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ABSTRACT
Timing contracts for embedded controller implementation
specify the constraints on the time instants at which cer-
tain operations are performed such as sampling, actuation,
computation, etc. In this paper, we consider the problem
of verifying the stability of embedded control systems under
such timing contracts. Reformulating the problem in the
framework of impulsive linear systems, we provide theoreti-
cal conditions for stability and a verification algorithm based
on reachability analysis. In the second part of the paper,
given a model of the plant and of the controller we propose
an approach to synthesize timing contracts that guarantee
stability.

Categories and Subject Descriptors
J.7 [Computer in other systems]: Command and con-
trol, Real time

General Terms
Verification, Design, Algorithms

Keywords
Stability, Reachability, Impulsive linear systems, Sampled-
data systems

1. INTRODUCTION
Physical systems equipped with embedded controllers are

becoming pervasive (smart buildings, intelligent cars, drones,
robots, etc.), thus increasing the need for high-confidence
analysis and design tools that are able to handle tight in-
teractions between the physical and digital worlds. In this
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context, contract-based approaches have been identified as
a promising direction for cyber-physical systems design [28].
For instance, for embedded controller implementation, [11]
proposed the use of timing contracts which specify the con-
straints on the time instants at which certain operations are
performed such as sampling, actuation or computation. Un-
der such contracts, the control engineers are responsible for
designing a control law that is robust to all possible timing
variation specified in the contract while the software engi-
neers can focus on implementing the proposed control law so
as to satisfy the timing contract. In this paper, we propose
techniques that are useful within this framework. We first
consider the problem of stability verification: given models
of the physical plant and of the controller and a timing con-
tract, verify that the resulting dynamical system is stable.
We then tackle the problem of timing contract synthesis:
given models of the physical plant and of the controller, de-
termine a set of timing contracts that guarantee stability of
the resulting system.

We adopt the impulsive linear dynamical system frame-
work to model the overall system. Such systems form a
class of hybrid systems which describe processes that evolve
continuously and undergo instantaneous changes at discrete
time instants. Applications of impulsive dynamical systems
include sampled-data control systems [9], networked control
systems [12], multi-agent systems [8], etc. In the present
work, instantaneous changes occur at sampling and actu-
ation times, tsk and tak, k ∈ N, which are assumed to be
non-deterministic. More precisely, we assume that some un-
certainty lies in each of the kth sampling-to-actuation delay
τk = tak − tsk and sampling period hk = tsk+1 − tsk.

For the stability verification problem, we propose an ap-
proach based on the notion of reachable set. In the last
decade, hybrid system reachability has had an important
breakthrough in computing the reachable set corresponding
to a linear continuous dynamics where the developed algo-
rithms are based on representing the reachable sets by el-
lipsoids [22, 7], zonotopes [17, 2] or by support functions
[24, 14]. In general, such algorithms handle time based
switching by introducing auxiliary variables (clocks). In the
following, we provide a specific approximation scheme for
the reachable set at the sampling times to develop an effec-
tive stability verification approach. Then, we use this ap-
proach to tackle the timing contract synthesis problem. We
propose a re-parametrization which provides some mono-



tonicity property to the problem and allows us to develop
an effective synthesis method based on guided sampling of
the timing parameter space.

In all, we contribute in enriching our stability verification
approach initiated in [1] by stating the proofs of the neces-
sary and sufficient theoretical conditions for the stability of
the impulsive linear system and by considering more com-
plex timing contracts which require dedicated reachability
algorithms for stability verification and more involved tech-
niques for timing contract synthesis.

The paper is organized as follows. First, some preliminary
notations are defined before formulating the stability veri-
fication and timing contract synthesis problems in Section
2. Stability conditions are provided in Section 3. Section 4
presents the reachable set approximation scheme and an al-
gorithm for stability verification. In Section 5, we propose a
solution to the timing contract synthesis problem. In Section
6, examples, some of which are used to compare our results
with existing ones, are then discussed before concluding our
work.

Notations. Let R, R+
0 , R+, R−0 , R−, N, N+ denote the sets

of reals, nonnegative reals, positive reals, nonpositive reals,
negative reals, nonnegative integers and positive integers,
respectively. For I ⊆ R+

0 , let NI = N∩I. Given a real matrix
A ∈ Rn×n, |A| is the matrix whose elements are the absolute
values of the elements of A. Given S ⊆ Rn and a real matrix
A ∈ Rn×n, the set AS = {x ∈ Rn : (∃y ∈ S : x = Ay)};
for a ∈ R, aS = (aIn)S where In is the n × n identity
matrix. The interior of S is denoted by int(S). The convex
hull of S is denoted by ch(S). The interval hull of S is
the smallest n-dimensional interval containing the set S and
is denoted by 2(S). The symmetric interval hull of S is
the smallest symmetric (with respect to 0) n-dimensional
interval containing S and is denoted by �(S). Given S,S ′ ⊆
Rn, the Minkowski sum of S and S ′ is S ⊕ S ′ = {x + x′ :
x ∈ S, x′ ∈ S ′}. A polytope P is the intersection of a finite
number of closed half-spaces, that is P = {x ∈ Rn : Hx ≤ b}
where H ∈ Rm×n, b ∈ Rm and the vector of inequalities is
interpreted component-wise. Let Hi, i ∈ N[1,m] denote the
row vectors of H, then if 0 ∈ int(ch({H1, . . . , Hm})), then
P is compact. Given a template matrix H ∈ Rm×n and a
compact set S ⊆ Rn, let us define the polytope ΓH(S) =
{x ∈ Rn : Hx ≤ b} where bi = maxx∈S Hix, i ∈ N[1,m].
In other words, ΓH(S) is the smallest polytope whose facets
directions are given by H and containing S. We denote the
set of all subsets of Rn by 2Rn . We denote by K(Rn) the set
of compact subsets of Rn and by K0(Rn) the set of compact
subsets of Rn containing 0 in their interior. For x ∈ R, dxe
is the smallest integer not less than x, and for c, c′ ∈ Rn,
c ≤ c′ if and only if ci ≤ c′i, i = 1, . . . , n.

2. PROBLEM FORMULATION
2.1 Timing contracts for embedded control

In this work, we consider embedded control systems given
under the form of general linear sampled-data control sys-
tems that take into account the sequences of sampling and
actuation instants (tsk)k∈N and (tak)k∈N:

ż(t) = Az(t) +Bu(t), ∀t ∈ R+

u(t) = Kz(tsk), tak < t ≤ tak+1

(1)

where z(t) ∈ Rp is the state of the system, u(t) ∈ Rm is the
control input, and k ∈ N. For t ∈ [0, ta0 ], u(t) can be any

constant value in Rm.
We assume that the sequence of sampling and actuation

instants (tsk) and (tak) satisfy a timing contract given by

ts0 = 0, τk = tak − tsk ∈ [τ , τ ],

hk = tsk+1 − tsk ∈ [max(h, τk), h], k ∈ N
(2)

where τ ∈ R+
0 , τ ∈ R+

0 , h ∈ R+, and h ∈ R+ provide
bounds on the sampling-to-actuation delays (which includes
time for computation of the control law) and sampling pe-
riods provided that tsk ≤ tak ≤ tsk+1 for all k ∈ N. Note that
we impose h 6= 0 to prevent Zeno behavior. Moreover, these
parameters must belong to the following set so that the time
intervals given in (2) are always non-empty:

C =
{

(τ , τ , h, h) ∈ R+
0 × R+

0 × R+ × R+ : τ ≤ τ ≤ h, h ≤ h
}

Contract (2) is a general timing contract which includes
or over-approximates the different contracts introduced in
[11]. Their relation to the timing contract (2) is described
as follows:

1. ZET Contract: The Zero Execution Time contract
is given by (2) with τ = τ = 0 and h = h = h ∈ R+.
In other words, the contract states that the sampling
and actuation instants are periodic and simultaneous
such that tsk = tak = kh for k ∈ N. As mentioned
in [11], this contract is hardly achievable in practice
since computation always takes time in between the
sampling and actuation instants.

2. LET Contract: The Logical Execution Time con-
tract is given by (2) with τ = τ = h = h = h ∈ R+.
The contract states that the sampling and actuation
instants are periodic such that ts0 = 0 and tsk = tak−1 =
kh for k ∈ N+.

3. DET Contract: The Deadline Execution Time con-
tract is given by (2) with τ = 0 and h = h = h ∈ R+.
The contract states that the sampling instants are pe-
riodic, or tsk = kh for k ∈ N, and actuation instants
are at some point tak in the interval [tsk, t

s
k + τ ], with

τ ≤ h.

4. TOL Contract: The Timing Tolerance contract is
defined by a nominal sampling period h ∈ R+, nominal
sampling to actuation delay τ ∈ R+

0 , and two jitters
Jh, Jδ ∈ R+

0 with Jτ ≤ τ and Jh + Jτ + τ ≤ h, such
that tsk ∈ [kh, kh + Jh] and tak ∈ [tsk + τ − Jτ , tsk +
τ + Jτ ], for k ∈ N (refer to Figure 1). We cannot
exactly model this contract using (2). However we
can over-approximate it using (2) with τ = τ − Jτ ,
τ = τ+Jτ , h = h−Jh, and h = h+Jh. Thus stability
of system (1) under this latter contract guarantees also
its stability under the TOL contract.

Figure 1: Time variables included in a TOL contract.
Jhk ∈ [0, Jh] and Jτk ∈ [−Jτ , Jτ ].



Table 1: Methods that can solve instances of Problem 1 with description of the modeling and computational
approaches, list of restrictions and possible extensions.

Models Algorithm Restrictions Extensions
[10] difference inclusion LMI − τk > hk; controller synthesis
[12] LMI − scheduling protocols
[20] LMI τ = τ = 0 controller synthesis
[21] LMI τ = τ = 0 −
[29] SOS τ = τ = 0 −
[13] Invariant sets τ = τ = 0 −
[1] Reachability analysis τ = τ = 0 stochastic timing uncertainty
[26] time-delay systems LMI h = 0 τk > hk; scheduling protocols

[16] LMI h = h, τ = 0 controller synthesis; quantization
[27] LMI τ = τ = 0 −
[15] LMI h = τ = τ = 0 −
[4] hybrid systems SOS − nonlinear dynamics; scheduling protocols
[18] LMI τ = 0, h = 0 scheduling protocols

It is noteworthy that system (1) has deterministic dy-
namics under any of the ZET or LET contracts, unlike the
case of the DET or TOL contracts where at least one of
the sampling-to-actuation delays or sampling period is time-
varying. In our previous work [1] we considered the special
case of nearly periodic linear impulsive systems (NPILS)
which are modeled by (1) and (2) with τ = τ = 0. In other
words, the sampling and actuation instants are simultaneous
or tsk = tak, and the duration in between two successive sam-
pling instants is bounded in the interval [h, h]. Therefore, it
is clear that we are dealing in this work with a more gen-
eral timing contract which is more complex than the simple
NPILS case.

2.2 Reformulation using impulsive systems
In our analysis it is more practical to transform equation

(1) into an impulsive system with two types of resets each
referring to a sampling or actuation instant. Such a refor-
mulation is convenient to develop stability conditions based
on reachability analysis. The system is thus given by:

ẋ(t) = Acx(t), t 6= tsk, t 6= tak

x(ts+k ) = Asx(tsk)

x(ta+k ) = Aax(tak)

(3)

where x(t) ∈ Rn is the state of the system with n = p+ 2m,
(tsk) and (tak) are given by (2), x(t+) = lim

τ→0,τ>0
x(t+ τ), and

Ac =

A 0 B
0 0 0
0 0 0

 , As =

Ip 0 0
K 0 0
0 0 Im

 ,

Aa =

Ip 0 0
0 Im 0
0 Im 0

 , x(t) =

 z(t)
Kz(θs(t))
u(t)

 ,

(4)

with θs(t) = tsk for t ∈ (tsk, t
s
k+1].

In this paper, we consider stability in the following sense:

Definition 1. The system (2-3) is globally uniformly expo-
nentially stable (GUES) if there exist λ ∈ R+ and C ∈ R+

such that, for all sequences (tsk)k∈N and (tak)k∈N verifying (2)
the solutions of (3) verify

‖x(t)‖ ≤ Ce−λt ‖x(0)‖ , ∀t ∈ R+.

We are now interested in verifying stability of embedded
control systems in the form given by (1) under one of the
general timing contracts defined previously. It is noteworthy
that we can easily show that system (1) under the ZET and
LET contracts is stable if and only if the eigenvalues of the
matrix ehAcAaAs and Aae

hAcAs are inside the unit circle
respectively. As for the DET or TOL contracts, we have
that stability of system (1) is guaranteed by the stability of
(2-3) with an adequate choice of the timing contract param-
eters. Consequently, in this work, we consider the following
problem:

Problem 1 (Stability verification). Given Ac, As,
Aa ∈ Rn×n, (τ , τ , h, h) ∈ C, verify that (2-3) is GUES.

This problem will be considered in the following section.
Afterwards, we shall consider the problem of synthesizing
timing contract parameters that guarantee the stability of
the system. Given bounds on the parameters 0 ≤ τmin ≤
τmax, 0 < hmin ≤ hmax, with τmin ≤ hmin, τmax ≤ hmax,
let D = [τmin, τmax]2× [hmin, hmax]2, the problem is formal-
ized as follows:

Problem 2 (Timing contract synthesis). Given Ac,
As, Aa ∈ Rn×n and D, synthesize a set C∗ ⊆ C ∩ D such
that for all (τ , τ , h, h) ∈ C∗, (2-3) is GUES.

Related work. Several approaches are developed in the lit-
erature to solve instances of Problem 1. A non-exhaustive
list is given in Table 1. From the modeling perspective,
the problem can be tackled using difference inclusions, time-
delay systems or hybrid systems. On the computational side,
most of the approaches are based on semi-definite program-
ming using either Linear Matrix Inequalities (LMI) or Sum
Of Squares (SOS) formulations. This makes a clear distinc-
tion with our approach which relies on reachability analysis.
Let us remark that only a few approaches [10, 12, 4] ap-
pear to be able to address all instances of Problem 1. It is
noticeable that [10, 12] have been implemented in the Net-
worked Control Systems (NCS) toolbox [5] whose results
will be compared to those of our approach. We should also
acknowledge that some of these approaches are able to han-
dle problems that we do not consider in the present work
(possibility of having τk > hk, controller synthesis, schedul-
ing protocols, quantization, nonlinear dynamics, stochastic



timing uncertainties). Finally, as far as we know, there is
no available approach for addressing Problem 2 besides our
preliminary work [1] where we impose τ = τ = 0.

3. STABILITY CONDITIONS
In this section we state necessary and sufficient theoret-

ical conditions for system (2-3) to be GUES. In addition,
we derive practical sufficient conditions that can be used to
develop an algorithm for solving Problem 1.

3.1 Necessary and sufficient conditions
Our stability conditions are based on the notion of reach-

able set defined as follows:

Definition 2. Given a continuous-time dynamical system

ẋ(t) = Ax(t), t ∈ R+
0 , x(t) ∈ Rn

the reachable set on [t, t′] ⊆ R+
0 from the set S ⊆ Rn is

RA[t,t′](S) =
⋃

τ∈[t,t′]

eτAS. (5)

We also define the map: Φ : 2Rn → 2Rn , given for all
S ⊆ Rn by

Φ(S) =
⋃

τ∈[τ,τ ]

⋃
w∈[max(0,h−τ),h−τ ]

ewAcAae
τAcAsS (6)

It is easy to see that if S is compact then so is Φ(S). It
is clear that for two sets S, S ′ ⊆ Rn and a ∈ R, we have
Φ(S ∪ S ′) = Φ(S) ∪ Φ(S ′) and Φ(aS) = aΦ(S).

The interpretation of Φ is as follows. If S is the set of all
states that are reachable by (2-3) at time tsk then Φ(S) is the
set of reachable states at time tsk+1. We define the iterations

of Φ as Φ0(S) = S for all S ⊆ Rn, and Φk+1 = Φ ◦ Φk for
all k ∈ N. Then, for all k ∈ N, Φk(S) is the set of reachable
states by (2-3) at time tsk for initial states belonging to S.

Next, we state the theoretical conditions on the stability
of system (2-3) in terms of the map Φ. Similar results have
been stated in [3] for discrete-time switched systems and in
[1] for NPILS.

Theorem 1. Let S ∈ K0(Rn), the following statements
are equivalent:

(a) System (2-3) is GUES,

(b) There exists a triplet (k, j, ρ) ∈ N+ × N[0,k−1] × (0, 1)

such that Φk(S) ⊆ ρΦj(S),

(c) There exists a pair (k, ρ) ∈ N+×(0, 1) such that Φk(S) ⊆
ρ
⋃k−1
j=0 Φj(S).

Proof. It is obvious that (b) =⇒ (c). Hence, it is
sufficient to prove that (a) =⇒ (b) and (c) =⇒ (a).

(a) =⇒ (b): We will prove that there exists (k, ρ) ∈
N+ × (0, 1) such that Φk(S) ⊆ ρS. This implies (b) with
j = 0. Let x(0) ∈ S, then Φk(S) represents all the possible
values of x(tsk). Since (2-3) is GUES, there exist C ∈ R+

and λ ∈ R+ such that

‖x(tsk)‖ ≤ Ce−λt
s
k‖x(0)‖ ≤ Ce−λkh‖x(0)‖

which can be rewritten as

Φk(S) ⊆ Ce−λkh‖x(0)‖B (7)

where B is the unit ball. Since S ∈ K0(Rn), then there exist
c ∈ R+, c ∈ R+ such that cB ⊆ S ⊆ cB. Then, (7) and
x(0) ∈ S give

Φk(S) ⊆ Ce−λkhcB ⊆ Ce−λkhc

c
S.

For k sufficiently large, Ce−λkhc < c and therefore (b) holds.

(c) =⇒ (a): Let γ = ρ
1
k ; since ρ ∈ (0, 1) then for all

j ∈ N[0,k−1], ρ ≤ γk−j and

Φk(S) ⊆ ρ
k−1⋃
j=0

Φj(S) ⊆
k−1⋃
j=0

γk−jΦj(S). (8)

Let S ′ =
⋃k−1
j=0 γ

−jΦj(S), then using properties of Φ:

Φ(S ′) = Φ

(
k−1⋃
j=0

γ−jΦj(S)

)
=

k−1⋃
j=0

γ−jΦj+1(S)

=

(
k−2⋃
j=0

γ−jΦj+1(S)

)
∪ γ−k+1Φk(S)

Making a change of index in the union and using (8) yield

Φ(S ′) ⊆

(
k−1⋃
j=1

γ−j+1Φj(S)

)
∪ γ−k+1

(
k−1⋃
j=0

γk−jΦj(S)

)

⊆ γ

(
k−1⋃
j=0

γ−jΦj(S)

)
= γS ′. (9)

Since S ∈ K0(Rn), then S ′ is compact. Moreover, since it
contains S, then S ′ ∈ K0(Rn). Then, there exist c′ ∈ R+,
c′ ∈ R+ such that c′B ⊆ S ′ ⊆ c′B. Now consider a trajectory

x of (2-3), then x(0) ∈ ‖x(0)‖B ⊆ ‖x(0)‖
c′ S

′ and (9) gives for

all i ∈ N

x(tsi ) ∈ Φi
(
‖x(0)‖
c′
S ′
)
⊆ ‖x(0)‖γi

c′
S ′ ⊆ ‖x(0)‖γic′

c′
B.

In other words, it holds for all i ∈ N,

‖x(tsi )‖ ≤
γic′

c′
‖x(0)‖.

Now, let t ∈ R+, let i ∈ N be such that t ∈ (tsi , t
s
i+1], then

t− tsi ≤ h. Moreover, if t ∈ (tsi , t
a
i ], then

‖x(t)‖ ≤ e‖Ac‖h‖As‖
γic′

c′
‖x(0)‖

and if t ∈ (tai , t
s
i+1], then

‖x(t)‖ ≤ e‖Ac‖h‖Aa‖‖As‖
γic′

c′
‖x(0)‖.

In addition, we have i ≥ t/h and since γ ∈ (0, 1) it follows
that for all t ∈ R+

‖x(t)‖ ≤ e‖Ac‖h max(‖Aa‖, 1)‖As‖c′

c′
γ(t/h)‖x(0)‖

≤ e‖Ac‖h max(‖Aa‖, 1)‖As‖c′

c′
e

ln(γ)

h
t‖x(0)‖.

Since γ ∈ (0, 1), (2-3) is GUES.



3.2 Sufficient conditions
The map Φ involved in Theorem 1 is in general impossi-

ble to compute exactly. Then, we may use an over-approxi-
mation Φ : K(Rn)→ K(Rn) satisfying the following assump-
tion:

Assumption 1. For all S ∈ K(Rn), Φ(S) ⊆ Φ(S).

We compute the map Φ instead of Φ in order to derive the
practical condition on stability used in the stability veri-
fication algorithm later on to solve Problem 1. Section 4
discusses on the effective computation of the map Φ. We
now derive sufficient conditions for stability based on Φ.

Corollary 1. Under Assumption 1, if there exist a set
S ∈ K0(Rn) and a triplet (k, i, ρ) ∈ N+ × N[0,k−1] × (0, 1)

such that Φ
k
(S) ⊆ ρΦ

i
(S), then system (2-3) is GUES.

Proof. Φ
k
(S) ⊆ ρΦ

i
(S) ⊆ ρ

⋃k−1
j=0 Φ

j
(S). Then simi-

lar to the second part of the proof of Theorem 1, let S ′ =⋃k−1
j=0 γ

−jΦ
j
(S) where γ = ρ

1
k . Then

Φ(S ′) = Φ

(
k−1⋃
j=0

γ−jΦ
j
(S)

)
=

k−1⋃
j=0

γ−jΦ(Φ
j
(S))

⊆
k−1⋃
j=0

γ−jΦ(Φ
j
(S)) =

k−1⋃
j=0

γ−jΦ
j+1

(S).

Then, following the same steps as in (9), we can show that
Φ(S ′) ⊆ γS ′. Following the same line as in the proof of
Theorem 1, one concludes that (2-3) is GUES.

The previous corollary provides the background for de-
signing a solution to Problem 1 in the next section.

4. OVER-APPROXIMATION SCHEME AND
STABILITY VERIFICATION

In this section, we present an approach for computing an
over-approximation of Φ. Furthermore, we develop an algo-
rithm providing a solution to Problem 1.

4.1 Over-approximation
We first state the following result from [23] which gives

an over-approximation scheme for the reachable set given
by (5).

Theorem 2. [23] Let T ∈ R+, A ∈ Rn×n, S ∈ K(Rn)
and N ∈ N+, let

RA[0,T ](S) =

N⋃
i=1

RA[(i−1)δ,iδ](S)

where δ = T/N is the time step, and RA[(i−1)δ,iδ](S) is defined
by the recurrence equation:

RA[0,δ](S) = ch(S, eδA S) ⊕ 1/4 εδ(S), (10)

RA[iδ,(i+1)δ](S) = eδA RA[(i−1)δ,iδ](S), i ∈ N[1,N−1]

with

εδ(S) = 2(|A|−1(eδ|A| − I) � (A(I − eδA)S))⊕
2(|A|−2(eδ|A| − I − δ|A|) � (A2eδAS)).

Then, RA[(i−1)δ,iδ](S) ⊆ RA[(i−1)δ,iδ](S), for all i ∈ N[1,N ] and

RA[0,T ](S) ⊆ RA[0,T ](S).

The previous theorem can serve to compute an over-approxi-
mation of Φ. Indeed, from (6), one can easily check that

Φ(S) ⊆ RAc
[max(0,h−τ),h−τ ]

(
AaRAc[τ,τ ](AsS)

)
⊆ emax(0,h−τ)AcRAc

[0,min(h−τ,h−h+τ−τ)]

(
Aae

τAcRAc[0,τ−τ ](AsS)
)

(11)

with in turn can easily be over-approximated using the result
of Theorem 2. In the case of NPILS, the previous inclusion
becomes an equality. This is the approach followed in our
previous work [1]. However, for the general timing contract
(2), the coupling in the timing uncertainties w and τ in (6)
is totally disregarded in (11) and therefore leads to conser-
vatism. Therefore, in this paper, to reduce conservatism, we
present a specific approximation scheme for Φ, that takes
into consideration the coupling in the timing uncertainties.
It is based on the following result:

Lemma 1. Let S ∈ K(Rn), let N1, N2 ∈ N+, then

Φ(S) ⊆
N1⋃
j1=1

n2(j1)⋃
j2=1

e(θ(j1)+(j2−1)δ2)AcRAc[0,δ2]

(
Aae

(τ+(j1−1)δ1)AcRAc[0,δ1]
(AsS)

)
(12)

where for j1 ∈ N[1,N1]

δ1 = (τ − τ)/N1

δ2 = min(h− τ , h− h+ δ1)/N2

θ(j1) = max(0, h− τ − j1δ1)

n2(j1) = dmin(h− τ − (j1 − 1)δ1, h− h+ δ1)/δ2e.
(13)

Proof. From (6), it follows that

Φ(S) =

N1⋃
j1=1

⋃
τ∈[τ+(j1−1)δ1,τ+j1δ1]⋃

w∈[max(0,h−τ),h−τ ]

ewAcAae
τAcAsS

⊆
N1⋃
j1=1

RAc
[θ(j1),h−τ−(j1−1)δ1]

(
AaRAc[τ+(j1−1)δ1,τ+j1δ1]

(AsS)
)

⊆
N1⋃
j1=1

eθ(j1)AcRAc
[0,h−τ−(j1−1)δ1−θ(j1)]

(
Aae

(τ+(j1−1)δ1)AcRAc[0,δ1]
(AsS)

)
.

Remarking that

h−τ − (j1−1)δ1−θ(j1) = min(h−τ − (j1−1)δ1, h−h+δ1)

one gets

Φ(S) ⊆
N1⋃
j1=1

n2(j1)⋃
j2=1

eθ(j1)AcRAc[(j2−1)δ2,j2δ2]

(
Aae

(τ+(j1−1)δ1)AcRAc[0,δ1]
(AsS)

)
which leads to (12).



Remark 1. N1 and N2 are parameters used to discretize
time intervals. For N1 = N2 = 1, the over-approximation
given by (12) is the same as the one in (11).

We now present our over-approximation scheme for Φ:

Theorem 3. Let S ∈ K(Rn), N1, N2 ∈ N+, and H ∈
Rm×n, such that 0 ∈ int(ch({H1, . . . , Hm})), let Φ : K(Rn)→
K(Rn) be given by

Φ(S) = ΓH

 N1⋃
j1=1

n2(j1)⋃
j2=1

e(θ(j1)+(j2−1)δ2)AcΦj1(S)


where for j1 ∈ N[1,N1],

Φj1(S) = RAc[0,δ2]

(
Aae

(τ+(j1−1)δ1)AcRAc[0,δ1](AsS)
)

with δ1, δ2, θ(j1), n2(j1) given by (13) , and RAc[0,δ1], R
Ac
[0,δ2]

computed as in (10). Then, Φ(S) ⊆ Φ(S).

Proof. The proof is straightforward from Theorem 2 and
Lemma 1.

Remark 2. In the previous result, the operation ΓH is
not necessary to guarantee over-approximation of Φ. On the
other hand, without this operation, the over-approximation
of Φ would be given by the union of possibly numerous sets
which may be quite impractical for subsequent manipula-
tions. For that reason, this union is over-approximated by
the smallest enclosing polytope whose facets direction are
given by a matrix H. Moreover, if S is a polytope, then
using the properties of support functions [24], the computa-
tion of Φ(S) reduces to solving a set of linear programs.

We illustrate the tightness of our new approximation scheme
using system (16) (see Section 6) with the timing contract
given by τ = 0, τ = 0.4, h = 0.2, h = 1.2. We con-
sider a polytope S defined by a matrix H with 44 rows.
Figure 2 shows sampled points (in grey) from Φ(S). The
white polytope corresponds to the over-approximation Φ(S)
given in Theorem 3 with N1 = 20 and N2 = 50. The black

Figure 2: Sampled points of Φ(S) (in grey), over-
approximation Φ(S) given by Theorem 3 and over-
approximation of (11) computed using Theorem 2
(in black).

polytope is given by (11) over-approximated using Theo-

rem 2 where RAc[0,τ−τ ] and RAc[0,min(h−τ,h−h+τ−τ)] are com-
puted with N = 20 and N = 50 respectively. One can check
that the over-approximation given by Theorem 3 is quite
tight and much less conservative than that given by (11).

4.2 Stability verification algorithm
We now present our stability verification algorithm which

consists of two main steps: an initialization step where an
initial set P0 is computed and a main loop which tries to
verify the sufficient stability condition given in Corollary 1
by iterating the map Φ given by Theorem 3 from the set P0.

4.2.1 Initialization
The choice of the initial set P0 is crucial as it may impact

significantly the number of iterations of Φ that are necessary
to check the condition of Corollary 1. Intuitively, in order
to minimize this number of iterations, P0 should be already
close to an invariant set. Indeed, if Φ(P0) ⊆ P0, the stabil-
ity condition holds after only one iterate of Φ. One way to
choose P0 close to an invariant set is to define P0 as a com-
mon contracting polytope to L ∈ N+ linear discrete-time
systems, such that

∀j ∈ N[1,L], e
(hj−τj)AcAae

τjAcAsP0 ⊆ int(P0),

where the couples (τj , hj) satisfy timing contract (2) for
all j ∈ N[1,L]. Then, P0 can be computed either using
a backward iterative method as in [6] and [13] or using a
forward iterative method as in [3]. We denote the func-
tion computing P0 by init(Ac, Ad, As, τ , τ , h, h, L). Then,
P0 = {x ∈ Rn : Hx ≤ b0}. The matrix H defining P0 is
used in the main loop of the algorithm in the computation
of the map Φ.

4.2.2 Main loop
The initial set is propagated using the map Φ given by

Theorem 3. Then if the stability condition given by Corol-
lary 1 is verified, system (2-3) is GUES and the algorithm
returns true. Otherwise, if a maximum number of iterations,
kmax, is reached then the algorithm fails to prove stability
and returns unknown. The algorithm that solves Problem 1
is given as follows:

Algorithm 1. Stability verification

function is GUES(Ac,Aa,As,τ ,τ ,h,h)
input: Ac, Aa, As ∈ Rn×n, (τ , τ , h, h) ∈ C
output: true if system (2-3) is proved GUES, unknown oth-

erwise
parameter: N1,N2,L, kmax ∈ N+

1: P0:=init(Ac, Ad, As, τ , τ , h, h, L); . compute initial set
2: for k = 1 to kmax do
3: Pk:=Φ(Pk−1); . set propagation
4: if ∃i ∈ N[0,k−1], Pk ⊆ int (Pi) then
5: return true; . system (2-3) is GUES
6: end if
7: end for
8: return unknown;

Note that all polytopes Pk are of the form Pk = {x ∈ Rn :
Hx ≤ bk}, then the inclusion test at line 4 only consists
in checking bk ≤ bi. Although Algorithm 1 is only based
on sufficient conditions for the stability of system (2-3), its
effectiveness will be demonstrated on numerical examples in
Section 6.



5. TIMING CONTRACT SYNTHESIS
In this section, we propose a solution to Problem 2. We

first define a re-parametrization of the timing-contract such
that stability of system (2-3) becomes monotone with re-
spect to the new parameters. Monotonicity is a very at-
tractive property for designing efficient heuristics for timing
contract synthesis since stability is preserved when the pa-
rameter values increase. This allows us to tackle the timing
contract synthesis by sampling the parameter space.

5.1 Re-parametrization
Let us denote the vector of timing contract parameters

α = (τ , τ , h, h) ∈ D = [τmin, τmax]2 × [hmin, hmax]2, where
0 ≤ τmin ≤ τmax, 0 < hmin ≤ hmax, τmin ≤ hmin, τmax ≤
hmax. For α ∈ C ∩ D we denote the property:

Stab(α) ≡ (2-3) is GUES with parameters α.

Solving Problem 2 is equivalent to computing (a subset of)
the set Co defined by

Co = {α ∈ C ∩ D : Stab(α)}.

Let us define a new parameter β = (β1, β2, β3, β4) ∈ D′
where D′ = [τmin, τmax]× [−τmax,−τmin]× [hmin, hmax]×
[−hmax,−hmin] and the map f : D′ → D such that f(β) =
α = (τ , τ , h, h) where

τ = β1, τ = min(−β2,−β4), h = β3, h = −β4.

We define the following constraint set for the parameter β:

C′ =

{
β ∈ R+

0 × R−0 × R+ × R− :
β1 ≤ min(−β2,−β4)
β3 ≤ −β4

}
.

The following result holds:

Lemma 2. Let C′o be given by

C′o = {β ∈ C′ ∩ D′ : Stab(f(β))}.

Then, f(C′ ∩ D′) = C ∩ D and f(C′o) = Co.

Proof. Let us first show that f(C′ ∩ D′) ⊆ C ∩ D and
f(C′o) ⊆ Co. Let β ∈ C′ ∩ D′ and α = f(β) = (τ , τ , h, h).
Then, β ∈ D′ implies that α ∈ D, using the fact that τmin ≤
hmin, τmax ≤ hmax. Also, β ∈ C′ implies that τ ≤ τ and
h ≤ h. Moreover, τ = min(−β2,−β4) ≤ −β4 = h. Hence,
α ∈ C. Thus, α ∈ C∩D. Moreover, if β ∈ C′o then β ∈ C′∩D′
and Stab(f(β)) gives α ∈ C ∩ D and Stab(α). Thus, α ∈ Co.
We now show that C ∩ D ⊆ f(C′ ∩ D′) and Co ⊆ f(C′o). Let
α = (τ , τ , h, h) ∈ C ∩ D and let β = (τ ,−τ , h,−h). Then,
f(β) = (τ ,min(τ , h), h, h). Since α ∈ C, it follows that
min(τ , h) = τ and f(β) = α. Moreover, it is straightforward
to verify that α ∈ C ∩D implies β ∈ C′ ∩D′ and that α ∈ Co
implies β ∈ C′o.

The previous result has two important implications. The
first one is that the proposed re-parametrization does not
introduce any conservatism in the solution to Problem 2
since the set Co of admissible parameters α can be obtained
by computing the set C′o of admissible parameters β, despite
the fact that the map f is not injective nor surjective. The
second one is stated in the following lemma:

Lemma 3. Let C′∗ ⊆ C′o, then C∗ = f(C′∗) is a solution
to Problem 2.

Proof. It holds that C∗ = f(C′∗) ⊆ f(C′o) = Co.

We further define the following set

E ′o =
{
β ∈ D′ : (β /∈ C′) ∨ ((β ∈ C′) ∧ Stab(f(β)))

}
One can easily check that the following relation holds:

C′o = C′ ∩ E ′o. (14)

Hence, from the previous equality and Lemma 3, we can
solve Problem 2 by computing (a subset of) the set E ′o. More-
over, E ′o satisfies the following monotonicity property:

Proposition 1. For all β, β′ ∈ D′, the following impli-
cations hold:(

(β ≤ β′) ∧ (β ∈ E ′o)
)

=⇒ β′ ∈ E ′o.(
(β ≤ β′) ∧ (β′ /∈ E ′o)

)
=⇒ β /∈ E ′o.

Proof. Let us assume β ≤ β′ and β ∈ E ′o. There are two
cases:

1. If β /∈ C′, then either −β′4 ≤ −β4 < β3 ≤ β′3, or
−β′2 ≤ −β2 < β1 ≤ β′1, or −β′4 ≤ −β4 < β1 ≤ β′1. In
all three cases β′ /∈ C′ and therefore β′ ∈ E ′o.

2. If β ∈ C′ and Stab(f(β)), then either β′ /∈ C′ which
implies β′ ∈ E ′o, or β′ ∈ C′. In this latter case, α =

(τ , τ , h, h) = f(β) and α′ = (τ ′, τ ′, h′, h
′
) = f(β′) sat-

isfy α ∈ C, α′ ∈ C and

τ ′ ≥ τ , τ ′ ≤ τ , h′ ≥ h, h′ ≤ h. (15)

It is straightforward to check that if (2-3) is GUES for

(τ , τ , h, h) ∈ C then (2-3) is GUES for all (τ ′, τ ′, h′, h
′
) ∈

C satisfying (15). Thus, Stab(f(β′)) holds and β′ ∈ E ′o.

This proves the first implication. For the second implication,
it is sufficient to check that(

(β ≤ β′) ∧ (β ∈ E ′o)
)

=⇒ β′ ∈ E ′o
≡ ¬(β ≤ β′) ∨ (β /∈ E ′o) ∨ (β′ ∈ E ′o)
≡

(
(β ≤ β′) ∧ (β′ /∈ E ′o)

)
=⇒ β /∈ E ′o.

The previous property is instrumental for computing a sub-
set of E ′o since it allows us to state the following theorem:

Theorem 4. Let β1, . . . , βM1 ∈ E ′o, and β
1
, . . . , β

M2 ∈
D′ \ E ′o and let

E ′ =

M1⋃
j=1

{β ∈ D′ : βj ≤ β}, E ′ = D′ \
M2⋃
j=1

{β ∈ D′ : β ≤ βj}.

Then, E ′ ⊆ E ′o ⊆ E
′
. Moreover, C∗ = f (C′ ∩ E ′) is a solution

to Problem 2 and Co ⊆ f(C′ ∩ E ′).

Proof. E ′ ⊆ E ′o ⊆ E
′

is a direct consequence of Proposi-
tion 1. Then, from (14) and Lemmas 2 and 3, it follows that

C∗ is a solution to Problem 2 and Co ⊆ f(C′ ∩ E ′).

5.2 Timing contract synthesis algorithm
The previous theorem shows that it is possible to com-

pute under and over-approximations of the set E ′o by sam-
pling the parameter space D′. In this section, we use this
property to design a synthesis algorithm. Similar algorithms
have been used in [25, 30] for computing an approximation



of the Pareto front of a monotone multi-criteria optimization
problem. Indeed, this latter problem can be tackled by com-
puting an under and over-approximation of a set satisfying
a monotonicity property similar to that of Proposition 1.

Algorithm 2. Timing contract synthesis

function TC Synth(Ac,Aa,As,D)
input: Ac, Aa, As ∈ Rn×n, D = [τmin, τmax]2×[hmin, hmax]2

output: C∗ ⊆ C ∩D such that for all (τ , τ , h, h) ∈ C∗, (2-3)
is GUES.

parameter: ε ∈ R+

1: if βmin = (τmin,−τmax, hmin,−hmax) ∈ E ′o then
2: return C ∩ D;

3: else E ′ := D′ \ {βmin};
4: end if
5: if βmax = (τmax,−τmin, hmax,−hmin) /∈ E ′o then
6: return ∅;
7: else E ′ := {βmax};
8: end if

9: while d(E ′, E ′) > ε do . main loop

10: Pick β ∈ E ′ \ E ′; . select next sample
11: if β ∈ E ′o then E ′ := E ′ ∪ {β′ ∈ D′ : β ≤ β′};
12: else E ′ := E ′ \ {β′ ∈ D′ : β′ ≤ β};
13: end if
14: end while
15: return f(C′ ∩ E ′);

Algorithm 2 computes an under-approximation E ′ and an

over-approximation E ′ of the set E ′o by sampling iteratively
the parameter space D′.

Lines 1 to 8 correspond to the initialization of these ap-
proximations by testing the lower bound βmin and the upper
bound βmax of the set D′. If βmin ∈ E ′o, then by Theorem 4,
f(C′ ∩D′) = C ∩D is a solution to Problem 2. Note that in
that case, all timing-contract parameters in C ∩ D guaran-
tee the stability of (2-3). If βmin /∈ E ′o, then D′ \ {βmin} is
an over-approximation of E ′o. Similarly, if βmax /∈ E ′o, then
by Theorem 4, E ′o = ∅. Note that in that case, no timing-
contract parameters in C ∩ D can guarantee the stability of
(2-3). If βmax ∈ E ′o, then {βmax} is an under-approximation
of E ′o.

Lines 9 to 14 describe the main loop of the timing con-
tract synthesis algorithm. At any time of the execution, E ′ ⊆
E ′o ⊆ E

′
holds. We pick a sample β ∈ E ′ \E ′ which is the un-

explored parameter region lying in the over-approximation
of E ′o but not in its under-approximation. If β ∈ E ′o (or if
β /∈ E ′o), then we update the under-approximation E ′ (or

the over-approximation E ′) according to Theorem 4. The
algorithm stops when the Hausdorff distance between the E ′

and E ′ becomes smaller than ε. Of course, the choice of the

sample β ∈ E ′ \ E ′, at line 10, is crucial for the efficiency of
the algorithm. In our implementation of the algorithm, we
use the selection criteria proposed in [25] which consists in
choosing the sample that will produce the fastest decrease

of the Hausdorff distance d(E ′, E ′). In [30] an alternative
selection criteria based on multiscale grid exploration was
proposed.

Finally, it is important to note that Algorithm 2 needs
testing if the samples β ∈ E ′o which require checking the
condition Stab(f(β)). In our implementation, this is done
using Algorithm 1. If it returns true, then we can consider
that Stab(f(β)) holds. If it returns unknown, we treat the

sample as if Stab(f(β)) is false. As a consequence, in practice

it may be the case that E ′ is not an over-approximation of
E ′o. However, it always holds that E ′ ⊆ E ′o and therefore
the set returned by Algorithm 2 is always a valid solution
to Problem 2. Note that the property Stab(f(β)) need not
be checked using Algorithm 1 but one can use any of the
algorithms mentioned in Table 1.

6. ILLUSTRATIVE EXAMPLES
In this section, we first compare our approach for stability

verification to that implemented within the NCS toolbox [5].
Then, we show an application of the timing contract synthe-
sis algorithm. We implemented Algorithm 1 and Algorithm
2 in Matlab using the Multi-Parametric Toolbox [19]. All
reported experiments are realized on a desktop with i7 4790
processor of frequency 3.6 GHz and a 8 GB RAM.

6.1 Stability Verification
We consider two systems taken from [9], given by (1) with

the following matrices:

A =

(
0 1
0 −0.1

)
, B =

(
0

0.1

)
, K =

(
−3.75 −11.5

)
.

(16)

A =

(
0 1
−2 0.1

)
, B =

(
0
1

)
, K =

(
1 0

)
. (17)

We consider the stability verification problem for these
two 2-dimensional systems. First, we write the systems into
4-dimensional impulsive systems (3). Then, we apply Al-
gorithm 1 to check stability of the impulsive system under
several timing contracts. We compare our results to those
obtained using the NCS toolbox [5] in Table 2. For the DET
timing contract (τ = 0, h = h = h), we fix parameter h and
report the maximal value of τ for which stability has been
verified. For the timing contract that corresponds to NPILS
(τ = τ = 0), we fix h and report the maximal value of h
for which stability has been verified. Finally, for the general
timing contract given by (2), we fix parameters τ , τ , h and
report the maximal value of h for which stability has been
verified. Note that we conducted extra experiments labelled
”Algorithm 1 (exp1)”to compare the results in terms of CPU
time after fixing the same parameters as those used with the
NCS toolbox.

The experiments conducted using the NCS toolbox are
done in a particular manner since it uses three different ap-
proximation methods to embed the timing uncertainty (Jor-
dan Normal Form (JNF), Cayley Hamilton, and Gridding
and Norm Bounding (GNB)): we search for the maximum
value of the free timing parameter that guarantees stabil-
ity by running experiments using the three approximation
methods. Then we report the computation time for the
experiment in which we obtained this bound. In case the
maximum bound could be obtained by more than one exper-
iment, we report the CPU time corresponding to the fastest
in terms of computation. Stability for system (16) is guar-
anteed using the GNB approximation for the DET, NPILS
and general contracts, with 50, 35, and 50 gridpoints respec-
tively. As for system (17), stability is guaranteed using the
JNF approximation for all three contracts. Parameter se-
tups used by Algorithm 1, for the different experiments, are
summarized by Table 3. Note that for the NPILS contract,
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Figure 3: (top) Timing contract synthesis for system
(17) in the (0.2, τ , h, h) space where the visualized sec-
tion of C∗ is in the domain region C defined above
the planes h ≥ τ and h ≥ h. (bottom) The section of
C∗ in the (τ , h) plane such that τ = 0.2 and h = 1.

the parameter N1 has no effect. It is clear, for the two sys-
tems at hand, that our method gives better results than the
NCS toolbox in terms of CPU time and tightness.

6.2 Contract Synthesis
We now consider the timing contract synthesis problem

for system (17). We rewrite the system in the form of im-
pulsive system (3). We search for a set C∗ ⊆ C ∩ D, where
D = [0, 1.16]2× [0.21, 2.02]2, such that for all (τ , τ , h, h)∈ C∗
the system (2-3) is guaranteed to be GUES. We set the pa-
rameter ε = 0.07, and apply Algorithm 2. The output of
the latter is a set C∗ ⊂ R4. Figure 3 shows a 3D section of
C∗ by setting τ = 0.2, and a 2D section by setting τ = 0.2
and h = 1. Algorithm 2 used 3094 samples in the 4 di-
mensional parameter space with a total computation time
of TCPU = 250 minutes. Parameters of Algorithm 1 used in
Algorithm 2 are L = 4, kmax = 5 and the numbers of time
steps used for the over-approximation of the reachable set
are N1 = 20 and N2 = 50.

7. CONCLUSION
In this work, we proposed useful tools for contract-based

design of embedded control systems under the form of al-
gorithms for stability verification and timing contract syn-
thesis. These algorithms can be used by control and soft-

ware engineers to derive requirements that must be met by
the real-time implementation of a control law. The effec-
tiveness of our approach has been shown on examples. As
future work, it would be interesting to handle the problem
of controller synthesis given a timing contract, and to co-
synthesize the controller and the timing contract parame-
ters. Also more work is required for the stability verification
problem as long as the solutions at hand gives only sufficient
conditions.
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Table 2: Results of Algorithm 1 for systems (16) and (17) under several timing contracts. TCPU is the
computation time in seconds.

DET (τ = 0, h = h = h) NPILS (τ = τ = 0) General contract (2)

τ h TCPU h h TCPU τ τ h h TCPU

System (16) NCS toolbox (GNB) 0.63 1 3.42 10−3 1.7291 3.30 0 0.4 0.2 1.13 9.17
Algorithm 1(exp1) 0.63 1 0.18 10−3 1.7291 0.20 0 0.4 0.2 1.13 4.49
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D. Nešić. Networked control systems with communica-
tion constraints: Tradeoffs between transmission inter-
vals, delays and performance. IEEE Transactions on
Automatic Control, 55(8):1781–1796, 2010.

[19] M. Herceg, M. Kvasnica, C. Jones, and M. Morari.
Multi-Parametric Toolbox 3.0. In European Control
Conference, pages 502–510, 2013.

[20] L. Hetel, J. Daafouz, S. Tarbouriech, and C. Prieur.
Stabilization of linear impulsive systems through a
nearly-periodic reset. Nonlinear Analysis: Hybrid Sys-
tems, 7(1):4–15, 2013.

[21] L. Hetel, A. Kruszewski, W. Perruquetti, and J.-P.
Richard. Discrete and intersample analysis of systems
with aperiodic sampling. IEEE Transactions on Auto-
matic Control, 56(7):1696–1701, 2011.

[22] A. B. Kurzhanski and P. Varaiya. Ellipsoidal techniques
for reachability analysis: internal approximation. Sys-
tems & Control Letters, 41(3):201–211, 2000.

[23] C. Le Guernic. Reachability analysis of hybrid systems
with linear continuous dynamics. PhD thesis, Univer-
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