Ying Tang 
email: ying.tang@univ-lorraine.fr.
  
Christophe Prieur 
email: christophe.prieur@gipsa-lab.fr.
  
Antoine Girard 
email: antoine.girard@l2s.centralesupelec.fr
  
Singular perturbation approximation of linear hyperbolic systems of balance laws

Keywords: Linear hyperbolic system, Balance law, Singular perturbation method, Lyapunov technique

This paper deals with a class of linear hyperbolic systems of balance laws with multiple time scales. The scale of time constants is modeled by a perturbation parameter. This parameter is introduced in both dynamics and boundary conditions. The solution of the full system is approximated by that of the reduced subsystem when the perturbation parameter is small enough. Lyapunov technique is used to prove it. The main result is illustrated by an academic example. Moreover, the boundary control synthesis to a gas flow transport model is shown based on singular perturbation approach.

I. INTRODUCTION

Singular perturbation techniques were introduced in control of finite dimensional systems in late 1960s and became a powerful tool for control design [START_REF] Kokotović | Singular perturbations of a class of time optimal controls[END_REF], [START_REF] Kokotović | Singular perturbation and order reduction in control theory-an overview[END_REF], [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF], [START_REF] Kokotović | Singular perturbation of linear regulators: basic theorems[END_REF]. A class of infinite dimensional singularly perturbed hyperbolic systems has been studied in [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF], [START_REF] Tang | Stability analysis and Tikhonov approximation for linear singularly perturbed hyperbolic systems[END_REF]. Many distributed physical systems can be described by such systems, for instance, gas flow in pipelines [START_REF] Dick | Classical solutions and feedback stabilization for the gas flow in a sequence of pipes[END_REF], [START_REF] Gugat | Existence of classical solutions and feedback stabilization for the flow in gas networks[END_REF], hydraulic networks [START_REF] Bastin | Using hyperbolic systems of balance laws for modeling, control and stability analysis of physical networks[END_REF], electrical transmission networks [START_REF] Gugat | Boundary feedback stabilization of the telegraph equation: Decay rates for vanishing damping term[END_REF] or road traffic networks [START_REF] Haut | A second order model of road junctions in fluid models of traffic networks[END_REF]. This paper focuses on a class of linear hyperbolic systems of balance laws where the perturbation parameter is introduced in both dynamics and boundary conditions. The first contribution of this paper is the Tikhonov approximation of linear hyperbolic system with source term. More precisely, the solution of the full system can be approximated by that of the reduced subsystem when the perturbation parameter is sufficiently small. This is proved by a Lyapunov function. To the best of our knowledge, this is the first paper dealing with such systems. An academic example is used to illustrate the main result. The second contribution is the boundary control synthesis for application to a gas transport model where the slow dynamics is stabilized in finite time. This system is written as a singularly perturbed model where the transport velocities depend on that is different to our previous work [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF]. In that work, a class of linear hyperbolic system of conservation laws has been studied and a different approach has been used to model the gas transport system where the transport velocities are constant values.

The paper is organized as follows. Section II presents the full system and the reduced subsystem under consideration. The Tikhonov approximation is given in Section III. Section IV shows the statement of the proof of the Tikhonov theorem. In Section V we first use an academic example to illustrate the general main result. Then, a physical application to a gas flow transport model is shown in the same section. The conclusions are given in Section VI. Due to space limitation, some proofs have been omitted and given in [START_REF] Tang | Singular perturbation approximation of linear hyperbolic systems of balance laws[END_REF].

Notation. Given a matrix A ∈ R m×m , A -1 and A represent the inverse and the transpose matrix of A respectively. The minimum and maximum eigenvalues of the matrix A are denoted by λ(A) and λ(A). For a positive integer n, In is the identity matrix in

R n×n . | • | denotes the usual Euclidean norm in R n and • is associated with the matrix norm. • L 2 denotes the associated norm in L 2 (0, 1) space, defined by f L 2 = 1 0 |f (x)| 2 dx for all functions f ∈ L 2 (0, 1). Similarly, The associated norm in H 2 (0, 1) space is denoted by • H 2 , defined for all functions f ∈ H 2 (0, 1), by f H 2 = 1 0 |f (x)| 2 + |f (x)| 2 + |f (x)| 2 dx.
According to [START_REF] Coron | Dissipative boundary conditions for one-dimensional nonlinear hyperbolic systems[END_REF], for all matrices G ∈ R n×n , ρ1(G) = inf{ ∆G∆ -1 , ∆ ∈ Dn,+}, where Dn,+ denotes the set of diagonal positive matrices in R n×n .

II. SYSTEM DESCRIPTION

Consider the following linear hyperbolic system of balance laws

y t (x, t) + Λ 1 ( )y x (x, t) = a( )y(x, t) + b( )z(x, t), (1a) z t (x, t) + Λ 2 ( )z x (x, t) = c( )y(x, t) + d( )z(x, t), (1b) where x ∈ [0, 1], t ∈ [0, +∞). Λ 1 ( ) is a diagonal matrix in R n×n such that Λ 1 ( ) = diag(λ 1 ( ), • • • , λ n ( ))
, where the i first elements are negative and the n -i last elements are positive. Similarly Λ

2 ( ) is a diagonal matrix in R m×m , such that Λ 2 ( ) = diag(λ 1 ( ), • • • , λ m ( ))
, where the l first elements are negative and the m -l last elements are positive.

y = y - y + where y -: [0, 1]×[0, +∞) → R i and y + : [0, 1]× [0, +∞) → R n-i . z = z - z + where z -: [0, 1] × [0, +∞) → R l and z + : [0, 1] × [0, +∞) → R m-l . 0 < 1.
The matrices a( ), b( ), c( ) and d( ) are in appropriate dimensions and vanish at = 0. The boundary condition under consideration is given by

  y -(1,t) y + (0,t) z -(1,t) z + (0,t)   = G( )   y -(0,t) y + (1,t) z -(0,t) z + (1,t)   , t ∈ [0, +∞), (2) 
where G( ) = G11( ) G12( )

G21( ) G22( ) is a matrix in R (n+m)×(n+m) with the matrices G 11 ( ) in R n×n , G 12 ( ) in R n×m , G 21 ( ) in R m×n , G 22 ( ) in R m×m . Given two functions y 0 : [0, 1] → R n and z 0 : [0, 1] → R m , the initial condition is y(x,0) z(x,0) = y 0 (x) z 0 (x) , x ∈ [0, 1]. (3) 
Replacing y(x, t) by y -(1-x,t)

y + (x,t)
and z(x, t) by z -(1-x,t)

z + (x,t)
, it may be assumed, without loss of generality, that the matrices Λ 1 ( ) and Λ 2 ( ) are diagonal positive. The full system (1) can then be rewritten under the form

y t (x, t) + Λ 1 ( )y x (x, t) = a + ( )y(x, t) + a -( )y(1 -x, t) +b + ( )z(x, t) + b -( )z(1 -x, t), (4a) z t (x, t) + Λ 2 ( )z x (x, t) = c + ( )y(x, t) + c -( )y(1 -x, t) +d + ( )z(x, t) + d -( )z(1 -x, t). ( 4b 
)
Then the boundary condition (2) becomes

y(0,t) z(0,t) = G( ) y(1,t) z(1,t) , t ∈ [0, +∞). (5) 
Adapting the approach in [START_REF] Saberi | Quadratic-type Lyapunov functions for singularly perturbed systems[END_REF], [START_REF] Khalil | Nonlinear systems[END_REF] to infinite dimensional systems, the reduced subsystem for (4) and ( 5) is formally computed as follows. By setting = 0 in (4b), we get z x (x, t) = 0, which implies z(., t) = z(1, t). Substituting it into the second line of the boundary condition [START_REF] Gugat | Boundary feedback stabilization of the telegraph equation: Decay rates for vanishing damping term[END_REF] and assuming (I m -G 22 (0)) invertible, we obtain z(., t) = (I m -G 22 (0)) -1 G 21 (0)y(1, t) and y(0, t) = (G 11 (0)+G 12 (0)(I m -G 22 (0)) -1 G 21 (0))y(1, t). The reduced subsystem is thus written as

ȳt (x, t) + Λ 1 (0)ȳ x (x, t) = 0, x ∈ [0, 1], t ∈ [0, +∞), (6) 
with the boundary condition

ȳ(0, t) = G r ȳ(1, t), t ∈ [0, +∞), (7) 
where

G r = G 11 (0) + G 12 (0)(I m -G 22 (0)) -1 G 21 (0),
whereas the initial condition is given as the same as for the full system

ȳ(x, 0) = ȳ0 (x) = y 0 (x), x ∈ [0, 1]. (8) 
The compatibility conditions for the existence of solutions of ( 6)-( 8) in H 2 -norm are given as follows

ȳ0 (0) = G r ȳ0 (1), ȳ0 x (0) = Λ -1 1 (0)G r Λ 1 (0)ȳ 0 x (1). (9) 
Remark 1. Compared with [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF], the transport velocities of the full system in the present work depend on as well as the boundary conditions. Moreover, we consider an additional source term which is also dependent on . Due to the presence of in both dynamics and boundary conditions, the full system becomes more complex. The assumptions on the continuity for such terms with respect to should be used to ensure that the Tikhonov approximation is valid for sufficiently small. The proof of the main result is then more sophisticated and is a non trivial extension.

•

III. TIKHONOV APPROXIMATION OF LINEAR HYPERBOLIC SYSTEMS OF BALANCE LAWS

In this section, the approximation of the solutions to the full system by that to the reduced subsystem is established by Lyapunov techniques. First let us consider the following assumptions. Assumption 1. The functions Λ 1 and Λ 2 are Lipschitz continuous at 0, that is there exist positive constants R 1 and ¯ such that for all 0 < < ¯ ,

Λ 1 ( ) -Λ 1 (0) R 1 , Λ 2 ( ) -Λ 2 (0) R 1 .
Assumption 2. Let ¯ as in Assumption 1, the functions a, b, c and d are Lipschitz continuous at 0, that is there exits a positive constant R 2 , such that for all 0 < < ¯ ,

a( ) R 2 , b( ) R 2 , c( ) R 2 , d( ) R 2 .
Assumption 3. Let ¯ as in Assumption 1, the functions G 11 , G 12 , G 21 and G 22 are Lipschitz continuous at 0, that is there exists a positive value R 3 , such that for all 0 < < ¯ ,

G 11 ( ) -G 11 (0) R 3 , G 12 ( ) -G 12 (0) R 3 , G 21 ( ) -G 21 (0) R 3 , G 22 ( ) -G 22 (0) R 3 .
We are ready to state the main result in the following theorem. Theorem 1. Consider the linear hyperbolic system (4)-( 5), under Assumptions 1-3, if ρ 1 (G(0)) < 1, there exist positive values C 1 , C 2 , θ, * such that for all 0 < < * , for any initial condition y 0 ∈ H 2 (0, 1) satisfying compatibility conditions ( 9) with ȳ0 = y 0 , and z 0 ∈ L 2 (0, 1), it holds for all t 0 y(., t) -ȳ(., t) 2

L 2 C 1 e -θt ȳ0 2 H 2 + z 0 -(I m -G 22 (0)) -1 G 21 (0)ȳ 0 (1) 2 L 2 , +∞ 0 z(., t) -(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) 2 L 2 dt C 2 ȳ0 2 H 2 + z 0 -(I m -G 22 (0)) -1 G 21 (0)ȳ 0 (1) 2 L 2 . Corollary 1. If ρ 1 (G(0)) < 1,
under Assumptions 1-3, the full system (4) with the boundary condition ( 5) is exponentially stable in L 2 -norm for all 0 < < * .

The proofs of Theorem 1 and Corollary 1 are given in the following section.

IV. PROOF OF THEOREM 1 AND COROLLARY 1

Proof of Theorem 1: In the following we will use three steps to prove Theorem 1.

Step 1) Let us perform the following change of variables,

η(x, t) = y(x, t) -ȳ(x, t), (10a) δ(x, t) = z(x, t) -(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t), (10b)
where η stands for the error between the slow dynamics y in (4) and ȳ in ( 6), and δ is the error between the fast dynamics z in (4) and its equilibrium point. In all the following, it is assumed ∈ (0, ¯ ). Due to [START_REF] Kokotović | Singular perturbation and order reduction in control theory-an overview[END_REF] and (6), the system (4) can be rewritten in the new variables (η, δ) as follows

η t (x, t) + Λ 1 ( )η x (x, t) = a + ( )η(x, t) + a -( )η(1 -x, t) +b + ( )δ(x, t) + b -( )δ(1 -x, t) + a + ( )ȳ(x, t) +a -( )ȳ(1 -x, t) -(Λ 1 ( ) -Λ 1 (0))ȳ x (x, t) +b( )(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t), (11a) δ t (x, t) + Λ 2 ( )δ x (x, t) = c + ( )η(x, t) + c -( )η(1 -x, t) +d + ( )δ(x, t) + d -( )δ(1 -x, t) +c + ( )ȳ(x, t) + c -( )ȳ(1 -x, t) +d( )(I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) + (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0)ȳ x (1, t). ( 11b 
)
Due to ( 5) and ( 7), the boundary condition for system [START_REF] Kokotović | Singular perturbation method for reducing the model order in optimal control design[END_REF] is computed as follows

η(0,t) δ(0,t) = G11( ) G12( ) G21( ) G22( ) η(1,t) δ(1,t) + G d1 ( ) G d2 ( ) ȳ(1, t), (12) 
where

G d1 ( ) = (G 11 ( )-G 11 (0))+(G 12 ( )-G 12 (0))(I m - G 22 (0)) -1 G 21 (0) and G d2 ( ) = (G 21 ( ) -G 21 (0)) + (G 22 ( ) -G 22 (0))(I m -G 22 (0)) -1 G 21 (0). Remark 2. Due to Assumption 3, there exists a positive constant r 1 , such that G d1 ( ) r 1 , G d2 ( ) r 1 . •
The candidate Lyapunov function for system (11)-( 12) is

V = V 1 + V 2 with V 1 = 1 0 e -µx η (x, t)Qη(x, t) dx and V 2 =
1 0 e -µx δ (x, t)P δ(x, t) dx, where µ > 0, Q a positive diagonal matrix in R n×n and P a positive diagonal matrix in R m×m . Let us compute the time derivative of V 1 along (11a), we get V1 = 1 0 e -µx (2η (x, t)Qη t (x, t)) dx. Using the expression in (11a) to replace η t (x, t) and performing an integration by parts for the integral 2

1 0 e -µx η (x, t)QΛ 1 ( )η x (x, t)dx yield V1 = -[e -µx η (x)QΛ 1 ( )η(x)] x=1 x=0 - 1 0 e -µx η (x, t) (µQΛ 1 ( ) -2Qa + ( )) η(x, t) dx +2 1 0 e -µx η (x, t)Qa -( ) η(1 -x, t) dx +2 1 0 e -µx η (x, t)Qb + ( )δ(x, t) dx +2 1 0 e -µx η (x, t)Qb -( )δ(1 -x, t) dx +2 1 0 e -µx η (x, t)Qa + ( )ȳ(x, t) dx +2 1 0 e -µx η (x, t)Qa -( )ȳ(1 -x, t) dx -2 1 0 e -µx η (x, t)Q (Λ 1 ( ) -Λ 1 (0)) ȳx (x, t) dx +2 1 0 e -µx η (x, t)Qb( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx.
Similarly, we compute the time derivative of V 2 along (11b

) yield V2 = -[e -µx δ (x)P Λ 2 ( )δ(x)] x=1 x=0 - 1 0 e -µx δ (x, t) (µP Λ 2 ( ) -2P d + ( )) δ(x, t) dx +2 1 0 e -µx δ (x, t)P d -( )δ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c + ( )η(x, t) dx +2 1 0 e -µx δ (x, t)P c -( )η(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c + ( )ȳ(x, t) dx +2 1 0 e -µx δ (x, t)P c -( )ȳ(1 -x, t) dx +2 1 0 e -µx δ P d( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx +2 1 0 e -µx δ P (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0)ȳ x (1, t) dx.
Combining V1 and V2 , we obtain V (η, δ, ) = V1 + V2 = T 1 + T 2 + T 3 , with:

T 1 = -e -µx η (x)QΛ 1 ( )η(x) + δ (x)P Λ 2 ( )δ(x) x=1 x=0 , T 2 = - 1 0 e -µx η (x, t) (µQΛ 1 ( ) -2Qa + ( )) η(x, t) dx - 1 0 e -µx δ (x, t) (µP Λ 2 ( ) -2P d + ( )) δ(x, t) dx +2 1 0 e -µx η (x, t) Qb + ( ) + c + ( )P δ(x, t) dx +2 1 0 e -µx η (x, t)Qa -( ) η(1 -x, t) dx +2 1 0 e -µx η (x, t)Qb -( )δ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P d -( )δ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c -( )η(1 -x, t) dx, T 3 = -2 1 0 e -µx η (x, t)Q (Λ 1 ( ) -Λ 1 (0)) ȳx (x, t) dx +2 1 0 e -µx η (x, t)Qb( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx +2 1 0 e -µx η (x, t)Qa + ( )ȳ(x, t) dx +2 1 0 e -µx δ (x, t)P c + ( )ȳ(x, t) dx +2 1 0 e -µx η (x, t)Qa -( )ȳ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P c -( )ȳ(1 -x, t) dx +2 1 0 e -µx δ (x, t)P d( ) (I m -G 22 (0)) -1 G 21 (0)ȳ(1, t) dx +2 1 0 e -µx δ (x, t)P (I m -G 22 (0)) -1 G 21 (0)Λ 1 (0)ȳ x (1, t) dx.
Step 2) To estimate the terms T 1 -T 3 , let us state the following lemmas. The stability of the reduced subsystem in H 2 -norm is given in Lemma 1. Lemma 1. [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF] Consider the reduced subsystem ( 6)-( 8), if ρ 1 (G(0)) < 1, there exist C r > 0, such that for any initial condition ȳ0 ∈ H 2 (0, 1) satisfying the compatibility conditions ( 9) and for all t 0, ȳ(., t) 2

H 2 C r e -µλ(Λ1(0))t ȳ0 2 H 2 . ( 13 
)
Lemma 2. If ρ 1 (G(0)) < 1, under Assumptions 1 and 3, there exist positive values C T1 and * 1 , such that for all ∈ (0, * 1 ) and t 0,

T 1 C T1 e -µλ(Λ1(0))t ȳ0 2 H 2 . ( 14 
)
Lemma 3. Under Assumptions 1 and 2, there exist positive values C T2 and * 2 , such that for all ∈ (0, * 2 ),

T 2 -C T2 1 0 e -µx (η Qη + δ P δ) dx. ( 15 
)
Lemma 4. Under Assumptions 1 and 2, there exist positive constants C T31 , C T32 and C T33 , such that for all positive value and for all t 0,

T 3 C T31 1 0 e -µx |η| 2 dx + C T32 1 0 e -µx |δ| 2 dx + C T33 e -µλ(Λ1(0))t ȳ0 2 H 2 . ( 16 
)
The proofs of Lemmas 2-4 are collected in [START_REF] Tang | Singular perturbation approximation of linear hyperbolic systems of balance laws[END_REF].

Remark 3. The choice of matrices P , Q and positive value µ is constrained in the proof of Lemma 2 to satisfy a matrix inequality which is solvable as soon as ρ 1 (G(0)) < 1.

•

Step 3) Using Lemmas 2-4, we obtain

V (η, δ, ) -(C T2 -C v )
1 0 e -µx (η Qη + δ P δ) dx

+ (C T1 + C T33 )e -µλ(Λ1(0))t ȳ0 2 H 2 , (17) 
where

C v = max C T 31 λ(Q) , C T 32 λ(P ) . Let * 3 = C T 2 2Cv , * 1 in Lemma 2, * 2 in Lemma 3 and * = min( * 1 , * 2 , * 3 
), there exists > 0 such that for all ∈ (0, * ), V (η, δ, ) -V (η, δ, ) + (C T1 + C T33 )e -µλ(Λ1(0))t ȳ0 2 H 2 . In the above inequality, the term ȳ0 2 H 2 is seen as a disturbance and it follows that

V (η, δ, ) e -t V (η 0 , δ 0 , ) + (C T1 + C T33 )e -t e ( -µλ(Λ1(0)))t -1 -µλ(Λ 1 (0)) ȳ0 2 H 2 . ( 18 
)
Since < C T2 , we may let < µλ(Λ 1 (0)), thus (18) can be rewritten as follows V (η, δ, )

e -t V (η 0 , δ 0 , ) + M e -t ȳ0 2 H 2 . Since V (η, δ, ) is lower and upper estimated by e -µ λ(Q) η 2 L 2 + e -µ λ(P ) δ 2 L 2 V (η, δ, ) Q η 2 L 2 + P δ 2 L 2 , it follows η(., t) 2 L 2 e µ e -t λ(Q) V (η 0 , δ 0 , ) + M e µ e -t λ(Q) ȳ0 2 H 2 .
Due to the initial condition y 0 = ȳ0 i.e. η 0 = 0, the following inequality holds η(., t) 2

L 2 P e µ e -t λ(Q) δ 0 L 2 + M e µ e -t λ(Q) ȳ0 2 H 2 .
This proves the first inequality in Theorem 1.

Noting that for < * , the term

-(C T2 - C v )
1 0 e -µx η Qηdx in the right hand side of ( 17) is always negative, then V (η, δ, ) is rewritten as follows V (η, δ, ) -1 0 e -µx δ P δ dx + (C T1 + C T33 )e -µλ(Λ1(0))t ȳ0 2 H 2 . Performing an integration of both sides from 0 to +∞, it follows

+∞ 0 δ(., t) 2 L 2 dt e µ λ(P ) V (η 0 , δ 0 , ) -lim t→+∞ V (η, δ, ) + (C T1 + C T33 ) ȳ0 2 H 2 +∞ 0 e -µλ(Λ1(0))t dt , since lim t→+∞ V (η, δ, ) = 0 and η 0 = 0, it follows +∞ 0 δ(., t) 2 L 2 dt e µ P λ(P ) δ 0 L 2 + e µ (C T1 + C T33 ) µλ(P )λ(Λ 1 (0)) ȳ0 2 H 2 .
This proves the second inequality in Theorem 1 and concludes the proof of this theorem.

Proof of Corollary 1: Due to ( 13), the reduced subsystem is exponentially stable in H 2 -norm. The error system (11)-( 12) is exponentially stable in L 2 -norm according to [START_REF] Tang | Boundary control synthesis for hyperbolic systems: a singular perturbation approach[END_REF]. By [START_REF] Kokotović | Singular perturbation and order reduction in control theory-an overview[END_REF] we prove that the full system is exponentially stable in L 2 -norm.

V. NUMERICAL RESULTS

A. Academic example

We consider the following academic example which illustrates the full generality of our result. Consider system (4) with 05 andd( ) = 0.4 , which satisfies Assumptions 1 and 2. The boundary condition ( 5) is given by G( ) = 0.5+ 1+ 0.5+ -0.5+ , thus Assumption 3 holds. Considering a diagonal positive matrix ∆ = ( 0.5 0 0 0.7 ), it holds ∆G(0)∆ -1 < 1. Thus ρ 1 (G(0)) < 1 is satisfied. Theorem 1 applies. To numerically compute the solutions of this example, we discretize it by using a two-step variant of the Lax-Wendroff method (see [START_REF] Shampine | Solving hyperbolic PDEs in Matlab[END_REF] and [START_REF] Shampine | Two-step Lax-Friedrichs method[END_REF]). Precisely, the space domain [0,1] is divided into 100 intervals of identical length, the final time is chosen as 30. We take a time-step dt = (0.9 /| -1|)dx that satisfies the CFL condition and select the initial conditions y 0 (x) = 1-cos(4πx), z 0 (x) = sin(2πx), for all x ∈ [0, 1], such that the compatibility condition is satisfied. The evolutions of η(., t = 3) Remark 4. The simulation cost is lower when we simulate the reduced subsystem with a time-step which does not depend on and satisfies the CFL condition λ(Λ 1 (0))dt < dx than simulating the full system by using a smaller time-step satisfying CFL condition λ(Λ 2 ( ))dt < dx.

Λ 1 ( ) = 1 + , Λ 2 ( ) = -1, a( ) = 0.1 , b( ) = 0.2 , c( ) = 0.
• B. Physical application a) System description: The gas dynamics through a constant cross section tube, where all the friction losses and heat transfers are neglected, can be modeled by the following Euler equations as considered in [START_REF] Winterbone | Theory of Engine Manifold Design: Wave Action Methods for IC Engines[END_REF]Chapter 2], by considering a tube of length equals to 1.

u ρ p t + u 0 1 ρ ρ u 0 a 2 ρ 0 u u ρ p x = 0, (19) 
where u = u(x, t) stands for the gas velocity at location x in [0, 1] and at time t; ρ = ρ(x, t) represents the gas density; p = p(x, t) is the gas pressure; a is sound speed in ideal gas. System (19) admits a constant in space steadystate (u * , ρ * , p * ). The deviations of the state (u, ρ, p) around the steady-state are defined as u = u -u * , ρ = ρ -ρ * , p = p -p * . Then the linearization of system [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF] at this equilibrium is given by

u ρ p t + u * 0 1 ρ * ρ * u * 0 a * 2 ρ * 0 u * u ρ p x = 0. (20) 
Performing a change of variable in Riemann coordinates and assuming that the propagation speed of gas is much slower than the sound speed, i.e. u << a, we define = u * a * , then (20) can be written as a singularly perturbed system

M1 M2 M3 t + u * 0 0 0 u * ( -1) 0 0 0 u * (1+ ) M1 M2 M3 x = 0, (21) 
with

M = M1 M2 M3 = 0 1 1 1 -ρ * a * ρ * a * 0 -a * ρ * a * ρ * -1 u ρ p .
b) Boundary conditions: The setup is provided with fans which are located at the two extremities of the tube. The rotation speed is considered as the control action. We consider the following three boundary conditions for system [START_REF] Tang | Tikhonov theorem for linear hyperbolic systems[END_REF]. 1. The first boundary condition describes the operation of the inflow fan (see the fan specification map in [START_REF] Witrant | HynX team. Air flow modelling in deep wells: application to mining ventilation[END_REF]), u(0, t)s = σc 0 (t)(p(0, t) -p in ),

where s stands for the tube's constant cross section, σ is a constant coefficient, the control input is denoted by c 0 (t) and p in is a constant pressure before the inflow fan.

2. Similarly, the second boundary condition is given by the outflow fan,

u(1, t)s = σc 1 (t)(p out -p(1, t)), (23) 
the control input is denoted by c 1 (t) and p out is a constant pressure behind the outflow fan.

3. The third boundary condition is a physical constraint. Precisely, the gas pressure at the inflow fan is close to the atmospheric pressure (see [START_REF] Castillo | Contrôle de température dans un flux de Poiseuille[END_REF]),

ρ(0, t) = ρ (24)
where ρ is constant. The boundary conditions for system [START_REF] Winterbone | Theory of Engine Manifold Design: Wave Action Methods for IC Engines[END_REF] are obtained by linearizing the above three boundary conditions,

u(0, t)s = σ[c 0 (t)(p * -p in ) + c * 0 p(0, t)], (25) u(1, t)s = σ[c 1 (t)(p out -p * ) -c * 1 p(1, t)], (26) ρ(0, t) = 0, (27) 
where c * 0 , c * 1 are the constant control actions at the steady-state (u * , ρ * , p * ). Proposition 1. For any values K 23 and K 32 in R, such that K 23 = 1 and K 32 = 1, defining control actions by

c 0 (t) = c * 0 + s(1+K32) σa * ρ * (K32-1) -c * 0 p * -p in p(0, t), c 1 (t)=c * 1 + s(a * (1+K23)-2ρ * K21) σa * 2 ρ * (1-K23) + c * 1 p out -p * p(1, t) + 2sK21 σ(1-K23) p out -p * ρ(1, t),
the following conditions are equivalent to (25)-( 27),

M1(0,t) M2(1,t) M3(0,t) = 0 K12 0 K21 0 K23 0 K32 0 M1(1,t) M2(0,t) M3(1,t) , (28) 
where

K 12 = f (K 32 ) = ρ * (1-K32) a * .
The interest of the feedback laws c 0 (t) and c 1 (t) leads in the equivalent form (28) in Riemann coordinates, for which the stability analysis could be studied by applying our main result. Checking the assumptions of Theorem 1 allows to compute suitable tuning parameters K 21 , K 23 and K 32 . Moreover note that the controllers c 0 (t) and c 1 (t) do not depend on all the state (u, ρ, p) , but depend on some boundary values, namely p(0, t), p(1, t) and ρ(1, t). The proof of Proposition 1 is available in [START_REF] Tang | Singular perturbation approximation of linear hyperbolic systems of balance laws[END_REF].

C. Boundary condition synthesis based on singular perturbation method

According to Section II, the reduced subsystem for gas transport system is computed as follows,

M1t + u * M1x = 0, (29) 
with the boundary condition

M1 (0, t) = K r M1 (1, t), (30) 
where K r = ρ * (1-K32)K21 a * (1-K23K32) . Due to Proposition 1 in [START_REF] Tang | Boundary control synthesis for hyperbolic systems: a singular perturbation approach[END_REF], the reduced subsystem (29) and (30) is convergent in finite time T if the boundary condition K r = 0. Assuming 1 -K 23 K 32 = 0, since K 32 = 1 in Proposition 1, it holds K r = 0 as soon as K 21 = 0. The boundary

condition matrix K in (28) becomes K = 0 ρ * (1-K 32 ) a * 0 0 0 K23 0 K32 0 . To ensure ρ 1 (K) < 1, it is sufficient to choose K < 1.
In order to decrease the control cost, we can minimize K that is equivalent to minimize K . The time evolution of the solution M1 for the reduced subsystem (29) with K r = 0 is shown in Figure 1a. It is observed that M1 converges to the origin in finite time. Time evolution of η in Figure 1b shows that the error between the full system and the reduced subsystem is close to 0 as time increases. Table II 

VI. CONCLUSION

This paper is concerned with a class of singularly perturbed linear hyperbolic systems with source term which depends on the perturbation parameter. The hetero-directional transport velocities depend on as well as the boundary conditions. Under some assumptions and the condition ρ 1 (G(0)) < 1, the approximation of the solution of the full system by that of the reduced subsystem has been established in Theorem 1. An academic example has been used to illustrate the main result. Furthermore, a new boundary control synthesis has been given with an application of gas flow transport model where the slow dynamics is convergent in finite time.

For the future work, it would be interesting to study a physical application with small source term which vanishes when the perturbation parameter tends to zero.
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 1 Fig. 1: Time evolutions of M1 and η

  L 2 dt for different are given by TableI. The values are close to zero and decrease as decreases.
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	η(., t = 3) 2 L 2 30 0 δ(., t) 2 L 2 dt	3 × 10 -3 7 × 10 -3	1.2 × 10 -2 2.6 × 10 -2	2.8 × 10 -2 5.7 × 10 -2
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TABLE I :

 I Evolutions of square of L 2 -norm of η and of time integral of square of L 2 -norm of δ for different

  gives the evolutions of η(., t = 0.1) 2 L 2 and of 1 0 δ(., t) 2 L 2 dt. It is found that the values are near zero and increase when increases, as expected from Theorem 1.

TABLE II :

 II Evolutions of square of L 2 -norm of η and of time integral of square of L 2 -norm δ for different