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Abstract:

The paper provides stability analysis to certain classes of hybrid systems, more precisely
impulsive linear systems. This analysis is conducted using the notion of reachable set. The main
contribution in this work is the derivation of theoretical necessary and sufficient conditions
for impulsive linear systems with nearly periodic resets subject to timing contracts. This
characterization serves as the basis of a computational method for the stability verification
of the considered class of systems. In addition, we show how this work handles the problem
of timing contract synthesis for the considered class and we generalize our approach to verify
stability of impulsive linear systems with stochastic reset instants. Applications on sampled-
data control systems and comparisons with existing results are then discussed, showing the

effectiveness of our approach.

Keywords: Reachability; Impulsive systems; Stability analysis.

1. INTRODUCTION

Impulsive dynamical systems form a class of hybrid sys-
tems which models processes that evolve continuously
and undergo instantaneous changes at discrete time in-
stants. Applications of impulsive dynamical systems in-
clude sampled-data control systems [Briat (2013)] or net-
worked control systems [Donkers et al. (2011)]. In this
paper, we consider the problem of verifying stability of
impulsive linear systems subject to nearly periodic re-
sets. More precisely, the duration between two consecu-
tive resets is uncertain but constrained in some bounded
interval given by a timing contract. Several approaches
are developed in literature to analyze stability of such
systems. On one hand, there is a discrete-time and convex
embedding approach [Hetel et al. (2011, 2013)], a time
delay technique [Liu et al. (2010); Seuret and Peet (2013)],
a hybrid system formulation [Dai et al. (2010)], and an
Input/Output stability approach [Omran et al. (2014); Fu-
jioka (2009)]. On the other hand, [Fiacchini and Morarescu
(2014)] derives an approach which mainly uses backward
invariant set computations [Blanchini and Miani (2007)]
to find a contracting polytopic set for the system. In the
former methods, the stability criterion is given in terms
of Linear Matrix Inequality (LMI) which numerically pro-
vides only sufficient conditions for stability. Whereas, the
latter is less conservative but in its turn does provide only
sufficiency for the stability verification problem, knowing
that computational-wise necessity would come with possi-
bly unbounded computations.

* This work was supported by the Agence Nationale de la Recherche
(COMPACS project ANR-13-BS03-0004).

In this paper, we propose a new approach based on forward
reachability analysis. Primarily, we state the necessary and
sufficient theoretical conditions, based on reachable sets,
for stability of NPILS. Then, we take advantage of previ-
ous work| Le Guernic and Girard (2010)], which provides
an algorithmic scheme to compute the reachable sets for
linear systems avoiding the wrapping effect (accumulation
of over-approximation errors). We present a computational
reachability based stability verification method for nearly
periodic impulsive linear systems. Moreover, we handle
the problem of synthesizing timing contracts using the
previous method as well as monotonicity of the stability
property with respect to parameters of the timing con-
tract. The work is then extended to deal with the problem
of stability verification in the stochastic case. Last, the effi-
ciency of our work is shown by illustrative examples where
our results are not only less conservative than several of
those existing in literature but also show tightness of our
approximation scheme. Advantages in using our method
are seen to extend in dealing with further timing contracts
as well as taking into consideration some performance
specifications since an insight on the reachable set is given
during our analysis.

The paper is organized as follows. First, some prelimi-
nary notations are defined before formulating the stability
verification and the timing contract synthesis problems
in Section 3. The main results are discussed in Section
4. Detailed explanations on the algorithms and over-
approximation scheme utilized in our approach lies in
Section 5. In Section 6 stability is studied for the stochastic
case. We discuss more on the computation of the reachable
set in Section 7. Applications on sampled-data control
systems and comparisons with existing results are then



discussed, before concluding our work. Due to space limi-
tation proofs of the theorems, corollaries, and propositions
are omitted.

Notations Let R, R}, RT, N, N* denote the sets of reals,
nonnegative reals, positive reals, nonnegative integers and
positive integers, respectively. For I C Rar, let Ny =NN1.
Given a real matrix A € R"*™, |A| is the matrix whose
elements are the absolute values of the elements of A.
Given S C R™ and a real matrix A € R" " the set
AS = {z e R" : (Jy € § : # = Ay)}; for a € R,
aS = (al,)S where I, is the n x n identity matrix.
The interior of S is denoted by int(S). The convex hull
of § is denoted by ch(S). The interval hull of S is the
smallest interval containing the set & and is denoted by
O(S). The symmetric interval hull of S is the smallest
symmetric (with respect to 0) interval containing S and is
denoted by [(S). Given §,8" C R", the Minkowski sum
of Sand S'is S8 ={z+2 12z € S, € §'}. A
polytope P is a subset of R™ which can be defined as the
intersection of a finite number of closed half-spaces, that
isP={zx eR": Hx < b} where H € R™*" p € R™ and
the vector of inequalities is interpreted componentwise.
Let H;, i € N1, denote the row vectors of H, and if
0 € int(ch({Hi,...,Hn})), then P is compact. Given a
template matrix H € R™*™ and a compact set S C R",
let us define the polytope I'y(S) = {x € R" : Hx < b}
where b; = max,es H;z, i € N ). In other words, ' (S)
is the smallest polytope whose facets directions are given
by H and containing S. We denote the set of all subsets
of R” by 2%". We denote by IC(R") the set of compact
subsets of R™ and by Ko(R"™) the set of compact subsets
of R™ containing 0 in their interior.

2. PROBLEM FORMULATION
We consider the class of impulsive linear systems given by:

(t) = Aea(t), Vt € (tr, tos1), k € N, (1)
o(t]) = Aga(ty), k €N, 2)

where (tx)ren are the reset instants, x(t) € R™ is the state
of the system, and z(t") = l%)m>0x(t + 7).
T— ,T

We assume that the sequence of reset instants (¢x) satisfies
a timing contract given by

to=0, tpy1 —tp =1 + 71, Tk€[0,5],k€N (3)
where T' € RT represents a nominal reset period and
(Tk)ken 1s a bounded uncertain sequence in the compact
set [0,6], € R{. Hybrid dynamical systems described
by the continuous dynamics (1), the discrete dynamics
(2) and the timing contract (3) are called nearly periodic
impulsive linear systems (NPILS).
Definition 1. The NPILS (1-3) is globally uniformly ex-
ponentially stable (GUES) if there exist A € R* and
C € R" such that, for all sequences (tx)ren verifying (3)
the solutions of (1-2) verify

lz(®)]| < Ce™ |lz(0)l], ¥t € R*.

In this paper, we present algorithms for solving the follow-
ing two problems:

Problem 1. (Stability verification). Given A. € R™ 7,
Ay € R T € RY, and 6§ € R, verify that NPILS
(1-3) is GUES.

Problem 2. (Timing contract synthesis). Given A, € R"*™,
Ay € R™™ synthesize a set II C R* x R such that for
all (T,0) € II, NPILS (1-3) is GUES.

3. STABILITY CHARACTERIZATIONS

This section presents the main theoretical result of the
paper in the form of a necessary and sufficient stability
condition for NPILS (1-3). This condition can serve to
derive a solution to Problem 1. We also prove several
results which will be instrumental in solving Problem 2.
Before proceeding to the main results, we need to define
the notion of reachable set.

Definition 2. Given a continuous-time dynamical system

i(t) = Az(t), t e R, z(t) € R"
the reachable set on [t,t'] C R(J{ from the set S C R" is

Riwm(S) = |J s

TE[t,t]

Then, let us introduce the map: ® : 28" — 28" defined
for all S € R™ by

B(S) = Ry (" AuS). (4)

The interpretation of ®(S) is as follows. Let z be a
trajectory of NPILS (1-3) such that x(tx) € S, then
x(tky1) € ®(S). It is easy to see that if S is compact
then so is ®(S). It is clear that for two sets S, &' C R
and ¢ € R, it holds ®(S U S’) = &(S) U &(S’) and
®(a8S) = a®(S). We define the iterates of ® as ®°(S) = S
for all S C R”, and ®**! = & o ®F for all k € N. Then,
it is clear that x(0) € S implies that x(t;,) € ®*(S) for all
ke N.

The exact computation of ® is often impossible and we use
in this work an over-approximation ® : L(R™) — K(R")
satisfying the following assumption:

Assumption 3. For all S € K(R"), &(S) C ®(S).

We will discuss an effective computation of ®(S) in Sec-

tion 4. The iterates of the map ® are defined similarly to
those of ®.

The following result characterize the stability of NPILS
(1-3) in terms of the map ®:

Theorem 4. Let S € Ko(R™), the following statements are
equivalent: !

(a) NPILS (1-3) is GUES,

(b) There exists a triplet (‘k,j7 p) € NT x Njg ,_1; x (0,1)
such that ®*(S) C pd’(S),

(c) There exists a pair (k,p) € NT x
R(S) C pUiZy ().

(0,1) such that

We now derive sufficient conditions for stability based on
an over-approximation of map ®.

1 Similar results for discrete-time switched systems were shown in
[Athanasopoulos and Lazar (2014)].



Corollary 5. Under Assumption 3, if there exist a set
S € Ko(R") and a pair (k,p) € N* x (0,1) such that

3"(S) € pUiZy (), then NPILS (1-3) is GUES.

The previous corollary provides the background for design-
ing a solution to Problem 1 in the next section.

We claim some simple results that will be instrumental
in our approach to Problem 2. Let us introduce the new
parameters T,,, € Rt, Th; € Rt with T},, < Ty related to
parameters T, 6 by T, = T, Thy = T + 9. Then, timing
contract (3) can be rewritten equivalently as

to =0, thy1 —tk € [Tm,T]u], ke N. (5)
Then, the following monotonicity result clearly holds:

Proposition 6. If NPILS (1-2), (5) is GUES for parameters
T, € R, Ty € RT with T,,, < Ty then it is GUES for all
parameters T}, € R, T}, € R with T,,, < T}, < T3, <
Thr.

In addition, the following proposition is used to constrain
the search region for solving Problem 2:

Proposition 7. If NPILS (1-2), (5) is GUES for parameters
T, € RT, Tyy € Rt with T,, < Ty, then for all
T € [T, Tar, €74 Ay is a Schur matrix.

4. ALGORITHMS FOR STABILITY VERIFICATION
AND CONTRACT SYNTHESIS

In this section, we describe algorithms for solving Prob-
lems 1 and 2. But first, we discuss the computation of an
over-approximation ¢ based on reachability analysis.

4.1 Reachability analysis

The map P, to be over-approximated, is given by (4) in
terms of the map R. Moreover, the latter is efficiently
over-approximated using the following result [Le Guernic
(2009)]:

Theorem 8. For 6 € Rt, A € R™™ and S € K(R™), let

N
—A —A
Ri0.5(S) = U Riti1ynim () (6)
i=1
where N € NT, h = §/N is the time step, and

ﬁf(‘iq)h,ih] (S) is defined by the recurrence equation:

A

Rion(S)=ch(S, " S) @ 1/4€,(S),
—A —A )
R (ix 1y (S) = €™ R _1ynin (8), i € N yv—y

with

en(S) =0(JA[H (" — 1) B (A(1 = ")S)) @
O(|A|~2(eA — T — h|A]) [ (A2eM48)).
Then, R} (S) € Rigy(S), and for all i € Ny,

—A
R{(‘i—l)h,ih] (S) € Rii—1yn,in) (S)

—A
The over-approximation Ry 71(S) of the reachable set is
given by the union of N convex sets which may be quite
impractical for subsequent manipulations. For that reason,

it will be over-approximated by the smallest enclosing
polytope whose facets direction are given by a matrix

H. Finally, the over-approximation of ® will be given as
follows:

Corollary 9. Let the matrix H € R™*", such that 0 €
int(ch({Hy,...,Hn})). Let @ : L(R™) — KC(R™) be given
by

J— 714(:

(S) =T (Rigis ("4 A4a8)) (7)

where ?S?é](eTAcAdS) is computed as in Theorem 8.
Then, ¢ satisfies Assumption 3.

4.2 Stability verification

The stability verification algorithm consists of an initial-
ization step and a main loop. In the initialization step, we
compute an initial set which will then be propagated in
the main loop using the map ® defined in (7) to check the
stability condition given by Corollary 5.

Initial set computation  The choice of the initial set
is important in order to try to minimize the value of
the integer k such that the stability condition given by
Corollary 5 holds. One approach to compute the initial set
is to define it as a common contracting symmetric polytope
Po, to L € NT linear discrete-time-invariant systems, such
that

Vj € Ny p, €774 AqPo C int(Py), (8)

where T; = T + O_Tl)‘s. Then, Py can be computed
using a backward iterative method in an analogous way
as done in [ Blanchini (1991)] and [ Fiacchini and
Morarescu (2014)]. The function computing Py is denoted
by init(A., Ag, T,0,L). Then, Py = {x € R" : Hx < by}.
The matrix H defining Py is used in the main loop of the
algorithm in the computation of the map ®.

Main loop  In the main loop, the initial set is propagated

using the map ® defined by (7). The stability condition

given by Corollary 5 is checked after each iteration. If the

condition is verified then NPILS (1-3) is GUES and the

algorithm returns true. We impose a maximum number of

iterations k;,qz, if that number of iterations is reached

then the algorithm fails to prove stability and returns

unknown. The algorithm for solving Problem 1 is then

given as follows:

Algorithm 1. Stability verification

function is_.GUES(A.,A4,T,9)

input: A., Ay € R"™*" T § € R*

output: true if NPILS (1-3) is proved GUES, unknown

otherwise

parameter: L, k.. € NT
1: P0:=init(Ac, Ay, T, 6, L);
: for k =1to ke do

Pr:=P(Pr—1);

2

3

1 if P Cint (USZ) P;) then
5: return true;
6

7

8

> compute initial set

> set propagation

> stability check

end if
: end for
: return unknown;

The proposed approach above induces conservativeness
due to over-approximation of the map ® and to imposing
a limited number of iteration. Consequently, it is possible
that some stable NPILS cannot be verified by the algo-
rithm. Nevertheless, by manipulating the parameters of



Algorithm 1, the efficiency of our approach is shown by
several examples in Section 6.

4.8 Timing contract synthesis

Solving Problem 2 is clearly equivalent to determining a
set © C Rt x RY such that for every (Ty,,Ths) € O the
NPILS (1-2), (5) is GUES.

We bound the search space to a set 2 defined by: T},in <
T, < Thy < Tpaz- Next, we follow the steps in Algo-
rithm 2 that synthesizes © inside 2 by taking increasing
values T¢,, i € Ni1,i,0.) o0 the Tj, axis and finding,

following bisection, the maximum value T;ﬁ on the T, axis
such that stability of NPILS (1-2), (5) is verified. Following

Proposition 7, we assume that e’m4< A4 is a Schur matrix
for all i € N5, ..1-

Note that the algorithm uses the monotonicity property
stated in Proposition 6 in order to avoid unnecessary
computations, since we know that T}, > max (T}, T%).
Algorithm 2. Timing contract synthesis
input: A., A; € R"*"
output: © C RT x R* such that for all (T,,,Ty) € O,
NPILS (1-2), (5) is GUES
parameteTr: z'mqqgc, €, Trin,
L A= fmer—tming
2: T](a[ = Thnin;
3: for i = 110 iy, do
4: T! = Toin + (i — 1)A;

max

5 Tup:: Tmax; )

6: Toown:= mam(T}Vfl, Ti); > use monotonicity
7 while T, — Tyjown > € do > bisection
8 Tharpi= Lretidoun,

9 if iS,GUES(AC7Ad,T£1,Thalf — Tfn) then

10: Tqown = Thalf;

11: else

12: Tup = Thalﬁ

13: end if

14: end while

15: T}Q = Tgown;

16: end for

172 ©:=U:" 5" {(Tn, Toag) : Ty < Ty < Tag < Ty}
Eventually, we can easily retrieve II from © so that
Problem 2 is solved by the following relation

Il = {(T,5) = (T, Tar — Tin) : (T, Tas) € O

Now we derive a stability analysis for the same system at
hand (1-2) but for stochastic resets.

5. STABILITY ANALYSIS OF STOCHASTIC
IMPULSIVE LINEAR SYSTEMS

In this section, we extend our approach to stochastic
systems. Stochastic impulsive linear systems (SILS), con-
sidered in this section, take the same form as (1-2) with
independent and identically distributed (i.i.d.) random
durations between resets:

to=0, tpy1 —tp =T+ 7k, Tk NU([O,é]),i.i.d. keN (9)
where U(]0,d]) is the uniform distribution over [0, d]. Let

us remark that the method presented in this section can be
easily extended to other types of probability distributions

with compact support. We consider the following notion
of stability for stochastic systems:

Definition 10. The SILS (1-2), (9) is globally uniformly
mean exponentially stable (GUMES) if there exist A € RT
and C € RT such that for all sequences (t;)ren verifying
(9) the solutions of (1-2) verify:

Ellz(®)]] < Ce™* |2(0)], ¥t € R,
5.1 Sufficient stability condition

Let S € K°(R™), in the following we provide a sufficient
condition for GUMES based on a map ps : [0,d] — R*
satisfying the following assumption:

Assumption 11. Let § € K°(R"), for all 7 € [0,d],
eT+7)4c 4,8 C ps(T)S.

Then, we can state the following stability condition:

Proposition 12. Under Assumption 11, if there exists a set
S € K°(R™) such that

ps =Elps(7)] < 1 where 7 ~ U(]0, 9]),
then SILS (1-2), (9) is GUMES.

5.2 Stability verification

We now present an approach based on reachability analysis
for computing a function pg satisfying Assumption 11.

Let us consider a polytope P = {& € R® : Hzx <

b} where the matrix H € R™*" is such that 0 €
int(ch({Hi,...,Hn,})) and b; > 0 for all i € Ny ,,). Then,
P e Ko(Rn)
Proposition 13. Let pp : [0,8] — R be given by

pp(T) = pi, if 7 € [(i = 1)h,ih],i € N N
where N € NT, h = §/N is the time step, and p; satisfies
for i € N[l,N]

— A,
FH(R[(z’—l)h,ih] (eACTAdP)) C p;P,

with ﬁ?f_l)hm] (eA<T A4P) computed as in Theorem 8.
Then, pp satisfies Assumption 11.

Then, stability can be effectively verified using the follow-
ing result:

Corollary 14. Let p;, i € Njj n) be computed as in Propo-

sition 13, if
N
sz‘ <N
i=1
then SILS (1-2), (9) is GUMES.
6. APPLICATIONS AND NUMERICAL RESULTS

We implement the algorithms presented in this paper in
Matlab using the Multi-Parametric Toolbox [Herceg et al.
(2013)]. All reported experiments are realized on a desktop
with i5 4690 processor of frequency 3.5 GHz and a 7.8 GB
RAM.

6.1 Sampled-data systems

We consider the problem of verifying stability for sampled-
data control systems. These systems are given under the
form:

2(t) = Az(t) + Bu(ty), YVt € (tk,tkt1), kEN

u(th) = Kx(te) (10)



where 41 — t; is a variable sampling interval bounded in
[T, T+6], 2(t) € R™ is the state of the system, u(t) € R™ is
the control input computed quasi-periodically at instants
ty, and K € R™*™ is the feedback gain. This problem
could be rewritten in the form given by (1-3), with:
Ac=(38), A= (%0). =0 =(0)
with I,, as the identity matrix of R™*™, and with the same
timing parameters T and 4.
Ezxample 1. This sampled data system is taken from the
article [Briat (2013)], that compares results of LMI-based
approaches for stability analysis of NPILS. Consider the
state space plant model given by (10) with
A=(8.41), B=(&), K=(-am-15) (12)
After rewriting the problem in the form of (1-3) with ma-
trices defined as in (11), we set 7' = 10~5. For this system
the matrix e™4¢ Ay is Schur for 7 € [0,1.72941]. Table 1
compares the results obtained by our approach with those
obtained by other existing methods and reported in [Briat
(2013)]. Our result is similar to the least conservative
result which was obtained by the method presented in
[Seuret and Peet (2013)]. More precisely, stability could
be proven up to 4, = 1.7294 using Algorithm 1 with
parameters L = 2 (number of subsystems chosen to find
the initial set Pp), kmaz = 1 (i.e. P1 C int(Pp)) and the
number of time steps used for the over-approximation of
the reachable set is N = 1011. The computation time was
0.1511 seconds.

Ezxample 2. The second sampled-data control system is
also taken from [Briat (2013)], with:

A:(—020?1)a B=(}) K=(10). (13)
Results obtained by our approach and by several others are
also reported in Table 1. Our approach has better results
since it was able to verify GUES up to § = 1.488, instead
of 6 = 1.428 for the method presented in [Seuret and Peet
(2013)]. Note that the system becomes unstable for § =
1.489 since the matrix HiGN[1 ” (eTi4e A4) has eigenvalues

outside the unit circle for T3 = 0.4 and Ty = 1.889. This
shows the tightness of our results. Algorithm 1 was used
with parameters L = 2, k4, = 30 and the number of time
steps used for the over-approximation of the reachable set
is N = 100. The stability condition Py C int(UJi, P)
was verified for £ = 14. The computation time was 2.76
seconds.

We now consider the timing contract synthesis problem
for the sampled-data system given by matrices (13). We
used Algorithm 2 with parameters i,,,, = 100, ¢ =
0.01, Thin = 0.2109 and Tinee = 2.02. Parameters of
Algorithm 1 were L = 2, ke = 10 and the number
of time steps used for the over-approximation of the
reachable set was N = 100. Figure 1 shows the regions ©
parameters in the (T,,,Th) domains, for which GUES is
guaranteed. The computation time was about 130 seconds.

6.2 Other example
Example 3. The following example is taken from the arti-

cle [Hetel et al. (2013)] proposing an LMI-based approach
to verify stability of a NPILS. Consider a system (1-3)

with o 3 1
- 100
A, = (1.4 —-2.6 0.6> , Ag = (010)
8.4 —18.6 4.6 000

Table 1. Comparing the results on estimates of
the maximum sampling uncertainty given by
Omaz, for Examples 1 and 2.

System (12) | System (13)
Smazx T Smaz
Briat (2013) 1.7279 0.4 1.427
Naghshtabrizi et al. (2008) 1.113 - -
Liu et al. (2010) 1.695 - -
Seuret and Peet (2013) 1.7294 0.4 1.428
Algorithm 1 1.7294 0.4 1.488

25 1

Tar

05

T

Fig. 1. Timing contract synthesis for system (12) in the
(T, Tar) domain.

For this system the matrix e”4¢A, is Schur for T €
[0,0.58]. This implies that the system is stable if the
reset occurs periodically, with constant reset interval T €
[0,0.58] and § = 0. Nevertheless, variations in the reset
intervals may result in instability. As noted in [Hetel et al.
(2013)], the matrix Hz’eN[m] (eTi4c A,) has eigenvalues out-
side the unit circle for 73 = 0.515 and 7; = 0.1, for
i € Npg 5. As a result, for T = 0.1 the value § = 0.415
is an upper bound for admissible values of §. For T'= 0.1,
GUES could be proven up to § = 0.2 following the LMI
approach in [Hetel et al. (2013)].

Table 2. Results of Algorithm 1 on Example 3
for several values of the parameters L, k,qz
and N: GUES could be proved up to 6 = dpnaz;
Tepy is the computation time in seconds;
k is the index value for which the stability

condition Py, C int(Uf;O1 P;) is verified.

Parameter setup dmaz | Topu(s) | k
A (L =1, kmaz =1, N = 100) 0.01 0.16 1
B (L =1, kmas = 100, N = 100) | 0.4 0.8 7
C (L =2, kmas = 1, N = 100) 04 21 1
D (L =2, kmaz = 100, N = 100) 0.414 8.5 24

Results obtained using Algorithm 1 with several parameter
setups are reported in Table 2. In this example, parameter
setups B, C, and D leads to less conservative results than
the mentioned approach since stability is verified at least
up to 6 = 0.4. Moreover, with parameter setup D, the
verified value § = 0.414 is tight, since it is very close to

the known upper-bound § = 0.415. Figure 2 shows the

projections on the first two states of Pay and U?io P;
computed by Algorithm 1 using parameter setup D for
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Fig. 2. Poy and Ufio P; computed by Algorithm 21 using
parameter setup D for § = 0.414; Poy C int(UiiO Pi)-

1.35r

0.95 1 N 1 1 1 1 1 1 )
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
T

Fig. 3. pp(7) for the polytope P given by the initial poly-
tope Py computed by Algorithm 1 with parameter
setup C.

6 = 0.414. Containment in the full space is also verified
but is impractical to visualize.

Figure 3 illustrates the result on stochastic impulsive
linear systems of Section 5. The figure shows the graph
of the function pp(7) defined in Proposition 13 for the
polytope P given by the initial polytope Py computed by
Algorithm 1 with parameter setup C. One can check that
pp(T) < 1 for 7 € [0,0.4] which shows that the NPILS is
GUES for § = 0.4. Then, we can check that the condition
given by Proposition 12 for GUMES of SILS is verified for
0 = 0.444. The computation time was 2.16 seconds.

7. CONCLUSION

In this paper we derived a new reachability-based method
to verify stability of NPILS and handle the problem
of timing contract synthesis. Moreover, we have shown
numerical examples where our method yields tight results
and less conservativeness than several existing methods
in literature. As a future work, it is interesting to verify
stability for other hybrid systems under various timing
contracts using reachability-based approaches.
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