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Abstract

Optimal parameter estimation requires simultaneous processing of all available measurements. The

complexity of this task may become too large when measurements from two or more multimodal sensor

networks are avaliable. In such cases, fusion of estimates obtained from each data set separately may be

practical. In this paper, we derive the optimal linear combination of the possibly non-linear estimators,

and propose sub-optimal weightings. We analyze the asymptotic performance gain of the first sub-

optimal approach with respect to the individual optimal estimates. The theoretical results are supported

by simulations.
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I. INTRODUCTION

With the recent development of sensor networks, signal processing applications may use data sets

coming from very heterogeneous kind of sensors, [1]. For instance, to measure precipitation, Messer and

Sendik propose to use both commercial telecommunication links (see [2]) and more classical rain gauges,

[3]. In the first data set, the sensors observe a non-linear function of the rain parameters. These sensors

are not very precise yet provide many samples in time and space, whereas the rain gauges are very

precise but scarce in both time and space. To get the best tempo-spatial mapping of rainfall, important

for various applications, it is of great interest to use all available data sets in an efficient way. While
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the optimal use of all available measurements for parameter estimation is to set the maximum likelihood

(ML) estimate on their joint statistics, such a process maybe unrealistic either due to complexity or due

to other practical constrains, such as the need for synchronization and large memory. In particular, in

sensor networks, where different data sets may represents separate networks, the usage of the estimates

provided by each network may be interesting. Fusion of estimators from multiple data sets is considered

in [4]. However, the problem is addressed only when the parameters are observed through a linear data

model. In [5] and [6], estimates’ fusion is called data schrinkage and is also applied to covariance matrix

estimation. In [7], schrinkage of one ML estimator to a target distribution is proposed to estimate the

data entropy.

On the contrary of the literature, we address the estimation of parameters observed through at least

one non-linear function. We use a linear combining of several estimators, as in the standart data fusion

literature. However, if the linear combining of estmators is straightforward in the case of linear data

models, it is not for non-linear data models. In particular, the optimal linear combining depends on the

parameters to be estimated.

We discuss a sub-optimal and simple approach in which the best linear combination of the individual

ML estimates is considered. The analytical study of the estimates’ asymptotical variances results in

an optimal combination defined by the individual Fisher information matrices. Upon normalization of

the individual Fisher information matrices, we will discuss trends in the combination with respect to the

different data set lengths and noise variances. Since the best combination value depends on the parameters

to be estimated because of the non-linear function, we will look for a sub-optimal one and will provide

an iterative simple algorithm to approach the optimal value.

The contributions of this letter are: (i) the proposition of two sub-optimal combination values, requiring

no prior knowledge, given ML estimators of the parameters, (ii) the performance analysis of the optimal

and first-suboptimal combiners with respect to the individual ML estimators.

The rest of this paper is organized as follows. Section 2 presents the data sets models, the individual

ML estimates and introduces the linear combination. In section 3, we derive the optimal and sub-optimal

linear combination. The respective performances of these estimators are studied and compared in terms

of variances and covariance matrices in section 4. Finally, we propose a numerical algorithm to approach

the optimal value.

Notations: Bold letters stand for column vectors, capital letters for matrices. E[] denotes the mean

expectation.

Cov(θ̂) = E
[
(θ̂ − E[θ̂])(θ̂ − E[θ̂])t

]
is the covariance matrix of the estimate θ̂. Its variance is defined

as var(θ̂) = tr
(
Cov(θ̂)

)
where tr() is the trace operator.
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II. MULTIMODAL DATA SETS MODEL AND PROBLEM SETTING

We consider D data sets induced by the P−dimensional parameter vector θ = (θ1, ..., θP )
t to be

estimated.

A. Individual estimate θ̂i

The Ni samples, Ni ≥ P , of data set i are modeled as,

xi = si(θ) + ni, i = 1, ..., D. (1)

Both data and parameters are taken as real valued. No prior knowledge is assumed on θ, so that si(θ)

is deterministic. Moreover, si() is assumed known. The observation noise ni is assumed to follow a

Gaussian distribution N (0, σ2i INi). ni and nj are assumed independent for i 6= j.

θ̂i denotes the ML estimate obtained from xi. The corresponding P × P error covariance matrix is

denoted as Cov(θ̂i). Asymptotically with respect to the data set size and under the condition that si() is

derivable twice, Cov(θ̂i) reaches the minimum value provided by the P × P Fisher information matrix

(FIM) F−1i (θ), [8] p.167. From (1),

Fi(θ) =
1

σ2i
Gi(θ)Gi(θ)

t (2)

with the P ×Ni matrix Gi(θ) defined by its jth row ∂si(θ)t

∂θj
, for j = 1, ..., P . All Gi(θ), i = 1, ..., D,

are assumed to be full rank, equal to the number of parameters P .

B. Estimation from heterogeneous data sets

We denote by θ̂ML the ML estimate obtained from the joint distribution of xi, i = 1, ..., D. From

the independence between different ni and their normality, the joint FIM and asymptotic ML covariance

matrix is (
∑D

i=1 Fi(θ))
−1, see [8]. In extreme cases where one data set is much better than the others,

either because its signal to noise ratio or its size the larger, the fused estimate should be mostly due

to one estimate. In such cases, considering the optimal, ML estimate induces unneeded complexity. To

reduce complexity, should we then consider only one data set and suppress the others? Alternatively, is

it possible to improve the best individual estimate by a weighted averaging with the others?

In order to achieve a better complexity and performance trade-off than choosing the ”best” data set,

we suggest to look at αi ∈ [0, 1] defining the following sub-optimal estimate,

θ̂α =
D∑
i=1

αiθ̂i with
D∑
i=1

αi = 1 (3)

where θ̂i, i = 1, ..., D are the ML estimates from the ith data set. The linear constraint
∑D

i=1 αi = 1 main-

tains (3) asymptotically unbiased. Since the variance of θ̂α is a quadratic function of α = (α1, ..., αD)
t,
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minimizing its variance under the linear constraint and convex set defined by αi ∈ [0, 1], results from

convex optimization [9] in a unique solution, denoted α∗. Unfortunatly, except for trivial cases, α∗

depends on the unknown parameters θ. The aim of this paper is to propose sub-optimal estimates that

do not require the knowledge of θ, and that still improve the performances with respect to the individual

estimates, θ̂i.

III. SUB-OPTIMAL ESTIMATES

A. Optimal value of α

The ni being decorrelated from each other, (3) yields to

var(θ̂α) =
D∑
i=1

α2
i var(θ̂i)

=
D−1∑
i=1

α2
i tr(F

−1
i (θ)) + (1−

D−1∑
i=1

αi)
2tr(F−1D (θ)) (4)

where we replaced αD by 1−
∑D−1

i=1 αi to get ride of the equality constraint. We minimize the quadratic

function (4) over the convex set defined by 0 ≤ αi ≤ 1 for i = 1, ..., D − 1 and 0 ≤ 1−
∑D−1

i=1 αi ≤ 1.

Since our data sets have different sizes, we denote F̃i(θ) =
σ2
i

Ni
Fi(θ) the normalized FIM with respect

to the noise and to the data set size.

Proposition 1: The optimal weights for (3) are given by

α∗i (θ) =
1∑D−1

j=1
ρiλ∗

i (θ)
ρjλ∗

j (θ)
+ ρiλ∗i (θ)

, i = 1, ..., D − 1 (5)

with λ∗i (θ) =
tr(F̃−1

i (θ))

tr(F̃−1
D (θ))

and ρi =
σ2
i

σ2
D

ND
Ni

.

Proof: The Lagragian to be minimized is var(θ̂α)−2µ(1−
∑D−1

i=1 αi) with Lagrange multiplier µ ≥ 0.

Solving the KKT equations [9]: αitr(F̃−1i (θ))− (1−
∑D−1

i=1 αi)tr(F̃
−1
D (θ))+µ = 0 for i = 1, ..., D− 1

and µ(1−
∑D−1

i=1 αi) = 0, we get αi = 1
tr(F̃

−1
i

(θ))

tr(F̃
−1
D

(θ))
+
∑D−1
j=1

tr(F̃
−1
i

(θ))

tr(F̃
−1
j

(θ))

in [0, 1]. Introducing the definitions ρi

and λ∗i (θ) results in (5). •

Except for the case of linear signal models, (5) requires the knowledge of θ to be computed. We are

looking for ways to choose these weights with no knowledge of θ. The case D = 2 gave us the idea of

the heuristic proposed next.

Corollary 1: When D = 2, α∗1(θ) =
1

1+ρ1λ∗
1(θ)

is bounded in [ 1
1+ρ1λmax(θ)

, 1
1+ρ1λmin(θ)

] where λmax(θ)

(resp. λmin(θ)) is the maximal (resp. minimal) eigenvalue of F(θ) = F̃
1/2
2 (θ)F̃−11 (θ)F̃

1/2
2 (θ).

This comes from λ∗1(θ) =
tr(F̃−1

1 (θ))

tr(F̃−1
2 (θ))

= tr(F(θ)F̃−1
2 (θ))

tr(F̃−1
2 (θ))

and tr(A)λmin(B) ≤ tr(AB) ≤ tr(A)λmax(B)

for any semi-positive definite matrices A and B.
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For some extreme cases of the data sets heterogeneousness, the optimal weighting in equation (3) is

provided in Table I (by definition λ∗1(θ) 6= 0).

σ2
1 ≈ σ2

2 , N2 >> N1

or N2 ≈ N1, σ2
1 >> σ2

2 ⇒ ρ1 >> 1 ⇒ θ̂α∗ ≈ θ̂2

σ2
1 ≈ σ2

2 , N2 << N1

or N2 ≈ N1, σ2
1 << σ2

2 ⇒ ρ1 << 1 ⇒ θ̂α∗ ≈ θ̂1

TABLE I

CASES OF EXTREMELY HETEROGENEOUS DATASETS

B. Sub-optimal value of α

Obviously, when the λ∗i (θ) are of the order of 1, the values of ρi drive the weighting of θ̂α∗ in equation

(5). Therefore, we suggest to set a value for α independent of θ, as a function of the ρj , j = 1, ..., D−1

only. We propose

αhi =
1∑D−1

j=1
ρi
ρj

+ ρi
for i = 1, ..., D − 1 (6)

and αhD = 1−
∑D−1

i=1 αhi = 1
1+

∑D−1
i=1 ρi

.

Although it is heuristic, αh preserves the desired properties of α∗ as in Table I. Moreover, when the

size of each data set is very large, applying central limit theorem to the entries of Gi(θ), taken as random

i.i.d., yields Fi(θ) in (2) to behave as σ2
i

Ni
IP , [10]. Thus, α∗(θ) ≈ αh for any θ and large enough data

sets. These assumptions are taken in this paragraph only as a motivation for (6).

IV. PERFORMANCE ANALYSIS

We study next the conditions under which αh improves the performance with respect to the individual

ML estimates. The analysis is done in the asymptotic regime where the FIM describes the ML behavior.

For the sake of simplicity, we consider in this section the case D = 2, and simplify the notation by

omitting the index 1 in α, ρ and λ.

A. Variance analysis

Thanks to the FIM bound and by definition of α∗(θ) minimizing the variance of (3),

tr((F1(θ) + F2(θ))
−1) ≤ var(θ̂α∗(θ)) ≤ var(θ̂i), i = 1, 2,

and var(θ̂α∗(θ)) ≤ var(θ̂αh).
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Proposition 2 studies the conditions for var(θ̂αh) to overcome the individual performances.

Proposition 2: Asymptotically, var(θ̂αh) ≤ var(θ̂i), i = 1, 2, if and only if 1
2+ρ ≤ λ

∗(θ) ≤ 2 + 1
ρ .

Proof: For the sake of space, we omit the dependence in θ.

var(θ̂α) = tr(F−12 )(α2tr(F−11 )/tr(F−12 ) + (1− α)2)

= tr(F−12 )(α2ρλ∗ + (1− α)2)

Simple calculations result in var(θ̂2)− var(θ̂α) = tr(F−12 )α(2−α(1 + ρλ∗)). It is positive if and only

if λ∗ ≤ 2/(αρ)− 1/ρ. For α = αh, the condition becomes λ∗ ≤ 2 + 1/ρ. In the same way, var(θ̂1)−

var(θ̂α) = tr(F−12 )(1 − α)((1 + α)ρλ∗ − (1 − α)) is positive if and only if λ∗ ≥ (1 − α)/(ρ(1 + α))

which becomes λ∗ ≥ 1/(2 + ρ) for α = αh. •

Since 1
2 >

1
2+ρ and 2 < 2+ 1

ρ , λ∗(θ) ∈ [1/2; 2] provide tighter bounds than that of Proposition 2, valid

for any ρ. We deduce that when 1/2 ≤ λ∗(θ) ≤ 2, the sub-optimal αh in (6) allows θ̂αh to overcome

the individual ML estimates.

B. Covariance analysis

In the case of strictly more than 1 parameter, P > 1, the analysis of the variance may not be

satisfactory enough so that we consider next the analysis of the covariance matrices. The FIM satisfies

(F1(θ) + F2(θ))
−1 ≤ Cov(θ̂α) for any α1. Yet, the ordering of the different covariance matrices involved

is not always possible.

Proposition 3: Asymptotically, a reduction of the covariance matrices of the linear-optimal and linear-

suboptimal estimates with respect to the individual ML ones, is achieved under the following conditions:

• Cov(θ̂α∗(θ)) ≤ F−1i (θ) if and only if, for k = 1, ..., P ,

(λk/ρ− 1)/(2ρ) ≤ λ∗(θ) ≤ 2/(ρ(1/λk − ρ)).

• Cov(θ̂αh) ≤ F−1i (θ) if and only if, for k = 1, ..., P ,

ρ/(1 + 2/ρ) ≤ λk ≤ (1 + 2ρ)ρ.

Proof: Given the eigendecomposition of F = UDiag(λk)U
†,

Cov(θ̂α) = α2F−11 + (1− α)2F−12

= F
−1/2
2 (α2F + (1− α)2I)F−1/22

= F
−1/2
2 UDiag(α2λk/ρ+ (1− α)2)U †F−1/22

1For matrices, A ≤ B means B −A is semi-positive definite.
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Therefore, F−11 − Cov(θ̂α) = (1 − α)F
−1/2
2 UDiag((1 + α)λk/ρ − (1 − α))U †F

−1/2
2 is positive iff

(1 + α)λk/ρ − 1 + α ≥ 0. F−12 − Cov(θ̂α) = αF
−1/2
2 UDiag(2 − α − αλk/ρ)U †F

−1/2
2 is positive iff

2−α−αλk/ρ ≥ 0. Replacing α by α∗(θ) (resp. αh), we get the first (resp. second) line of proposal 3.

•

C. Numerical illustration

We consider a simulation example with P = 2. Data set 1 is linear with respect to the parameters so that

G1 does not depend on θ, tr(F−11 ) = σ21tr((G1G
t
1)
−1). We take N1 = 2, σ1 = 0.05 and tr(F−11 ) = 2.

For the second data set, we consider the non-linear, s2(θ) = H2(sin(θ1) + sin(θ2), cos(θ1) + cos(θ2))
t

where H2 spans the observations over N2

P rows yielding to tr(F−12 ) = 2N2σ2
2

P sin(θ1−θ2)2 when sin(θ1−θ2) 6= 0.

Note that α∗(θ) = 1 otherwise. We set σ2 = 0.05 and modify N2 to vary ρ.

Fig. 1. Variance of θ̂1, θ̂2, θ̂(α
∗(θ)) and tr(FIM) with respect to ρ, θ = (π/4, π/8)t

Figure 1 shows the variances of the individual and linearly combined estimates with respect to ρ for

θ = (π/4, π/8)t. This value of θ was chosen to satisfy all requirements in Propositions 2 and 3. As

expected, we can verifiy on Fig. 1 that the best combined estimator θ̂α∗ outperforms the indivual estimates.

The gain with respect to θ̂1 is especially high when ρ is small. For any ρ, the loss in performance of

θ̂(α∗(θ)) with respect to the global ML remains small, showing the interest of optimizing α.

In the second simulation, we consider the same data sets as previously, with N2 = 2 so that ρ = 1.

Fig. 2 shows the variances of the linearly combined estimates for α = αρ and α∗(θ) with respect to θ.

For most values of θ, the two estimators behave quite similarly. However, when θ ≈ (0, π/2)t, the gap
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between θ̂α∗(θ) and θ̂αh becomes large (for this value of θ, α∗(θ) ≈ 1 whereas αh ≈ 1
3 ). Thus, Fig. 2

validates the interest of approching α∗(θ) rather than using αh.

Fig. 2. Variances of θ̂α∗(θ) and θ̂αh with respect to θ1 and θ2, ρ = 1.

V. NUMERICAL COMPUTATION OF α∗

As we have seen in the previous example, one can be interested in approaching the unknown α∗(θ)

numerically. To this end, we propose the following heuristic iterative algorithm. Algorithm 1 requires

only the knowledge of ρi and the expression of tr(F̃−1i (θ)) for a given θ. If ρi are unknown, they

Algorithm 1: Proposed iterative algorithm

1) Initialization: λ(0)i = 1 (implying α(0) = αh)

2) Iteration k:

• α
(k)
i = 1∑D−1

j=1

ρiλ
(k)
i

ρjλ
(k)
j

+ρiλ
(k)
i

, i = 1, ..., D − 1

• θ̂
(k)

=
∑D−1

i=1 α
(k)
i θ̂i + (1−

∑D−1
i=1 α

(k)
i )θ̂D

• λ
(k+1)
i = tr(F̃−1

i (θ̂
(k)

))

tr(F̃−1
D (θ̂

(k)
))

3) Repeat 2) until |λ(k+1)
i − λ(k)i | ≤ ε.

could also be searched iteratively. To do so one should replace λi by ρiλi and F̃i by Fi in the proposed

algorithm. However, the convergence could be much slower, especially if ρi >> 1 or ρi << 1. The
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convergence of the proposed fixed point algorithm depends on the numerical properties of the non-linear

functions tr(F̃−1i ()) and must be studied case by case, [11].

We consider the same simulation setting as in Section IV-C for θ = (0, π/8)t and ρ = 2 where

αh = 1/3 and α∗ = 0.7735. The value of α(k) is averaged over 500 random drawing of the data. Figure

3 shows that the proposed numerical computation α(k) improves with respect to the initial αh since it is

much closer to α∗ within 4 iterations so that the induced numerical complexity is not very high.

Fig. 3. Mean of α(k) versus k. ρ = 2,θ = (0, π/8)t.

VI. CONCLUSION

In the broad, complex field of multimodal data fusion from heterogeneous detectors [1], we focus our

attention on an important special case. We study the case where a parameter vector θ is observed by

different independent sensors networks, each consisting of a known, possibly non-linear transformation

on θ in additive white Gaussian noise (1). In this case, we study a fused estimate of θ where a linear

combining of individual ML estimates is imposed. We derive the optimal combining coefficients which

minimize the asymptotical variance of the combined estimate. While the optimal coefficients depend on

the unknown parameter vector, we propose a sub-optimal combining which depends only on the noise

levels and sizes of the data sets. We analyze the conditions under which it is guaranteed asymptotically

that the performance of resulting estimate is better than each of the individual estimates, and we validate it

by simulations. Our results provide an important tool for parameter estimation from big data, collected by

independent sensor networks, since it is both simple to implement, and it guarantees improving estimation

performance when adding data sets. We also could extend the problem by considering non independent

addtive noise.
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