two 
deformable bodies are in extended contact 
with each other, as in joints, turbomachinery 
blade friction dampers, brakes, etc., the 
coefficient of friction between them must be 
defined over the contact zone, i.e., as a 
spatially varying property which governs the 
occurrence of stick, microslip, or macroslip 
(e.g., see Sinha and Griffin, 1985, Berger and 
Deshmukh, 2005, Deshmukh et al., 2007, 
Segalman et al., 2009, and references therein). 
After an appropriate spatial discretization of 
the contact zone, it becomes then necessary to 
specify the coefficient of friction at a set of 
discrete locations. The uncertainty in the 
values of this coefficients resulting from 
unknown spatial variations of roughness, 
temperature, composition, etc. then calls for 
the stochastic modeling considered in the first 
part of the paper. To demonstrate this 
application and presents a first perspective in 
this problem, a simple dynamic model of this 
contact problem is adopted here as a cascade 
of 5 oscillators with Jenkins friction elements. 
The effects of uncertainty in the coefficients 
of friction on the dynamic response of this 
system is then studied. 
 
2  Maximum Entropy Discrete Process 

2.1    General Derivation 

Let nX  denote a discrete stationary process 

defined over the domain  ullIn ,,1,   

and define the random vector 

 Tull XXXX 1  where T denotes the 

operation of matrix/vector transposition. 
Then, the entropy S of X is defined as 
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         xdxpxpxpES XXX  lnln  (1) 

where E[.] denotes the operation of 
mathematical expectation and  is the domain 
of support of the values of the process. If no 
signature constraint is enforced, both positive 
and negative values of the process are allowed 
and thus 
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If a positive sign of the process is required, 

  
 

     
 

,0,0,0                 

,,, 1



 ull xxx
.           (3) 

In Eq. (1),  xpX  denotes the probability 

density function of the random vector X 
evaluated at a realization point x. Since nX  is 

stationary, its joint probability density 
functions satisfy the usual independence under 
a uniform shift along I, e.g., 
                      xpxp

nn XX 1
    

and       yxpyxp
mnmn XXXX ,,

11 
 .        (4) 

It is desired here to determine the 
probability density function  xpX  which 

maximizes the entropy, Eq. (1), under the 
constraints that: 
  (i) the total probability is one, i.e., 

       1


xdxpX                    (5) 

 (ii) the mean and variance are given and 
constant (since the process is stationary) 

                    XXn xdxpx 


    In      (6) 

    22
XXXn xdxpx 



    for  In    (7) 

(iii) a correlation length is given. Two such 
measures are (Soize, 2006, Nigam, 1983) 

       )0(/
1

0 XX
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where  mK XX  is the stationary 

autocovariance function. It is defined as 
 

   mnnmK XXXX  ,   for any In  (10a) 

where  
     
     )(10b  

,

         










xdxpxx

XXEmnn

XXmnXn

XmnXnXX

  The series involved in Eqs (8) and (9) will be 
truncated to finite sum for m = 0 to maxm  and 

thus can be written as 

   0,
max

0




m

m
XXmm mnnsa   for any n    (11) 

where              mKs XXm sgn               (12)  

       11 00  mm La      max,0 mm , (13) 

with ij the Kronecker symbol, for the 

correlation length 0L  while for 1L  

    mLam  1         max,0 mm  .          (14) 

For the optimization of the entropy, Eqs 
(5)-(7), (11) can be written in the generic form 

       0 


iXinin Cxdxpxf     (15) 

where              Xnnn xxf 1                   (16) 

    


 
max

0
2

m

m
XmnXnmmn xxsaxf (17) 

   23 Xnn xxf  and   14 f       (18), (19) 

with 021  CC , 2
3 XC  , and 14 C . 

Then, the maximization of the entropy, 
Eq. (1) under the constraints of Eqs (15)-(19) 
can be accomplished in the Lagrange 
multiplier framework and yields  

 

(20)                  

exp
1
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where n1 , n2 , n3 , and 4 are the 

Lagrange multipliers associated with the 
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constraints of Eqs (16)-(19). Next, note that 
the term in bracket is a quadratic form of the 
vector Ex X , where E is the vector whose 

components are all equal to 1, i.e., 

 TE  111 . Thus, the above probability 

density function can be rewritten as 

     

  (21)                          

2

1
exp




 

xExV

ExGExCxp

X
T

X
T

XX

where 
          )1exp( 4 C           (22) 

and the elements of the matrix G  and vector 

V are 

        032 22 mnmmnmnn saG    (23)    

for  max,0 mm  and 0 otherwise, and 

                  nnV 1 .                (24) 

Assuming that the matrix G  is not singular, 

Eq. (21) can finally be rewritten in the 
familiar form 

        



  xGxCxp T

X 2

1
exp   (25) 

for x  where 

     



  VGVCC T 1

2

1
exp          (26) 

           VGEX
1               (27) 

             TGGG 
2

1
.            (28) 

To complete the characterization of the 
distribution of Eq. (25), it remains to evaluate 
the parameters it involves, i.e., the Lagrange 
multipliers n1 , n2 , n3 , and 4 , from the 

constraints they represent, i.e., Eqs (5), (6), 
(11), and (15). In that regard, note that it is 
more convenient to directly focus on the 
evaluation of C,  , n2 , and n3  the latter 

two defining the matrix G. 
 Of special interest here is the situation in 
which the size of the domain I becomes large, 

i.e., l  and u . Then, each random 
variable nX  exhibits the same properties, 

none of them being closer or further from the 
boundaries l and u of the domain I. Thus, the 
dependence of  xpX  on any variable nx  

should be the same which occurs when 
E ,   22  n  and 33  n  (29a)-(29c) 

for which the matrix G is Toeplitz and 
symmetric. With Eqs (29b) and (29c), the 
matrix G becomes 

         mmmmnn saG  03 2         (30) 

for  max,0 mm  and where the parameter 

32 /  is introduced in place of 2 . Note 

that the signs 1ms  are dependent on the 

autocovariance function, see Eq. (12), and 
thus are unknown at this point. 

Equations (25), (29a), and (30) represent 
the maximum entropy distribution sought. It 
remains however to address the determination 
of the parameters C,  , 3 , ms , and  from 

Eqs (5), (6), (7), and (11) and the efficient 
simulation of realization of the random values 

nX .  These issues are addressed in the ensuing 

sections. 
 
2.2    Process Without Sign Constraint – 
Direct Estimation of the Autocovariance 
Function 

The case of a process without sign constraint, 
i.e., with the domain  defined by Eq. (2) is 
considered first because of its simplicity. 
Under this assumption, it is concluded from 
Eq. (25) that the random vector X is Gaussian 
with mean  and with covariance matrix  

              1ˆ  GK XX .             (31) 

Note that XXK̂  is expected to exhibit a 

Toeplitz structure, as G does, owing to the 
stationarity of the process in its 
autocovariance function. 

To satisfy the constraints of Eqs (5) and 
(6), one obtains directly 
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 P
G

C



2

det
               (32) 

where P denotes the  number of values of the 
process considered and 
                     X .             (33) 

Next, consider the parameter 3  and note that 

it scales (for a fixed value of ) the matrices G 

and XXK̂ . Its effects are thus (i) to uniformly 

scale the values of the process, more 

specifically by the factor 3/1  , and (ii) to 

modify the sign of the autocovariance 
function. Thus, the parameter 3  does not 

affect the correlation length which is then only 
a function of  and of the selected sign 
sequence ms (see Eq. (12a)). Once these 

quantities have been determined from either 
Eq. (8) or (9) and Eq. (12a), i.e., by solving  

   00 , LsL m    or    11 , LsL m      (34) 

where 0L  or 1L  is the imposed correlation 

length, the value of 3  can then be selected to 

match the variance condition, Eq. (7). 
 The numerical evaluation of  msL ,0   and 

 msL ,1   for specified values of maxm ,  and 

of the sign sequence ms  was achieved as 

follows. The matrix 3/G  was first formed 

for P = 2*M +1 random variables nX . The 

parameter M was selected “large enough”, i.e., 
much larger than maxm  for the inverse 

  XXKG
~

/ 1
2     to exhibit a near Toeplitz 

structure. Since the convergence to this 
structure occurred faster for the elements near 
the center of the matrix, the M + 1st row was 
considered representative of the true infinite 
Toeplitz matrix and was used for the 
estimation of the autocovariance values as 

          
mMMXXXX KmK




1,1
3

~1
.   (35) 

Since the variance  0XXK  must be positive, 

the sign of 3  was selected as 

    





 1,13
~

sgnsgn
MMXXK . Then, the 

correlation length,  msL ,0   or  msL ,1  , and 

the sign sequence   mK XXsgn  were 

estimated and compared to 0L  or 1L  and ms . 

A match of both indicated that acceptable 

values  and ms  were found. Next, the 

magnitude of 3 , was determined to satisfy 

the variance normalization condition, Eq. (7). 
Finally, the constants  and C were obtained 
from Eqs (32) and (33) completing the 
determination of the probability density 
function. 

Multiple solutions (acceptable values  
and ms ) were occasionally found. In such 

cases, the solution yielding the highest value 
of the entropy was retained. In this regard, 
introducing the expression of the probability 
density function given by Eq. (26) in Eq. (1) 
yields 

        XGXECS T

2

1
ln     (36) 

or, using Eq. (32), 

         
2

ln
P

CS   .         (37) 

  The simulation of random values nX  can be 

achieved by standard algorithms. In particular, 
samples of the random vector X can be 
obtained from the relation 
              WLX                (38) 

where L is the Cholesky decomposition of 
1G , i.e., TLLG 1 , and the components of 

the vector W are independent zero mean and 
unit variance Gaussian random variables.  
  The approach described above was applied 
with the 2 definitions of the correlation length, 

Eqs (8) and (9), for 0L  or 1L  = 0.3, and for 

several values of maxm , see Fig. 1. 

  It appears from these figures (note the 
logarithmic scale) that the autocovariance 
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function values for lags 1m  are steadily 
decreasing as maxm  increases suggesting that 

the process converges to a “near white noise” 
as maxm . To satisfy the nonzero 

correlation length condition, the optimum 
autocovariance function for large maxm  

exhibits a very small value (constant/growing 
linearly for the 0L  and 1L  definitions) in the 

domain  max,1 mm . 

  Similar findings were also observed with 
higher correlation lengths (1.0 and 3.0) but the 
results are not shown here for brevity. 
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Figure 1. Autocovariance functions obtained for 

1X , various maxm . (a) 0L =0.3, (b) 1L =0.3. 

 
2.3    Process Without Sign Constraint – 
Autoregressive Modeling 

The near white noise behavior of the above 
solutions is not expected of the physical 
properties modeled here; it is a reflection of 

the weakness of the correlation length 
constraint. To achieve an increased  
smoothness of the autocovariance function, it 
is proposed here to adopt a parametric 
representation for it and/or the process nX . 

An autoregressive modeling is selected for 
this task as it is known to provide a close 
representation of a very broad class of 
autocovariance functions. Specifically, nZ  is 

an autoregressive process of order M when its 
samples can be recursively computed as 

               



M

q
qnqnn ZaWbZ

1
0 ˆˆ         (39) 

for n =M +1, M +2, ... and in which nW  

denote independent identically distributed 
zero mean and unit variance Gaussian random 

variables and qâ  and 0b̂  are deterministic 

coefficients. The process nZ  exhibits a 

stationary behavior when its poles, i.e., the 
complex roots v of the polynomial 

             


 
M

q

q
q va

1

0ˆ1             (40) 

are less than 1 in magnitude. Its stationary 
autocovariance function values  mKZZ  can 

then be determined from the coefficients qâ  

and 0b̂  through the Yule-Walker equations 

(e.g., Mignolet and Spanos, 1987)  

    0
2
0

1

ˆˆ s

M

q
ZZqZZ bqsKasK  


0s .(41) 

Specifically, the autocovariance values 
 mKZZ , m=0, ..., M, are first determined by 

solving the linear system of equations 
corresponding to Eq. (41) for s = 0, ..., M. 
Then, the values  mKZZ , m > M are 

evaluated recursively from Eq. (41) for s > M. 
  The transformation Xnn ZX   leads to 

the process nX  exhibiting the desired mean 

and the autocovariance function 
   mKmK ZZXX   parametrized by the 

(a) 

(b) 
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coefficients qâ  and 0b̂ .  Then, these 

coefficients will be selected to maximize the 
entropy, Eq. (37), while satisfying the 
correlation length and variance constraints, 
Eq. (7)-(9).  Note that the optimization ought 
to be constrained so that the poles v of the 
autoregressive model, see Eq. (30), are within 
the unit circle in the complex plane.  
However, this constrained was not found to be 
active in the present investigation. 
  This autoregressive based optimization 
approach is typically computationally much 
less demanding than the direct estimation 
strategy described in the previous section. The 
higher cost of the latter method is due to the 
need to search through the ensemble of 
combinations of 1ms  for max,,1 mm   

which grows exponentially with maxm , or 

equivalently the correlation length. 
  The application of the autoregressive 

modeling approach for 0L  or 1L =0.3, see Fig. 

2, demonstrates that this optimization strategy 
also leads to near white noise solutions as the 
autoregressive order M is increased. This 
result should be fully expected as the increase 
of the autoregressive order permits a more 
flexible modeling of the features of the 
autocovariance function. This unusual 
convergence process renders difficult the 
selection of a particular autoregressive model 
order. A first perspective on this value can be 
drawn from the corresponding values of the 
resulting entropy, see Fig. 3, which is 
bounded on the high side by the entropy of the 
white noise solution  

   2
max 2ln1

2 X
P

S   .        (42) 

It is seen from Fig. 3 that the autoregressive 
order needed to reach a particular entropy 
increases with increasing correlation length 
and is higher for the 0L  definition than for the 

1L  one. 

  A second criterion for the selection of the 
autoregressive order can be developed from 
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Figure 2. Autocovariance functions obtained for 

1X , autoregressive orders. (a) 0L =0.3, (b) 

1L =0.3. 
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Figure 3. Entropy of the generated process for 

different correlation length values and definitions. 
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autoregressive coefficients qâ . For a first 

order autoregressive model, 0L  and 1L  are 

equal, both to  11 ˆ1/ˆ aa  , but they differ for 

higher order models. When 0L  is held 

constant, 1L  increases as a function of the 

autoregressive order M while 0L  decreases 

with this order when 1L  is constrained in the 

optimization, see Fig. 4. While the two 
correlation length definitions are different, 
they are metrics of the same property and thus 
one can expect that they would not be 
dramatically different from one another. Then, 
the selection of the autoregressive order can 
result from a refinement of the optimization 
process in which a particular value of one 
correlation length is imposed and a range of 
values for the other specified, i.e., 0L =0.3 and 

1L  1 leads from Fig. 4 to an autoregressive 

order of M = 6. Autocovariance functions 
obtained for various sets of correlation lengths 
are shown in Figs 5. 
  Note that the autoregressive model of Eq. 
(39) not only provides a parametric 
representation of the autocovariance function 
but it also provides a simulation algorithm of 
the values of the process Xnn ZX   as 

long as M initial values of nZ  are available. 

One approach to generate such initial 
conditions is to initiate the recursion with 
deterministic values, 0nz  say, for n =1, 2, 

..., M and then march it until stationarity is 
reached. Note that the length of the transient 
can be determined from the poles v of the 
autoregressive model, see Eq. (40). Another 
approach is to simulate the initial conditions 

nZ  directly as zero mean Gaussian random 

variables with covariance matrix ZZK̂  

determined to the autocovariance function 
 mKZZ , m = 0, ... M -1. 
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conditions. 
 

2.4    Positive Processes 

 Many physical properties are positive and 
thus the modeling of their uncertainty must 
maintain this constraint. In the present 
formulation, this is achieved by restricting the 
process to exhibit only positive values, i.e., 
with  being the domain of Eq. (3). In this 
case, Eq. (25) is a truncated Gaussian 
distribution and, as such, does not vanish 
when any of the variable nx  goes to zero. 

This feature of the distribution is not always 
appropriate, e.g., see Soize (2000).  The work 
carried out here is thus limited to properties 
which are not required to be strictly positive. 
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A result of the truncation of the Gaussian 
distribution is the lack of closed form 
expressions for the normalization constant, 
mean, and covariance matrix, i.e., Eqs 
(31) are no longer applicable.  These 
quantities will thus have to be estimated from 
simulated values of the process nX .  

  These values will be obtained by rejection 
from the Gaussian process nY , defined as in 

Eq. (21) but over the entire space, i.e., with  
defined by Eq. (2). While this vector could be 
simulated according to the strategy of Eq. 
(38), this would lead to an expensive rejection 
process as any simulated vector y with at least 
one negative value would be discarded. 
  A more convenient approach is to proceed 
recursively with an autoregressive modeling 
as in Eq. (39). Specifically, let  nn zy  be 

the value of nY  obtained with a particular 

sample )1(
nw  of the Gaussian white noise 

process nW . If ny  is positive, it is an 

acceptable value of nx  and thus the 

assignment nn yx   is performed. In the 

negative, another value )2(
nw  of nW  is 

simulated and the corresponding ny  is 

checked for positiveness. The process is then 
repeated until a positive ny  is obtained and 

the assignment nn yx   performed. The 

simulation then moves to sample n+1. 
  Two issues arising in the above simulation 
strategy are: (i) the need for M initial values of 

nZ  and (ii) the required stationarity of the 

simulated samples. Both can be addressed by 
starting with deterministic initial conditions, 

0nz  say, for n =1, 2, ..., M and then 

marching the simulation until stationarity is 
reached. This is achieved for the sample r 

such that 0max r
v  where maxv  is the pole 

of the autoregressive model, see Eq. (40), of 
largest magnitude. The simulation of 

stationary values nx  then proceeds from 

sample r +1. 
The efficiency of the above simulation 

algorithm adds to the benefits, e.g., 
smoothness of autocovariance function, of an 
autoregressive parametrization of the process 
(as in section 2.2) vs. a direct estimation of its 
autocovariance function (as in section 2.3). 
Accordingly, the former approach is presented 
first below. 

 
2.4.1 Positive processes – Autoregressive 
Modeling 
Within this framework, the autoregressive 

coefficients qâ  and 0b̂  and the parameter  

will be selected to maximize the entropy while 
satisfying (within the accuracy limit of the 
finite number of samples simulated) the 
constraints of Eqs (6)-(9). To this end, note 
from Eqs (1) and (25) that the entropy is      
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Further, the constant C is expressed as 
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where accp  is the probability that a set of P 

samples  nn ZY  be all positive. In the 

autoregressive-based algorithm, this 
probability can also be evaluated using 
conditional probabilities. Specifically, 
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where sY  denotes the vector of components 

equal to nY , n = 1,..., s, and )(s
accp  is the 

probability of accepting the sample s when 
computed from the previous ones. Owing to 
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the stationarity of the process nY , the 

probability of acceptance )(s
accp  of a particular 

sample s is constant, denoted as accp . 

 The above scheme was exemplified with the 
correlation length definition of Eq. (8) and 0L  

= 0.3, 1, and 3 with means of 2 and 3. The 
resulting autocovariance functions of the 
positive processes were found to be very 
close, for equal values of the autoregressive 
orders, to their counterparts for processes 
without sign constraint of section 2.3, see Fig. 
6 as an example. 
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Figure 6. Autocovariance functions of the process 
without sign constraint (“non-pos.”) and positive 

process, 0L = 3, autoregressive order M=10. 
 

2.4.2 Positive processes – Direct Estimation 
of the Autocovariance Function  
  The direct estimation approach focuses on 
the determination of the values of the 
parameters  , 3 , ms , and  to satisfy the 

mean, Eq. (6), variance, Eq. (7), correlation 
length, Eq. (11), and sign sequence, Eq. (12), 
conditions as in section 2.2. The main 
difference with that earlier section is that the 
mean and autocovariance function were here 
determined from a statistical analysis of 
samples of the process nX . 

  These values were generated using the 
autoregressive-based simulation with rejection 
strategy described above. The corresponding 

coefficients qâ  and 0b̂  were estimated from 

the Yule-Walker equations, Eq. (41) for s = 0, 
..., M = P, using the autocovariance sequence 

 mKZZ  obtained by inversion of the 

corresponding matrix G as in Eqs (31) and 
(35). 
 
3 Friction Modeling in Stick-Slip and 

Microslip Response  

One objective of the present study was to 
investigate the effects of uncertainty in 
friction coefficients on the dynamic response 
of systems exhibiting stick-slip and microslip 
behavior. The methodology developed in the 
previous sections provides the modeling of the 
uncertain friction coefficients. To demonstrate 
its application, consider the 5 degree of 
freedom system shown in Fig. 7 in which each 
degree of freedom is connected to ground 
through a slider/friction (Jenkins) element 
which slides when the force in the 
corresponding spring is larger than the force 
of friction. 
 

 
Figure 7. Chain of oscillators with Jenkins 

elements. 
 

The parameters of each oscillator were 
selected to be identical, i.e., the masses were 
chosen as 1 mmi  while the stiffnesses 1k  

and 2k  were selected as 25 and 50, 

respectively.  In regards to the friction, the 
value of the normal force N was assumed to 
equal 10 and the static and kinematic 
coefficients of friction were taken equal, i.e., 

)()( i
D

i
S   for each oscillator i =1, ..., 5. 

Further, the mean model of the system was 
assumed to have coefficients of friction 

)()( i
D

i
S  = 0.2 for each oscillator i =1, ..., 5. 

In addition, the stuck system was assumed to 
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also exhibit a classical viscous damping with a 
modal damping ratio of 0.5% on all 5 modes. 

Note that the consideration of viscous 
damping in addition to friction is necessary as 
the latter does not guarantee alone the 
finiteness of the response (e.g., see discussion 
of Den Hartog, 1931). However, the viscous 
damping is sufficient, i.e., even without 
friction, to ensure this finiteness condition. 
Then, the strict positiveness of the simulated 
coefficients of friction is not required and thus 
the uncertainty modeling approach described 
in the previous section is applicable. 

The system was subjected to a 
concentrated force at its free end varying in 
time as a Gaussian white noise process in the 
range of [0,2.5] Hz with a specified variance 
(see below). The response of the system was 
obtained through a Newmark- integration 
scheme with a standard time step of 0.00843 
for 400,000 such time steps. Particular care 
was exercised to accurately pinpoint the 
transitions of the degrees of freedom from slip 
to stick and stick to slip. The transition 
capturing was accomplished by a successive 
halving of the time steps when a transition 
was detected until the step was 215 time 
smaller than the standard time step. At that 
point, transition was assumed to be at the 
beginning or the end of this small interval 
depending on the closeness of the transition 
from these end points. The validation of the 
algorithm was accomplished by tracking 
various transitions. 

For these parameter values, it was 
desired next to select a value of the excitation 
variance that would provide stick-slip of the 
various masses to exemplify microslip. For 
low values of the variance, the system remains 
stuck and the response is linear. As the 
variance of the excitation is increased, the 
system slowly changes from fully stuck to 
fully slipping and the linear natural 
frequencies of these two extreme conditions 
are given in Table 1. For intermediate values 
of the variance, the desired stick-slip behavior 
is achieved but differently for each oscillator. 

Specifically, the fraction of time spent in slip 
mode decreases monotonically from the 
degree of freedom 5 on which the force is 
applied to the first one, nearest to the wall, see 
Table 2 for the two variances of excitation 
considered here: 3.7 and 41.1. 

 The physics described above is reflected 
in the power spectra of the stationary 
responses shown in Figs 8. For the lower 
excitation case, Fig. 8(a), the responses of the 
various degrees of freedom exhibit clear peaks 
at the stick natural frequencies of Table 1. For 
the first degree of freedom (nearest to the 
wall), the energy is concentrated in the band 
of the natural frequencies consistently with a 
nearly linear system. Proceeding toward the 
free end, the degrees of freedom exhibit an 
increased percentage of time in slip, i.e., an 
increased nonlinearity in response, which is 
seen in Fig. 8(a) to induce a transfer of energy 
out of band: the increase in variance of the 
response is not significantly reflected by an 
increase in peak responses but rather in the 
spectrum outside of the band of natural 
frequencies. For the higher excitation case, 
Fig. 8(b), the linear peaks have completely  

 
Table 1. Natural frequencies (Hz) of the system in 

slip and stuck modes 

Mode 
Natural Frequencies (Hz) 

1 2 3 4 5 

Stuck 1.15 1.31 1.53 1.75 1.90 

Slip 0.23 0.66 1.04 1.34 1.53 

 
Table 2. Percentage of time spent in slip mode for 

each oscillator for the two variances of the 
excitation. 

Variance 
Oscillator 

1 2 3 4 5 

3.7 7% 8% 12% 22% 37% 

41.1 36% 45% 52% 59% 65% 
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Figure 8. Power spectral densities of the response 

of the 5 different oscillators, no uncertainty. 
Excitation variance (a) 3.7, (b) 41.1. 

 

disappeared and energy is quite broadly 
distributed with only weakly seen peaks at the 
frequencies of the system in slip. 
 Uncertainty in the coefficients of friction 
was next introduced as described in the first 
part of this paper. Two particular levels of 
variability of these coefficients were 
considered, i.e., standard deviations of 0.067 
and 0.10, with the mean maintained at the 
value of 0.2. Three correlation lengths L0 = 
0.3, 1.0, and 3.0 were achieved with 
autoregressive models of order 2, 5, and 10, 
respectively. The responses of the system with 
these 6 combinations of coefficients of 
friction uncertainty were computed for 100 
samples each for both force variances of 3.7 
and 41.1. Of particular interest here are the 
variations of the power spectra of the 

responses and of the fraction of time in slip 
resulting from the uncertainty in friction 
coefficients. The latter characteristic was 
measured by the standard deviation of the 
fraction of time in slip for each degree of 
freedom. It is plotted vs. its mean in Figs 9 for 
the two levels of uncertainty on the 
coefficients of friction. Even though each of 
these plots includes data from different 
degrees of freedom and different excitation 
levels for the three different correlation 
lengths, a clear pattern is seen that the largest 
variability in the fraction of time in slip occurs 
for oscillators that are approximately 30% of 
the time in slip in the mean. This observation 
seems consistent with the data of Table 1 and 
Figs 8, i.e., the strongest qualitative changes 
in the response occur for the degrees of 
freedom exhibiting this range of fractions of 
time in slip. Note further that the increase in 
standard deviation of the coefficients of 
friction from 0.067 to 0.1 leads to a smaller 
increase in the standard deviation of the 
fraction of time in slip. Finally, no consistent 
effect of the correlation length is seen 
although it appears on Fig. 9(b) that the 
correlation length L0 = 1 typically yields 
larger standard deviations of fraction of time 
in slip than L0 = 3.0 and in turn larger than 
those for L0 = 0.3. 
Consider next the variability of the power 
spectra which is tracked here by their 5th and 
95th percentiles computed at each frequency. 
For clarify, the range of responses between 
these percentiles is referred to here as the 
band of uncertainty. Shown in Figs 10 are 
representative bands of uncertainties obtained 
for different cases. To provide a more 
condensed perspective on the effects of the 
correlation length and standard deviation of 
the coefficients of correlation, the curves 
shown in Figs. 10, i.e., 5th and 95th 
percentiles and mean of the random spectra, 
were reduced to pseudo-variances by 
integration over the entire frequency domain, 

(b) 

(a) 
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2
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where    i
mS ,5,95  denotes the 95th 

percentile, 5th percentile, and mean of the 
random spectra of degree of freedom i. 
Further, b =120 is the Nyquist frequency. 

Then, the width of a particular uncertainty 
band was measured by the ratio of the pseudo-
variances corresponding to the 95th and 5th 
percentiles, 
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Figure 9. Standard deviation of the fraction of time 

in slip vs. its mean for the various correlation 
lengths, for all oscillators, and both force variances 
(“low” and “high” corresponding to 3.7 and 41.1), 

standard deviation of coefficients of friction of 
(a) 0.067, (b) 0.1. 
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Figure 10. Power spectra of the response of degree 
of freedom (a),(b) 1 and (c) 5, mean, 5th, and 95th 

percentiles, for various correlation lengths L0, 
standard deviation of coefficients of friction 0.10. 
Excitation variance (a) 3.7 (b) 41.1, (c) 3.7 (lower 

set of curves) and 41.1 (higher set of curves). 
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i.e.,    2
5

2
95 / ii  . In light of the observations 

drawn on the basis of Figs 9, it is of particular 
interest to plot this ratio as a function of the 
mean fraction of time in slip, see Figs 11. 
 The detailed analysis of Figs 10-11 revealed 
foremost that: 
 (i) the width of the band of uncertainty on the 
spectrum of a particular oscillator appears to 
be a monotonically decreasing function of the 
fraction of time the associated slider slips, see 
Figs 11. Thus, the bands of uncertainty tend to 
decrease as the excitation level is increased 
since that promotes increasing slip, e.g., 
compare Figs 10(a) and 10(b), and the two 
sets of curves of Fig. 10(c). 
(ii) the correlation length has a definite effect 
on the width of the bands of uncertainty, see 
Figs 11. This effect appears to be complex for 
lower mean fractions of time in slip but more 
clear at higher fractions with the maximum 
width occurring at an intermediate correlation 
length (L0 = 1 here) for the larger uncertainty 
level and at the longest correlation (L0 = 3 
here) for the lower uncertainty level. 
  Additionally, it was found that an increase in 
the level of uncertainty on the coefficients of 
friction does not always lead to an increase in 
the 95th percentile of the spectrum of the 
response. This is particularly so for oscillators 
which mostly stick, e.g., degree of freedom 1 
at lower excitation level, for which slip 
creates dissipation and an energy transfer out 
of band as seen in Fig. 8. Further, it was 
observed that the mean of the random spectra 
is closer to the 5th percentile than to the 95th 
one suggesting that the distribution of the 
spectral values at given frequencies exhibit a 
longer tail for larger values. Finally, it is 
interesting to observe the presence of 
significant peaks on the 95th percentiles of the 
spectra of oscillators exhibiting a significant 
slip, e.g., see Figs. 10(b) and 10(c), which are 
not readily seen on the corresponding spectra 
in the absence of uncertainty, Figs (8). These 
peaks appear to closely match the natural 
frequencies of the system in slip which 

suggests that certain combinations of friction 
coefficients can promote the energy transfer 
through the system at these frequencies. 
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Figure 11. Ratio of the pseudo-variances 

corresponding to the 95th and 5th percentiles vs. 
mean fraction of time in slip for the various 

correlation lengths, for all oscillators, and both 
force variances (“low” and “high” corresponding to 
3.7 and 41.1), standard deviation of coefficients of 

friction of (a) 0.067, (b) 0.1. 
 

 
4 Summary 

The focus of this investigation has been on the 
formulation and a first application of a novel 
model for the representation of uncertain 
properties as discrete stationary random 
processes. As opposed to postulating the 
distribution of the random process values, this 
function is here derived to yield the maximum 
of the entropy under the set of constraints 

(a) 

(b) 
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representing a given mean, a given variance, 
and a given correlation length. In the absence 
of a sign constraint on the process, its 
distribution is Gaussian with autocovariance 
function that is expressed in terms of the 
Lagrange multipliers of the constraints. Two 
numerical approaches were described and 
demonstrated for the evaluation of this 
autocovariance function and its near white 
noise features were discussed. 

For positive processes, the distribution 
obtained is a truncated Gaussian and the 
above computational strategies were extended 
to permit the estimation of the autocovariance 
function of the process and the efficient 
simulation of its realizations. Results obtained 
with different correlation lengths and 
coefficients of variation suggest that the 
autocovariance function of the positive 
process is very close to its equivalent for the 
process without sign constraint. 

The novel model proposed here was next 
applied to the simulation of uncertain 
coefficients of friction in a chain of oscillator 
with Jenkins elements representing the 
dynamic response of a flexible structure 
connecting through friction to a rigid 
foundation. This model permits the 
consideration of microslip of the structure. 
The introduction of uncertainty on the 
coefficients of friction was found to have 
notable effects on the response which 
typically correlate to the mean fraction of time 
in slip of the slider attached to a particular 
degree of freedom. Three key observations 
were that: 
 (i) the standard deviation of the fraction of 
time in slip exhibited a peak at an 
intermediate value (about 0.3 here) of the 
mean value of this fraction, 
 (ii) the width of the uncertainty band on the 
spectrum of the response of a particular 
oscillator was a decreasing function of the 
mean fraction of time in slip, 
(iii) the coefficient of correlation has a 
definite effect on the width of the bands of 
uncertainty which appears to be complex for 

lower mean fractions of time in slip but more 
clear at higher fractions with the maximum 
width occurring at an intermediate/higher 
correlation lengths depending on the level of 
uncertainty on the coefficients of friction. 
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