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Minimum-Energy Path Generation for a Quadrotor UAV

Fabio Morbidi, Roel Cano, David Lara

Abstract— A major limitation of existing battery-powered
quadrotor UAVs is their reduced flight endurance. To address
this issue, by leveraging the electrical model of a brushless DC
motor, we explicitly determine minimum-energy paths between
a predefined initial and final configuration of a quadrotor
by solving an optimal control problem with respect to the
angular accelerations of the four propellers. As a variation
on this problem, if the total energy consumption between
two boundary states is fixed, minimum-time and/or minimum-
control-effort trajectories are computed for the aerial vehicle.
The theory is illustrated for the DJI Phantom 2 quadrotor in
three realistic scenarios.

I. INTRODUCTION

A. Motivation and related work

In spite of the recent large-scale diffusion of rotary-wing
micro Unmanned Aerial Vehicles (UAVs), whose number
of rotors ranges between four and eight depending on the
payload and demanded redundancy, these systems still suf-
fer from a major limitation: the reduced flight endurance,
typically between 15 and 30 minutes. Some promising new
applications (package delivery, cinematography, aerial ma-
nipulation) have lately emerged: however, the limited run-
time of the existing lithium-ion polymer (LiPo) batteries
strongly restricts the class of missions that a rotorcraft can
successfully carry out.

To alleviate this problem for quadrotors, the simplest and
most popular class of rotary-wing micro UAVs, a significant
effort has been invested in weight reduction by adopting
carbon-fiber airframes and high-energy-density soft-pouch
battery packages, and in the improvement of power-to-weight
ratio of brushless DC motors, which are the main responsible
for energy consumption. These efforts have been successful
in reducing operation in power-starved regimes: nevertheless,
no technological breakthrough is expected along these lines
in the near future. Building upon commercial off-the-shelf
aerial platforms, it has then become imperative to devise
novel algorithm-level solutions to save energy and extend
endurance. In this paper, we will focus on the path-planning
problem and by introducing suitable optimal control prob-
lems with respect to the angular accelerations of the four
motors, we will compute minimum-energy and fixed-energy
trajectories for a quadrotor.

Several solutions contributing towards increased en-
durance have been recently proposed in the literature. These
solutions have mainly focused on the improvement of the
mechanical design and of the power system of a quadrotor.
For instance, more efficient rotor configurations have been
explored in [1] (triangular arrangement with propellers of
different diameter) and in [2] (tilting motors guaranteeing

F. Morbidi is with the MIS laboratory, Université de
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actuation redundancy). However, both designs are still at
a prototype stage. In [3], the authors have described an
energy-efficient aerial platform developed using a minimal-
istic design approach, whereas in [4], a simple model is
introduced to estimate the endurance of a quadrotor exploring
an indoor environment, and a ceiling attachment is proposed
as a means of preserving energy while maintaining a bird’s
eye view. Abdilla et al. have provided a characterization of
the energy consumption of a rotorcraft powered by LiPo
batteries in stable hovering flight, and introduced a more
accurate endurance estimation model tailored to the Parrot
AR.Drone 2.0 [5]. Other recent studies have envisaged to
extend UAVs’ mission time by dumping exhausted battery
modules out of the aircraft in flight, thus reducing the
mass of the vehicle [6]. Nevertheless, environmental and
safety concerns will likely prevent the large-scale adoption
of this solution in civilian applications. Aerial robots tethered
to a ground station have lately become a viable option.
The tether can be used to provide energy to the aircraft,
thus offering virtually unlimited flight time (see, e.g. [7] and
the references therein). Finally, in [8], [9] automatic battery
change/recharge platforms have been developed to enable
long-endurance missions for multiple quadrotors.

The problem of generating energy-optimal paths for a
rotorcraft has received much less attention in the aerial-
robotics literature. In [10] an energy-efficient path-planning
strategy has been proposed for a hexarotor on a multi-target
mission. However, differently from our work, the authors
relied on an approximated energy cost function which does
not explicitly depend on the physical parameters of the
electrical motors. Moreover, unlike [10], where a heuristic
procedure is utilized to numerically solve a generalized
version of the Travelling Salesman Problem on a reduced
four-dimensional space, we provide a 6-DOF path generator.

B. Original contributions and organization
Taking inspiration from [11], where energy-optimal trajec-

tories are determined for a double-integrator wheeled robot,
in this paper we obtain minimum-energy paths between two
given boundary states for a quadrotor UAV by solving a new
optimal control problem with respect to the angular accel-
erations of the four brushless DC motors. If the energy one
expects to consume in flight is fixed a priori, minimum-time
and/or minimum-control-effort trajectories are also computed
by solving a related optimal control problem with a scalar
isoperimetric constraint. A simple strategy for estimating the
state of charge of the battery once the quadrotor has reached
the end state, is also discussed. In order to simplify the anal-
ysis, in this work we will assume that the four motors are the
only responsible for the energy consumed by the quadrotor:
in other words, the impact of the ESC (Electronic Speed
Controller), microcontroller, and on-board sensors on energy
balance will be neglected. To illustrate the theory, the energy-
optimal trajectories of the DJI Phantom 2 quadrotor are
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Fig. 1. Electrical model of the brushless DC motor of a quadrotor UAV.

numerically computed with the ACADO Toolkit [12] in a
variety of real-world scenarios.

The rest of this paper is organized as follows. Sect. II
presents the electrical model of a brushless DC motor and
the dynamic model of a quadrotor UAV. In Sect. III, the
minimum-energy and fixed-energy path generation problems
are formulated, and in Sect. IV, the results of extensive
numerical experiments conducted with the Phantom 2 are
discussed. Finally, in Sect. V the main contributions of the
paper are summarized and some possible avenues for future
research are outlined.

II. PRELIMINARIES

A. Electrical model of a brushless DC motor
The model for a battery-powered brushless DC motor

takes into account the energy dissipated in the resistive and
inductive windings, and the energy required to overcome the
internal and load friction. The instantaneous current i(t) in
the motor (see Fig. 1), is given by [13], [14],

i(t) =
1

KT

[
Tf + TL(ω(t)) +Df ω(t) + (Jm + JL)

dω(t)

dt

]
,

(1)
where ω(t) is the angular velocity of the motor shaft [rad/s],
KT is the torque constant of the motor [Nm/A], Tf is the
motor friction torque, TL(ω(t)) is the speed-dependent load
friction torque which results from propeller drag, Df is the
viscous damping coefficient of the motor [Nms/rad], and Jm,
JL are the motor and load moments of inertia, respectively.
Note that in a brushless DC motor, Tf is small (usually only
due to bearing drag), and Df , which is due to energy losses
in liquid lubrication, is very small as well. The voltage across
the motor e(t) is given by (cf. Fig. 1):

e(t) = R i(t) +KE ω(t) + L
d i(t)

dt
, (2)

where R and L are the resistance and inductance of phase
winding, respectively, and KE is the voltage constant of
the motor [Vs/rad]. Note that KE = KT [13, p. 2-7]:
in addition, if KE is expressed in mV/rpm, we have that
KE = 1000/KV where KV is the motor velocity constant
[rpm/V]. With reference to Fig. 1, note that the resistance
RL, representing the losses in the magnetic circuit of the
motor, is usually much larger than R (typically about 5-10
times): hence, the effect of RL on motor operation can be
neglected [13]. Under steady-state conditions, the current i(t)
is constant, and equation (2) reduces to:

e(t) = R i(t) +KE ω(t). (3)

where eg(t) = KE ω(t) is the counter electromotive force of
the motor.

Remark 1: For the sake of simplicity, in our electrical
model we neglected the effect of the ESC between the
LiPo battery and the brushless motor (see Fig. 1), and the
energy lost through inefficiencies in the battery. We also
assumed that the shaft of the motor is directly connected
to the propeller (i.e. no gearbox). This is typically the case
in commercial quadrotors (DJI Phantom 2 and 3, AscTec
Pelican, and Parrot Bebop). �
B. Quadrotor dynamic model

Let q = [x, y, z]T be the position vector of the center of
mass of the quadrotor relative to the fixed inertial frame {E}.
The quadrotor’s Euler angles (the orientation of the vehicle)
are expressed by Φ = [φ, θ, ψ]T where φ is the roll angle
about the x-axis, θ the pitch angle about the y-axis, and ψ
the yaw angle about the z-axis (see Fig. 2). Four identical
brushless DC motors are attached to the rigid cross airframe
of the quadrotor: motor 1 and 3 rotate counterclockwise (with
reference to the positive direction of the z-axis of the body-
fixed frame {B}), while motor 2 and 4 rotate clockwise
with an angular velocity ωj ≥ 0, generating a thrust fj ,
j ∈ {1, 2, 3, 4} in free air (see Fig. 2). The full dynamic
model of the quadrotor is given by [15], [16]:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

mẍ = (sinφ sinψ + cosφ cosψ sin θ)u1,

m ÿ = (cosφ sin θ sinψ − cosψ sinφ)u1,

m z̈ = (cos θ cosφ)u1 −mg,

Ix φ̈ = (Iy − Iz) θ̇ ψ̇ + � u2 − J θ̇ u5,

Iy θ̈ = (Iz − Ix) φ̇ ψ̇ + � u3 + J φ̇ u5,

Iz ψ̈ = (Ix − Iy) φ̇ θ̇ + u4,

(4)

where u1 � κb (ω
2
1 + ω2

2 + ω2
3 + ω2

4), u2 � κb (ω
2
2 − ω2

4),
u3 � κb (ω

2
3 − ω2

1), u4 � κτ (ω
2
1 + ω2

3 − ω2
2 − ω2

4), u5 �
ω1 − ω2 + ω3 − ω4. In (4), m denotes the mass of the
quadrotor in kilograms, g = 9.8066 m/s2 is the acceleration
due to gravity, I = diag(Ix, Iy, Iz) is the diagonal rotational
inertia matrix of the rotorcraft expressed in {B}, J � Jm+JL
is the total inertia of a motor, � is the distance between each
motor and the center of mass of the quadrotor (i.e. half of
the wheelbase), and κb, κτ in u1, . . . , u4 are the thrust and
aerodynamic drag factors of the propellers, respectively.
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Fig. 2. Inertial frame {E} and body-fixed frame {B} of the quadrotor,
and Euler angles φ, θ and ψ.



Following [17] and [18, Sect. 2.5], we have that:

JL = 1
4 nBmB (r − ε)2,

κb = CT ρA r
2, κτ = CQ ρA r

3,
(5)

where nB is the number of blades of the propeller, mB is the
blade mass, r and A = π r2 are the radius and disk area of
the propeller, respectively, ε is the offset between the blade
root and the motor hub, CT is the nondimensional thrust
coefficient of the propeller (which depends on propeller
geometry and profile), CQ = CT

√
CT /2 is the torque

coefficient of the propeller, and ρ is the density of air.

III. DETERMINATION OF MINIMUM-ENERGY PATHS

In this section we introduce the optimal control problem
that is instrumental in determining the minimum-energy
control input of the quadrotor UAV. Let ej(t) and ij(t)
denote the voltage (in volts) and current (in amperes) across
motor j ∈ {1, 2, 3, 4} of the quadrotor at time t. The energy
consumed by the vehicle between the initial time t0 and the
fixed end time tf is then,

E =

∫ tf

t0

4∑
j=1

ej(t) ij(t) dt. (6)

By using equations (1) and (3) for the four identical mo-
tors, and by noticing that TL(ωj(t)) = κτ ω

2
j (t), j ∈

{1, 2, 3, 4} [17], we can rewrite equation (6) as follows:

E =

∫ tf

t0

4∑
j=1

[
c1 + c2 ωj(t) + c3 ω

2
j (t) + c4 ω

3
j (t) + c5 ω

4
j (t)

+ c6 ω̇j(t) + c7 ω̇
2
j (t) + c8 ωj(t) ω̇j(t) + c9 ω

2
j (t) ω̇j(t)

]
dt,

(7)
where ω̇j(t) is the angular acceleration of motor j, and c1,
c2, . . . , c9 are constants depending on the parameters of the
motors and on the geometry of the propeller, given by,

c1 =
RT 2

f

K2
T
, c2 =

Tf

KT

Ä
2RDf

KT
+KE

ä
,

c3 =
Df

KT

Ä
RDf

KT
+KE

ä
+

2RTf κτ

K2
T

,

c4 = κτ

KT

Ä
2RDf

KT
+KE

ä
, c5 =

Rκ2
τ

K2
T
, c6 =

2RJ Tf

K2
T

,

c7 = RJ2

K2
T
, c8 = J

KT

Ä
2RDf

KT
+KE

ä
, c9 = 2RJ κτ

K2
T

.

Remark 2 (Simplified energy model): Note that,
∫ tf

t0

4∑
j=1

[
c6 ω̇j(t) + c8 ωj(t) ω̇j(t) + c9 ω

2
j (t) ω̇j(t)

]
dt

=
4∑
j=1

[
c6

(
ωj(tf)− ωj(t0)

)
+
c8
2

(
ω2
j (tf)− ω2

j (t0)
)

+
c9
3

(
ω3
j (tf)− ω3

j (t0)
)]
.

If we now assume that ωj(t0) = ωj(tf), ∀ j ∈ {1, 2, 3, 4},
i.e., the initial and final angular velocities of each motor are
identical (thus constraining the class of maneuvers our path
generator will exploit), then (7) simply reduces to:

Er =

∫ tf

t0

4∑
j=1

[
c1 + c2 ωj(t) + c3 ω

2
j (t) + c4 ω

3
j (t)

+ c5 ω
4
j (t) + c7 ω̇

2
j (t)

]
dt.

(8)

This simplified expression for the energy will be used in the
rest of this paper �

Our ultimate goal is to cast the minimum-energy path
generation problem for a quadrotor UAV as a standard
optimal control problem [19]. To this end, we rewrite sys-
tem (4) in state-space form by introducing the state vector
x = [x1, x2, . . . , x16]

T ∈ R
16 and the input vector α =

[α1, α2, α3, α4]
T ∈ R

4, defined as follows:

x1 = x, x2 = ẋ1 = ẋ, x3 = y, x4 = ẋ3 = ẏ,

x5 = z, x6 = ẋ5 = ż, x7 = φ, x8 = ẋ7 = φ̇,

x9 = θ, x10 = ẋ9 = θ̇, x11 = ψ, x12 = ẋ11 = ψ̇,

x13 = ω1, ẋ13 = α1, x14 = ω2, ẋ14 = α2,

x15 = ω3, ẋ15 = α3, x16 = ω4, ẋ16 = α4.

With this change of variables, the following system of
first-order differential equations is obtained:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2,

ẋ2 =
κb
m

(sinx7 sinx11 + cosx7 cosx11 sinx9)
16∑

k=13

x2k,

ẋ3 = x4,

ẋ4 =
κb
m

(cosx7 sinx9 sinx11 − cosx11 sinx7)

16∑
k=13

x2k,

ẋ5 = x6,

ẋ6 =
κb
m

(cosx9 cosx7)
16∑

k=13

x2k − g,

ẋ7 = x8,

ẋ8 =

Å
Iy − Iz
Ix

ã
x10 x12 +

� κb
Ix

(x214 − x216)

− J

Ix
x10 (x13 − x14 + x15 − x16),

ẋ9 = x10,

ẋ10 =

Å
Iz − Ix
Iy

ã
x8 x12 +

� κb
Iy

(x215 − x213)

+
J

Iy
x8 (x13 − x14 + x15 − x16),

ẋ11 = x12,

ẋ12 =

Å
Ix − Iy
Iz

ã
x8 x10 +

κτ
Iz

(x213 − x214 + x215 − x216),

ẋ13 = α1, ẋ14 = α2, ẋ15 = α3, ẋ16 = α4. (9)
Note that thanks to the “auxiliary” state variables x13, . . . ,
x16, the nonlinear system (9) is affine in the control α, i.e. it
is of the form ẋ = F(x)+Gα where the vector field F(x) :
R

16 −→ R
16 and G = [04×12 I4×4]

T , being 04×12 the
4×12 matrix of zeros and I4×4 the 4×4 identity matrix. With
the cost function (8) and system (9) at hand, we are now in a
position to introduce the following optimal control problem:

min
α1, α2
α3, α4

Er =

∫ tf

t0

[ 16∑
k=13

(
c1 + c2 xk(t) + c3 x

2
k(t)

+ c4 x
3
k(t) + c5 x

4
k(t)

)
+ c7

4∑
j=1

α2
j(t)

]
dt

s.t. System (9), x(t0) = xt0 , x(tf) = xtf ,



0 ≤ x13 ≤ ωmax, 0 ≤ x14 ≤ ωmax,

0 ≤ x15 ≤ ωmax, 0 ≤ x16 ≤ ωmax, (10)

where ωmax > 0 is the maximum motor speed, and
xt0 , xtf ∈ R

16 are assigned boundary state vectors. Note that
the last four components of xt0 , xtf must match in order to
satisfy the assumption of Remark 2. The numerical solution
to problem (10) will be discussed in Sect. IV.

Remark 3 (Battery state-of-charge estimation): For t ∈
[t0, tf], let idis(t) =

[∑16
k=13 (Tf + κτ x

2
k(t) +Df xk(t)) +

J
∑4
j=1 αj(t)

]
/KT be the discharge current of the battery of

the quadrotor along the minimum-energy path, determined
by solving problem (10). Given idis(t) for t ∈ [t0, tf], the
state of charge of the battery can be estimated via the fol-
lowing simple “two-well” kinetic battery model (or KiBaM
in short) [20, Sect. 3]:

ẏ1(t) = −idis(t) + kF(h2(t)− h1(t)),

ẏ2(t) = −kF(h2(t)− h1(t)),
(11)

with initial conditions y1(t0) = γ C, y2(t0) = (1 − γ)C,
where C is the total capacity of the battery in ampere-
second, and γ > 0 gives the fraction of the total capac-
ity of the battery that is put in the so-called available-
charge well. Moreover, y1, y2 indicate the amount of charge
stored in the available- and bound-charge wells, respectively,
kF [Hz] is a parameter controlling the rate at which the
charge flows between the two wells, and h1 = y1/γ,
h2 = y2/(1 − γ). The battery is considered empty (fully
discharged) when there is no charge left in the available-
charge well, i.e. y1 = 0. �
A. Trajectories at fixed energy

In this section, we study a variation on problem (10).
Let us suppose that the total energy supply between two
boundary states of the quadrotor is fixed and equal to Etot.
Then, the space of isoenergetic paths between time t0 and
tf, is given by S = {x(t) : [t0, tf] → R

16, α(t) : [t0, tf] →
R

4 | (x, α) satisfy (9), x(t0) = xt0 , x(tf) = xtf , Er =
Etot}. In order to single out a specific path in S, taking
inspiration from (10), we introduce the following optimal
control problem:

min
α1, α2, α3, α4, tf

∫ tf

t0

[
η + αT (t)Q α(t)

]
dt

s.t. System (9), x(t0) = xt0 , x(tf) = xtf ,

ẋ17 =
∑16

k=13

(
c1 + c2 xk + c3 x

2
k

+ c4 x
3
k + c5 x

4
k

)
+ c7

∑4
j=1 α

2
j ,

x17(t0) = 0, x17(tf) = Etot,

0 ≤ x13 ≤ ωmax, 0 ≤ x14 ≤ ωmax,

0 ≤ x15 ≤ ωmax, 0 ≤ x16 ≤ ωmax.
(12)

Note that for the sake of generality, in (12) we chose a
cost function that is a weighted combination of elapsed time
and control effort, being Q ∈ R

4×4 a symmetric positive
semidefinite gain matrix. We also remark that differently
from problem (10), whereas t0 is fixed, the end time tf
is now free. In the cost function, η > 0 is used to weigh
the relative importance of elapsed time and control effort:

in fact, for η → 0 we obtain an open-end-time minimum-
control-effort problem, while for η → ∞ the optimal solution
resembles a minimum-time solution [19, Sect. 5.5]. As in
problem (10), the last four components of xt0 , xtf must
match in order to satisfy the condition of Remark 2. Note that
following [21, Sect. 3.5], in problem (12) the isoperimetric
constraint Er = Etot has been treated as a terminal-state
equality constraint by defining the new state component
x17 whose differential equation is ẋ17 =

∑16
k=13 (c1 +

c2 xk + c3 x
2
k + c4 x

3
k + c5 x

4
k) + c7

∑4
j=1 α

2
j , and set

x17(tf)− Etot = 0.

IV. NUMERICAL EXPERIMENTS

Problem (10) and (12) have been numerically solved using
the ACADO Toolkit [12] for Matlab. For the optimization
routines, the default options in ACADO were considered:
thus, a multiple-shooting discretization with 20 nodes was
utilized and the integration was performed with a Runge-
Kutta method (order 4/5). The optimization of the discretized
mathematical program was based on a sequential quadratic
programming (SQP) method. Finally, the KKT tolerance
used for the convergence criterion of the SQP algorithm was
set to 10−5 in all our tests, and the maximum number of
iterations was fixed to 40.

As a case study, in our tests we considered the DJI
Phantom 2 quadrotor [22] with E300 Multirotor Propulsion
System (2212/920KV motors), powered by a 3-cell (3S) LiPo
11.1 V battery with capacity C = 18720 As. The physical
parameters of the Phantom 2 used in the three scenarios
discussed below, are reported in Table I. The majority of
these parameters, which are instrumental in computing c1,
c2, . . . , c5, and c7 in (8), were found in Phantom 2’s
User Manual: for the missing ones, we relied on the values
reported in [23], [24] for similar quadrotors. Note that the
inertia Jm of the outrunner motors was computed using the
inertia formula of a thin cylindrical shell with open ends of
radius rrot and mass mrot, i.e. Jm = mrot r

2
rot. We assumed

that the weight of the rotating part of the motor is 50% of
the total weight. Finally, the constants JL, κb and κτ were
computed using the formulae in (5).

A. Scenario 1: variable end states
In the first scenario, we numerically solved problem (10)

with a number of control (or integration) intervals equal
to 100, to find the minimum-energy input that drives the
quadrotor from the origin at time t0 = 0 s, to the eight
vertices of a parallelepiped of side 8, 10 and 6 m, at time
tf = 20 s. More precisely, we set,

KV = 920 rpm/V nB = 2 ρ = 1.225 kg/m3

KE = 9.5493/KV Vs/rad mB = 0.0055 kg m = 1.3 kg

Tf = 4× 10−2 Nm r = 0.12 m � = 0.175 m

Df = 2 × 10−4 Nms/rad ε = 0.004 m Ix = 0.081 kgm2

R = 0.2 Ω CT = 0.0048 Iy = 0.081 kgm2

Jm = 4.9× 10−6 kgm2 CQ = 2.3515× 10−4 Iz = 0.142 kgm2

ωmax = 1047.197 rad/s rrot = 0.014 m mrot = 0.025 kg

TABLE I
PARAMETERS OF THE PHANTOM 2 USED IN THE

NUMERICAL EXPERIMENTS.
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Fig. 3. Scenario 1: Bundle of minimum-energy trajectories of the Phan-
tom 2 (solid lines). The dashed trajectory was generated with the controller
in [25, Sect. IIIA]. To provide a reference for the reader, the propeller of
motor 1 is marked in blue.

xt0 = [01×12, ωh, ωh, ωh, ωh]
T,

xtf = [xf, 0, yf, 0, zf,01×5, π/4, 0, ωh, ωh, ωh, ωh]
T,

(13)

where xf ∈ {−4, 4} m, yf ∈ {−5, 5} m, and zf ∈ {6, 12} m.
By considering the maximum all-up weight of 1.3 kg, ωh =
912.109 rad/s 	 8710 rpm is the angular velocity of the
four propellers necessary to counterbalance the acceleration
due to gravity so that the quadrotor hovers on the spot. Note
that at time t0 the vehicle is not at rest at (0, 0, 0): the four
propellers spin at 912.109 rad/s. Moreover, with the boundary
states in (13), the condition of Remark 2 is met. Fig. 3 shows
the eight minimum-energy trajectories of the Phantom 2
(solid lines). Fig. 4 reports the time-evolution of the state
variables x1(t), . . . , x16(t) and control inputs α1(t), . . . ,
α4(t) relative to the two paths with [xf, yf, zf]

T = [4, 5, 6]T

(solid line), and [xf, yf, zf]
T = [4, 5, 12]T (dashed line).

The energy consumption of the quadrotor along the first
path is 26.2372 kJ. If we utilize the KiBaM in (11) with
γ = 0.85 and kF = 4.5 × 10−5 Hz (cf. [20]) for this path,
we find that y1(t0) = 15912 As and that y1(tf) = 14054 As,
corresponding to a 11.67% discharge of the battery.

In order to quantify the net energy saving with our
approach, we also generated a trajectory for the quadrotor
using the control strategy in [25, Sect. IIIA] (see the dashed
line in Fig. 3). We thus designed a sliding-mode controller
for the translational dynamics, ν = m ([0, 0, g]T − k1 q̇ −
k2 (q − qd) − k3 Sgn(σ)), where ‖ν‖2 = u1 is the total
thrust from the motors, qd = [xf, yf, zf]

T = [4, 5, 6]T ,
k1, k2 and k3 are positive control gains, and the switching
function σ = [σ1, σ2, σ3]

T = k1 (q − qd) + k2

∫
(q −

qd) dt + q̇ where the vector sign function Sgn(σ) �
[sgn(σ1), sgn(σ2), sgn(σ3)]T . For the attitude stabilization,
instead, we used the proportional-derivative controller τ =
− kpo(Φ−Φd)− kdo Φ̇ where τ is the vector of generalized
torques defined in {B}, kpo, kdo are positive control gains
and Φd = [φd, θd, ψd]

T with ψd = π/4 (the desired

yaw angle), and φd = arcsin
(− νn2 − νn1 tanψd

sinψd tanψd+cosψd

)
, θd =

arcsin
(νn1 − sinφd sinψd

cosφd cosψd

)
, being νn = [νn1, νn2, νn3]

T �
ν/‖ν‖2. By selecting k1 = k2 = 3, k3 = 0.1, kpo =
kdo = 0.75 and by leveraging the formulae for solving for the
squared angular velocities of the motors from the computed
total thrust and torques [16, Sect. 2.2.2], we obtained an
energy consumption of 27.0168 kJ, which corresponds to a
0.7796 kJ increase with respect to the minimum-energy path.

B. Scenario 2: variable payload

In the second scenario, we computed the minimum-energy
control input of the Phantom 2 with variable payload. We first
solved problem (10) by setting m = 1.3 kg, and by selecting
xt0 and xtf as in (13) with [xf, yf, zf]

T = [4, 5, 6]T and
ωh = 912.109 rad/s. Problem (10) was then solved with
m = 1 kg (the dry weight, i.e. the weight of the quadrotor
including the battery, with zero payload), xt0 and xtf as
above but with ωh = 800.059 rad/s 	 7640 rpm, which
is the angular velocity of the four propellers necessary to
counterbalance the acceleration due to gravity when the
payload is zero. In solving problem (10) twice, we used the
same t0, tf, and number of control intervals as in Scenario 1.
Fig. 5(a) shows the trajectories of the quadrotor projected
onto the xz plane, and Figs. 5(b)-(f) report the time history of
the corresponding state variables of the Phantom 2 with max-
imum payload (solid line) and zero payload (dashed line).
The energy consumed by the quadrotor along the second
trajectory is 20.5513 kJ, which is smaller than 26.2372 kJ
(cf. Scenario 1), as expected.

C. Scenario 3: minimum-time fixed-energy path

In the third scenario, we solved problem (12) with η = 1,
Q = 04×4, Etot = 22 kJ, m = 1.3 kg and xt0 , xtf

as in (13), with t0 = 0 s, [xf, yf, zf]
T = [4, 5, 6]T and

ωh = 912.109 rad/s. The number of control intervals was set
to 60 in this case. Fig. 6(a) reports the minimum-time fixed-
energy trajectory of the quadrotor, and Figs. 6(b)-(f) show
the time evolution of the corresponding state variables and
control inputs. The optimal value of the open end time tf is
16.7704 s, and as it is evident from Fig. 6(a), the Phantom 2
travels along a path that is far from being minimum-length.
Differently from Scenarios 1 and 2, the actuators are more
solicited in this case, leading to the saturation, at ωmax =
1047.197 rad/s 	 10000 rpm, of the angular velocity of the
motors (see Fig. 6(e)). In spite of this, the physical con-
straints of the Phantom 2 (θ ≤ 0.6109 rad, ψ̇ ≤ 3.4907 rad/s,
maximum flight speed 15 m/s), are not violated.

As a concluding remark, note that the computation time
with the ACADO Toolkit under Matlab 7.9 is, on average,
86.75 s for Scenarios 1 and 2, and 68.09 s for Scenario 3 on
a MacBook Pro with 4 GB RAM and 2.53 GHz Intel Core 2
Duo CPU. This is not critical in practice, since the energy-
optimal trajectories can be computed offline and stored in
the memory of the quadrotor as a sequence of waypoints.
However, in certain situations (if the environment is not
known a priori or is highly dynamic, if the boundary states
are largely spaced), it might be preferable to find approxi-
mate solutions to problems (10) and (12), e.g. via a receding-
horizon approach, using the on-board computational power
of the quadrotor. This is the subject of ongoing research.
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ẋ(t)
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Fig. 4. Scenario 1: Time evolution of the state variables and control inputs of the Phantom 2 for [xf, yf, zf]
T = [4, 5, 6]T (solid line), and [xf, yf, zf]

T =
[4, 5, 12]T (dashed line).
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Fig. 5. Scenario 2: (a) Trajectories of the Phantom 2 projected onto the xz plane, and (b)-(f) time evolution of the corresponding state variables for
m = 1.3 kg (solid line), and m = 1 kg (dashed line).

V. CONCLUSIONS AND FUTURE WORK

Motivated by the limited flight endurance of the existing
battery-powered quadrotor UAVs, in this paper we have

introduced two new optimal control problems with respect
to the angular accelerations of the four electrical motors.
Their solution yielded minimum-energy and fixed-energy
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Fig. 6. Scenario 3: (a) Minimum-time fixed-energy trajectory of the Phantom 2 (Etot = 22 kJ), and (b)-(f) time evolution of the corresponding state
variables and control inputs.

paths for the aerial vehicle. The proposed theory has been
illustrated via numerical experiments conducted with the
DJI Phantom 2 quadrotor.

In future works, we will incorporate in our problems,
sources of energy consumption other than the DC motors
(e.g. the ESC and the microcontroller), and we will analyze
the robustness of the proposed approach against model
uncertainty and external disturbances. We are also going to
devise a simple experimental procedure to identify the six
constants in the cost function (8), and we are interested in
extending our results to determine energy-efficient paths for
multiple quadrotors flying in tight formation.
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