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ABSTRACT. Using mainly tools from [B.13] and [B.15] we try to make a first step
to obtain a “Transcendental Geometric Invariant Theory”, that is to say to study
conditions for the existence of “meromorphic quotients” for a holomorphic actions
of a complex Lie group G on a reduced complex space X. In this article we give
necessary and sufficient conditions [H.1] [H.2] and [H.3] on the G—orbits’ configu-
ration in X in order that a holomorphic action of a connected complex Lie group G
on a reduced complex space X admits a strongly quasi-proper meromorphic
quotient. Under these conditions a canonical (minimal) such quotient exists and
it factorizes in a canonical way any G—invariant meromorphic map defined on X.
In order to show how these conditions can be used, we apply this characterization
to obtain that, when G = K.B with B a closed complex subgroup of G and K a
real compact subgroup of G, the existence of a strongly quasi-proper meromorphic
quotient for the B—action implies the existence of a strongly quasi-proper mero-
morphic quotient for the G—action on X, assuming moreover that the action of B
on X satisfies the condition [H.1str] on a G—invariant dense subset; we prove also
that this last condition is automatically satisfied for G when K normalizes B and
when [H.1str] [H.2] and [H.3] are satisfied for B. We also give a similar result when
the connected complex Lie group has the form G = K.A.K where A is a closed
connected complex subgroup and K is a compact (real) subgroup assuming that
the A—action satisfies the hypothesis [H.1str] on a G—invariant open set €, the
hypothesis [H.2] on a G—invariant open set )y C ; and [H.3].

We prove the existence of a natural holomorphic map between the two meromorphic
quotients of X for the actions of B and G (resp. of A and ) when they exist and
we discuss the properness of this map.
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1 Introduction

In this article we explain how the tools developed in [M.00], [B.08], [B.13] and
[B.15] can be applied to produce, in suitable cases, a meromorphic quotient of a
holomorphic action of a connected complex Lie group G on a reduced complex
space X. This uses the notion of strongly quasi-proper map introduced in loc.
cit. and our first goal is to give three hypotheses, called [H.1], [H.2],[H.3], on the
G—orbits’ configuration in X which are equivalent to the existence of a strongly
quasi-proper meromorphic quotient, notion defined in the section 1.2.

The proof of this equivalence is the content of proposition 2.7.1 and theorem 2.8.1.
Then we give a sufficient condition [H.1str|, asking the existence of a G—invariant
set )y C X which is dense, Zariski open and “good” for the action, to satisfy the
condition [H.1].



Note that the conditions [H.1] [H.2] [H3] introduced in section 2.7 only depend on
the G—orbits’configuration in X, but the condition [H.1str| depends on the action
of G on X itself.

The existence theorem for a strongly quasi-proper meromorphic quotient under our
three assumptions is applied to prove the following result:

Theorem 1.0.1 Assume that we have a holomorphic action of a connected com-
plex Lie group G on a reduced complex space X. Assume that G = K.B where K
is a compact (real) subgroup of G and B a connected complex closed subgroup of G.
Assume that the action of B on X satisfies the condition [H.1str] on a G—invariant
Zariski open dense subset Q2 in X', and the conditions [H.2] and [H.3]. Then the
G—action satisfies [H.1str], [H.2] and [H.3]; so it has a strongly quasi-proper mero-
morphic quotient.

A first variant of this result is given by the following theorem.

Theorem 1.0.2 Assume that we have a holomorphic action of a connected complex
Lie group G on a reduced complex space X. Assume that G = K.B where K 1is
a compact (real) subgroup of G and B a connected complex closed subgroup of G.
Assume that K normalizes B and that the B—action satisfies the conditions [H.1str],
[H.2] and [H.3]. Then the G—action satisfies the conditions [H.1str|, [H.2] and [H.3]
and so has a strongly quasi-proper meromorphic quotient.

Here is a second result obtained by a similar method.

Theorem 1.0.3 Let G be a complex connected Lie group and assume that there
exists a closed connected complex subgroup A and a compact (real) subgroup K such
That G = K.A.K. Assume the we have a completely holomorphic action of G on
an irreducible complex space X and that the action of A on X satisfies the following
properties :

i) There exists a G—invariant open set Qy in X such that the hypothesis [H.1str/
holds.

ii) There ezists a dense G—invariant open set Qg C q such [H.2] holds.
iii) The hypothesis [H.3] holds.
Then [H.1str], [H.2] and [H.3] hold for the action of G on X. So there exists a SQP

meromorphic quotient of X for the G—action.

Of course the hypothesis G = K.A.K is more “general” than the case G = K.B.
But the hypothesis of this last theorem is more restrictive for the action on X of
the closed connected complex subgroup A of G : we ask also the G—invariance of

!This precisely means that there exists a G —invariant dense Zariski open set in X which is a
“good open set” for the B—action (see section 2.5)



the dense open subset € of ; (the open set €2 is defined in the condition [H2]).

We conclude this article with two results relating the SQP meromorphic quotients
for the actions of B and G (resp. of A and G) when they exist:

1. The existence of a holomorphic map h : Qp — Q¢ (resp. Q4 — Q¢) between
the corresponding quotients.

2. The existence under the hypotheses of the theorem 1.0.1 (resp. the theorem
1.0.3) of a G—invariant dense Zariski open set 2 disjoint from the centers of
the modifications, such that the corresponding map hq : ¢g(Q2) = o (2) (resp.
ha  qa(Q2) — ¢a(Q2)) is proper.

2 Strongly quasi-proper meromorphic quotients.

2.1 Preliminaries.

For the definition of the topology on the space CJ(X) of finite type n—cycles in X
and its relationship with the topology of the space C!°°(X) we refer to [B-M] ch.IV,
[B.13] and [B.15].

For the convenience of the reader we recall shortly here the definitions of a geometri-
cally f-flat map (f-GF map) and of a strongly quasi-proper map (SQP map) between
irreducible complex spaces and we give a short summary on some properties of the
SQP maps. For more details on these notions see [B.13] and [B.15].

Definition 2.1.1 Let 7 : M — N be a holomorphic map between two irreducible
complex spaces and let n := dim M —dim N. We shall say that 7 is a geometrically
f-flat map (a f~GF-map for short) if the following conditions are fulfilled:

i) The map is quasi-proper equidimensional and surjective.

i) There exists a holomorphic map @ : N — C/(M)? such that for y generic® in

N the cycle ¢(y) is reduced and equal to the set-theoretic fiber 7= (y) of m at y.

A holomorphic map © : M — N between two irreducible complex spaces will be
strongly quasi-proper (SQP map for short) if there exists a modification®

7: N — N such that the strict transform® 7@ : M — N of = by 7 is a f-GF map.

A meromorphic map M --+ N will be called strongly quasi-proper when the
projection. on. N of its graph is a SQP map.

2That is to say a f-analytic family of finite type n—cycles in M parametrized by N.

3A dense subset in NV of such y is enough here, thanks to the proposition 3.2.2 of [B.15].

4A modification is, by definition, always proper.

5By definition M is the irreducible component of M x y N which dominates N and 7 is induced
by the projection.



Note that a f-GF map has, by definition, a holomorphic fiber map and that a
SQP holomorphic (or meromorphic) map has a meromorphic fiber map via the
composition of the holomorphic fiber map of 7 with the (holomorphic) direct image
map for finite type n—cycles 7, : C/(M) — CI(M). Of course, a SQP holomorphic
map is quasi-proper, but the converse is not true. The notion of strongly quasi-
proper map is stable by modification of the target space, property which is not true
in general for a quasi-proper map having “big fibers” (see [B.15] for such an example).

Let 7 : M — N be a SQP map between irreducible complex spaces and define
n = dim M —dim N. By definition of a SQP map, we can find a Zariski open dense
subset Ny in N and a holomorphic map ¢q : Ng — CJ(M) such that

i) For each y in Ny we have the equality of subsets |po(y)| = 7 (y).
ii) For y generic in Ny the cycle po(y) is reduced.

Let T' C Ny xCI(M) be the graph of 5. Then, thanks to the theorem 2.3.6 of [B.13],
the closure I' of T in N x C/(M) is proper over N. Then, using the semi-proper
direct image theorem 2.3.2 of [B.15], this implies that N := T is an irreducible
complex space (locally of finite dimension) with the structure sheaf induced by the
sheaf of holomorphic functions on N x C/(M). Moreover the natural projection
7: N — N is a (proper) modification.
Let M := M x N, str N the strict transform of M by 7, that is to say the irreducible
component of M x y N containing the graph of the restriction m of 7 to the open set
71 (Np)®. Then let 7 : M — N the strict transform of 7 by the modification 7; it is
induced on M by the natural projection of M x y N onto N. The set-theoretical fiber
at = (y,C) € N of 7 is the subset |C| x {g} in M. The map Y N — Cl(M)
given by (y, C') — C'x {3} is holomorphic and satisfies |1)(§)| = 7 (§) for all 7 in N.
Moreover 9(g) is a reduced cycle for generic ¢ in N. So the map 7 is geometrically
f-flat. It is the canonical f-GF-flatning of .
Then we have an isomorphism induced by v

Vv : N — CH(7)

where C/(7) := {C € C/(M) / 3§ € N s.t. |C| € #7'(j)} is a closed analytic
subset of C/ (M) (see [B.15] proposition 2.1.7.); the inverse map is induced by the
holomorphic map 7 : C/(#) — N which associates to v € C/ (%) the point in N
whose 7—fiber contains 7 (see loc. cit.).

The direct image of n—cycles by 7 gives a holomorphic map 7, : C/ (M) — C/ (M)
which sends N ~ CI () in C/(r). Let us show that it is an isomorphism of N onto
its image in C/(7) :

We have an obvious holomorphic map N — CI(rm) given by (y,C) — C. We
have also a holomorphic map CJ(7) — N x C/(M) given by C' + (7(C), C) where
7 : Cl(m) — N is the map associating to C' € C/(r) the point y € N such that

6This graph is a Zariski open set in M x x N which is irreducible as M an N are irreducible.



|C| € 7= Y(y). This proves our claim.
Remark that the closed analytic subset C/ () of C/(M) is not, in general, even lo-
cally, a complex space of finite dimension.

2.2 Action of G on C/(X).

Let G be a Lie group. We shall say that G acts continuously holomorphically
on the reduced complex space X when the action f : G x X — X is a continuous
map such that for each g € G fixed, the map = — f(g,z) is a (biholomorphic)
automorphism of X. Then there is a natural action of G induced on the set C/(X)
of finite type n—cycles given by (g,C) +— g.(C) where we denote g.(C) the direct
image of the cycle C' by the automorphism of X associated to g € G. When G is
a complex Lie group and the map f is holomorphic we shall say that the action is
completely holomorphic.

Proposition 2.2.1 Let G be a Lie group acting continuously holomorphically on a
reduced complex space X. Then the action of G on C{(X) is continuously holomor-
phic. This means that the map

G x Cj;(X) — Cf:(X) given by (g,C) — g.(C)

18 continuous and holomorphic for each fixed g € G.
If G is complex Lie group and the action is completely holomorphic, the action of
G on C{(X) is completely holomorphic; so, for any f-analytic family of n—-cycles
(Cs)ses in X parametrized by a reduced complex space S, the family of n—-cycles
9+(Cs)(g,s)eaxs parametrized by G x S is f-analytic.

PROOF. First we prove the continuity of the action of G on C**(X). To apply the
theorem IV 2.5.6 of [B-M] it is enough to see that the map F': G x X — G x X
given by (g,z) — (g, g.x) is proper. But if L C G and K C X are compact sets, we
have F~}(L x K) C L x (L7'.K) which is a compact set in G x X.

The only point left to prove the continuity statement for the topology of C/(X),
assuming that the continuity for the topology of C!°(X), is obtained as follows :
Let W be a relatively compact open set in X and W be the open set in C/(X) of
cycles C' such any irreducible component of C' meets W. Then we want to show
that the set of (g,s) € G x S such that g.(C;) lies in W is an open set in G x S.
As the topology of C/(X) has a countable basis” it is enough to show that if a se-
quence (g,,s,) converges to (g,s) with ¢.(Cs) € W then for v > 1 we have also
(9,)+(Cs,) € W. 1If this not the case, we can choose for infinitely many v an ir-
reducible component I', of (g,).(Cs,) which does not meet W. Up to pass to a
sub-sequence, we may assume that the sequence (T',) converges in C?¢(X) to a cycle

"This is a corollary of the fact that this is true for C2°(X) (see [B-M] ch.IV) as the topology of
X has a countable basis of open sets; see the lemma 2.1.1 in [B.15] for details.



I which does not meet W and is contained in g.(Cs). This is a simple consequence
of the continuity of the G—action on C“(X) and the characterization of compact
subsets in C¢(X) (see [B-M] ch.IV). As any irreducible component of g,(C) meets
W this implies that I' is the empty n—cycle. This means that for any compact K
in X there exists an integer v(K) such that for v > v(K) we have ', N K = 0.
Choose now a compact neighbourhood L of ¢g(K). For v large enough we shall have
K C g;'(L). This comes from the fact that the automorphisms g, ! converge to g~
in the compact-open topology. Then this implies that for v > v(L) the irreducible
component g, *(T',) of Cy, does not meet K. Then, when s, — s the cycles Cj,
does not converge to Cy for the topology of C/(X) because we have some “escape
at infinity” in a well choosen sub-sequence. Contradiction. [

Lemma 2.2.2 Let w: M — N be a SQP map between irreducible complex spaces.
Assume now that a Lie group H acts continuously holomorphically on M and N
and that 7 is H—equivariant for these actions. Let 7 : N — N be the canonical
modification giving the canonical f-GF flatning of © and let @ : M — M be the
strict transform of © by the modification 7. Then N and M have natural continuous
holomorphic actions of H such T and 7 are H—equivariant.

Moreover, if H is a complex Lie group and if it acts completely holomorphically on
M and N, it acts also completely holomorphically on M and N.

PROOF. Let Ny C N the open dense subset of points y in N such that y is normal
and 7 !(y) is purely n—dimensional. Then N, is H—stable because H acts on M
and N by bi-holomorphic automorphisms. As 7 is quasi-proper, the theorem IV 3.4.1
of [B-M] gives a holomorphic map ¢q : No — C/(M) such that, for each y € Ny, we
have |¢o(y)| = 771 (y), with og(y) reduced for y generic. Then the H—equivariance
of m implies the H—equivariance of @y for the action of H on C/(M) defined in
the proposition 2.2.1. So the graph I' of ¢, is stable by the H—action and so is
its closure N in N x C/(M). Then 7 : N — N induced by the first projection is
H —equivariant.

Now the strict transform of M by 7 is the closure in M xy N of the subset
7 Ny xn Ny) =~ 7 1(Np). As it is stable by the action of H, so is its closure,
and the map 7 : M — N induced by the second projection is then H—equivariant.
The case where H is complex and acts completely holomorphically on M and N
follows from the previous proposition. [ |

We shall also use the following simple tool from the cycle’s space.

Proposition 2.2.3 Let M be a reduced complex space and (Xs)ses the tautolog-
ical f-continuous family of d— dimensional finite type cycles parametrized by a com-
pact subset S in CJ(M). Let (C))wer be the tautological family of n—dimensional
cycles in M parametrized by a compact subset T C Cl¢(M) . We assume the fol-
lowing condition:



e There exists a dense subset T" in T such that each Cy,t € T', is non empty
and equal to the union of some Xs. (Q@)

Then the property (QQ) is satisfied for any t € T and T is in fact a compact subset
of CI(M).

PRrROOF. First remark that, as S is compact in CCJZ (M), there exists a compact set
L C M such that any irreducible component of any X, meets L.

Let (t)men be a sequence of points in 7" converging to a point ¢ € T and denote
by C,, the cycle C;, for short and Cy = C,. Now choose for each m an irreducible
component [',, of some X contained in C,,. Remark that this is possible
because t,, € T" implies that (QQ) holds. Up to pass to a sub-sequence, we may
assume that T, convergesin CJ(M) toa cycle T' which is not empty (it contains
at least a point in L) and is included in |Cwl|. So Cy is not the empty cycle.
Let = be a generic point of an irreducible component D of (.. Then, up to
pass to a sub-sequence, we may choose a sequence (x,,) of points respectively in
C,, which converges to x. Choose for each m an irreducible component I, of
some X, C |Cp,,| which contains x,,. This is possible again because of condition
(@@) holds. Now, again up to pass to a sub-sequence, we may assume that the
sequence (I',,)men converges in CC]; (M) to acycle I' containing the point =z
and contained in |Cy|. Note that |I'| contains an irreducible component of some
| Xs..| containing x, as we may assume, by compactness of S, that the sequence (s,;,)
converges to s, € S. Then we have |X;_| C |Cx|. As D is the only irreducible
component of C,, containing =z, it contains at least an irreducible component
of | X, | containing x, and so D meets L. So we have proved that C, is
not the the empty n—cycle and that any irreducible component of C,, meets the
compact set L. This is enough to conclude thanks to the corollary 2.1.3 in [B.15]. B

2.3 f-GF holomorphic quotient.

We shall consider a complex connected Lie group G and a completely holomorphic
action of GG on an irreducible complex space X.

Definition 2.3.1 We shall say that the action of G on X has a quasi-proper GF
holomorphic quotient, (a f~-GF holomorphic quotient for short), when there
exists a G—invariant quasi-proper geometrically flat holomorphic map q¢ : X — @Q
onto a reduced complex space () such that each fiber of q is set-theoretically equal to

an orbit of G in X.

REMARK. Assume that G is connected and that we have a G—invariant open set
U and a GF surjective holomorphic map ¢ : U — @ to a reduced complex space
such that for each z € U we have the set-theoretic equality ¢ '(¢(x)) = G.z. Then
the map ¢ is quasi-proper: let y := ¢(x) be any point in @ and let V(x) be a rela-
tively compact open neighbourhood of = in U. As the map ¢ is open, ¢(V(x)) is an



open neighbourhood of y and for any y' € ¢(V/(x)) there exists 2’ € V(x) such that
¢ '(y) = G.2’. So the fiber ¢~!(y') meets the compact set V(z) of U, proving the
quasi-properness of the map gq. ]

Proposition 2.3.2 In the situation of the definition above there exists a holomor-
phic map, where we have defined n := dim X — dim Q),

d: X — ClX)
with the following properties

i) The subset Q, := ®(X) of C/(X) is a closed analytic subset of finite dimension
(so an irreducible complex space) with the complex structure sheaf induced by
the structure sheaf of CI(X)8.

i) The map idx x ® : X — X x C/(X) induces an isomorphism of X on the set-
theoretic graph of the tautological family of finite type n—cycles in X parametrized

by Q.

iii) There is a canonical isomorphism 0 : QQ — Q,, such the diagram

X210

RN

commutes, where ¢ is the holomorphic map classifying the fibers of the f-GF
map q and where ® = q, 01 = qo .

Conversely, if there exists a holomorphic map ® : X — C/(X) such that for each
z € X we have |®(z)| = G.x then Q, := ®(X) is a closed analytic subset in C{(X)
of finite dimension and the map q, : X — @, induced by ® is a f-GF holomorphic
quotient for the G—action on X.

PROOF. The theorem 3.1.9 of [B.15] gives that the classifying map ¢ : Q — C/(X)
for the fibers of the f-GF map ¢ is a proper holomorphic embedding. As ® :=qo ¢
and ¢ is surjective, this gives the fact that (), is a closed locally finite dimensional
subset of C/(X) and that the map 6 : Q — @Q, induced by ¢ is an isomorphism.
Then the map tdx x ® sends X to the set-theoretic graph of the tautological family
of finite type n—cycles in X parametrized by ),,. The inverse map is given by the
projection on X, so it is an isomorphism on this graph®. The point iii) is now clear.
The converse is consequence of the theorem 2.3.2 of [B.15] as soon as we proved the
following claim:

8Recall that a continuous function g : # — C on an open set U C CJ(X) is holomorphic if
and only if for any holomorphic map f :.S — U of a reduced complex space S in U the composed
function f o g is holomorphic on S.

9Note that, as the generic fiber of ¢, is a reduced cycle, the cycle-graph is also reduced.
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e the holomorphic map & is semi-proper.

Consider first the case of a non empty cycle Cy € CJ(X),Cy ¢ ®(X). There exists
two points z,y € |Cy| such that y ¢ G.x. Then choosing two adapted n—scales
E,, E, to Cy such that x and y are respectively in the domains of £, and £, with
degp, (Co) > 1 and degg (Cp) > 1. Then any cycle which is near enough to Cp
in C/(X) has the same degrees in these adapted scales. But as ®(z) # ®(y) there
exists two disjoint G—invariant open sets U and V in X containing respectively x
and y. If we choose £, to be a scale on U and FE, to be a scale on V we know
that each cycle near enough to Cj cannot be an orbit (set-theoretically) so is not in
d(X).

Let now Cy = ®(z) and let W be an open relatively compact neighbourhood of z
in X. Let W be the open set in C/(X) of cycles C such any irreducible of C' meets
W. Then we have the equality ®(X)NW = ®&(W)NW : if C = ®(y) is in W then
G.y has to meet W by definition of W and so there exists z € W such that z € G.y.
But then G.z = G.y and we have |®(z)| = |®(y)|. But then ®(y) = ®(2) as the
cycles in ®(X) are disjoint or equal; and we have find a 2 € W with ®(z) = ®(y),
proving our claim. [ ]

REMARK. It is easy to see that if, for = generic in X, the cycle ®(x) is not reduced,
there exists an integer k£ > 2 such that, for = generic in X we have ®(x) = k.[G.z].
Then, as X is irreducible, there exists a holomorphic map ®; : X — C/(X) such
for any x € X we have ®(z) = k.®;(z) and we can replace ® by ®; and then, for
generic = in X, the cycle ®(x) is reduced.

The following obvious corollary of the proposition 2.3.2 will be useful.

Corollary 2.3.3 If X admits a f-GF holomorphic quotient ¢ : X — @ for the
G—action, the map q is unique up to an unique isomorphism of Q). [ |

Lemma 2.3.4 Let (;);cr be a collection of G—invariant open sets in X such that
for any 1 € I and any x € §; the orbit G.x is a closed set (resp. a closed analytic
subset) in ;. Then for each x € Q := U;cr Q; the orbit G.x is a closed set (resp. a
closed analytic subset) in Q. Moreover, if any orbit is a closed analytic subset in €0,
the subset

Z={(x,y) e xQ /) Gzx=Guy}

18 a locally closed analytic subset in ) X 2 as soon as its intersection with €2; x §;
18 a closed analytic subset of §; x Q; for each i € I.

PROOF. Let x € Q and y € G.x N Let j € I such that y belongs to ;. Choose
an open neighbourhood V' of y in ;. Then V N G.x is not empty. But if z is in
V N G.x we have z € ; and also G.x = G.z lies in §;. As G.x is closed in §2; we
conclude that y is in G.z and so G.z is closed in €). The assertion on analyticity is
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obvious.
Consider now the open set

B :={(z,y) € 2 xQ / Ji €I such that z € ; and y € Q;}.

Then Z N B is closed in B and is clearly analytic in this open set. [ |

Corollary 2.3.5 Assume that we can cover the G—space X by a family of by
G—invariant open sets (€;);er such that for each i € I we have a f-GF holomorphic
quotient q; : Q; — Q;. Then if the family of closed sets (0€););er is locally finite in
X, the open G—invariant dense set X' := X \ Uer 0 has a f-GF holomorphic
quotient q : X' — @',

ProoFr. First remark that if X admits a holomorphic f-GF quotient ¢ : X — @
then for any G'—invariant open set 2 C X the restriction of ¢ to ) induces a
holomorphic {-GF quotient ¢qq : © — Qq = ¢(Q2) because the map ¢ is open and
Q=q1(q(Q)) as Q is G—invariant and so g—saturated.

Note also that, as X is countable at infinity, we may assume that [ is countable.
For any (i,7) € I? such that the open set Q; N €, is not empty, the G—invariant
open set £2; N €2, has two holomorphic {-GF quotients :

Gija,ng, SN = Qi = ¢;(£; N ;) and

thanks to our first remark. Then we have a canonical isomorphism 0; ; : Q; ; — @,
and again by the uniqueness assertion of the previous corollary we have

9i7j OUjk© ek,i =id on QZ N Qj N Qk V(Z,j, k) € ]3.

So there exists a, may be non Hausdorff, locally reduced complex space () obtained
by identifying @Q); ; to @, via ¢;; in the disjoint union of the @;,7 € I and a holo-
morphic map ¢ : X — () such that its restriction to €2; is equal to ¢; for each ¢ € I.
It is then easy to see that the open subset )" of ) obtained by deleting the image in
Q of F :=U,¢; 09; is a Hausdorff reduced complex space : to see this, it is enough
to produce, for any distinct points x # y in X’ a pair of disjoint G—invariant neigh-
bourhoods of x and y. If there exists ¢ € I such both are in €2; this is a consequence
of the separation of the quotient ();. If this is not the case, there exists i # j € I such
that x € ;\Q; and y € Q;\Q;. If V(z) and V(y) are open neighbourhoods of z and
y respectively in Q;\ Q; and Q;\Q;, then G.V () and G.V (y) answer the question.l
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2.4 SQP meromorphic quotient.

Definition 2.4.1 A strongly quasi-proper meromorphic quotient, we shall
say a SQP-meromorphic quotient for short, for a completely holomorphic action
f:GxX — X of a complex Lie group G on an irreducible complex space X will
be the following data:

1. a G—modification’® 7 : X — X with center 3.

2. a G—invariant holomorphic f-GF map q: X — Q where Q is a (irreducible)
complex space.

3. an analytic G—invariant subset Y C X containing X, with no interior point
m X.

We shall denote Y :=771(Y), Q:= X\ Y,Q:=771Q) and Q" := ¢(Q). Note that,
as q is an open surjective map, @) is open and dense in Q).
Now we ask that these data satisfy the following properties:

i) The restriction to Q0 of the map 7 'oq is a f~-GF map onto the dense open set

Q' in Q and there is an open dense subset Q" in Q' such that the holomorphic
map Q= (7710 ¢)(Q") = Q" is a f-GF holomorphic quotient.

i) There exists an open dense G—invariant subset g C €2y such that for each ¥
in Qo := 7 YQ) the closure G.7 of G. in X is exactly the reduced cycle

q ' (q(x)).

Note that, in general, the G—invariant {-GF map ¢ : X =Q is not a holomorphic
f-GF quotient of X as the generic G—orbits are not closed in X. Also, in general,
the restriction of ¢ to €2 is not a f-GF quotient (see the example below).

To illustrate this definition which seems a little complicate, let us look at the fol-
lowing very simple (algebraic) example.

EXAMPLE. [from many discussions in Bochum| Let G := C* and X := P, the
action given by t.(zg, z1,72) := (t.wg,t " .21, 25). Then there exist 3 fixed points
O :=1(0,0,1),P:=(1,0,0),Q := (0,1,0) and 3 orbits which are the punctured lines
OP,0Q, PQ which are copies of C*. The other orbits are the conics {zg.z; = s.23}
for s € C*.

The SQP meromorphic quotient for this action is given by the (quasi-proper) mero-
morphic map

q:Py P, (z0,71,72) = (20.71, 73).

The graph of this meromorphic map is the blow-up X of P, in the 3 points O, P, Q.
Then the G—invariant open dense subset Q1 := Py \ {(PQ)U(OP)} ~ C*x C admits

10This means that we have a completely holomorphic G—action on X and that the modification
T is G—equivariant.
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a f-GF holomorphic quotient map (z,y) — z.y.

Note that we can make another choice : Q] :=Py \ {(PQ) U (0Q)} ~ C x C* with
the same map (x,y) — 2.y but now x may vanishes and y # 0.

Then we can choose the G—invariant open set

Q=P \ {(PQ)U (OP)U(0Q)} = Q1 N QL.
Note that for (z,0) € ©; we have
(¢ (q(z,0)) = G.(x,0) U (OQ) and 7(G.(x,0))U{0O}uU{P}

so ¢ does not induce a f-GF holomorphic quotient on Py \ {0, P, Q}. O

REMARK. In the situation of a connected complex Lie group acting completely
holomorphically on an irreducible complex space X, the irreducibility of X gives
that the subset of points in X for which the stabilizer has a dimension strictly
bigger than the generic dimension is a closed analytic G—invariant subset Y; in X
with no interior point. Then it is clear that any G'—invariant open set €2y for which
there exists a f-GF holomorphic quotient has to be contained in X \ Y. In fact the
G'—invariant open dense subset X \ Yj is the first and best “candidate” for such
an open set. But the example above shows that, even in the algebraic context,
assuming moreover that each orbit in X \ Yj is a closed analytic subset in X \ Yy,
only some smaller open sets may have a f-GF holomorphic quotient.

Proposition 2.4.2 Let G be a complex connected Lie group which acts completely
holomorphically on an irreducible complex space X. Assume that we have a SQP
meromorphic quotient for this action, given by a G—modification 7: X — X and a
G—invariant holomorphic f-GF map q : X — Q.

Let v : Q — CL(X) be the holomorphic map obtained by the composition of the fiber
map of the f-GF map q and the direct image map for n—cycles by the modification
7. Define Q, := ¥(Q). Then we have the following properties:

1. Q, is a closed analytic subset in CI(X) which is an irreducible complex space
of finite dimension with the structure sheaf induced by the sheaf of holomorphic
functions on CI(X).

2. Let X, be the graph of the meromorphic map ¢, : X --» Q. given by the
holomorphic map Yo q: X — Q, and let 7, : X, — X and gy : Xy — Q. be
the projections on X and Q, respectively of this graph. Then (7., q,) is also a
SQP meromorphic quotient for the given G—action.

3. For any SQP meromorphic quotient (7,q) there exists a unique holomorphic
surjective map n : Q — Q, such that the meromorphic maps q : X --+ Q) and

Gu : X --» Q, satisfies noq = q,.
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Definition 2.4.3 In the situation of the previous proposition the SQP meromorphic
quotient for the given G—action defined by (7, q,) will be called the minimal SQP
meromorphic quotient of this G—action.

So the proposition above says that the existence of a SQP meromorphic quotient for
the given G—action implies the existence and uniqueness of a minimal meromorphic
quotient for this G—action.

PROOF OF THE PROPOSITION 2.4.2. To prove the point 1. we shall prove that
the map

Yoq: X — CH(X)

is semi-proper. Let C' # () be in C/(X) and fix a relatively compact open set W in
X meeting all irreducible components of C. The subset W of CI(X) of cycles C’
such that any irreducible component of C" meets W is an open set containing C.
Now ¢(7~}(W)) is a compact set in Q, as 7 is proper. Take any y € @ such that
C" == )(y) is in W. The point y is the limit in Q of points 1, € ¢(€) such that
the fiber of ¢ at y is limit in C/(X) of the fibers ¢~'(y,) = G.7, where, for v > 1,
we can choose 7, in Qg N 71 (W). Up to pass to a sub-sequence, we may assume
that the sequence (7,) converges to a point  in 71(W). Then the continuity of ¢
implies that ¢(Z) = y and C’ is the limit of G.Z,. So |C’| is in the image by v of
the compact set ¢(7*(W)) and this gives the semi-properness of ¢ o g.

Now the direct image theorem 2.3.2 in [B.15] shows that @), is an irreducible complex
space (locally of finite dimension) and the point 1. is proved.

Now, using the G—invariance of the map 1 o ¢ we see that @), is point by point
invariant by the natural action of G on CJ(X) defined in the proposition 2.2.1. Then
the graph X, of the G—invariant meromorphic map ¢, : X --» Q, is G—stable in
X x @, and the G—action induced on it makes the projection ¢, : Xu — Qu
G—invariant and the projection 7, : X, — X G—equivariant.

To prove the second point we have to show that the map ¢, : X, — Q. is a -GF
map. By definition X, is the closure in X x Q. of the graph of the map g, where
Qo = o is an open dense set in X such that for any point z € {2y we have
Y(q(z)) = G.x (as Qo is disjoint from the center of the modification 7 we identify
via 7 the open sets Qy and Qo := 77'(€)). Then, by irreducibility of Q, and X,
the closed analytic subset X, C X x Q, is equal to the graph of the tautological
family of cycles in X parametrized by @, C C/(X). This will complete the proof of
the point 2. when we shall be able to find

i) A closed G—invariant analytic subset Y, with no interieur point containing
7.7 1(2,) where 3, is the center of the modification 7,; then let Y, := 7(Y,).

u

ii) A dense G—invariant open set §2; , C X \ Y, such that the restriction of g, to
2y, will give a f-GF holomorphic quotient for the action of G on 2y ,,.

These facts will be deduced from the point 3.
Now consider a SQP meromorphic quotient of the G—action given by the maps
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7:X — X and ¢ : X — Q. Then, by the construction in the proof of the
point 1, we know that 1 o ¢( ~) ()., and then the map 1 o ¢ induces a surjec-
tive holomorphlc map 7 : Q — Q. Now X is a G—equivariant modification of
the graph X, of the G—invariant meromorphic map ¢ : X --» @Q. Then, as X,
is the graph of the G—invariant meromorphic map ¢, : X --+ @, the holomor-
phic map idx xn : X x Q@ — X x @, sends X, to X, because this is true over
the dense open set €}y in X where the maps ¢ and ¢, are holomorphic and satisfy
¢ Y (q(7)) = ¢ (qu(7)) = G.x. This complete the proof of the point 3.

Now the composition of the holomorphic G—equivariant modifications X — Xj
and XO — Xu allows to define f/u and €2, as the images of Y and O by this
modification. [

Note that the subsets g ,, 21, and f/u, Y,, are not intrinsically defined in X,.

Corollary 2.4.4 In the situation of the previous proposition, assume that another
Lie group H acts continuously holomorphically on X. Assume that the action of
H normalizes the action of G, that is to say that for any (h,z) € H x X we have
h.[G.x] = G.(h.x). Then the minimal SQP meromorphic quotient of X for the
action of G is H—equivariant in the following sense:

e There are natural continuously holomorphic H—actions on X, and on Q,, such
that the maps 7, - Xy — X and qu - Xu — Qu are H—equivariant.

Moreover, if H is a complex Lie group and the action of H on X is completely
holomorphic, the natural actions of H on X, and @, are completely holomorphic.

PROOF. As H acts on C/(X) via (h,C) — h,(C) the only thing to prove is the
fact that X, € X x C/(X) is stable by the action of H. But, by definition of the
minimal SQP meromorphic quotient, X, is the closure in X x C/(X) of the set of
couples (z,G.x) for z in a dense G—invariant open set in X.

We have for such an x,

h.(z,G.x)) = (h.w, h.(G.x) = (hw,h[G.2]) = (hx,G.(h.x))

as h.[G.x] = G.(h.z) and the fact that H acts by complex automorphisms on X.
If H is a complex Lie group and the action of H on X is completely holomorphic,
its action on Cf(X), X, and Q, are also completely holomorphic. [ |

The next result shows that the minimal SQP quotient for a G—action on X factorizes
any G—invariant meromorphic map defined on X.

Theorem 2.4.5 Let G be a complex Lie group acting on a irreducible complex space
X with a minimal SQP meromorphic quotient 7 : X — X and q : X — Q. Let
v : X — T be a G—invariant holomorphic map. Then there exists a holomorphic
map h:Q — T suchv=hogq.
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Moreover, for any G—invariant meromorphic map** ~ : X --» T there exists a
G—equivariant modification 60 : Z — X of X on which v and q are holomorphic and
a holomorphic map H : Q — T such that v =qo H on Z.

The main ingredient to prove this theorem is the following lemma (see lemma 2.1.8
in [B.15] for a proof).

Lemma 2.4.6 Let U and B be open polydiscs in C* and CP and let F : Ux B — CN
be a holomorphic map. For any positive integer k the subset S(F) of H(U, Sym*(B))
of the multiform graphs contained in a fiber of F' is a closed banach analytic subset
of H(U,Sym*(B)). Moreover, the map F : S(F) — CN given by the value of F on
X € S(F), is a holomorphic map on S(F). |

Proposition 2.4.7 Let X be a reduced complex space and let (Cy)ses be a f~analytic
famaly of n—cycles in X parametrized by a reduced complex space S. Let h: X — T
be a holomorphic map and assume that the restriction of h to the set |Cs|, for s in
a dense set S" in S, is constant. Then there exists a holomorphic map H : S — T
such that for each s € S we have |Cs| C h™'(H(s)).

Note that this means that the classifying map ¢ : S — CJ(X) of the f-analytic family
(Cs)ses takes its values in CJ(h) ; the holomorphic map H is then the composition
of ¢ with the natural holomorphic map h : CI(h) — T (see [B.15] prop. 2.1.7).

PROOF. A local embedding of 7" in an open set in C and the consideration of
finitely many adapted scales'? to a cycle Cj, of the family allow to deduce the propo-
sition from the lemma above. |

The following corollary of the proposition 2.4.7 is immediate, as, by definition, the
fibers of a f~-GF holomorphic map is given by a f-analytic family of cycles.

Corollary 2.4.8 Let q: X — Q) a f~-GF holomorphic map between irreducible com-
plex spaces. Letn :=dim X —dim Q. If h : X — T is a holomorphic map such that
for y in a dense set in Q the restriction of h to the fiber ¢~ *(y) is constant, then
there exists a holomorphic map H : () — T such that h = qo H. [ |

PROOF OF THE THEOREM 2.4.5. Let o : Z — X be the strict transform of the
modification 6 : Y — X given by the projection of the graph of v on X by the
modification 7 : X — X. As these two modifications are G'—equivariant, this is also
the case for o, and the maps ¢ and v are holomorphic on Z. The generic fiber of ¢
is the closure of a G—orbit in X, so it is contained in a fiber of 4 as G is connected.

1By definition that means that there exists a G—equivariant modification # : ¥ — X and a
G—invariant holomorphic map %4 : Y — T corresponding to the projections of the graph of ~.

12Here the quasi-properness over S of the graph of the family is used in a crucial way in order
that a finite number of adapted scales are enough to determine, locally on the parameter space,
the cycles of the family .
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Then the corollary 2.4.8 applies and we have on Z the factorization v = qo H where
H : @ — T is a holomorphic map. |

2.5 Good points, good open sets.

Let X be areduced complex space and G be a connected complex Lie group. Let
f:Gx X — X be a completely holomorphic action of G on X. We shall often
note g.x := f(g,x) for g € G and = € X.

Definition 2.5.1 We shall say that a point x € X s a good point for the
action f if the following condition is satisfied

e For each compact set K in X there exists an open neighbourhood V of x
and a compact set L in G such that if y €V and g € G are such that
g.y € K, there exists v € L with ~v.y=g.y

We shall say that the action of G on X is good when each point in X is a good
point. If Q) is a G—invariant open set in X, we shall say that €2 s a a good open
set for the action [ when all points in ) are good points for the G—action given
by f restricted to (2.

REMARKS.

1. If z € X is a good point, then, for any gy € G, go.z 1is also a good point:
for K given, choose ¢o.V as neighbourhood of g¢y.x and the compact set
L.gy' C G to satisfy the needed conditions.

2. Consider ' C Q two G—invariant open sets in X and assume that x € ' is
a good point in 2. Then x is a good point in €V'.
So, if € is a good open set, €' is also a good open set.

3. But conversely, if x € ' C Q is a good point in €, it is not true, in general,
that x is a good point in Q. So if € is a good open set, points in 2 are not
in general good points for the action on X.

4. If M is a compact set of good points in X for any compact set K in X we can
find a neighbourhood V of M in X and a compact set L in G such that for
any point y € V and any g € G such that g.y € K there exists v € L with
~v.y = g.y. This is easily obtained by a standard compactness argument. We
shall say that a compact set of good points is uniformely good.

Lemma 2.5.2 Let x be a point in X. Then x is a good point for the G—action
on X if and only if the map Fx : G x X — X x X gwen by (g,z) — (x,g9.x) is
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semi-proper at each point of {x} x X. As a consequence a G—invariant open set 2
i X is a good open set for the G—action if and only if the map Fo : G X Q — Qx
given by (g,x) — (x,g.x) is semi-proper.

Proor. Let x € X be a good point and fix any z € X. To prove that the map
F is semi-proper at (z,z) choose compact neighbourhoods V; and K of x and z
in X and apply the definition of a good point to the compact set K. So we can
find a neighbourhood V' of z, that we may assume to be contained in V, and a
compact set L in G such that for any y € V such that g.y € K we have a v € L
with g.y = 7.y. Then we have Fx(G x X)N(V x K) = Fx(L x Vo) N (V x K) and
L x Vy is a compact set in G x X.

Conversely, assume that the map F'y is semi-proper at each point of {x} x X. Take
a compact set K in X and apply the semi-properness to each point (x, z) where z
is in K. For each z € K we obtain open neighbourhoods V, and W, of x and z in
X and a compact set L, x M, in G x X such that

Fx(GxX)N(V, x W,) = Fx(L, x M,)n(V, x W,).

Extract a finite sub-cover Wy, ..., Wy of K by the open sets W, and define the
compact set L := U;cp N L., and the neighbourhood V' := Nic;i; V2, of 2. Then if
yisin V and g.y is in K there exists i € [1, N| such that g.y € W;. As y isin V; we
can find ay € L,, C L with Fx(g,y) = Fx(v,y) and this implies that z is a good
point. The second assertion is an easy consequence of the first one. [ |

Lemma 2.5.3 Let G be a connected complex Lie group. Let f:G x X — X be
a completely holomorphic action of G on a reduced complex space X. Consider a
countable family (£2;);er of good open sets for f and the family (F;);cr of closed sets
in Q= U8 defined by F; := 0Q; NQ. Let F := U/ F;. Then any point in the
dense set Q\ F of Q2 is a good point in €.

ProoOF. Of course 2 is a G—invariant open set in X as a good open set is
G—invariant by definition. Then F'N () is a G—invariant set in {2 which is a count-
able union of nowhere dense closed sets in €. So ©\ F' is a dense G4 in Q. Now let
z € Q\ F and K be a compact subset in §2. Choose a sub-covering (2);,7 € [1, N]
of K by some open sets ;,i € [1, N] and let ¢ € [1,p],p € [0, N] the subset of
i € [1, N] such that x is in ;. Choose now a compact neighbourhood V' of x such
that V' is contained in N?_,Q; and such that VN Q; = 0 for each j € [p+ 1, N]. This
is possible because x is not in 0Q; for j € [p+ 1, N]. Remark that if y is in V and
g.y is in K, by the G—invariance of §}; we have g.y ¢ Q; for each j € [p+ 1, N].
Solet K := K\ U1 Q. This is a compact set in U}Y,€2;. Choose now compact
sets K1, ..., K, such that K; C Q; and such that K ¢ U’_, K;. For each i € [1,p],
as z is in ); and as K is a compact set in €2; which is a good open set, there exist
an open neighbourhood W; C V of x and a compact set L; in G such that for any
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y € W; and any g € G such that g.y is in K; there exists a v € L; with v.y = g.y.

Let W:=n_W; and L :=U_,L;. If now y € W and g € G are such that g.y is in
K, then first we have ¢g.y which is in K. If ¢g.y is in K, as y is in W;, there exists
v € L;, C L such that g.y = «.y. This shows that any z in Q \ F' is a good point in
the G—invariant open set 2. [ |

REMARKS.

1. If the family (F;);cs is locally finite in Q then Q \ F is a dense good open set
in €.

2. As ) is countable at infinity (it is an open set in a complex space), if the family
(Q4)icr is not countable, it is always possible to find a countable sub-family
(Qi)iel’ such that Q) = Uie]’ Ql

Proposition 2.5.4 Let G be a connected complex Lie group. Let f:Gx X — X
be a completely holomorphic action of G on a reduced complex space X. Then we
have the following properties :

i) If x s a good point for f the orbit G.x is a closed analytic subset of X.

i) If z is a good point for f andif (G.x)NK =0 where K C X is a compact
set, there exists a neighbourhood V of = in X such that (Gx')NK =0
for any ' in 'V (2’ is not assumed here to be a good point).

iit) If x s a good point for f there exists a neighbourhood V of x such that
any good point x' € V' has an orbit which is a closed analytic subset of the
same dimension than G.x.

iv) Let € be a good connected open set in X which is normal and let n be
the dimension of G.x for x € Q. Then there exists a holomorphic map
@ : Q2 — CI(Q) given generically by ¢(z) := G.x as a reduced n—cycle in .

v) When we have a good open set 2 in X which is normal, there ezists a quasi-
proper GF holomorphic quotient of ) for the action restricted to €.

Proor. We already proved that = is a good point if the map G — X given by
g — g.x s semi-proper in lemma 1.3.2. Now Kuhlmann’s theorem [K.64], [K.66]
gives that f,(G) = G.z is a closed analytic subset of X. This proved i)

Assume ii) is not true ; then we have a compact set K such that (G.x)NK =0
and a sequence (z,),eny converging to x and such that (G.x,) N K is not empty

13Recall that this means that we have an f—analytic family of n—cycles in Q parametrized by
Q.
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for each v. Fix a compact neighbourhood K of K such that (G.x)N K = (. This
is possible thanks to i). Pick a point v, =lim, e gva.z, in (G.z,) NK for each
v. Up to pass to a subsequence we may assume that sequence (y,) converges to
y € K when v — +o0. So, for @ > a(v), we can assume that g, ,.z, is in K. But,
as x is a good point, for the given compact set K there exists a neighbourhood
V of x and a compact set L C G as in the definition. We may assume that =z,
isin V for v >y and so we may find, for v > vy, > «(v), elements ~,, € L
such that lim,_ oo Vo020 =y YV > 1.

Up to pass to a sub-sequence for each given v > 1, we may assume that the sequence
(Vv.a)a converges to some 7, € L. And again, that the sequence (,) converges to
some v € L. So the continuity of f gives vy, = V.2 — v =y € K giving a
contradiction because we assume (G.z) N K = . This proves ii).

Let E := (U,B,j) bea n—scale on Q adapted to the n—cycle G.z. Then the
compact set K := j (U x OB) does not meet G.z, by definition of an adapted
scale. Using ii), there exists a neighbourhood V' of z such that for any 2’ € V
we have (G.2/) N K = (). As for a good point 2’ € V we know that G.2’ is a
closed analytic subset, the n—scale is then adapted to G.z’. This implies that the
dimension of G.z’ is at most equal to n. But the semi-continuity of the dimension
of the stabilizers implies that the dimension of G.z' ~ G/St(2') is at least equal
to n = dim(G/St(z)). This proves iii).

Remark that for any 2’ € V such that G.2’ N2 is a (closed) analytic subset in €,
the previous proof shows also that G.z/ N € is of dimension n.

To prove iv) fix a good connected open set {2 and define
Z:={(g,2,y) eGXxQAxQ )/ y=gux.}

This is a closed analytic subset in G x € x €. It is isomorphic to G x €2 by the
projection (g, z,y) — (g,x) and so the projection p: Z — Q x  is semi-proper,
thanks to the lemma 2.5.2. Its image p(Z) is then a closed analytic subset of
QxQ by Kuhlmann’s theorem [K.64], [K.66], which is a generalization of Remmert’s
theorem [R.57] to the semi-proper case. But now the projection

m:p(Z) = Q

is n—equidimensional, thanks to iii), and has irreducible generic fibers on a normal
basis . So its fibers (with generic multiplicity equal to 1) define an analytic family
of n—cycles of X parametrized by (). It is clearly f—analytic because each fiber
is irreducible!* and we have an holomorphic section because each z lies in G.x.

To prove v) let us prove that the holomorphic map ¢ : Q — C/(Q) classifying the
fibers of p(Z) is semi-proper. Fix a non empty cycle C' € C/(€Q) and choose a point
x;,i € [1, k], in each irreducible component of |C|. Let W a relatively compact open

14 But some multiplicities may occur.
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neighbourhood of {1, ..., 7} in ©Q and let W be the open set in C/(£2) of cycles such
that each irreducible component meets W. Let C’ be in W N ¢(€2); we know that if
C" = ¢(z) we have |C'| = G.z. So G.z has to meet W and we can choose y in the
compact set W such that |C’| = |p(y)|; but the equality of supports implies equality
of cycles in this family. So ¢(2) = ¢(y). This gives the semi-properness of ¢. Now
the semi-proper direct image theorem 2.3.2 of [B.15] implies that the image @ of
v is a locally finite dimensional reduced complex space. Moreover, it parametrizes
a f-analytic family of n—cycles in €2 which coincides generically with the reduced
G—orbits. Then the holomorphic map ¢ :  — @ is a quasi-proper GF holomor-
phic quotient for the action f on 2 as each fiber of ¢ is set-theoretically a G—orbit.ll

2.6 Nice points.

We consider a connected complex Lie group GG and a completely holomorphic action
of G on a reduced complex space X given by a holomorphic map

f:Gx X — X.
Define the closed analytic subset
Z={(g,z,y) eGXx X x X [/ y=guzx}

and let p : 7 — X x X the natural projection. Remark that Z is isomorphic to
G x X and that the projection p: Z — X x X is equivalent, via this isomorphism,
to the map f xid: G x X — X x X given by (g, z) — (g.z, ).

Definition 2.6.1 We shall say that a couple (z,y) € X x X is a good couple
when there exists open neighbourhoods V (x) and V (y) respectively of x and y in X
and a compact subset L in G such that for any x' € V(x), any vy € V(y) and any
g € G such that y = g.x’ there exists v € L with vy = v.x'.

REMARKS.

1. A couple (z,y) is good if and only if the map p: Z — X x X is semi-proper
at the point (z,y), and then it is semi-proper at any point in V'(z) x V(y). So
the set of good couples in X x X is an open subset.

2. A couple (z,y) is good if and only the couple (y,x) is good.

3. Assume that the couple (z,y) is good ; then, with the notation of the previous
definition, for any '’ € V() the subset G.2’ NV (y) is a closed subset in V(y).
Also for any ¢ € V(y),G.y' NV (z) is closed in V().

4. If a couple (z,y) is good, then for any (g1, ¢92) € G X G, the couple (g;.x, g2.y)
is a good couple. So the subset of good couple in X x X is (G x G)—invariant.
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5. For any point x € X the subset Q(z) := {y € X / (z,y) is a good couple} is
an open G—invariant subset in X. Moreover, the open set () only depends
on the orbit G.x of x.

In order to obtain a canonical G—invariant open set in X on which there exists (at
least locally) a f~-GF holomorphic quotient we shall introduce the following notion.

Definition 2.6.2 We shall say that a point x in X is a nice point when the couple
(x,z) is a good couple.

Note that nice points in X are points corresponding via the diagonal embedding
0: X — X x X to the intersection of the set of good couples with the diagonal.
So the subset of nice points is a G—invariant open set in X (may be empty !).
We have the following characterization of nice points in X.

Lemma 2.6.3 A point x € X is a nice point if and only there exists a G—invariant
open set U containing x such that x is a good point in U.

PrROOF. For any z € X the subset Q(z) is a G—invariant open set, and z is a
nice point in X if and only if = is in Q(z) by definition. Let us show that in this
case z is a good point in Q(z). Then take any compact set K in (x). For any
y € K the couple (z,y) is a good couple, so there exist V,(z),V (y), respectively
open neighbourhoods of z and y in €2(z) and a compact set L, in G such that for
any ' € V,(z),y € V(y) such that ' = g.2’ for some g € G, there exists v € L,
with «v.2’ = y/. Extract a finite sub-cover of the open cover of the compact K by
the V(y),y € K corresponding to the points yi,...,yy. Let W(z) :== N¥,V,,(z)
and L :=UY, L,.. Then for any 2/ € W(z) and any g € G such that g.z' = z is in
K, as there exists ¢ € [1, N] such that z € V(y;) and as 2’ is in V,,(x) we can find
v € L, C L with v.2' = 2. So z is a good point in (z).

Conversely, if = is a good point in the G—invariant open set U in X, let V be a
relatively compact open neighbourhood of z in U. Let K := V. As z is a good
point in U, for the compact set K in U we may find V(x) an open neighbourhood
of x in U and a compact set L in G such that for any 2’ € V(z) and any g € G such
that g.2" lies in K we can find v € L such that 7.2’ = g.2’. As we may assume that
V(z) is contained in V' we see that the couple (z, ) is a good couple thanks to the
choices V(x),V(z) and L. |

Corollary 2.6.4 A point x € X is a nice point if and only it is contained in a good
open set in X.

PROOF. As the set of nice points in X is open, we can find a compact neigh-
bourhood V' of x such that any couple (2/,y) € V x V is a good couple. Now
define

Q(V):={y e X / V' €V the couple (z',y) is good}.
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Then Q(V) is a G—invariant open set in X and the interior V4 of V' is an open set
of good points in (V). Then the G—invariant open set G.V; is a good open set
containing x. The converse is obvious thanks to the previous lemma. [

The next proposition summarizes the relations between the several definitions given
above.

Proposition 2.6.5 Let ) be a G—invariant open set in X. Then the following
properties holds:

i) A point x € Q is a good point in ) if and only if Q0 C Q(x).

ii) Q is a good open set if and only if 2 x Q is contained in the open set of good
couples in X x X. This implies that each point of ) is a nice point but also
(see i)) that Q C Nyeq Q).

iii) A G—invariant open set Q in X is a good open set if and only if the restriction
map (f xid)jq : G x Q — Q x Q is semi-proper.

i) The set of nice points in X, denoted Quice, is the union of all good open sets

in X. But, in general, it is not true that Q.. s itself a good open set (see the
lemma 2.5.3).

v) On the G—invariant open set of normal points of Qpice we have locally a f-GF
holomorphic quotient for the G—action.

Proor. As ) is locally compact, it is clear that for any good point x in {2 and
any point y € Q the couple (x,y) is a good couple. The converse is easy (see the
begining of the proof of the lemma 2.6.3). If ) is a good open set it is again easy to
see that any couple (z,y) € Q2 x 2 is a good couple. The converse is also analoguous
to the begining of the proof of the lemma 2.6.3.

The assertion iii) is already in the lemma 2.5.2. The inclusion of good open set in
Qnice 18 obtained in lemma 2.6.3 and the corollary 2.6.4 implies the equality. The
assertion v) is consequence of iv) and of the property v) in the proposition 2.5.4. B

2.7 The conditions [H.1], [H.1str], [H.2] and [H.3].

Now we shall consider the following conditions on the action f.

e There exists a G—invariant dense open set {2; in X which admits a
quasi-proper GF holomorphic quotient. [H.1]

Recall that this means that there exists a G—invariant geometrically f-flat holomor-
phic map ¢ : 1 — )1 onto a reduced complex space ()1 such that each fiber of ¢
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over a point in @); is set-theoretically an orbit in ;. So the hypothesis [H.1] im-
plies that all G—orbits in €2y are closed analytic subsets in €2; of the same dimension.

The following stronger form will be useful.

e There exists a G—invariant good open set (); which is Zariski open
and dense in X. [H.1str]

This condition implies [H.1] thanks to the proposition 2.5.4. But it is not true in
general that [H.1] implies the existence of a dense good open set in X.

REMARKS.

1. The existence of a dense good open set in X is a natural hypothesis on the
G—action to obtain [H.1], thanks to the proposition 2.5.4. We add here the
condition “Zariski open” for this dense good open set because this assumption
is crucial in our application in order to use the “sub-analytic lemma”.

2. A good open set is always contained in €2,,;.. which is a G—invariant open set
canonically defined by the action. So a necessary condition for the existence
of a dense good open set in X is the density of €2,;.. in X. Also to have a
dense Zariski good open set in X it is necessary that the complement of €2,,;..
is contained in a closed nowhere dense analytic subset in X.

3. The hypotheses [H.1] concerns only the structure of the orbits in a G—invariant
dense open set €). The existence of a dense good open set in X involves the
defining map f : G x X — X for the action of G on X. So these hypotheses
are at different levels.

Now assume [H.1] and define R := {(z,y) € Q1 x Q; / y € G.z}. It is a closed
analytic set in ; x € : on the G—invariant open set {2; on which there exists a
f-GF holomorphic quotient ¢; : {21 — @1, so the equality G.x = G.y is equivalent to
01(2) = 1(9).

Our second assumption will be :

e The closure R of R in X x X is an analytic subset and there exists
a G—invariant open dense subset )y C (2; such that for each x € ()

Gx=Rn({x}xX). [H.2]

REMARK. For z € )y the orbit G.x is a closed analytic subset in €2y, so, as we
have R N ({z} x ) = ({z} x G.z), G.z is open in G.x. Then G.z is irreducible
of dimension n and when € is Zariski open in X, G.z \ G.z is a closed analytic
subset and has dimension at most n — 1. As this analytic set is G—invariant, it
is contained in Yy C X, the closed analytic subset in X where the stabilizer has a
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bigger dimension than the generic one.

Now the first projection p; : R N (Qo x X) — Qq is quasi-proper because we have a
holomorphic section of this map (with irreducible fibers, thanks to [H.2]) which is
given by x — (x, z).

Assuming that )y contains only normal points'® in X, the equidimensionality and
quasi-properness on {1y of the projection of R imply that there exists a holomorphic
map

@0 : Qo —>CT]:(X)

where the supports are given by x — G.z and where the multiplicity is generically
equal to 1. Our last hypothesis is :

e The first projection p; : R — X is strongly quasi-proper . [H.3]

Recall that this condition implies that there exists a modification 7 : X — X with
center in the complement of €y such that the map ¢y extends holomorphically to
X. Note that, thanks to [B.13] theorem 2.4.4 (see also [B.15] proposition 3.2.2) a
sufficient condition for [H.3] is that the closure in X x C/(X) of the graph of @y is
proper over X.

The following proposition shows that these conditions [H.1], [H.2] and [H.3] are neces-
sary for the existence of a SQP-meromorphic quotient for a completely holomorphic
action of G on X.

Proposition 2.7.1 Assuming that f : G x X — X is a completely holomorphic
action of the connected complex Lie group G on the irreducible complex space X
which has a SQP-meromorphic quotient, then the conditions [H.1|, [H.2] and [H.3]
are satisfied.

PROOF. Let 7: X — X and ¢ : X — Q be respectively the G—equivariant modi-
fication of X and the f~-GF holomorphic map given by the existence of a SQP mero-
morphic quotient for the G—action on X. The conditions to be a SQP-meromorphic
quotient gives an open set {2; which is dense, G—stable and which admits a {-GF
holomorphic quotient for the action of G on €. So [H.1] is clear.

Let S be the graph of the equivalence relation given by ¢ on X. Then the proper
direct image (7 x 7)(5) is a closed analytic subset in X x X.

Let R := {(z,y) € 91 xQ / G.x = G.y}. Then we have R C (7 x7)(S)N(Qq x Q).
To see that R is dense in (7 x 7)(5), remark that on the dense open set {2y x ©; we
have the equality of R and (7 x 7)(S). So the closure R of R in X x X is analytic.
Moreover, for z € Qg the fiber of ¢ at g(z) is equal to G.z, the closure in X of G.z.
So the fiber of R at z is 7(G.z) which is equal to the closure in X of G.x because
7 is proper and G—equivariant. So the condition [H.2] is satisfied.

The composition of ¢ with the holomorphic classifying map ¢ : Q — CI(X) for the

15This not restrictive, as we may always assume that X \ Qg contains the non normal points in
X. We shall always assume that €y is normal in the sequel, without any more comment.
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fibers of ¢ gives a holomorphic map ¢ : X — C/f(f( ). Composed with the direct
image map, which is holomorphic (see [B.M] ch.IV ; the “quasi-proper” part of this
result is easy, as 7 is proper) 7, : C/(X) — C/(X), we obtain a holomorphic map

d: X = Cl(X)

and the restriction of this map to 771(Qg) ~ Qq satisfies |®(2)| = G.7(x). So the
map @ is a holomorphic extension to X of the map ¢y : Qy — C/(X) classifying
the fibers over  of R via the first projection. This implies that the closure I' in
X x C(X) of the graph T of ¢ is contained in (7 x 7.)(A), where A is the graph of
). But A is proper on X via 7o p; and the set (7 x 7,)(A) is closed in X x CI(X):
if the sequence (7(z,),7.(C,)), converges to (z,C) € X x C{(X), up to pass to a
subsequence, we may assume that the sequence (1, ), converges to some Z in 77!(z),
and then the sequence (C,), converges to ¢ () so that (z,C) = (7 X 7.)(Z,¥(Z));
this shows our claim. Then I is a closed subset in the X —proper set (7 x 7'*)( ),
so I is proper over X and the condition [H.3] is fulfilled. [ |

2.8 Existence theorem for a SQP-meromorphic quotient

Now we shall prove that conditions [H.1],[H.2] and [H.3] on a completely holo-
morphic action of a connected complex Lie group G on an irreducible complex space
X are sufficient for the existence of a SQP meromorphic quotient.

Theorem 2.8.1 Under the hypothesis [H.1],[H.2] and [H.3] there exists a proper
G—equivariant modification 7 : X — X with center contained in X \ Q'® and a
geometrically f-flat holomorphic map

q:X—>Q

on a reduced complex space, which give a strongly quasi-proper meromorphic quotient
for the given G—action.

Let I' C Q x CJ(X) be the graph of the holomorphic map @ : Qo — C}(X)
classifying the fibers of the projection of R on €. Of course the complex space X
is the topological space I' with a structure of a reduced complex space such that
the projection on X 1is a proper modification. Then the space () is the image of
X in CI(X). So we need some semi-proper direct image theorem for such a map
to prove this result. Such a result is the content of the theorem 2.3.2 of [B.15]

PROOF. The first remark is that the hypothesis [H.3] says that the projection
p: T — X is a proper topological modification of X. But to apply directly the
part ii) of the theorem 2.3.6 of [B.13] to the projection p; : R — X we need
quasi-properness of this map. This is given by the proposition 3.2.2 of [B.15] as we

16The dense open subset Qg C € is defined in the condition [H.2].
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have the condition [H.3].
Then we obtain a proper (holomorphic) modification 7 : X — X, with center
> C X\, and a f—analytic family of cycles in X parametrized by X extending
the family (G.2).eq,, corresponding to a “holomorphic” map extending @ :

¢: X = Cl(X).
Now let us prove that this map ¢ is quasi-proper'”. This will allow us to apply
the theorem 2.3.2 of loc. cit. and to define the reduced complex space (@) as the
image gé(f() Then it will be easy to check that the map ¢ : X — Q is a strongly
quasi-proper meromorphic quotient for the G—action we consider.
If Cp isin C/(X) and is not the empty cycle, choose a relatively compact open
set W in X such that any irreducible component of |Cy| meets W. Then let
W be the open set in C/(X) defined by the condition on the cycle C that any
irreducible component of C' meets W. Then we shall prove that there exists a
compact set K in X such that any irreducible component of the fiber of  at a
point in WNG(X) meets K. Let K :=7"YW). If (y,C) isin X'® with C € W,
each irreducible component of C' meets W. But the fiber of ¢ at C' is equal to
|C], so each irreducible component of ¢~ !(C) meets K and the quasi-properness is
proved. [

We conclude by a simple sufficient condition in order to obtain the condition [H.1]
and [H.2] (assuming already [H.2]) which can be useful because the G—invariant
open set .. is canonically defined by the action and so its density in X is a
condition which can be tested directly.

Proposition 2.8.2 Consider a completely holomorphic action of the complex con-
nected Lie group G on the complex space X. Assume that it has a G—invariant
dense open set €y which admits locally a f-GF holomorphic quotient and that it
satisfies also the hypothesis [H.2]. Then it satisfies [H.1] (and [H.2]).

PROOF. The hypothesis [H.2] gives an open G-invariant dense subset €y C 2; on
which we have 3
Rﬂ(QO X Qo) :Rﬁ(Qo X Qo)

showing that Ry := R N (2o X ) is a closed analytic subset in €y x €. Note also
that we can assume )y normal, as the set of normal points in X is open dense and
G—invariant.

Now remark that the projection p; : Ry — ) is quasi-proper and equidimensional.
The quasi-properness is consequence of the existence of the holomorphic section
x +— (x,z) of p; on Q. So the map p; is a f~GF holomorphic map, and is the
projection of the graph of the f-analytic family of cycles in €2y given by the fibers of

ITThis makes sense as the fibers are closed analytic subsets of X.
18Recall that, as a topological space, X =T.



28

p1 corresponding to a holomorphic map
@Yo - QO — CT{(Q())

We shall prove now that ¢, is semi-proper and then, using the semi-proper direct
image theorem 2.3.6 in [B.15], we shall conclude that ¢((€2) is a reduced complex
space and the map g induced a {-GF holomorphic quotient on € proving [H.1].
So consider a non empty cycle C' € C/(£) and choose a point x;,i € [1, k] in each
irreducible component of C', where k is a positive integer. Let, for each i, V; be
an open relatively compact neighbourhood of z; in €2y and let V be the open set
in C/ () of cycles C' such that each irreducible of C’ meets Uienk) Vi- Then the
compact set Uie;1 Vi in € satisfies:

©0(Q0) NV = @o(Uiep g Vi) NV

which gives the semi-properness of pg: if ¢o(y) lies in V then let y; be in po(y) NV;.
Then we have y; € G.y and so ¢o(y1) and ¢o(y) have the same support. But a cycle
in ¢o(€2) is determined by its support. Then we have ¢o(y1) = ©o(y). [

The point v) of the in proposition 2.6.5 shows that the G—invariant open set of
normal points in ;. admits locally a f~GF holomorphic quotient, we obtain the
following corollary of the theorem 2.8.1.

Corollary 2.8.3 Let G be a complex connected Lie group actin completely holo-
morphically on an irreducible complex space X. Assume that the open set Qpice is
dense in X and that the hypotheses [H.2] and [H.3] holds, then there exists a SQP
meromorphic quotient. |

3 Application.

3.1 The sub-analytic lemma.

We shall use the following lemma (see [G-M-O]) in our application.

Lemma 3.1.1 Let M be a reduced complex space and Y C M a closed analytic
subset with no interior point in M. Let R be a closed (complex) analytic subset in
M\Y such that R is a sub-analytic set in M. Then R is a (complez) analytic subset
wn M.

This important lemma is a consequence of Bishop’s theorem (see [Bi.64]) and of a
classical result on sub-analytic subsets (see [G-M-O] for more references).

3.2 The G = K.B case: proof of the theorems 1.0.1 and 1.0.2.

Now we shall assume that G is a connected complex Lie group such that we have
G = K.B where B is a closed complex connected subgroup of G and K a compact
real subgroup of G.
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Lemma 3.2.1 In the situation of the theorem 1.0.1, a couple (x,y) € X X X is a
good couple for the G—action if for any k € K the couple (z,k.y) is a good couple
for the B—action. Moreover, if K normalizes B for any good couple (x,y) for
the B—action and any k € K the couple (k.x,k.y) is again a good couple for the
B—action. This implies that the open set Qyice/p is stable by K, when K normalizes
B.

PrOOF. For each k € K there exist Vi(z),V (k.y) respectively open neighbour-
hoods of x and k.y and L; a compact subset in B such that for any =’ € Vi (), any
y € V(k.y) with ¢ = b.2’ for some b € B there exists § € Ly with ¢/ = f.2’. Now
choose kq,...,ky in K such that the compact set K.y is contained in the open set
U :=UY, V(k;.y). Then the subset W(y) := {y' € X / K.y’ C U} is an open neigh-
bourhood of y in X', Define also W(x) := NY, Vi, (x) and L := UY, L;,. Then
W (zx) is an open neighbourhood of z in X, L is a compact set in B and A := K.L
is a compact set in G.

Take now 2’ € W(x) and 3y € W (y) such that ¢ = g.2’ for some g € G. Write
g = kb with k € K and b € B. Then k™'.y is in V(k;.y) for some i € [1, N]. As
2’ is in W(z) C Vi, (x), the equality k1.9 = b.2" allows to find 8 € L such that
k=t = B.2" and then v := k.8 is in K.L and ' = ~.2'.

So the condition that for any k € K the couple (z,k.y) is a good couple for the
B—action implies that the couple (z,y) is a good couple for the G—action.

To prove the converse, it is enough to remark that any compact set A in G is
contained in the compact set K.L where L is the compact set in B defined as
L:=(K.A)NB.

If we assume now that K normalizes B then for any £ € K the neighbourhoods
k.V(x) and k.V(y) and the compact k.L.k~' of B give the fact that (k.z,k.y) is
good for the B—action:

if k.y' and k.2’' are in k.V(z) and k.V (y) respectively and satisfy k.y' = b.k.2’ for
some b € B, we have ¢ = b;.2’ with b; := k~1.b.k and so there exists 8; € L such
that 3/ = 3;.2" and this implies k.y/ = 8.k.2’ with 8 := k.3;.k~' € k.L.k™*. [

Corollary 3.2.2 In the situation of the theorem 1.0.1, assume that we have a
G—invariant open set ) which is a good open set for the B—action, then € is a
good open set for the G—action.

Proor. Consider a point x € 2 and a compact set M in 2. Then there exists a
neighbourhood V' of z in €2 and a compact set L in B such that b.y € M for some
y € V and some b € B implies that we can find § € L with b.y = S.y. Now assume
that M is K —invariant (here we use the G—invariance of 2) and that g.y is in M
for some g € G and some y € V. Write g = k.b for some k € K and b € B. Then
b.y is again in M so we can find § € L with f.y = b.y and then g.y = k.f5.y with

19We let this exercice on compactness to the reader.
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k.p € K.L which is a compact set in G. So x is a good point for the G—action on
Q. [ |

The corollary of the next lemma will give the first part of [H.2] for the G—action
assuming that we have a G—invariant dense, Zariski open, good open set €2 for the
B—action with the condition [H.2] for the B—action.

Lemma 3.2.3 Let Q be an open G—invariant set. Define the map

X: KxXxX = XxX by (kz,y)— (kxr,y) andlet p: KxXxX — XxX
be the natural projection. Then we have: p(x"*(Rg)) = Rg where we define

R :={(z,y) €2 xQ / Bx=By} and Rg:={(z,y) €Q2xQ /[ Gx=Gy},

and where the closures are taken in X X X.

Proor. Remark first that
p(x"(Rp)) = {(x,y) €QxQ /3 e K Bkazx=By}

So (x,y) € p(x '(Rp)) implies y € B.k.x C G.x and also k.x € B.y; we conclude
that z is in K.B.y = G.y. This gives the inclusion p(x }(Rp)) C Rg. The opposite
inclusion is easy because G.x = G.y implies that x € K.B.y so there exists k € K
such that k.x € B.y.This gives the equality

p(x"'(Rp)) = Re-

Now the maps x and p are continuous and proper, so we obtain the inclusion

Re Cp(x ' (Rp)).

Now take (z,y) € p(x "} (Rp)); there exists a sequence (k,,z,,y,) in x"'(Rp) such
that (k,.z,,y,) is a sequence in Rp converging to (z,y), as x is proper and surjec-
tive. So we have B.k,.x, = B.y, and then G.k,.x, = G.y,, so (k,.z,,y,) are in Rg.
We conclude that (z,y) is in Rg. [

Corollary 3.2.4 In the situation of the previous lemma, assume that X \ Q is a
(complex) analytic subset with no interior point in X. Assume also that Rg is a
closed analytic subset in Q0 x Q. Then if the subset Rp is (complex) analytic in
X x X, the subset R¢ is also a (complex) analytic subset of X x X.
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PRrOOF. Note first that the maps y and p are real analytic, so assuming that Rp is
analytic implies that p(x '(Rp)) is sub-analytic. Then, as we know that R is an
irreducible closed complex analytic subset, the conclusion follows from the lemma
3.1.1, as our assumption that 2 is a Zariski (dense) open set in X implies that 2 x Q
is Zariski open (and dense) in X x X. |

A first step to prove the quasi-properness of R is our next result.

Lemma 3.2.5 Let assume that the B—action on X satisfies [H.1] and [H.2]. Let
Qo C Q be an open set on which the fiber at any x € Qy of Rp is equal to B.x (with
some multiplicity). Then the fiber at any v € Qg of Rq is equal to G.x (with some
multiplicity).

PROOF. As we know that the map = — B.z, with generic multiplicity 1, is a
f-analytic family of cycles of X parametrized by €, for each sequence (z,),en of
points in )y converging to a point x € )y we have (with suitable multiplicity)
B.xz = lim,_,o B.z, in the topology of Cf ( ). We shall show that this implies, also
with suitable multiplicity, the equality G.z = lim,_,, G.z, in the topology of CI(X).
As we have G = K.B with K compact, for any y € X we have G.y = K.B.y. So the
inclusion of lim,_,., G.z, in the fiber at z of R is clear. The point is to prove the
opposite inclusion. Let y be a point in the fiber at z € Qg of Re. It is a limit of a
sequence ¥, € G.x, where x, € {0y converges to x. Write y, = k,.b,.x, with k, € K
and b, € B. Up to pass to a subsequence, we may assume that the sequence (k)
converges to a point k € K. So we have k~1.y which is the limit of the sequence
b,.z,. We obtain that k~'.y is in the limit of B.z, which has support equal to B.z.
Then y is in K.B.x = G.x, concluding the proof. [

ProOOF OF THE THEOREM 1.0.1. The hypothesis gives a G—invariant dense,
Zariski open €2; which is a good open set for the B—action. The corollary 3.2.2
shows that it is also a good open set for the G—action.

The analyticity of R in X x X is proved at corollary 3.2.4 as the complement of {4
is Zariski closed. The lemma 3.2.5 gives a dense open set )y where the fiber of the
projection p; of Re at each point & € Qg is equal to G.x as a set. This implies the
quasi-properness of p; over {2y, because x is in GG.x and G is connected; assuming
(which is not restrictive) that €2 is normal, we obtain a holomorphic map

d:Qy — CL(X)

where the support of ®(z) is equal to G.z for each z € €y and with generic multi-
plicity equal to 1. This complete the proof of [H.2| for the G—action.

Thanks to proposition 3.2.2 of [B.15], to prove [H.3] it is enough to show that the
closure of the graph I'q of ® in X x C/(X) is proper on X.

The projection pg : Ry — X is strongly quasi-proper so, for any compact V in X,
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the subset 7" in C'¢(X) of limits of the generic fibers of the projection pg : Rg — X
for z € V is a compact set of C°°(X) thanks to [B.13] theorem 2.3.6 i).

Now choose a relatively compact open set V' in X and let V' := VN Q. Then T” the
subset of T corresponding to the cycles ®(x),x € V' is a dense open set in T'. Note
that for each z € V' we have |®(z)| = G.z = Upex k.B.x. This means that for each
x € V' the n—cycle ®(z) is union of d— cycles in the subset S := K.qp(75(V))
where ¢p is the minimal SQP meromorphic quotient of X for the B—action, and
where K acts on C(f; (X) by direct image of the cycles (note that Qp is a closed
analytic subset in CC’; (X)) by definition of the minimal SQP meromorphic quotient).
Then S is a compact subset of CC’; (X) and we may apply the proposition 2.2.3. It
gives that T is a compact subset of C/(X) and this proves [H.3]. |

PROOF OF THE THEOREM 1.0.2. We shall reduce the proof of this result to the
theorem 1.0.1 using the following proposition.

Proposition 3.2.6 In the situation of the theorem 1.0.2 there exists a G—invariant
Zariski open set §2y which is dense in X, disjoint from the center Xp of the mod-
ification Tp : )~(B — X such that the map qp : )E'B — @ induces on the open set
751 (%) a f-GF holomorphic quotient map on a open dense set Q'y in Qp.

PROOF. As the argument is not so simple we shall divide this proof in several
steps.

STEP 1. The theorem 2.8.1 gives the existence of a SQP meromorphic quotient
for the B—action and thanks to the proposition 2.4.2 we may use the minimal SQP
meromorphic quotient (see definition 2.4.3). Now, using the corollary 2.4.4 we can
assume that K acts continuously and holomorphically on Xz and Qp and that the
holomorphic maps 75 and ¢p are K —equivariant.

STEP 2. As the center X of 75 is K and B—invariant with no interior point in
X, we can replace the Zariski open set €; by the Zariski open set 1 \ ¥ which is
still dense and B—invariant and good for the B—action. To avoid too many change
of notations , we shall simply assume now that (2, is disjoint to X5 and also identify
2, with the open set 751(91).

Now the set €2y := K.€); is again Zariski open dense in X and admits locally a {-GF
holomorphic quotient : it is an union (finite if we want, using the compactness of
K) of good open sets k. for the B—action, and it is stiil disjoint from ¥ because
Y p is K —invariant. So the subset

Rp :={(z,y) € Q x Qs / Bx = By}

is a locally closed analytic subset in 25 x 5. But this will not be enough to apply
the sub-analytic lemma as in the proof of the theorem 1.
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STEP 3. We shall construct in Step 4 a Zariski open subset €2, C )y which is
still dense, K and B—invariant (so G—invariant), such that for each = € ) the
cycle pp(gp(z)) in X is irreducible. Let us show that this will implies that the
subset Rp N (€2 x ) will be closed in (25 x Q5) (and is also analytic) where
YB : Xp — C! (X ) is the holomorphic map obtained by the composition of gp with
the classifying map of the fibers of the holomorphic f-GF map ¢g : X5 — Qp.

We know that for 2 € Qy we have B.x C |pg(gp(x))|. Assume that we have
(les(gp(2))|) NQ,y = B.x UC; then C has pure dimension n and is B—invariant. So
it is a finite union of B—orbits in €2,. But as we know that ¢p(gp(z)) is irreducible,
this implies that C'= () and so B.x = B.y for (z,y) € Q) x €} is then equivalent to
vB(ga(z)) = ¢p(gp(y)) which is a closed (analytic) condition.

STEP 4. We know, by definition of a SQP meromorphic quotient, that there ex-
ists a B—invariant dense open set Qo in X \ ¥p such that ¢p(gs(z)) = B.x for
each x € {)y. This shows that the general cycle in the family classified by the map
qBO ¥R : c Xp—Cf (X p) is irreducible. So there exists a closed analytic subset Z in
X B, which is K and B—invariant, such this irreducibility holds on X B \ Z. Then
define Q) := Q, N (X5 \ 2).

The last step is to show that the family of n—cycles in 2, defined by x — B.x is
f-analytic in order to get a f-GF quotient for the B—action on €2,. This is given by
the next lemma.

Lemma 3.2.7 Let S and X be irreducible complex spaces and let ¢ : S — C{(X)
be an holomorphic map, so the classifying map of a f-analytic family of n—-cycles
i X. Assume that all cycles have irreducible supports and are generically reduced.
Let I' € S x X the graph of this family. Let X' be a Zariski open subset in X and
assume that there ezists a holomorphic map o : S — X' such that o(x) € |¢(x)|.
Then the family s — o(x) N X' is a f-analytic family of cycles in X'.

PROOF. The only point to prove is that Z’ := ZN (S x X’) is quasi-proper on S as
the restriction to an open set of a analytic family of cycles is always an analytic fam-
ily of cycles of this open set. But the existence of a continuous map as ¢ is enough
for that purpose under our hypothesis : for any compact set K in S the compact set
(ids xo)(K) in Z' meets any irreducible component of any cycle associated to some
point in K. Remark that the fact that X’ is Zariski open in X is used to insure
that for any cycle ¢(s) the cycle ¢(s) N X’ has at most one irreducible component.
Then the existence of ¢ implies that it has exactly one irreducible component. W

END OF THE PROOF OF THE THEOREM 1.0.2. The proposition 3.2.6 gives the
G—invariant dense, Zariski open subset 2, satisfying [H.1str| for the B—action and
we can apply the theorem 1.0.1. [ |
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3.3 The G = K.A.K case: proof of the theorem 1.0.3.

The proof of the theorem 1.0.3 will use the next lemmata (analoguous to 3.2.2 and
3.2.3).

Lemma 3.3.1 In the G = K.A.K case, a G—invariant good open set for A is a
good open set for G.

PrROOF. Let M be a K—invariant compact set in €2 and V' be a K —invariant com-
pact neighbourhood in Q2 of a point x in 2. Then, as V is uniformly good in (2
for the action of A, there exists a compact set L in A such that for y € V and
a € A satisfying a.y € M there exists a € L with a.y = a.y. Assume now that for
g € Gand y € V we have g.y € M. Write g = ky.a.ky. Then we have a.ky.y € M
and also ko.y € V by the K—invariance of M and V. So there exists a € L with
a.ks.y = a.ky.y and so g.y = ky.a.ke.y where kj.a.ks is in the compact set K.L.K
of G. This shows that any point x in €2 is a good point for the G—action. [

Lemma 3.3.2 In the G = K.A.K case, consider a G—invariant good open set
Q for the A—action. Let x : K x K x X x X — X x X be the map given by
X(k1, ko, x,y) = (k1w ko.y). Define Ra := {(z,y) € @ xQ /] Ax = Ay} and
Re:={(z,y) € A xQ /) Gx = G.y}. Then we have

p(x '(R4)) =Re and p(x '(Ra)) =R

where p: K X K x X x X — X x X 1s the projection.

PROOF. Remark first that for (x,y) € Qx, the condition G.y = G.x is equivalent
to the existence of (ki,ks) € K x K such that A.k;.x = A.ks.y. So the inclusion
Ra = p(x ' (Ra)) is clear. As p is proper, this implies that Rg C p(x '(R4)).
Conversely, consider a sequence (x,,y,) € R4 converging to (z,y) € X x X. As
p(xx,y) = {(k1.x, ka.y) / (k1, ko) € K x K}, we want to prove that for any fixed
(k1,ky) € K x K we have (k;.z,ko.y) € Rg. There exists a sequence ((z,,4,)),
in R4 converging to (z,y). Then (k;* ky' k.2, ko) is in x '((z,,9,)). So
(k1.7y, ko.y,) is in R¢ for each v and this sequence converges to (ki.x, ks.y) proving
the inclusion p(x*(Ra)) C Re. [

Lemma 3.3.3 In the K.A.Kﬂse with the hypotheses of the theorem 1.0.3, we have,
for any x € Qq, the equality G.x = U, kyyerxi ki1-Akp.x in X.

Proor. The inclusion of Up, p)exxx k1-Ako.x in G.x is clear. To prove the op-
posite inclusion it is enough to prove that the right hand-side is a closed subset in
X. But it is the image by 74 of the subset U, ky)exxx ¢4 (qa(Aka.z) in X4, where
74, X 4,4, Q4 define the minimal SQP quotient of X for the A—action which exists
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thanks to the theorem 2.8.1 and the proposition 2.4.2. But ga(A.ke.x) = qa(ko.x)
by A—invariance and continuity of g4. Now the set g4(K.x) is compact in Q)4 and
50 5 (qa(K.z)) is closed in X4 and equal to Ug, ayyexxi ¢q (qa(Ake.z) because
for each y € Qy we have ¢, (qa(y)) = A.y. As 74 is proper, it is a closed map and
our right hand-side is a closed set in X. [ |

PrROOF OF THE THEOREM 1.0.3. The lemma 3.3.1 implies that the Zariski dense
good open set §2; for the A—action is good for the G—action, so [H.1str] is true for
(. The lemma 3.3.2 and the sub-analytic lemma 3.1.1 shows that R is a closed
analytic subset in X x X and its projection on () is a -GF flat map, as we may
assume 2y normal. The last point is to prove that the closure in X x C/(X) of the
graph of the holomorphic map @, : Qy — C/(X) given generically by = — G.x is
proper over X. We shall apply the proposition 2.2.3 using the following two facts :

1. For a compact set V in X the set K.qa(7;(V)) is compact in CJ(X) and
parametrizes a f-continuous family of d—cycles in X.

2. If V is the compact closure of an open set V in X, then for each point z in
V' =V NQ the cycle go(z) is an union of some d—cycles in the above family,

where we use the minimal SQP meromorphic quotient of X for the A—action. The
first point uses the continuous action of K on Cg (X) by the direct image of cycles.
The second point is consequence of the lemma 3.3.3. Then the proposition 2.2.3
gives the condition [H.3] for the G—action as in the proof of the theorem 1.0.1 and
we conclude the proof using the theorem 2.8.1. [ |

3.4 Relation between the two quotients.

In this section we consider a connected complex Lie group GG and we assume that
we have G = K.B where K is a compact real subgroup and B a complex connected
closed subgroup of G. We shall also indicate some analoguous results in the case
G = K.A.K. We also assume that G acts completely holomorphically on a irre-
ducible complex space X.

Proposition 3.4.1 Assume that there exists a SQP meromorphic quotient for this
action but also for the corresponding action of B. Then there exists a holomorphic
map

h:Qp — Qg

where Qg and Qg are the minimal SQP quotients of X respectively for the B—action
and the G—action, such that we have the equality qgoh = qg on the strict transform
of X by the modification 5.

Moreover, if K normalizes B, there are natural K —actions on Xg and @B, the map
qB s K—equivariant and the holomorphic map h s K—invariant.
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Proor. Consider the two diagrams corresponding to the two SQP meromorphic
quotients of X by the actions of B and GG

Xp > Qp Xo = Qq
TB\j TGl
X X

and let ¢ : Y — Xp be the strict transform of the modification 7¢ by the modi-
fication 75. Then the first assertion is a consequence of the theorem 2.4.5 as the
meromorphic map qg : X --+ Q¢ is B—invariant.

The second assertion is consequence of the corollary 2.4.4. [

In the G = K.A.K case, assuming that the SQP meromorphic quotient exists for
the actions of A and G, using the A—invariance of the meromorphic map X --+ Q¢
and the theorem 2.4.5, we obtain that there exists also a holomorphic map between
the corresponding minimal quotients h : Q4 — Q)¢ which satisfies the equality

ga © h = q¢ on the strict transform of X by the modification 74.

Of course a natural question about the holomorphic map h : Qp — Q¢ defined in
the previous proposition is its properness. Our next result gives a sufficient condition
to obtain a partial result.

Proposition 3.4.2 Assume that the B—action and the G—action on X admit a
SQP meromorphic quotient. Assume that there exists a G—invariant open set €)
m X, disjoint from the centers of the modifications T and T associated to the
minimal SQP quotients of X, on which we have a f-GF holomorphic quotient for
the G—action, and such that for each x € Q we have q5'(qa(r)) = Gz in Xg.
Then the map hq : qp(Q) = qc(2), induced by the restriction of the holomorphic

map h : Qp — Qq, is proper.

Proor. We shall prove that if M is a compact set in €2 then we have the inclusion
h=Y(qa(M))Ngp(Q) C qg(K.M). As K.M is a compact set in €, this will prove the
properness of the map hq because the map ¢¢ is open, so each compact set in gg(€2)
can be cover by finitely many open sets gg(V;) where V; is a relatively compact open
subset in Q; then any compact set in gg(€2) is contained in gg(M) where M is the
compact set U;e;V; of Q.

Consider a point y € h™ ' (qg(M)) N gp(2). So there exists a point € M such that
h(y) = ga(z). But from our hypothesis we know that ¢5'(¢a(z)) = G-z in Xg. Also
there exists also a point zy € 2 such that y = gg(zo). This implies the equality
h(qs(70)) = qal(xo) = qa(z) because ggoh = gg on Q. So g is in G.xNQ = G.z. We
conclude that there exists k € K such that g is in B.k.z and then ¢g(xy) = gp(k.z)
and k.x is in K. M. |

Remark that the existence of a SQP meromorphic quotient for the G—action implies
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the existence of a G—invariant open dense subset (), satisfying all the hypotheses
of the previous proposition excepted the fact that )y is disjoint from the center
of 7. So under the hypothesis that the closed set K.Xg, where Xp is the center
of the modification 75, has no interior point in X, the existence of the two SQP
meromorphic quotients is enough to conclude that there exists a G—invariant open
dense set €2 in X for which the map hg is proper.

So the following corollary is immediate.

Corollary 3.4.3 Under the hypotheses of the theorem 1.0.1 there exists a dense
open set ) in X, disjoint from the center of the modifications g and 7¢, such that
the map hq : qg(2) — qa(2) is proper. [ |

With analoguous argument we obtain also such a result in the K.A.K case.

Corollary 3.4.4 Under the hypotheses of the theorem 1.0.3 there exists a dense
open set ) in X, disjoint from the center of the modifications T4 and ¢, such that
the map hg : qa(Q2) — qc(Q2) is proper. [ |
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