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Abstract

The robust controlled invariance describes the ability to maintain, using suitable control actions, the state of a system in a set
for any value of the disturbances. By considering a class of monotone systems and a multidimensional interval as target set,
we obtain a simple characterization of the robust controlled invariance. We then give a method to stabilize the state into a
robust controlled invariant interval when it is initialized outside of the target set. These results are applied to a model for the
temperature control in an intelligent building equipped with automated underfloor air distribution (UFAD) and implemented
in a small-scale experimental UFAD flat.
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1 Introduction

For autonomous systems, the notion of positively invari-
ant set describes the property that trajectories initial-
ized in a set remain inside this set forever. An extensive
survey on the topic of invariance can be found in [6].
When a control input is used to enforce the invariance,
we talk about controlled invariance, independently intro-
duced in [3] and [19]. An overview of the uses and results
on controlled invariant sets for linear systems is given
in [17]. In this paper, we are interested in the study of
robust controlled invariance where the robustness refers
to bounded external disturbances.

In this paper, we deal with a class of nonlinear sys-
tems satisfying a monotonicity property. Monotone sys-
tems are systems which preserve partial orderings on the
states, see [15] for autonomous systems and [2] for con-
trolled systems. We show that this monotonicity prop-
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erty, associated with simple sets (multidimensional in-
tervals), can be used to obtain a characterization for
the robust controlled invariance, using only the extremal
values of each state, control and disturbance input. We
also show how these robust controlled invariant sets can
be used to synthesize robust stabilizing controllers for
monotone control systems. To the knowledge of the au-
thors, there are very few works on (controlled) invari-
ance of monotone nonlinear systems: invariance of in-
tervals for autonomous monotone systems has been con-
sidered in [1]; methods for approximating the maximal
controlled invariant set for monotone discrete time sys-
tems without disturbance are presented in [11]; a con-
troller for reference tracking in a monotone SISO system
is synthesized under state constraints in [8]; finally, ro-
bust controlled invariance are considered for a class of
monotone systems with planar outputs in [9]. Monotone
systems can be found in numerous fields such as molec-
ular biology [16], chemical networks [5], multi-vehicle
systems [10], or thermal dynamics in buildings, which
is the application considered in this paper. We consider
an underfloor air distribution (UFAD) system based on
a 4-room small-scale experiment of a flat. We apply the
results developed in the paper to that system and report
the results obtained on our experimental platform.

The paper is organized as follows. In Section 2, we intro-
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duce the class of systems we consider. In Section 3, we
establish a certain number of results on robust invari-
ance and robust controlled invariance. In Section 4, we
show how our characterization of robust controlled in-
variant interval allows us to synthesize robust stabilizing
controllers. Finally these methodological results are ap-
plied to the temperature control of a UFAD model and
tested on a small-scale experimental flat in Section 5.

2 Monotone control systems

We consider a class of nonlinear systems given by:

ẋ = f(x, u, w), (1)

where x ∈ Rn, u ∈ Rp and w ∈ Rq denote the state, the
control input and the disturbance input, respectively.
The vector field f is assumed to be locally Lipschitz.
The trajectories of (1) are denoted by Φ(·, x0,u,w)
where Φ(t, x0,u,w) is the state reached at time t ∈ R+

0
from the initial state x0 ∈ Rn, under control and dis-
turbance inputs u : R+

0 → Rp and w : R+
0 → Rq.

When the control inputs of system (1) are gener-
ated by a state-feedback controller u : Rn → Rp,
the dynamics of the closed-loop system is given by
ẋ = fu(x,w) = f(x, u(x), w) and its trajectories are
denoted by Φu(·, x0,w).

2.1 Monotonicity

The subsequent developments of this paper require the
system (1) to satisfy some monotonicity property and
we particularly focus on the subclass of cooperative sys-
tems. For a variable z ∈ {x, u, w} with z ∈ Rm, the par-
tial orderings�z,�z,�z and�z represent the classical
componentwise inequalities≥,≤,> and< on Rm. These
orderings can be extended to functions z, z′ : R+

0 → Rm
where z �z z′ if and only if z(t) �z z′(t) for all t ≥ 0.
Given z and z ∈ Rm with z �z z, [z, z] denotes the in-
terval such that z ∈ [z, z] if and only if z �z z �z z. Fol-
lowing [2], we now introduce the notion of cooperative
system using the partial orderings �x, �u and �w.

Definition 1 (Cooperative system) System (1) is
cooperative if for all x �x x′, u �u u′, w �w w′, it
holds for all t ≥ 0, Φ(t, x,u,w) �x Φ(t, x′,u′,w′).

In a cooperative system, a variable (state or input) af-
fects a state always in a positive way, as shown by the
following characterization which is a generalization of
the Kamke condition to systems with inputs.

Proposition 2 [2] System (1) is cooperative if and only
if for all i ∈ {1, . . . , n}, for all x �x x′ with xi = x′i,
u �u u′, w �w w′, it holds fi(x, u, w) ≥ fi(x′, u′, w′).

In the following, we shall make the following assumption
for system (1).

Assumption 3 System (1) is cooperative with bounded
control and disturbance inputs: u ∈ [u, u] and w ∈ [w,w].

Assumption 3 is crucial for our robustness analysis since
we can focus on studying the behavior of the system only
for the extremal values of the variables: all other behav-
iors are necessarily bounded by the extremal behaviors.

2.2 Additional assumptions

Some of the results presented in the following sections
need additional requirements on system (1). The follow-
ing assumption is necessary for all main results presented
in this paper.

Assumption 4 System (1) satisfies the local control
property: any component of the control input directly
influences a single component of the state in (1).

With this assumption, system (1) can then be written
as ẋi = fi(x, ui, w) for all i ∈ {1, . . . , n}, where ui rep-
resents all input components with a direct influence on
xi (i.e. ui can be a vector, a scalar or the empty set).

We also extend the definition of a static input-state char-
acteristic introduced in [2] to systems with both control
and disturbance inputs. The following assumption is op-
tional as it is only useful for secondary results: the main
results can still be applied if it is not satisfied.

Assumption 5 System (1) has a static input-state
characteristic kx : Rp×Rq → Rn: for each pair (u,w) of
constant control and disturbance inputs, (1) has a unique
globally asymptotically stable equilibrium kx(u,w).

3 Robust invariance for monotone systems

In this section, we present and characterize several no-
tions of robust invariance and focus on finding the asso-
ciated inputs and state intervals. Some of the results of
this section were previously presented in [13] with less
generality.

3.1 Robust invariance

A robust invariant is a set such that if the state of the
system is initialized in this set then it remains in the
set forever, for all values of the control and disturbance
inputs. Restricting this notion to intervals, we have the
following definition.

Definition 6 (Robust invariance) An interval [x, x]
is robust invariant if, for all x0 ∈ [x, x], u ∈ [u, u], w ∈
[w,w], it holds for all t ≥ 0, Φ(t, x0,u,w) ∈ [x, x].
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Thus, if the initial state is in a robust invariant interval,
this interval contains all reachable states from this initial
condition. However, this does not mean that all points
in this interval are reachable. In order to minimize the
quantity of non-reachable states in the interval, one can
look for the minimal robust invariant interval (where
minimality refers to the set inclusion), which is useful in
the subsequent study as we can restrict the analysis of
system (1) to that region.

Theorem 7 Under Assumption 3, [x, x] is robust in-
variant if and only if f(x, u, w) �x 0 and f(x, u, w) �x 0.
In addition, if Assumption 5 holds, then the minimal ro-
bust invariant interval is [kx(u,w), kx(u,w)].

PROOF. [x, x] is robust invariant if and only if for any
element x of the boundary of [x, x], the flow Φ(t, x,u,w)
does not leave the interval. This is equivalent to hav-
ing the vector field at x point inside the interval for all
u ∈ [u, u] and w ∈ [w,w]. By considering the elements
of the boundary x and x, it is clear that the conditions
above are necessary. Let us show that they are also
sufficient under Assumption 3. By Proposition 2, we
have for all i ∈ {1, . . . , n}, u ∈ [u, u], w ∈ [w,w] and
x ∈ [x, x] with xi = xi, fi(x, u, w) ≤ fi(x, u, w) ≤ 0
and for all i ∈ {1, . . . , n}, u ∈ [u, u], w ∈ [w,w] and
x ∈ [x, x] with xi = xi, fi(x, u, w) ≥ fi(x, u, w) ≥ 0.
Therefore, [x, x] is robust invariant. Now, let us as-
sume that Assumption 5 holds. By definition, we have
f(kx(u,w), u, w) = 0 and f(kx(u,w), u, w) = 0. From
what precedes, [kx(u,w), kx(u,w)] is robust invari-
ant. Also, any robust invariant interval would contain
kx(u,w) and kx(u,w) as these are globally asymptoti-
cally stable equilibria for constant inputs u = u, w = w
and u = u and w = w, respectively. Hence, the robust
invariant interval [kx(u,w), kx(u,w)] is minimal with
respect to set inclusion. 2

Note that in the absence of Assumption 5, there may not
exist a minimal robust invariant interval.

3.2 Robust controlled invariance

For the definition of robust controlled invariance, we now
take advantage of the control input u to counteract the
influence of the disturbance w.

Definition 8 (Robust controlled invariance)
Interval [x, x] is robust controlled invariant if there
exists a controller u : [x, x] → [u, u] such that for
all x0 ∈ [x, x], w ∈ [w,w], it holds for all t ≥ 0,
Φu(t, x0,w) ∈ [x, x]. We call u an invariance controller
in [x, x].

The following result characterizes robust controlled in-
variant intervals based on the sign of the vector field f .

Theorem 9 Under Assumptions 3 and 4, [x, x] is robust
controlled invariant if and only if f(x, u, w) �x 0 and
f(x, u, w) �x 0.

PROOF. We prove necessity by contrapositive. As-
sume that there exists i ∈ {1, . . . , n} such that
fi(x, u, w) > 0. By Proposition 2, it follows that
∀u ∈ [u, u], fi(x, u, w) ≥ fi(x, u, w) > 0. Thus no value
of the control input u can make the vector field at x
point inside the interval, making it non-invariant. We
can have a similar reasoning if there exists i ∈ {1, . . . , n}
such that fi(x, u, w) < 0. Let us now prove sufficiency.
By Assumption 4, we have that for all i ∈ {1, . . . , n},
fi(x, u, w) = fi(x, ui, w) with independent inputs
ui ∈ [ui, ui]. Then, by Proposition 2, we have that
for all i ∈ {1, . . . , n}, w ∈ [w,w] and x ∈ [x, x] with
xi = xi, fi(x, ui, w) ≤ fi(x, ui, w) ≤ 0 and for all
i ∈ {1, . . . , n}, w ∈ [w,w] and x ∈ [x, x] with xi = xi,
fi(x, ui, w) ≥ fi(x, ui, w) ≥ 0. Since the ui are indepen-
dent, it follows from the previous inequalities, that for
any state x on the boundary of the interval [x, x], there
exists a value of the control input u(x) ∈ [u, u] such that
the vector field at x points inside the interval for any
value of the disturbance. Using such controller u, we
can always force the flow toward the interior when the
state reaches the boundary of the interval. This implies
the robust controlled invariance of the interval. 2

Theorem 9 states that if the extremal values of the con-
troller can maintain the system in [x, x] for the extremal
values of the disturbances, then the invariance in the in-
terval is satisfied. Let us remark that in the absence of
Assumption 4, the conditions are still necessary but not
sufficient. We now give a characterization of the invari-
ance controllers, where ui denotes the vector of all input
components with a direct influence on the state xi.

Proposition 10 Under Assumptions 3 and 4, let [x, x]
be a robust controlled invariant. A controller u : [x, x]→
[u, u] is an invariance controller in [x, x] if and only if
for all i ∈ {1, . . . , n}:

ui(x) ∈


U i(x) if xi = xi,[
ui, ui

]
if xi ∈ (xi, xi),

U i(x) if xi = xi

(2)

where U i(x) = {ui ∈ [ui, ui]| fi(x, ui, w) ≤ 0 },
U i(x) = {ui ∈ [ui, ui]| fi(x, ui, w) ≥ 0 }.

PROOF. It is necessary and sufficient that for all x on
the boundary of the interval [x, x], the vector field fu of
the closed-loop ẋ = fu(x,w) at x points inside the inter-
val for all values of the disturbance. From Assumption 4,
this is the case if and only if fi(x, ui(x), w) ≤ 0 (respec-
tively fi(x, ui(x), w) ≥ 0) for all w ∈ [w,w] whenever a
state component xi reaches xi (respectively xi). Using
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the monotonicity of fi with respect to the disturbancew,
we obtain the conditions given in the proposition. 2

Since [x, x] is a robust controlled invariant, it is easy
to show from Theorem 9 and Proposition 2 that for all
x ∈ [x, x] such that xi = xi (respectively xi = xi), we

have ui ∈ U i(x) (respectively ui ∈ U i(x)). Then, the
necessary and sufficient conditions given by (2) admit a
very simple realization:

ui(x) = ui + (ui − ui)
xi − xi
xi − xi

. (3)

Let us remark that this controller is affine and decen-
tralized in the sense that the value of input ui(x) only
depends on state component xi. Then ui(x) = ui(x

′)
when xi = x′i and Proposition 2 implies that the closed-
loop system ẋ = fu(x,w) with controller (3) is coopera-
tive. Indeed, for all x �x x′, xi = x′i, w �w w′, it holds
fui(x,w) ≥ fui(x

′, w′). Note that in Proposition 10, no
assumption on the regularity of the controllers is needed
and we can also consider discontinuous realizations of
(2) such as a classical bang-bang controller.

3.3 Robust local stabilizability

In this section we introduce the notion of robust local
stabilizability, which is closely related to the results on
robust controlled invariance presented in Section 3.2.

Definition 11 (Robust local stabilizability) The
state x∗ is robustly locally stabilizable if for all ε > 0,
there exist δ > 0 and u : B(x∗, ε) → [u, u] such that
for all x0 ∈ B(x∗, δ), w ∈ [w,w], it holds for all t ≥ 0
Φu(t, x0,w) ∈ B(x∗, ε), where B(x∗, r) denotes the ball
of radius r centered at x∗.

Definition 11 can be explained as follows: the target state
x∗ is robustly locally stabilizable if for any small ball
around the state x∗, there exists another ball of initial
states such that the system can be robustly controlled
to stay in the first ball. Thus with a minor modification,
the robust local stabilizability of x∗ can be obtained
with small robust controlled invariant intervals around
x∗. This consideration leads to the following result.

Theorem 12 Under Assumptions 3 and 4, x∗ is ro-
bustly locally stabilizable if f(x∗, u, w) �x 0 and
f(x∗, u, w) �x 0. If x∗ is robustly locally stabilizable,
these conditions are satisfied with non-strict inequalities.

PROOF. For the first implication, we choose a ball
B(x∗, ε) of radius ε centered on x∗. Using the continu-
ity of f , there exist two states x, x ∈ B(x∗, ε) with
x �x x

∗ and x �x x
∗ such that f(x, u, w) �x 0 and

f(x, u, w) �x 0. Thus [x, x] ⊆ B(x∗, ε) is a robust con-
trolled invariant interval as in Definition 8 and we then
obtain Definition 11 by choosing δ such that the ball of
initial states B(x∗, δ) ⊆ [x, x]. We prove the second part
of the theorem by contrapositive. We assume that there
exists i ∈ {1, . . . , n} such that fi(x

∗, u, w) > 0. Using
the continuity of f , we can choose ε > 0 such that for
all x ∈ B(x∗, ε), fi(x, u, w) > 0. If we take w = w, then
we can use Proposition 2 to extend this inequality to
any u: for all u ∈ [u, u], x ∈ B(x∗, ε), fi(x, u, w) > 0.
This means that if the state is in B(x∗, ε) and w = w,
then for any value of the control input the trajectory
of the system will leave B(x∗, ε). This implies that x∗

is not robustly locally stabilizable. This results is sim-
ilarly obtained if we initially assume that there exists
i ∈ {1, . . . , n} such that fi(x

∗, u, w) < 0. 2

4 Robust stabilization

In the previous section, we have addressed the problem
of synthesizing a controller in order to maintain the state
of system (1) in a given interval. The next step is to
synthesize a controller that will bring the state in this
interval if the initial state lies outside the interval.

Let [x0, x0] be an interval of initial states and let
[xf , xf ] ⊆ [x0, x0] (with x0 �x xf and xf �x x0) be

the target interval, i.e. the interval where we should
steer the state of (1).

Definition 13 A controller u : [x0, x0] → [u, u] is said
to be a stabilizing controller from [x0, x0] to [xf , xf ], if

for all x0 ∈ [x0, x0], w ∈ [w,w], there exists T ≥ 0, such
that for all t ≥ T , it holds Φu(t, x0,w) ∈ [xf , xf ].

Note that in Definition 13 we are interested in the set
stability in finite time and not in its asymptotic stability.
We aim to synthesize stabilizing controllers under the
following assumption.

Assumption 14 There exist continuously differentiable
functions X : [0, 1] → Rn and X : [0, 1] → Rn, respec-

tively strictly decreasing and increasing with
dX
dλ (λ)�x 0

and dX
dλ (λ)�x 0 for all λ ∈ [0, 1], such that X(0) = xf ,

X(1) = x0, X(0) = xf , X(1) = x0 and for all λ ∈ [0, 1],

f(X(λ), u, w)�x 0, f(X(λ), u, w)�x 0.

4.1 Choice of the functions X and X

Assumption 14 and Theorem 9 imply that for all λ, λ′ ∈
[0, 1], the interval [X(λ), X(λ′)] is a robust controlled
invariant. The main idea of our approach is to use this
parameterized family of robust controlled invariants to
drive the state to [xf , xf ]. Two examples of candidates

for such functions X and X are presented below.
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The first choice consists in simple linear functions:
X(λ) = λx0 + (1 − λ)xf and X(λ) = λx0 + (1 − λ)xf .

The first part of Assumption 14 clearly holds. It remains
to check that the second part holds for all λ ∈ [0, 1]. This
is always the case if the sets {x ∈ Rn| f(x, u, w) �x 0}
and {x ∈ Rn| f(x, u, w) �x 0} are convex. Otherwise,
the condition can easily be verified numerically.

For the second possible choice, let us assume that As-
sumption 5 holds and that there exist u0, uf , u0, uf ∈
[u, u] (with u0 �u uf �u u and u �u uf �u u0) such

that x0 = kx(u0, w), xf = kx(uf , w), x0 = kx(u0, w),

and xf = kx(uf , w). Let

U(λ) = λu0 + (1− λ)uf , X(λ) = kx(U(λ), w)

U(λ) = λu0 + (1− λ)uf , X(λ) = kx(U(λ), w). (4)

We can then show the following result.

Proposition 15 Under Assumptions 3, 4 and 5, let us
assume that:

• f is continuously differentiable, for all x ∈ Rn, u ∈
Rp, w ∈ Rq;

• the matrix of partial derivatives ∂f/∂x is invertible;
• ∂fi/∂ui > 0, for all i ∈ {1, . . . , n}.

Then, the functions defined by (4) satisfy Assumption 14.

PROOF. It is shown in [2] that kx is monotone. It is
thus straightforward to show that X and X are decreas-
ing and increasing, respectively. Moreover, note that
f(X(λ), U(λ), w) = 0. By the implicit function theorem
it follows that X is continuously differentiable and that

∂f

∂x
× dX

dλ
(λ) = −∂f

∂u
× dU

dλ
(λ)

where the partial derivatives are evaluated at X(λ),
U(λ), w. Assumptions 3 and 4 imply that for all
i ∈ {1, . . . , n}

n∑
j=1

∂fi
∂xj

dXj

dλ
(λ) = − ∂fi

∂ui

dU i
dλ

(λ) > 0.

Then, X decreasing and Assumption 3 yields

∂fi
∂xi

dXi

dλ
(λ) > −

∑
j 6=i

∂fi
∂xj

dXj

dλ
(λ) ≥ 0

which implies that
dXi

dλ (λ) 6= 0, hence X is strictly de-

creasing. Similarly, we can show that X is continuously
differentiable and strictly increasing: the first part of As-
sumption 14 thus holds. For the second part, ∂fi/∂ui >
0 and U(λ)�u u give for all λ ∈ [0, 1]:

f(X(λ), u, w)�x f(X(λ), U(λ), w) = 0.

x0

x0

xf

xf

x

x0

x0

xf

xf

x

X(λ(x))

X(λ(x))

X(λ(x))
X(λ(x))

Fig. 1. Smallest elements of the parameterized family of ro-
bust controlled invariants [X(λ), X(λ′)] containing state x.

A similar fact holds for X. 2

4.2 Stabilizing controller synthesis

Let us assume that Assumption 14 holds, and define the
functions λ, λ : [x0, x0]→ [0, 1] given by

λ(x) = min{λ ∈ [0, 1] | X(λ) �x x},
λ(x) = min{λ ∈ [0, 1] | X(λ) �x x}. (5)

In other words, [X(λ(x)), X(λ(x))] is the smallest in-
terval of the parameterized family [X(λ), X(λ′)] con-
taining x, as illustrated in Figure 1. The main idea of
our stabilization approach is to use a controller u that
renders each interval [X(λ(x)), X(λ(x))] invariant and
makes λ(x) and λ(x) act like Lyapunov functions to
show that the state reaches the target interval [xf , xf ] =

[X(0), X(0)] in finite time.

Theorem 16 Under Assumptions 3, 4 and 14, the con-
troller u defined by (5) and

ui(x) = ui + (ui − ui)
Xi(λ(x))− xi

Xi(λ(x))−Xi(λ(x))
. (6)

is a stabilizing controller from [x0, x0] to [xf , xf ].

PROOF. From Assumption 14, there exists α > 0 such
that for all i ∈ {1, . . . , n}, λ ∈ [0, 1],

fi(X(λ), u, w) ≤ −α. (7)

Since X is strictly increasing with dX
dλ (λ)�x 0 and con-

tinuously differentiable, thenX
−1
i is well defined, strictly

increasing and continuously differentiable on [xf i, x0i].
Then there exists β > 0 such that for all i ∈ {1, . . . , n},

∀xi ∈ [xf i, x0i],
d

dxi
X
−1
i (xi) ≥ β. (8)
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Although it is not necessary for the robust stabilization,
to simplify the notations of the proof we assume that

the domain of definition of the function X
−1
i can be ex-

tended to [x0i, x0i] while keeping its properties of con-
tinuous differentiability and monotonicity. This means

that X
−1
i takes negative values for xi < xf i. Then, if we

introduce λi : Rn → [0, 1] such that λi(x) = X
−1
i (xi)

and λ0 a constant function equal to zero, the function
λ can now be written as the maximum of continuously
differentiable functions: λ(x) = maxi∈{0,...,n}(λi(x)).

Let I(x) = {i ∈ {0, . . . , n} | λi(x) = λ(x)}. Let x0 ∈
[x0, x0], w ∈ [w,w], x = Φu(., x0,w), t ∈ R+

0 and i ∈
I(x(t))\{0}. We have

dλi
dt

(x(t)) =
dX
−1
i

dxi
(xi(t)) ∗ fi(x(t), ui(x(t)),w(t)).

Since i ∈ I(x(t)), we have xi(t) = Xi(λ(x(t))) and we
can use (6), Proposition 2 and (7) to obtain:

fi(x(t), ui(x(t)),w(t)) ≤ fi(X(λ(x(t))), ui, w) ≤ −α.

Inequalities (8) then imply that d
dtλi(x(t)) ≤ −αβ, for

all i in I(x(t))\{0}. Since λ(x) = maxi∈{0,...,n}(λi(x)),

where the functions λi are continuously differentiable,
its upper right Dini derivative is given by [7]:

D+λ(x(t)) = max
i∈I(x(t))

dλi
dt

(x(t)).

When λ(x(t)) > 0, the index 0 is not in I(x(t)) and λ is
strictly decreasing: D+λ(x(t)) ≤ −αβ. When λ(x(t)) =
0, we have 0 ∈ I(x(t)) and D+λ(x(t)) = 0, hence if the
state is in the target interval, it remains in it. From [7],
we have for all t ∈ R+

0 :

λ(x(t))− λ(x(0)) =

∫ t

0

D+λ(x(s))ds.

If λ(x(s)) > 0 for all s ∈ [0, t], it follows that λ(x(t))−
λ(x(0)) ≤ −αβt and then t < λ(x(0))/αβ. Hence, there
exists T ∈ [0, λ(x(0))/αβ] such that λ(x(T )) = 0. Simi-
larly, we can show that there exists T ∈ [0, λ(x(0))/αβ]
such that λ(x(T )) = 0. Thus u is a stabilizing controller
with the finite stabilization time T = max(T , T ). 2

We have presented a particular stabilizing controller
given by (6). Even though (6) is based on the affine and
decentralized controller (3), this stabilizing controller
is neither affine nor decentralized. There exist many
other stabilizing controllers: it is for instance sufficient
to choose the control input u(x) such that the functions
λ(x) and λ(x) defined by (5) are strictly decreasing.

Fig. 2. 4-room flat equipped with underfloor air distribution.

Note that the maximal stabilization time 1/αβ may be
tuned by a suitable choice of X and X (see (7) and (8)).

5 Regulation of underfloor air distribution

The UnderFloor Air Distribution (UFAD) is an alterna-
tive solution to traditional ceiling ventilation in build-
ings, offering improvements in terms of both flexibility
and energy consumption [4]. As sketched on Figure 2,
a flat equipped with UFAD has an underfloor plenum
where the air is cooled down and then sent into each
room. The excess of air in the rooms is pushed into the
ceiling plenum and sent back to the underfloor plenum
to be cooled down again. In this section, we illustrate
our previous results on an application of temperature
regulation in a flat equipped with UFAD.

5.1 System description

The system considered is based on a 4-room small-scale
experiment of a flat corresponding to Figure 2. Our fo-
cus is the temperature regulation in each room. This is
done by acting on the speed of the underfloor fans send-
ing cold air into each room. The system is subject to
two types of disturbances. The discrete disturbances are
binary variables describing the state of heat sources in
each room and of doors between the rooms. The con-
tinuous disturbances are all other exogenous inputs: the
temperatures of the outside, ceiling plenum and under-
floor plenum.

Assuming the uniformity of the temperature in each
room, we introduce a 0-dimensional model of the tem-
perature variations, meaning that the variations along
the spatial dimensions are neglected. This model is de-
rived from the energy and mass conservation equations
in each room i:

dTi
dt

=
∑
j∈N∗

i

ai,j(Tj − Ti) + δsibi(T
4
si − T

4
i ) (9)

− ciui(Tu − Ti) +
∑
j∈Ni

δdijdi,j max(0, Tj − Ti)3/2

where all constant parameters a, b, c, d are positive, Ni
is the set of indices of rooms adjacent to room i and

6



Fig. 3. Room temperature (blue circles), controlled ventilation (−u ∈ [0, 1], green crosses), stabilization intervals (dashed red),
target interval (horizontal plain lines) and switching times (vertical lines: plain when related to the room).

N ∗i = {Ni, u, c, o} represents all spaces in contact with
room i through a wall (neighbor rooms, underfloor, ceil-
ing and outside). The four heat transfers described by (9)
are: the thermal conduction through the walls of room
i, the radiation from a heat source (a lamp in our ap-
plication) of temperature Tsi and binary state δsi , the
controlled ventilation ui ∈ [−1, 0] sending cold air from
the underfloor (Tu < Ti) and the air flow going through
a door when it is open (δdij = 1). A detailed description
of the hypotheses used to obtain (9) is given in [13,18].

For the 4-room flat in Figure 2, the dynamics of the whole
system are written similarly to (1): Ṫ = f(T, u, w, δ),
where the four-dimensional vector field f follows (9) on
each of its components and depends on the state T ∈ R4,
the control input u ∈ R4, the exogenous input w =
(Tu, Tc, To) considered as a disturbance to our system
and the discrete disturbance δ ∈ R8 containing one heat
source per room and four doors. It is shown in [13,14,12]
that this model satisfies Assumptions 3, 4 and 5.

5.2 Control application

In this section, we illustrate the robust stabilization (Sec-
tion 4) and the robust controlled invariance (Section 3.2)
in a control experiment on the small-scale flat sketched
in Figure 2. An identification procedure was conducted
in [14] to adapt the theoretical model (9) to the mea-
sured behavior of the experiment. Due to the large num-
ber of parameters influencing the system, we omit most
numerical details of this experiment and focus on the
method and qualitative comments. More technical de-
tails on such experiments can be found in [14].

The inequalities in Theorem 9 define two subsets of the
state space that contain the extrema of an interval which
is robust controlled invariant. Its lower bound needs to
be in W = {T ∈ R4| f(T, u, w, δ) �x 0} and its upper

bound in C = {T ∈ R4| f(T, u, w, δ) �x 0}. Taking into
consideration the forecast on the exogenous tempera-
turesw, the chosen robust controlled invariant interval is
such that Tf = (24, 26, 26, 27) and Tf = (21, 21, 21, 21).

For robust stabilization, we need to find two functions T
and T satisfying Assumption 14. We choose the first so-
lution presented in Section 4.1: the linear functions be-
tween the extrema of the target interval and those of the
minimal robust invariant interval (T (1) = kx(u,w, δ)
and T (1) = kx(u,w, δ)) from Theorem 7.

The control strategy is implemented with the stabiliz-
ing controller described by (5) and (6). When the state
reaches the target interval, this controller corresponds
to the decentralized affine controller described by (3).
The switching scenario of the disturbances is as follows:
t = 0 min, lamps 2 and 3 on; t = 3 min, doors 1 − 2
and 2− 3 open; t = 6 min, lamp 4 on, door 3− 4 open;
t = 12 min, lamp 3 off, doors 2 − 3 and 3 − 4 closed;
t = 18 min, all lamps off, all doors closed; t = 34 min,
all lamps on, all doors open.

The results from this experiment are displayed in Fig-
ure 3. The vertical lines represent the switching times
of the discrete disturbances (plain when related to the
room, dashed otherwise). The blue curves with circles
correspond to the measured temperature in each room.
The horizontal red lines are the boundary of the tar-
get interval and the dashed red curves are the intervals
used in the robust stabilization. If we refer to the no-
tations of the stabilizing controller (6), these red curves
correspond to the boundaries (T i(λ(T )) and T i(λ(T )))
of the family of robust controlled invariant intervals.
The temperatures are measured in Celsius with the left
axis. The right axis refers to the controlled ventilation
(−ui ∈ [0, 1]) displayed as the green curve with crosses.

We can see on Figure 3 that the stabilization is achieved
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after 6 minutes: when the stabilization interval coincides
with the target interval (in this example, it is the case
from the beginning for the lower bound). We can note
that a control input saturates only when the state vari-
able of the corresponding room is equal to one of its lim-
its (dashed curves): room 1 at first, then room 3 until
the stabilization is achieved. After the stabilization, the
controller is able to maintain all state variables in their
respective intervals even in the extremal cases of the dis-
crete disturbances (last two steps), which is consistent
with the choice of a robust controlled invariant interval.

6 Conclusion

In this paper we give a constructive approach of the ro-
bust controlled invariance for an interval, which is the
ability to control a system to maintain its state in this
interval for any value of the disturbances. We then intro-
duce a method to robustly stabilize the system into such
an interval for any initial condition. These results apply
to a class of monotone systems with local control and
are then tested for the temperature control in a small-
scale experimental flat equipped with underfloor air dis-
tribution. This monotonicity property is not restricted
to buildings or temperature control and can be found
in many other applications, such as molecular biology,
chemical reactions or multi-vehicle systems.

The focus of this paper is on the ability to control (either
for invariance or stabilization in an interval) and the
results presented above leave a large degree of freedom
in the choice of the feedback control strategy to meet the
performance specifications of the application: the only
requirement on the controller is to use its extrema when
the state reaches the boundary of the interval. Therefore
the next step of our work, focused on UFAD regulation,
is to develop control strategies optimizing comfort and
energy consumption while guaranteeing the robustness
properties.
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