
HAL Id: hal-01276071
https://hal.science/hal-01276071v1

Submitted on 18 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

User Search with Knowledge Thresholds in
Decentralized Online Social Networks

Benjamin Greschbach, Gunnar Kreitz, Sonja Buchegger

To cite this version:
Benjamin Greschbach, Gunnar Kreitz, Sonja Buchegger. User Search with Knowledge Thresholds in
Decentralized Online Social Networks. Marit Hansen; Jaap-Henk Hoepman; Ronald Leenes; Diane
Whitehouse. Privacy and Identity Management for Emerging Services and Technologies : 8th IFIP WG
9.2, 9.5, 9.6/11.7, 11.4, 11.6 International Summer School, Nijmegen, The Netherlands, June 17-21,
2013, Revised Selected Papers, AICT-421, Springer, pp.188-202, 2014, IFIP Advances in Information
and Communication Technology (TUTORIAL), 978-3-642-55136-9. �10.1007/978-3-642-55137-6_15�.
�hal-01276071�

https://hal.science/hal-01276071v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

User Search with Knowledge Thresholds in
Decentralized Online Social Networks

Benjamin Greschbach, Gunnar Kreitz, and Sonja Buchegger

KTH Royal Institute of Technology
School of Computer Science and Communication

Stockholm, Sweden
{bgre, gkreitz, buc}@csc.kth.se

Abstract. User search is one fundamental functionality of an Online
Social Network (OSN). When building privacy-preserving Decentralized
Online Social Networks (DOSNs), the challenge of protecting user data
and making users findable at the same time has to be met. We propose
a user-defined knowledge threshold (”find me if you know enough about
me”) to balance the two requirements. We present and discuss protocols
for this purpose that do not make use of any centralized component.
An evaluation using real world data suggests that there is a promising
compromise with good user performance and high adversary costs.

Keywords: Decentralized Online Social Networks, Privacy, User Search

1 Introduction

Popular Online Social Networks (OSNs) are logically centralized systems. The
massive information aggregation at the central provider inherently threatens
user-privacy. Data leakages, whether intentional (e. g., selling of user data to
third parties) or unintentional (e. g., by attacks from outsiders), happen regu-
larly1. Motivated by this insight, Decentralized Online Social Networks (DOSNs)
have been proposed to mitigate the threats. When decentralizing a system, two
challenges have to be met: to implement equal functionality without centralized
components, and to provide user privacy under a significantly different threat
model.

Here, we look at the functionality of user search, i. e., the lookup of a system-
specific user identifier (e. g., a URI of a profile) based on information about the
user (e. g., name, city, affiliation). The ability to search for users, in conjunction
with other ways of traversing the social graph (e. g., friendlist of friends), is a
basic building block of an OSN that allows users to find each other and thereby
establish links.

1 To name only two examples: Twitter leaking data from 250K users in February 2013
(http://blog.twitter.com/2013/02/keeping-our-users-secure.html), Facebook selling
user data (http://www.telegraph.co.uk/technology/facebook/8917836/Facebook-
faces-EU-curbs-on-selling-users-interests-to-advertisers.html).

1.1 Our Contribution

We propose and evaluate protocols to support user search in a decentralized OSN
that shield user data from parties who know less than a user-specified threshold
amount of information about the target. To our knowledge, formalizing the use
of this consideration is a novel application of knowledge-based access control.
This type of restriction was inspired by an observation by Fong et al. [7] that
being able to reach a user in an OSN is an integral part of access control in such
systems.

We evaluate our protocols using real world data from the U.S. census to relate
the performance for legitimate users to the costs of an adversary attempting to
guess unknown information.

1.2 Related Work

To the best of our knowledge the privacy-findability tradeoff has not been for-
mally investigated in this context. The closest example is user search in Skype.
However, as far as we know, their protocol has not been described in detail, but
only via external measurement studies, such as one by Baset and Schulzrinne [2].

Most user search functionalities, including ours, search for users within the
global user database of the OSN, independently of who searches. In contrast, we
note that recently, Facebook has debuted Graph search [5], which ties searching
to the social graph, and where the goal is not only to find users, but also content.
Several other approaches of personalized searching for content in an OSN have
also be discussed, e. g., by Bai et al. [1] in a decentralized setting.

Although designed specifically to search for users in a DOSN, some challenges
are shared with constructing a general purpose search in a peer-to-peer (P2P)
setting. This has been studied by e. g., Li et al. [8], and Bender et al. [3]. There
is also a commercial search engine using P2P, Faroo [6]. Two differences are
our focus on access control and privacy, and the significantly smaller amount
of information to be indexed in our setting. Similar to these proposals, we also
build upon a Distributed Hash Table (DHT) as a core component to realize our
functionality.

2 Decentralized User Search Protocol

As we design search protocols for a decentralized system, we cannot assume any
trusted third party or central search provider to be available. Instead, we use
a DHT to register and look up search terms, as it is a common component of
DOSNs. As the DHT runs on nodes participating in the system, we must also
protect the privacy of the participants against these nodes.

We propose two protocols, both designed to index and retrieve information
in a DHT in a protected way. Our protocols provide two operations. A register
operation, where users enter information that allows others to find them based
on certain attributes, and a search operation that, given a set of search terms,

Fig. 1. System overview: The search protocols are one component of the DOSN and
makes use of a DHT.

returns the set of matching user identifiers. In a next step, out of the scope of the
search protocols described here, these user identifiers can be used to view public
profiles, and to send a message or friend request to the found user. Figure 1
illustrates the search functionality.

2.1 Protocol Specification

We consider a searcher, who wants to find a searchee. The searchee registers
searchable information about herself in the DHT by choosing a number n of
attribute labels li (e. g., lastname, firstname, city) and assigning each one2 value
vi. This label-value pair (denoted as attribute ai) is mapped to a user identifier
uid of the searchee. Upon registration the searchee specifies a threshold number t
of attributes which the searcher must know in order to obtain the user identifier.

2.2 Storing Values in the DHT

The DHT holds a mapping from user attributes to user identifiers, but this
mapping must be protected, also against the nodes in the DHT. To this end, we
propose a protocol that alters how values are added and retrieved from the DHT.
The required property is to retain standard DHT functionality, while nodes in
the DHT do not learn plaintexts of keys or values.

When storing a key-value pair the key is fed into a Key Derivation Func-
tion (KDF) together with a global salt gSalt, yielding the DHT-key for the put

and get operations of the DHT. The value is encrypted using a secret that is
derived from a random salt salt and the key (the attribute information, in our
case). The salt is stored together with the ciphertext on the right hand side of
the mapping. In short, the mapping of a key-value pair in the DHT looks like
this:

KDF(gSalt,key) 7→ salt||encryptKDF(salt,key)(value)

2 For simplicity we assume that each attribute can be assigned only exactly one value.

The gSalt has to be publicly available for all users to allow the lookup of
any attributes. This invalidates the purpose of a salt, as pre-computing tables
to reverse the left hand side becomes possible again. Nevertheless, we suggest to
keep the gSalt as it at least requires the pre-computation attack to be targeted
to each specific instance of our system and off-the-shelf pre-computed tables for
the used KDF cannot be employed.

The salt is an individual random number different for every entry. Note that
it in particular has to be different from gSalt as otherwise any DHT node could
decrypt the value of items it stores, using the left hand side (without knowing
the key).

2.3 Scheme 1: Storing all Allowed Attribute Combinations

We want a searcher to prove knowledge of a threshold number of attributes before
obtaining the user identifier. One direct approach to achieve this is to map the
user identifier only from attribute concatenations of the threshold length. If the
searchee registered e. g., seven attributes and specified that at least four of them
are necessary to find her uid, we would store the following

(
7
4

)
= 35 combinations:

a1||a2||a3||a4 7→ uid
a1||a2||a3||a5 7→ uid
...
a4||a5||a6||a7 7→ uid

where ai = (ui, vi), ui attribute labels and vi attribute values. We assume there
is a canonical order of attributes (e. g., a lexicographic order of labels), and
attributes are sorted by this order before concatenation.

Algorithm 1 Registration (Scheme 1)

1: l1, . . . , ln ← User.input(“Choose searchable attribute labels (e. g., name,city,...)”)
2: v1, . . . , vn ← User.input(“Enter values (your name, your city,...)”)
3: ai ← li||vi // for i = 1 . . . n
4: t← User.input(“Enter threshold number of attributes necessary to find you.”)
5: for all ordered sequences ap|| . . . ||aq of length t do
6: key ← ap|| . . . ||aq

7: dhtkey ← KDF(gSalt,key)
8: salt← generateSalt()
9: value← uid

10: dhtvalue← salt|| encryptKDF(salt,key)(value)
11: DHT.put(dhtkey,dhtvalue)
12: end for

Algorithms 1 and 2 describe the protocol in more detail. For registration,
all attribute combinations of length t are mapped to the user identifier and
stored in the DHT according to the procedure described in Section 2.2. When
searching, all provided search attributes are ordered and used to query the DHT

(after the Section 2.2 transformation). If the result is empty or does not contain
what the user was looking for, all subsets of the provided search attributes are
subsequently tried, ordered by decreasing number of elements. The final result
will contain the user identifier of the searchee (and possibly more hits from other
users that registered the same attributes) if the number of attributes searched
for is greater or equal than the threashold specified by the searchee.

Algorithm 2 Search (Scheme 1)

1: l1, . . . , ls ← User.input(“Choose attribute labels to search for (e. g., name,city,...)”)
2: v1, . . . , vs ← User.input(“Enter attribute values (a name, a city,...)”)
3: ai ← li||vi // for i = 1 . . . s
4: for i← s, . . . , 1 do // while result set is empty or the user requests more results
5: for all ordered sequences ap|| . . . ||aq of length i do
6: key ← ap|| . . . ||aq

7: dhtkey ← KDF(gSalt,key)
8: for salt, ciphertext in DHT.get(dhtkey) do
9: uid← decryptKDF(salt,key)(ciphertext)

10: add uid to result set if decryption was successful
11: end for
12: end for
13: end for

One shortcoming of this scheme is that for sufficiently large numbers of n
and t, the number of combinations might become infeasible for storage space
constraints and KDF computation latencies during registration. Requiring e. g.,
5 out of 20 registered attributes would yield 15504 combinations.

2.4 Scheme 2: Storing Each Attribute Individually

An alternative approach, overcoming the large number of combinations gener-
ated by Scheme 1, is to store each attribute individually. In order to require
a threshold number of attributes to find the user identifier, a single attribute
does not map directly to the uid but to an encrypted version. The key used for
the encryption is based on a secret sharing scheme and one share is stored with
each of the attributes. Instead of using the shared key directly, it is fed into a
KDF together with an individual salt. This indirection allows us to indepen-
dently tune the costs for requesting shares for one attribute (determined by the
DHT latency and the KDF described in Section 2.2) and for trying to combine
them (determined by the KDF used here). Furthermore, a bloom filter bfi is
attached to each share, to help finding the right shares to combine with, which
is important for popular attributes with large response sets:
a1 7→ share1||bf1||salt1|| encryptKDF(salt1,sk)(uid)
...
an 7→ sharen||bfn||saltn|| encryptKDF(saltn,sk)(uid)
where sk can be recovered with t of the shares share1 . . . sharen.

The bloom filter that is stored with each share is created using all other
n − 1 shares belonging to the same key sk. To avoid the case in which two
bloom filters for a related set of shares look similar, we introduce an individ-
ual salt for each bloom filter, which is used to modify elements before inser-
tion. Thus, with each bloom filter bfi, we store a salt bfsalti, and when adding
or querying for an element (a share in our case) in bloom filter bfi, we first
hash the element together with the bfsalti. E. g. instead of bfi.add(share), we
do bfi.add(hash(bfsalti, share)), where hash() is a cryptographically strong
keyed hash function.

Algorithms 3 to 6 describe the protocol in more detail. When combining the
shares in the search protocol, the bloom filter information is used to reduce the
number of possible combinations. Note that for two sets of shares (and attached
bloom filters) two reductions are possible: First a share in set one is fixed and
its bloom filter is used to reduce set two. Then, for all remaining shares in
set two, their bloom filters can be used to determine if they fit to the fixed
share of set one. If not, they are removed from set two as well. This generalizes;
for n sets, in expectancy the number of matches will be reduced by a factor
of exp(bloomfactor,

∑
i∈1...n 2(i − 1)), where bloomfactor is the false positive

probability of the bloom filter.

Algorithm 3 Registration (Scheme 2)

1: l1, . . . , ln ← User.input(“Choose searchable attribute labels (e. g., name,city,...)”)
2: v1, . . . , vn ← User.input(“Enter values (your name, your city,...)”)
3: ai ← li||vi // for i = 1 . . . n
4: t← User.input(“Enter minimum number of attributes necessary to find you.”)
5: sk ← generateKey()
6: share1, ..., sharen ← createShares(t,n,sk)
7: for i← 1, . . . , n do
8: key ← ai

9: dhtkey ← KDF(gSalt,key)
10: bf ← createBloomFilter({sharej |j 6= i}) // using salted bloom filter (see text)
11: salt← generateSalt()
12: kE , kS ← KDF(salt,sk) // derive keys to encrypt and sign
13: ciphertext← encryptkE (uid)
14: value← sharei||bf ||salt||ciphertext|| MACkS (ciphertext)
15: dhtsalt← generateSalt()
16: dhtvalue← dhtsalt|| encryptKDF(dhtsalt,key)(value)
17: DHT.put(dhtkey,dhtvalue)
18: end for

2.5 Extensions

Weighting of attributes. Some attributes might be easier to guess for an attacker
than others because they have a lower entropy or represent more public infor-

Algorithm 4 Search (Scheme 2)

1: l1, . . . , ls ← User.input(“Choose attribute labels to search for (e. g., name,city,...)”)
2: v1, . . . , vs ← User.input(“Enter attribute values (a name, a city,...)”)
3: ai ← li||vi // for i = 1 . . . s
4: setOfShareSets← ∅
5: for i← 1, . . . , s do
6: key ← ai

7: dhtkey ← KDF(gSalt,key)
8: shareSet← ∅
9: for each (dhtSalt, dhtCiphertext) ∈ DHT.get(dhtkey) do // > 1 res. possible

10: share||bf ||salt||uidCiphertext||mac← decryptKDF(dhtSalt,key)(dhtCiphertext)
11: shareSet.add((share, bf)) // also remember salt, uidCiphertext and mac
12: end for
13: setOfShareSets.add(shareSet)
14: end for
15: sk ← reduceAndCombineShares(setOfShareSets, ∅) // recovers sk iff s ≥ t
16: salt, uidCiphertext,mac← lookup values for successful shares // see line 11
17: kE , kS ← KDF(salt,sk)
18: uid← decryptkE (uidCiphertext) // and validate mac using kS

Algorithm 5 reduceAndCombineShares (Scheme 2)

Input: setOfShareSets, chosenShares
Output: sk

1: if |setOfShareSets| = 0 then // base case: try to recombine candidate shares
2: sk ← useShares(chosenShares)
3: if sk valid then
4: return sk // for simplicity, return only the first valid key
5: end if
6: return None
7: else // otherwise recurse
8: S ← setOfShareSets[0]
9: SRest← setOfShareSets \ S

10: for (share, bf) ∈ S do
11: SRestReduced← reduceShareSets(share, bf, SRest)
12: result← reduceAndCombineShares(SRestReduced, chosenShares||share)
13: if result 6= None then
14: return result
15: end if
16: end for
17: // if nothing was returned yet, try not to pick any share from the current set
18: return reduceAndCombineShares(SRest, chosenShares)
19: end if

Algorithm 6 reduceShareSets (Scheme 2)

Input: share, bf, setOfShareSets
Output: reducedShareSets

1: reducedShareSets← ∅
2: for S ∈ setOfShareSets do
3: for share′, bf ′ ∈ S do
4: if not checkBloomFilter(share′, bf) then
5: S.remove(s′)
6: end if
7: if not checkBloomFilter(share, bf ′) then
8: S.remove(share′)
9: end if

10: end for
11: reducedShareSets.append(S)
12: end for
13: return reducedShareSets

mation that is easy to research from system external sources. We therefore want
to give the users the ability to weight attributes, that is, differentiating their
contribution for reaching the threshold number t. In Scheme 1, this is straight-
forward to implement: instead of registering all attribute combinations with a
certain number of attributes, we only register combinations whose weighted sum
meets the threshold.3 For Scheme 2, more work has to be done, to implement
this functionality. A possible approach is, to first pick a granularity number g
for the weighting factor (the number of discrete values the weighting factor can
take). Instead of storing only one share with each attribute, 1 to g shares will
be stored with each attribute depending on the weight for this attribute. The
threshold number will be adjusted accordingly (e. g., multiplied by g). To hide
the weight of an attribute, all attributes with less than maximum weight will
store dummy shares. Following a convention to first store the real shares and
than append dummy shares, the additional work (for legitimate users as well
as adversaries) – when trying combinations of share values – is guessing this
split-point between real and dummy shares for each attribute (e. g., for g = 10
and 4 shares, a factor of 10000).

Dummy-attributes for Plausible Deniability. Introducing plausible deniability for
leaked personal information can mitigate the consequences of privacy breaches.
This can be accomplished by adding random dummy-attributes along with the
real attributes. Thus, the adversary cannot be sure if an attribute that she
found to be related to a user is a real one or a generated fake entry. Dummy-
attributes come, however, with the trade-off of increasing false positive matches
for legitimate users. Furthermore, they can be debunked by adversaries with

3 More precisely: only those combinations where the weighted sum is greater or equal
the threshold and the removal of any included attribute would yield a weighted sum
less than the threshold.

background knowledge. Finally, they might make brute-force attacks easier, as
dummy-attributes increase the total number of attributes but not the threshold
number of required attributes.

3 Threat Model

All information that the user gives away or generates while interacting with the
system has to be considered as possibly sensitive. This comprises general admin-
istrative information (existence in system, date of registration, user-identifiers),
entered information during registration (attributes, i. e., label-value pairs), search
query data (who searches for whom, which previously unknown attributes are
used to specify search-target) and behavioural data (online times, frequency of
searching/registering/updating information).

3.1 Adversaries and Their Capabilities

All agents in the system can possibly act in malicious ways. This comprises
nodes involved in the DHT storage, passive traffic observers and active adver-
saries, i. e., malicious users that can perform search and register operations. Their
capabilities range from sniffing traffic and performing traffic analysis (e. g., an-
alyzing query sizes), crawling the DHT (performing massive search operations)
or analyzing data they might store, to actively inserting data into the DHT.

Example instances of these adversary models are curious users of the system,
targeted attacks from parties with background knowledge about the target user
(e. g., testing specific attributes of this user, also learning from negative results),
or crawling attacks that aim to harvest information for e. g., spammers, targeted
advertisement or insurance companies. We cannot perform a comprehensive se-
curity and privacy analysis of the protocols, taking into account all mentioned
user assets and adversary capabilities. Instead, we will focus on several specific
attacks and present one of them in more detail.

3.2 Subset Crawling Attack Scenario

The proposed protocols are trying to balance findability and privacy. Thus, they
cannot provide perfect protection. In the worst-case of a targeted attack, an ad-
versary with profound background knowledge about the target user will likely
succeed. For example protecting the user identifier cannot be accomplished if the
adversary knows as many attributes about the target user as legitimate users do.
At the same time we assume that both schemes protect the users fairly well from
large-scale crawling attacks as the search space of all possible attribute combi-
nations is too large to brute-force and the protocols transform the registered
user data in a way that inferences from the publicly stored data are infeasible.
If an adversary chooses to constrain her effort to only crawl the data of a speci-
fied subset of the user-base, her chances might be better. We therefore focus on
what we call a Subset Crawling Attack. In this scenario, the adversary chooses

a number of sensitive attributes and tries to identify all users of the system that
registered that attributes. For example, the adversary could try to identify all
users working at a specific company by fixing the attribute ”workplace” and
then brute-forcing a set of identifying attributes such as ”name”, ”firstname”
and ”city”.

4 Privacy Evaluation

In the following we will evaluate the costs for an adversary to perform a Subset
Crawling Attack and compare this to the search costs of legitimate users. We
assume that a person’s first name, last name, and the city the person is located
at are identifying attributes and at the same time among the most popular
search attributes. These attributes might be rather public information or easy to
research, so we assume that users combine them with other, less public attributes.
According to the Subset Crawling Attack scenario we assume that the adversary
fixes at least one of the other attributes and tries to brute-force the identifying
attributes.

4.1 Data sources

To get evaluation results reflecting realistic distributions of values for identify-
ing attributes, data from the U.S. census was used as input for the following
calculations.

Distributions of U.S. last names were taken from [4, Table 1]. The data
shows that there are 4 Million last names in total. 7 last names occur more than
1 Million times in the U.S. population. The top 3012 last names are shared by
55% of the population, the top 1 Million names are shared by 98.5%. The last
name frequencies roughly resemble a power law distribution. Frequencies of U.S.
first names were taken from [9]. The data is split into ”male” and ”female” first
names. For our calculations we merged them assuming an equal distribution of
the two categories. For U.S. cities, we used a dataset listing the population of all
cities with more than 50000 inhabitants [10]. The data closely resembles a Zipf
distribution. For the remaining population, we made a worst-case assumption
of being distributed equally to cities with 50000 inhabitants (worst-case in the
sense of getting less diversity for this attribute).

The validity of the evaluation results is therefore based on the assumption
that the system’s user base is a representative subsample of the U.S. population.
In the following calculations we furthermore assume that all users registered
all three attributes. A source of errors in our evaluation is that we treat these
attributes as independent, because we were not able to find any statistics on
joint distributions.

4.2 Brute-force Probabilities Scheme 1

We investigate the success probability of an adversary, when trying to guess
identifying attributes by brute-force, i. e., searching the whole value space. We

assume the adversary will try most likely values (those registered by most users
according to the value distribution in the population) first. Figure 2 shows the
number of combinations to test in order to cover a certain percentage of the
user population. This corresponds to the costs of an adversary, as in Scheme 1,
to try one combination, one KDF operation plus one DHT get operation are
necessary. For single attributes between 180 and 3000 combinations are enough
to find a target with 50% success probability (4600 to 60 Million combinations
for 100%). When the combination of two attributes has to be guessed, this
increases to around 107 combinations for 50% success probability and up to 1015

combinations to search the whole value space.

 0

 0.2

 0.4

 0.6

 0.8

 1

10^0 10^2 10^4 10^6 10^8 10^10 10^12 10^14 10^16

C
D

F

combinations

brute-force costs of guessing attributes (scheme 1)

firstname
city

lastname
firstname+lastname

lastname+city

Fig. 2. CDF of brute-force success after trying a certain number of combinations (most
likely ones first) for different attributes.

4.3 Brute-force Probabilities Scheme 2

In Scheme 2, bruteforcing works slightly differently. We assume, that the ad-
versary knows some attributes (the fixed attributes that specify the subset to
crawl, e. g., ”workplace”) and tries to guess other attributes (the identifying at-
tributes). For each known attribute the adversary can issue a query and gets back
a set of shares, each share having one bloom filter attached. Each share stems
from a user who registered this specific attribute, i. e., a label-value combination
(e. g., ”workplace”:”KTH”) – several shares occur if several users registered the
same combination (e. g., one from each user that registered their workplace as
”KTH”). For an unknown attribute, the adversary will enumerate all possible

values of the label-value combination (e. g., all possible lastname values for the
attribute ”lastname”) and issue one DHT query each (after having performed a
KDF operation to compute the DHT-key). This will result in one set of shares
for each of the queries, again each share having one bloom filter attached. To
know which share in each set should be picked, the bloom filters can be used
to reduce the possible combinations. To test one combination, a second KDF
operation (that might be tuned differently) has to be performed.

Figure 3 shows the work to be done for a legitimate user searching for three
attributes and an adversary, who knows one attribute and tries to guess two un-
known attributes. Additionally, the ratio of the legitimate user’s cost to the ad-
versary’s cost is plotted, distinguishing two strategies of the adversary to search
the value space: Either less popular values are tested first (”ratio”) or more
popular values first (”ratio biggest first”).

 0

 0.2

 0.4

 0.6

 0.8

 1

10^0 10^1 10^2 10^3 10^4 10^5 10^6 10^7 10^8 10^9

C
D

F

share combinations to test (for 100K users, bloom factor .50)

knowing firstname, guessing lastname and city (scheme 2)

legitimate user
adversary

ratio biggest first
ratio

Fig. 3. Legitimate user searching for 3 attributes vs. adversary guessing 2 of them.
Ratios depending on the adversaries strategy to search the value space.

4.4 Other Attacks

Existence Testing i. e., finding out if a user is registered in the system or not
(without knowing enough attributes) is not possible in Scheme 1 and actively
prevented in Scheme 2: Encrypting the user identifier under different keys (due
to different salts) yields different ciphertexts and the bloom filters are salted
differently. This is important as otherwise, searching e. g., for a certain firstname-
lastname combination and getting the same ciphertext on the right hand side or

similar bloom filters, reveals that there is a person with that firstname-lastname
combination registered in the system, even if the person specified that more than
two attributes are necessary to find her.

Search Query Data can give away information about the searcher (e. g., whom
she is interested in) as well as previously unknown information about the searchee.
A worst case example for the latter would be search queries that contain more
information about the searchee than the searchee herself registered in the sys-
tem. An adversary observing these queries can at least probabilistically learn
more information about the searchee.

This attack does, however, require the adversary to reverse the KDF op-
eration that transformed the plaintext attribute combination (denoted key in
the pseudocode) into a derived dhtkey. For Scheme 1, the search protocol tries
longer combinations first, which are harder to reverse. For successful search op-
erations, this prevents the searcher from issuing queries with a lower number
of attributes than specified by the searchee as threshold. Unsuccessful search
operations will, however, issue eventually queries with only one attribute in the
key. For Scheme 2, every DHT-query is derived from only one attribute, so suc-
cessfully reversing the KDF might be more likely in this case. One mitigation
would be to obfuscate the query origin (e. g., by using a different Tor circuit for
each query), but time-correlation attacks could still be successful.

Replaying an observed search query does not help an adversary if she is not able
to reverse the KDF operation (transforming a dhtkey value back in a key value),
because without the key value, she cannot decrypt the result of the search query.

Impersonation is not prevented by our protocols as they do not try to solve
the general authentication problem. Although the uid should be signed by the
searchee and its signature validated by the searcher after it was found (not de-
scribed by our protocols), this does not keep an adversary from setting up a fake
profile for John Doe and register the attributes ”firstname:john”, ”lastname:doe”
into the DHT, mapping it to the uid of the fake profile.

5 Discussion

The results presented in the previous section describe the gap between the search
effort of a legitimate user and the cost of an adversary trying to find user identi-
fiers despite knowing fewer attributes than required. For Scheme 1, the former is
constant in terms of DHT operations, the latter depends on the number and kind
of unknown attributes, as shown in Figure 2. The adversary’s costs for only one
attribute are rather low, as expected. They can be tuned by KDF parameters
but this will also affect the performance for legitimate users. The gap increases,
however, combinatorially with the number of attributes the adversary has to
guess. Already for two unknown attributes this might frustrate an attack: When
tuning the KDF operations to take one second (delay for a legitimate user), an

adversary with the same computational power as the user would need about 6
weeks to find the correct combination with 50% probability. The gap is not a
global system parameter but can be tuned by each user individually (by choos-
ing an individual threshold t for the registered information) but also depends
on the adversary’s knowledge about a target user. Scheme 2 can be tuned to
achieve adversary costs comparable to that of Scheme 1, at the cost of slightly
more work for legitimate users.

Apart from that, Scheme 1 has several advantages, compared to Scheme 2. It
does not leak partial negative results, while Scheme 2, independently of any user
thresholds, can reveal that a certain attribute combination is not registered in the
system. For example, when searching for a certain lastname and workplace, and
none of the shares of the two result sets are compatible according to the bloom
filters, one learns that no user with this lastname registered this workplace.
Furthermore, in Scheme 1 the adversary cannot make use of knowledge about
other attributes of the user to decrease the search space for the identifying
attributes. In Scheme 2, each additional attribute the adversary knows about
the user, provides additional bloom filters to reduce the size of the result sets
for the identifying attributes. Moreover, in Scheme 1 the user can specify even
more fine-grained restrictions than only a minimum number of attributes. This
makes weighting of attributes straightforward (see Section 2.5), but can even be
used to explicitly exclude certain attribute combinations that the user does not
want to be found by.

The advantage of Scheme 2 is the lower number of items to store in the DHT
for each user. In Scheme 1, besides the higher storage load for the DHT, this is
mainly a problem for registering a user, as for each of the attribute combinations
also one KDF has to be computed. While this could be solved by accepting a
longer delay for the registration operation and let it run in the background, the
higher number of combinations might, however, also incur problems for search
queries in certain cases. When over-specifying the search target in Scheme 1 (i. e.,
providing a number of attributes that is greater than the searchee’s threshold t),
successively all subsets of the attributes have to be queried while in Scheme 2
the number of DHT queries is always equal to the number of specified search
attributes.

6 Conclusion and Future Work

We presented two approaches to realize a targeted user search in a DOSN. The
search protocols implement a knowledge threshold, allowing the users to protect
their user identifier from adversaries that do not possess enough information
about them while legitimate users, who know enough about the searchee, are
able to find her. We described the protocols in detail, sketched a threat model,
and evaluated selected properties using real world data. The evaluation yielded
insights into the brute-force costs of an adversary, which depend on the user
defined knowledge threshold and the knowledge of the adversary about the target
user. The results suggest that for a subset crawling attack, the proposed protocols

offer promising protection against an adversary that tries to brute-force at least
two or three identifying attributes.

One open problem to be investigated in future work is the possibility of com-
bining the two presented approaches. Building on Scheme 2, several attributes
that have a rather small value space could be combined in the way it is done in
Scheme 1, thus avoiding the high number of combinations while still leveraging
the advantages of Scheme 1.

7 Acknowledgements

Oleksandr Bodriagov and Guillermo Rodŕıguez Cano contributed to joint dis-
cussions of the ideas in Section 2. Some of the ideas were also discussed with
Thomas Paul.

References

1. Bai, X., Bertier, M., Guerraoui, R., Kermarrec, A.M., Leroy, V.: Gossiping person-
alized queries. In: Manolescu, I., Spaccapietra, S., Teubner, J., Kitsuregawa, M.,
Léger, A., Naumann, F., Ailamaki, A., Özcan, F. (eds.) EDBT. ACM International
Conference Proceeding Series, vol. 426, pp. 87–98. ACM (2010)

2. Baset, S., Schulzrinne, H.: An analysis of the Skype peer-to-peer internet telephony
protocol. CoRR abs/cs/0412017 (2004)

3. Bender, M., Michel, S., Triantafillou, P., Weikum, G., Zimmer, C.: Minerva: Col-
laborative p2p search. In: Böhm, K., Jensen, C.S., Haas, L.M., Kersten, M.L.,
Larson, P.Å., Ooi, B.C. (eds.) VLDB. pp. 1263–1266. ACM (2005)

4. David L. Word, Charles D. Coleman, R.N., Kominski, R.:
Demographic aspects of surnames from census 2000 (2000),
http://www.census.gov/genealogy/www/surnames.pdf

5. Facebook: Introducing graph search (2013), https://www.facebook.com/about/graphsearch
6. Faroo: P2P search (2013), http://www.faroo.com/hp/p2p/p2p.html
7. Fong, P.W.L., Anwar, M.M., Zhao, Z.: A privacy preservation model for facebook-

style social network systems. In: Backes, M., Ning, P. (eds.) ESORICS. LNCS, vol.
5789, pp. 303–320. Springer (2009)

8. Li, J., Loo, B.T., Hellerstein, J.M., Kaashoek, M.F., Karger, D.R., Morris, R.: On
the feasibility of peer-to-peer web indexing and search. In: Kaashoek, M.F., Stoica,
I. (eds.) IPTPS. LNCS, vol. 2735, pp. 207–215. Springer (2003)

9. U.S. Census Bureau, P.D.: Genealogy data: Fre-
quently occurring surnames from census 1990 (1990),
http://www.census.gov/genealogy/www/data/1990surnames/names files.html

10. U.S. Census Bureau, P.D.: Table 1. annual estimates of the resi-
dent population for incorporated places over 50,000, ranked by july 1,
2011 population: April 1, 2010 to july 1, 2011 (sub-est2011-01) (2012),
http://www.census.gov/popest/data/cities/totals/2011/tables/SUB-EST2011-
01.csv

