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ABSTRACT
Segmenting an image is usually one of the major and most
challenging steps in the pipeline of biomedical image analy-
sis. One classical and promising approach is to consider seg-
mentation as a classification task, where the aim is to assign to
each pixel the label of the objects it belongs to. Pixels are the-
refore described by a vector of features, where each feature is
calculated on the pixel itself or, more frequently, on a sliding
window centered on the pixel. In this work, we propose to
replace the sliding window by superpixels, i.e. regions which
adapt to the image content. We call the resulting features SAF
(Superpixel Adaptive Feature). Their contribution is highligh-
ted on a biomedical database of melanocytes images. Qualita-
tive and quantitative analyses show that they are better suited
for segmentation purposes than the sliding window approach.

Index Terms— Image features, segmentation learning,
superpixels, mathematical morphology

1. INTRODUCTION

The segmentation of an image is a partition of the latter
into meaningful regions, i.e. regions which correspond to real
objects in the image scene. Segmenting an image is usually
one of the major and most challenging steps in the pipeline of
image analysis. Numerous segmentation methods have been
previously proposed. One interesting approach considers seg-
mentation as a classification task, that aims at assigning to
each pixel of the image the label of the object it belongs to.
This method comprises two steps : first, each pixel is des-
cribed by a set of features (such as color, position or values
obtained through the application of an operator), second this
vector of features is given as input to a machine learning me-
thod, which will output its corresponding label. This strategy
allows the system to learn the rules according to which a pixel
is assigned the object label from a set of annotated segmenta-
tion examples.
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Many general or application-dependent features are pro-
posed to classify pixels. They are often defined as the result of
the application of an image operator (e.g. Gabor filter or local
binary pattern) on a given computational support linked to the
pixel. This computational support is usually a given neighbo-
rhood/fixed window centered on it. However, such computa-
tional supports which are independent of the image content
can lead to biased information and hence poor classification.
As practical example, let us picture a pixel that is close to an
object contour in view of classifying it as belonging to ob-
ject 1 or object 2, separated by this contour (see Fig.1.a for an
illustration). A computational support such as sliding window
is likely to overlap the two objects, giving an inappropriate
feature. A natural strategy to overcome this problem is to use
a computational support which adapts to the image contents.
For instance, Morard et al. [1] and Gonzalez et al. [2] used
adaptive structuring elements, defining a pixel-specific region
on which to apply a given operator. They showed that indeed
using an adaptive support to compute features is a promising
strategy. However, computing an adaptive structuring element
on each image pixels is too time consuming for the applica-
tions we are interested in.

The main contribution of this paper is to use superpixels
as computational support. Note that our aim is not to classify
the superpixels, as has already been done in the literature. Ins-
tead, we propose to compute pixel-level features based on the
superpixel they belong to. As we will see, this allows to na-
turally combine different sizes or even types of superpixels
to build features. Given that our final objective is to develop
a fast automatic method for segmentation learning, we have
chosen a superpixel approach which brings a good trade-off
between quality and speed : the recently introduced water-
pixels [3, 4]. Note however that this approach is general, and
could be used with any sort of superpixels, such as superpixels
based on simple linear iterative clustering (SLIC) [5]. We call
SAF (Superpixel Adaptive Feature) the resulting features.

The paper is organized as follows : Section 2 explains how
support adaptive features work and how they are integrated in
the pixel classification pipeline. Section 3 shows the interest



Fig. 1. Illustration of the proposed method : (a) regions for feature calculation (orange : sliding window, red : superpixel) ;
(b) example image from the LÓréal database (this image has been simplified for illustration purposes, see Fig.2 for a real case) ;
(c) waterpixels (superpixels) computed on simplified image (b) ; computation of features on different computational supports,
i.e. sliding window and superpixel, and their integration in the pixel’s vector of features. “ML” : Machine Learning method.

of these new features for segmentation purposes. Section 4
concludes.

2. SUPERPIXEL ADAPTIVE FEATURES (SAF)

In the classification pipeline, each pixel p is described by
a vector of features v(p) ∈ RP which will be given as in-
put to the machine learning method. The elements that define
each feature f i are the computational support (CS), which is
a connected set of pixels p belongs to, and an image operator
(such as identity, linear filters or mathematical morphology
operators). There are two ways to apply an operator with res-
pect to a CS : either it is first applied on the whole image and
then we evaluate the pixel values in the CS (non-geodesic
way), or it is applied only on the CS (geodesic way) which
enables not to take into account what happens outside this
very CS. After applying the operator (either in a geodesic or
a non-geodesic way), pixel values are averaged over the com-
putational support to obtain a single value, vi(p). Note that
other statistics than the mean could be used.

In this work, we propose to use superpixels as a new com-
putational support for pixel classification. Superpixels are a
special case of low-level segmentation : these regions form a
connected partition of the image, they are homogeneous and
rather regular, and they adhere well to object boundaries (i.e.
object contours are included in superpixels contours). They
have raised increasing interest in the vision community as
they constitute interesting primitives for image analysis, car-
rying a higher level of information than the pixels themselves.
Most of the time, they are used as unit of classification ins-
tead of pixels (i.e. each superpixel will be assigned a label,

or, in other words, all pixels belonging to the same superpixel
will be assigned the same label). The idea being to alleviate
the computational cost of treating each pixel of the image,
especially as state-of-the-art superpixel generation methods
show low complexity (linear with the number of pixels in the
image), with fast implementations available. As far as classi-
fication is concerned, one drawback of using such approach
though is that a misclassified unit of classification (here a
group of pixels) will impact more classification performance
than just a single pixel. Here, we propose to take advantage of
both approaches by performing pixel classification, but using
superpixels as computational support to enrich the vector of
features of each pixel. We will call SAF (Superpixel Adaptive
Feature) all features whose computational support is a super-
pixel.

In this paper, we will use waterpixels, a recently introdu-
ced superpixels generation method, for its good trade-off bet-
ween computational efficiency and segmentation quality[3,
4]. Waterpixels are superpixels based on the marker-controlled
watershed transformation (gradient-based approach), a po-
werful tool from mathematical morphology for segmentation.
Two parameters σ and k enable the user to choose respecti-
vely the size and the spatial regularity of resulting superpixels.

The proposed strategy is illustrated in Fig. 1. Fig. 1.c
shows a partition into superpixels of image Fig.1.b. For each
superpixel sj , one feature (or more) is calculated and the re-
sulting value is stored in the vector of features of every pixel
belonging to sj . This enforces similarity between vectors of
pixels belonging to the same superpixel and hence improves
their chance to be classified with the same label. Actually, if
we use only one partition, vectors of pixels belonging to the



same superpixel will be identical, which is equivalent to using
the superpixel as classification unit. But here the process is
repeated on different partitions of superpixels (computed
with different parameters such as size, or even with different
generation methods) in order to enrich the pixel’s vector of
features with information captured at different scales. Even-
tually, using the pixel itself as CS is only one special case of
SAF as it can be seen as a superpixel of size one pixel.

Once they are computed, vectors of features of all pixels
coming from the database images are concatenated into a ma-
trix X ∈ RN×P (where N is the number of samples and P
is the number of features), which will be given as input to a
Random Forest classifier. Originally introduced by [6], Ran-
dom Forest is an ensemble learning method which outputs
the consensus between the individual classification results of
a large number of decisions trees. They are widely used for
their good performance for a large variety of applications, as
well as for their robustness with respect to parameters choice.

3. EXPERIMENTS

3.1. Evaluation process

We evaluate the interest of SAF features on a database of
2D grey level images (size 511x511 pixels) from the biome-
dical field and used in [7]. This database, provided by L’Oréal
laboratories, contains eight images of reconstructed skin used
in cosmetic research, acquired with multiphoton microscopy.
The main visible structures in these images correspond to me-
lanocytes, which appear as moderately bright, with elongated
shapes (see examples in Fig.2.a, Fig.2.f and Fig.2.h).

The SAF approach is benchmarked against the sliding
window approach on different operators, namely identity (to
obtain the gray levels of the image) and a set of operators
coming from mathematical morphology (erosion, dilation,
opening, closing, top-hat and morphological gradient). The
aim here is to compare the sliding window based features
with SAF. Six evaluation criteria are used. The five first ones
are usual measures for classification evaluation : precision
P , recall R, f-score F , Jaccard index J and overall pixel
Accuracy Acc (defined as the percentage of correctly labeled
pixels in the image). Note however that these measures do not
take into account the spatial structure of the result. In order to
have a first quantitative measure of the spatial coherence of
the result, we have also computed the number of connected
components of the results, denoted by nb cc. As our images
contain only a few cells, we can assume that the lower this
value, the better the result.

A leave-one-out procedure is used to estimate the results
quality, i.e. the training phase is performed on seven images
and the prediction on the other (and last) one ; this process
being repeated for each of the eight images of the database.
Eventually, obtained values are averaged for each evaluation
criteria.

The classification pipeline has been implemented in Py-
thon, with the help of in-house developed libraries Smil [8]
and Morphm [9] (image analysis tools), as well as Scikit-
learn [10]. For the Random Forest (Scikit-learn implementa-
tion), the number of trees n estimators has been set to 100.
min sample leaf (the minimal number of data to preserve
a leaf during training phase), a parameter controlling the tree
depth, has been chosen equal to 100 in order to avoid the po-
tential overfitting arising when the number of features is low
as in our case. The training set has been randomly reduced to
10 000 samples, in such a way to obtain balanced classes.

3.2. Experiments and results

Results are presented in table 1. Quantitative compari-
sons will be performed on the basis of the three following
measures : f-score F (summarizing the compromise between
precision P and recall R), Jaccard index J , and the number
of connected components. Indeed, the overall pixel accuracy
Acc is given as an indicative basis only as it tends to overes-
timate performances when classes are unbalanced.

For each operator, four sizes σ of waterpixels (with
regularity parameter k set to 4 and hexagonal shape) are
combined to fill the vector of features of each pixel ( σ ∈
{12, 15, 20, 25}), as well as for sliding windows scales (cor-
responding radius rw ∈ [6, 7, 10, 12] and usual square shape).
For morphological operators, the structuring element has
been set to a 4-neighborhood with size 5. When specified, the
“single scale” case corresponds to waterpixels of size σ = 20
and windows of radius r = 10. This case enables us to see
that SAF performances are better if we apply the morpholo-
gical operators in a geodesic way rather than a non-geodesic
way. The opposite phenomenon occurs for the sliding win-
dow approach (data not shown). This is coherent with the fact
that a superpixel is a region which has a meaning (designed to
be a piece of a unique object) whereas the window does not.
In the following experiments (multi-scales), we will hence
compare the superpixel approach with geodesic operators
to the window approach with non-geodesic operators. We
can see that both methods show similar classification perfor-
mances, with a f-score of 73% and 72%, and a Jaccard index
of 58% and 56% respectively for superpixels and sliding
windows. However, SAFs enable to obtain a better spatial
coherence between detected pixels, with an average number
of connected components nb cc equal to 63, compared to 176
for sliding windows. The same observation can be done for
the identity operator, with an even bigger difference in nb cc
(68 and 183 respectively).

This spatial coherence advantage is illustrated in Fig.2,
comparing Fig.2.d (sliding windows) and Fig.2.e (super-
pixels), as well as Fig.2.i (sliding windows) and Fig.2.j (su-
perpixels).

Figure2.g, zoom of Fig.2.f, presents on the other hand
the limitations of both approaches. Colors have the following



Fig. 2. Experimental results : (a), (f), (h) : original images from the L’Oréal database (with contrast enhanced for visualization
purposes) ; (b) waterpixels of (a) with ground truth contours superimposed in green ; (c) ground truth of (a) ; (d) : predicted
image with the sliding window approach ; (e) : predicted image with the SAF approach (superpixels) ; (g) : zoom of (f) with
predicted image (second row) for sliding window approach (second column) and SAF approach (third column). The first row
shows true positives (green), true negatives(white), false positives (red) and false negatives (blue). (i), (j) : zoom of predicted
image of (h) respectively for sliding window and SAF approaches.

Feature CS Geodesic scale P R F J Acc nb cc
Morphological superpixel True single scale 68±15 79±9 71±7 56±9 90±3 -

superpixel False single scale 62±18 81±8 68±10 52±11 88±6 -
superpixel True multi-scale 67±14 84±8 73±7 58±9 90±4 63±23
window False multi-scale 63±16 87±8 72±9 56±11 89±5 176±61

Identity superpixel - multi-scale 62±16 85±7 70±10 55±11 89±5 68±21
window - multi-scale 62±18 87±8 70±11 55±12 88±6 183±78

Table 1. Experimental results on the L’Oréal database

meaning : green for true positives, white for true negatives,
red for false positives, blue for false negatives. In the sliding
window approach, pixels on either side of the contour will
have very similar windows and hence be likely to be classi-
fied with the same label, that is why we can see both false
positives and false negatives on the upper contour (Fig.2.g,
second column). For SAFs features, limitations are of a dif-
ferent kind. Classification fails where contours are blurred as
waterpixels are a gradient-based approach to compute super-
pixels. In this case, a superpixel may overlap a fragment of
contour between two objects. We can observe that, most of
the time, this overlapping superpixel is classified (or a part of
it since we are in multi-scale approach) as background (thus
the arrival of false negatives on borders). Figure 2.g, third co-
lumn, illustrates this case, as well as when it is classified as
foreground (middle of the upper contour, lower contour).

In conclusion, we have seen that the SAF approach can
offer similar classification performances as the usual sliding
window method, while presenting a better spatial coherence
between detected pixels, which is more convenient for further

analysis of image objects.

4. CONCLUSION

In this paper, we have proposed to use superpixels, instead
of the usual sliding windows, as computational support for
features used in pixel classification. We have shown that the
resulting features perform better, mainly thanks to an impro-
ved spatial coherence, than the usual sliding windows-based
features used in computer vision.

Future work will focus on combining multiple scales and
operators in order to obtain a general segmentation learning
method performing well on different bioimaging databases.
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