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Stability analysis of a singularly perturbed coupled ODE-PDE system

Ying TANG, Christophe PRIEUR and Antoine GIRARD

Abstract— This paper is concerned with a coupled ODE-
PDE system with two time scales modeled by a perturbation
parameter. Firstly, the perturbation parameter is introduced
into the PDE system. We show that the stability of the full
system is guaranteed by the stability of the reduced and
the boundary-layer subsystems. A numerical simulation on a
gas flow transport model is used to illustrate the first result.
Secondly, an example is used to show that the full system can
be unstable even though both subsystems are stable when the
perturbation parameter is introduced into the ODE system.

I. INTRODUCTION

The gas flow transport is a phenomenon usually found in
industrial applications. For example, control of the fraction of
fresh air in engines of automobiles in [24] or the ventilation
systems in mines [25]. It is of great interest for both energy
supply and control of such system. The dynamics of the
gas flow system have been modeled by partial differential
equations (PDEs) in many research works, for instance [6]
and [10].

Lyapunov method, which is commonly used for the sta-
bility analysis of dynamical systems, has been employed in
many works for singularly perturbed ordinary differential
equations system, see for instance [14], [4], [12], [S] and
[19]. It is also a powerful tool for the stability analysis of
partial differential equations. In [7] a strict H?-norm Lya-
punov function has been constructed to analyze the stability
of solutions to a system of two hyperbolic conservation laws
around equilibrium. The stability of one-dimensional n x n
nonlinear hyperbolic systems has also been considered in
[8]. In the work of [13], it has been concerned with H2-
stabilization of the Isothermal Euler equations. The stability
of a class of singularly perturbed hyperbolic systems has
been studied in [23], [22].

In many research works, backstepping approach is used to
stabilize ordinary differential equation - partial differential
equation (ODE-PDE) systems. For example, a coupled first-
order hyperbolic PDE and second-order (in space) ODE has
been stabilized by this approach in [18]. In [17], predictor-
like feedback laws and observers have been designed for a
diffusion PDE (heat equation) and linear time invariant (LTT)
ODE in cascade. A cascade of second order (in time) PDE
and ODE has been studied in [16]. Lyapunov technique is
also used to analyze the stability for such systems. Indeed
in [11], a strict Lyapunov function has been used to prove
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the stability of a hyperbolic system with the integral actions
at the boundary, which is a kind of ODE-PDE system. An
open-loop unstable hyperbolic system has been stabilized by
PI boundary controller, which is proved in frequency domain
in [2].

The motivation of this work is from the experimental setup
(Figure 1) which can be used to control the gas flow.
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Fig. 1. Experimental Setup

This setup consists of two parts: a heating column and a
tube. The gas dynamics in the heating column is governed by
a finite dimensional ordinary differential equation. Whereas
a partial differential equation is used to model the dynamics
in the tube. Since the area of the cross section of the heating
column is much larger than that of the tube, this leads to
the gas velocity in the heating column being much slower
than that in the tube. Thus we can model this setup by a
singularly perturbed coupled ODE-PDE system due to two
time scales’ dynamics.

In the present paper we first consider an ODE coupled
with a fast linear hyperbolic system, which can be used
to model the above setup. The stability analysis shows
that if the reduced and the boundary-layer subsystems are
stable then the full system is stable. This is proved by a
Lyapunov function. The simulations on the gas flow transport
system illustrate the first result. Secondly, we study a fast
ODE coupled with a hyperbolic PDE. An example indicates
that the stability of both subsystems does not ensure the
full system’s stability, which is different from the previous
system.

The paper is outlined as follows. Section II studies ODE
coupled with fast PDE systems. Two subsystems are formally
computed in the same section as well as the stability anal-
ysis between the full system and the subsystems, which is
established by Lyapunov techniques. Section III shows the



numerical solutions of the gas transport model. Section IV
presents PDE coupled with fast ODE systems. An example
is used to prove that the stability of both subsystems does not
guarantee that of the full system. Finally, concluding remarks
end the paper.

Notation. Given a matrix M, M~! and M represent
the inverse and the transpose matrix of M respectively.
For a symmetric matrix, = denotes the symmetric part. The
minimum eigenvalue of the matrix M is denoted by A(M).
For a positive integer n, I,, is the identity matrix in R™*". | |
denotes the usual Euclidean norm in R™ and || || is associated
with the matrix norm. || ||z denotes the associated norm in

1
L?(0,1) space, defined by ||f||z> = (fol |f(x)\2dx)2 for
all functions f € L%(0,1). Following [8], we introduce the
notation, for all matrices K € R"*",
p1(K) = inf{”AKA_lH,A € Dnﬂr}a

where D,, ;. denotes the set of diagonal positive matrices in
Rnxn'

II. ODE COUPLED WITH FAST PDE

Let us consider an ordinary differential system (ODE)
coupled with a hyperbolic system described by a partial dif-
ferential equation (PDE). A positive perturbation parameter
€ is introduced into the dynamics of the PDE system:

Z(t) = AZ(t) + By(1,t),
where z € [0,1], t € [0,400), Z : [0,400) — R™,
y:[0,1] x [0,4+00) — R™, A is a diagonal positive matrix
in R™*™_ 1In (la) A and B are matrices of appropriate

dimensions. The boundary condition for system (1) is given
by

(1a)

y(oat) = Gly(lvt) + G2Z(t) )

where (G; and G5 are real constant matrices with appropriate
dimension. The initial conditions are

Z(0) = Zy,
y(x,0) = yo(z).

Remark 1: The existence and the uniqueness of the so-
lution of such coupled system have been studied in many
research work. For instance, according to Theorem A.6.
in [1], for every Zy € R", for every yo € L2(0,1),
the Cauchy problem (1)-(3) has one and only one solution
Z € C%([0, +00), R™), y € C°(]0, +0c0), (L%(0,1),R™)). o
Since system (1) contains two time scales, let us decompose
it into the slow and fast subsystems, namely the reduced and
boundary-layer subsystems. Adopting the approach in [15],
the two subsystems are formally computed as follows. By
setting € = 0 in system (1b), we obtain

Yo (2, t) = 0. 4)

It implies y(.,¢) = y(1,¢). Using this fact to the boundary
condition (2) and assuming (I,,, — G1) invertible, yield

y(.,t) = GTZ(t)7 &)

(3a)
(3b)

where G, = (I,, — G1)"'G5. Using the right hand side
of (5) to replace y(1,¢) in (la), the reduced subsystem is
computed as follows,

Z(t) = (A+ BG,)Z(t), (6)
the initial condition is given by
Zy = Zy. @)
Performing the following change of variable
y=y—GZ,

which shifts the equilibrium of y to the origin. The boundary-
layer subsystem is computed in time scale 7 =t /e

r(x,7) + Ayz(z,7) =0 (8)

with the boundary condition

Q(O,T) = Gly(l?T)a TE [07 +OO) (9)
The initial condition is given by
Yo = Yo — G Zo. (10

To state the stability of the full system (1)-(3), let us firstly
present the following assumptions

Assumption 1: The matrix A+ BG, is Hurwitz.

Assumption 2: The boundary condition G;
P1 (Gl) < L

Let us recall the following proposition for the stability of
the linear hyperbolic system.

Proposition 1: [9] If p1(G1) < 1, then the linear system
(8)-(10) is exponentially stable in L?-norm.

We are ready to state our main result in the following
theorem.

Theorem 1: Under Assumptions 1-2, there exists €* >
0, such that for all ¢ € (0,e*), the full system (1)-(3) is
exponentially stable in L?-norm, that is for any Z, € R",
yo € L*(0,1), there exist positive values C and v, it holds

for all t > 0, <|Z<t>|2 " ||y<.,t>||iz) < 0e“t(|zo|2 T

satisfies

llyol|22 ). Moreover, it has a strict Lyapunov function

1
V(Z,y)=2Z"PZ + / e My —G.2) Qly — G, Z) dx,
0
(11)

where i > 0, P is a symmetric positive matrix and Q) is
diagonal positive.

Proof: Let us consider V' defined by (11) and write it
as V =V; + V,, with

Vi=2"PZ,

1
V2= / ey — G 2)TQly — GrZ) da,
0



where P and @) will be specified later. Computing the time
derivative of V; along the solution to system (la) yields

Vi = 22'PZ
= 27" P(AZ + By(1))

= 2ZTP<(A + BG,)Z + B(y(1) — GTZ))

= zZ' (P(A + BG,)+ (A+ BGT)TP> A
+2Z"PB (y(1) - G, Z).

Under Assumption 1, there exists a symmetric positive
matrix P such that

(A+ BG,)'P+ P(A+ BG,) < —1I,.
Due to Cauchy Schwarz inequality, it follows
Vi <

=12 +2|PB| ly(1) - G, Z| |Z].  (12)

Similarly, computing the time derivative of V5 along the
solution to system (1b) yields

1
Vo = 2/ e M (y — G 2) Qly, — G, Z) da
0

1
—2 [ ery-6.2)70 (—Ayx
0 g

1
= —g/ e M (y — GTZ)TQAygC dx
0

- G.(AZ + By(l))) dx

€
1
—2/ e " (y — G 2) QG, (AZ + By(1)) dz.
0

Performing an integration by parts on the first integral and
reorganizing it, we can write Vo = Vo1 + Voo + Va3 with

[<y<1> G 2) (e QA — GTQAGH)(y(1) Grzﬂ

Var1= )
—&
1
Ve = <2 [ erny-6.2) QA - G 2) d
0
1
Va = -2 [ e(y-G,2)TQG, (AZ+ By() do
0

Under Assumption 2, p1(G1) < 1 implies that there exists a
diagonal positive matrix A such that ||[AGATY|| < 1. It is
equivalent to A? — G| A%2G; > 0. Let choose Q = A2A™1,
for ;4 > 0 small enough, it holds

e MQA — G{ QAG, > Ae QA — GT QAG)) > 0.

Therefore

Ae QA — G{ QAG))
£

Var < — ly(1) = G.Z|*. (13)

Va9 follows

—u A 1
Vay < —%@)/ ly— G, Z* dz.  (14)
0

The following is deduced from Va3

1
Vog = 72/ e M (y - G, 2) QG, (A+ BG,)Z dx
0

1
—2/ e M (y — G, Z2) QG,B (y(1) — G.Z) dx.
0

Due to Cauchy Schwarz inequality and Young’s inequality,
Va3 follows

1
Vs < 2]QG.(A+ BG) 12| / ly— G 2| da
0

1
121QG,B| ly(1) - G, 7| / ly— G, 2] da. (15
0

Combining (13), (14) and (15) yields

Ae QA — G QAG))
€
_:u'eiMA(QA) Hy -G Z||2
31
+2|QG-(A+ BGy)| | Z]lly = G, Z]|
+2QG, Bl ly(1) - G, Z|lly - G, 2.

Combining (12) and (16), we obtain

V, < ly(1) - G2

(16)

-
. ) -Gzl (1) - Gzl
VoS - 1Z] M |Z| :

ly = G Zllzs ly - G2 2

WhereM:(JVil %i)’ )

i e—HQA—

with My = (M) = (S s ),
= —11QG.B|| e

M = — QG- (A+BG,)| ), M, = (%A(QA) )

First, let us study the matrix M;. Since My4 > 0 and there
exists e} such that for e € (0,e%), My — Mo My, M, > 0.
Due to the Schur complement, we get M; > 0. The inverse
of M; is computed as
1

Me"QA — GIQAG)) — | PB|?

€ el|PB]|
(* A(e’“QA—GIQAGl)) :

There exists 5, such that for all 0 < € < min(e},e3), My —
M;Ml_lMg > (0. We get M > 0 according to the Schur
complement. Thus there exists « > 0 such that

Mt =

V < —aV.
This concludes the proof of Theorem 1. [ ]

III. NUMERICAL SIMULATIONS ON A GAS FLOW
TRANSPORT MODEL

Let us recall the experimental setup in Figure 1. It consists
of two subsystems, the heating column and the tube. The two
subsystems are modeled as follows.

Model of the heating column: To model the gas dynam-
ics in the heating column, we first consider the following
assumptions.

Assumption 3: The dynamics of the pressure in the gas
control volume is much faster than that of the temperature,
the pressure and the mass can be considered as quasi static.



Assumption 4: The pressure losses are neglected because
of the low mass flow and of the sufficiently large input/output
section of gas. This implies py =~ pin, Where p;y is input
pressure.

Assumption 5: There is no work done by gas.

Under the above three assumptions and due to the first law
of thermodynamics and ideal gas law, the gas dynamics in
the heating column is modeled by (see [3])

Vo '
where pg is the gas density in the heating column, R is the
specific gas constant, T}, denotes the gas temperature at in-
put, the input mass flow is given by 1;,, Vj is the volume of
the heating column, C,, and C), are the special heat of volume
constant gas and of pressure constant gas respectively, d@ is
the heating exchange that can be controlled and v = o
Model of the tube: To model the gas dynamics in the tube,
let us state the following assumptions.

Assumption 6: All the heat transfers and friction losses
are negligible.

Assumption 7: The gas pressure in the tube is assumed
to be constant, which is close to the atmosphere pressure.
Under Assumptions 6-7, the gas dynamics in the tube is given
by (see [3]), for « € [0, 1] and for ¢ > 0,

Din ‘/O

) R
Po = £o C podQ + )

pinVO

pt('rat)—i_ubpm('rat) =0, (18)

where p represents the gas density in the tube. The propa-
gation speed in the tube is denoted by wu,. With a scaling of
the space domain, it may be assumed that the tube’s length
equals 1. Due to ideal gas law, uj = ZSST; where S is the
cross section of the tube.

The boundary condition is given by

Control problem statement: In the following we state our
control problem. Let us rewrite (17) and (18) as follows

(20a)
(20b)

. 1
Po = =Po +U(t),
Pt T uppy = 0.

where « is the transport time constant in the heating column
and U(¢) is the control (it could be defined from d@). The
boundary condition is the same as (19).

The control problem is formulated as: for any desired mass

density in the tube p* > 0, let the controller be
U(t) = c1p(1,t) + c2p”, 21

such that the system is exponentially stable at the equilibrium
point p = p* with an appropriate choice of real values c¢;
and co. Replacing U(t) in (20a) by the right hand side in
(21), the closed-loop system is written as

(22a)
(22b)

. 1 N
Po = =Po +c1p(1,t) + cap”,
pt + ubpw = Oa

with the same boundary condition (19).
At the equilibrium point of the gasldensity inside of the

—c1

tube pg, from (22a), we get p* = =—=pj, where cy has
to be selected such that ¢c; # 0. Due to (19), it holds at
the equilibrium p* = pg. Therefore, the values of ¢; and ¢
should satisfy c; +co = % Let us define the state deviations
with respect to the equilibrium point gy = pg — p*, and
p = p — p*. The linearized system is

- 1. -
Po = _EPO + ClP(Lt)y (233)

.1
€pt+ P =0, (23b)
where the perturbation parameter is given by € = 1u/ =, due to

b
the transport velocity of gas in the heating column is much

smaller than that in the tube. The boundary condition is
7(0,t) = po. 24)

From (24), recalling the condition in (2), we compute G; =
0, Go = 1 and G, = 1. Moreover, by (la) and (6),
Assumption 1 holds as soon as ¢; < % Assumption 2 holds
since p1(G1) = 0.

The reduced subsystem is

- 1 _
po = < + 01> po,
K

whereas the boundary-layer subsystem is written in time

_t
scale 7 = Z

(25)

1
pr+ —pz =0, (26)
K
with the boundary condition
p(0,7) =0. 27
Let us take the experimental data from [3]: v = 1.4,

R = 8.3J/(mol * K), pi, = 1 x 105Pa, T, = 300K,
Vo = 4 x 1073m?, 1y, = 0.01kg/s, S, = 6.4 x 1073,
We compute v = 10, ¢ = 0.1. We choose ¢; = 0.01.
The initial conditions are given by: po(0) = po(0) = 2,
p(0) = cos(4dmz) — 1, p(0) = p(0) — po(0) = cos(4dwx) — 3.
Let us use a two-step variant of the Lax-Wendroff method
(see [20] and [21]) to check the numerical solutions. The
solution of the boundary-layer subsystem is shown in Figure
2, it converges to the origin. Figure 3 presents the solutions
of the reduced subsystem and the slow dynamics of the full
system, which decrease to zero as time increases and the
evolution of the two curves is roughly the same. In Figure
4, it is shown that the solution of the fast dynamics of the
full system tends to zero as time increases, as expected from
Theorem 1.

IV. PDE COUPLED WITH FAST ODE
In this section let us consider a PDE coupled with an
ODE, where the perturbation parameter is introduced into
the dynamics of the ODE. The full system is given by
€Y (t) = CY (t) + Dz(1),
zi(x,t) + Ay 2o (2, t) = 0,

(28a)
(28b)



Fig. 2. Solution of the boundary-layer subsystem (26)-(27)
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Fig. 3. Solutions of the reduced subsystem (25)(dashed line) and the slow
dynamics of the full system (23)-(24)(plain line)

Fig. 4. Solution of the fast dynamics of the full system (23)-(24)

where z € [0,1], t € [0,+00), ¥V : [0,+00) — R, z :
[0,1] x [0,+00) — R™, A; is a diagonal positive matrix
in R™>*™ In (28a) C and D are matrices with appropriate

dimension. The boundary condition is given by
2(0,t) = K12(1,t) + KoY (¢), (29)

where K; and K are in appropriate dimension. The initial
conditions are

Y (0) = Yo, (30a)
z(x,0) = zo(x). (30b)
The reduced subsystem is computed as
Zi(x,t) + A1 Z.(z,t) =0, 31
with the boundary condition
z(0,t) = K,z(1,t), (32)

where K, = (K; — K;C~!D), whereas the initial condition
is

zZ(z,0) = zZp(x) = 2zo(x). (33)

To ensure the existence of a solution of the reduced subsys-
tem in H?2, the compatibility conditions are given by

ZO(O) = KT‘ZO(]‘)7
Z0,(0) = AT K, A%, (1).

Perform a change of variable Y = Y 4+ C~1Dz(1), the
boundary-layer subsystem is computed as
dy (1)

e =CY(1),

with the time scale 7 = t/e. The initial condition is given
by

(34a)
(34b)

(35)

Y(0) = Y. (36)

The assumptions, which are used in this section, are given
as follows

Assumption 8: The boundary condition K, satisfies
P1 (KT) <1

Assumption 9: The matrix C' is Hurwitz.
Let us perform a change of variables

§ = Y+C'Dz(1) - Y(t/e). (38)
The system in variable (), §) are computed as follows
e+ Ainy =0, (39)
n(0,t) = Kun(1,t) + K20(t) + KoY (tfe),  (40)
eb(t) = C6 —eC DA Z,(1,1). 1)

Note that (41) is well defined since z(x,t) € H?. Surpris-
ingly, Theorem 1 is not valid in the context of this section.
To be more precise, it holds Proposition 2.

Proposition 2: Assumptions 8 and 9 do not imply the
exponential stability of system (28)-(29).
We provide an example to prove the above proposition.
Proof: We consider the following 2 x 2 system

€Y (t) = —0.1Y (1) — 2(1),
ze(x,t) + zz(x,t) = 0.

(42a)
(42b)

The boundary condition is given by K; = 2 and Ky = 0.2,
2(0,t) = 22(1,t) + 0.2Y (¢). (43)

The initial conditions are chosen as zg = 0 and Yy # 0.
The reduced subsystem is computed as
Zi(x,t) + Zz(x,t) = 0, (44)
with the boundary condition
z(0,t) = 0. (45)

The initial condition is chosen as zy = zg = 0.
The explicit solution of (44)-(45) is

Z(z,t) = 0.
The boundary-layer subsystem is computed as

dy (7)
dr

= —0.1Y (7). (46)



The solution of (46) is

Y (t/e) = e 015y, (47)
System (41) is written as
o(t) = —Eé(t) (48)
The solution of (48) is
5(t) = e O 1t/55,, (49)

Due to (38), we obtain §y = 0. Thus 6(¢) = 0 for all ¢ > 0.
System (39)-(40) is written as

N+ M2 =0, (50)

n(0,t) = 2n(1,t) +0.2Y (t/¢). (51)

Let us denote f(t) =
t>0,

0.2Y (t/e), we can compute for all

n(l,t) = 2n(l,t—1)+ f(t—1)

Using a recursion, it can be proved that for all t € N,

t—1

271N " f(s)27° + 2n(1,0).

s=0

n(l,t) =

Since 7(1,0) = z9(1) — 2o(1) = 0, Yo = Yp and using (47),
it follows for all ¢t € N,

t—1
271 x 0.2Yp » 27 %e O e/e,

s=0

n(l’t) =

Since the initial condition Yy is chosen as Yy # 0, then
n(1,%) tends to infinity. Since zZ(x,t) = 0, thus z(1,¢) =
n(1,t) diverges. Then it can be shown that the full system
(42)-(43) is unstable in L?-norm. This example illustrates
that the stability of both subsystems does not ensure the
stability of the full system as stated in Proposition 2. [ ]

V. CONCLUSION

This paper has dealt with a coupled ODE-PDE system with
two time scales. In the first case, it has been considered ODE
coupled with fast PDE systems. It has been shown that the
stability of the reduced and the boundary-layer subsystems
ensures the stability of the full system. This has been proved
by a strict Lyapunov function. The application to a gas flow
transport model governed by an ODE-PDE system has been
used to illustrate the main result. In the second case, it has
been considered PDE coupled with fast ODE systems. An
example has been provided to prove that the full system’s
stability cannot be guaranteed by that of both subsystems.
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