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Abstract. To preserve data confidentiality in database outsourcing sce-
narios, various techniques have been proposed that preserve a certain
degree of confidentiality while still allowing to efficiently execute certain
queries. Typically, several of those techniques have to be combined to
achieve a certain degree of confidentiality. However, finding an appropri-
ate combination is not a trivial task, as expert knowledge is required and
interdependencies between the techniques exist. Securus, an approach
we previously proposed, addresses this problem. Securus allows users to
model their requirements regarding the information in the outsourced
dataset that has to be protected. Furthermore, queries that have to be
efficiently executable on the outsourced data can be specified. Based on
these requirements, Securus uses Integer Linear Programming (ILP) to
find a suitable combination of confidentiality enhancing techniques and
generates a software adapter. This software adapter transparently ap-
plies the techniques to fulfill the specified requirements and can be used
to seamlessly outsource and query the data. In this paper, we present
an outline of Securus and extend our previous work by highlighting the
differences to other approaches in the field. Furthermore, we show how
Securus can be extended to allow for more efficient solutions if the at-
tacker’s capabilities can be modeled by the user.

1 Introduction

Preserving the privacy of individuals in today’s service landscape is an ongo-
ing research topic that gains even more importance with the trend of service
outsourcing. Besides the protection of personal information that is necessary
to make access control decisions [3], enforcing the confidentiality of personal
data that is processed by third parties constitutes a challenge [2, 12]. Ensuring
confidentiality when outsourcing databases is both necessary to protect sensitive
information and to adhere to privacy laws in many cases. One approach to tackle
this problem is to establish a trust relationship with the external provider using
Service Level Agreements (SLAs) [13] or by relying on laws for being able to hold
the external provider accountable [16]. However, in many cases either no trust
relationship can be established or (regional) laws forbid relying on trust alone.
In these cases, technical means have to be used to preserve confidentiality [14].



A naive solution that technically preserves data confidentiality is to com-
pletely encrypt the whole database prior to outsourcing. However, queries on
entirely encrypted data cannot be efficiently executed. It is thus better to se-
lectively apply encryption techniques and partitioning the database on multiple,
non-colluding external providers, as this way a tradeoff between data confiden-
tiality and efficient query execution can be achieved [4, 7, 10, 11, 15]. However,
it requires expert knowledge to choose a suitable set of existing techniques for
a given scenario that protect confidential information while maximizing query
efficiency. Furthermore, the choice highly depends on which parts of the data
are considered sensitive and how the data will be queried.
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Fig. 1. Overview of the general Securus concept [14]

In this paper, we describe the Securus (Secure and Efficient Cloud Utilization
Relying Upon Schemes) framework [14] that enables users to define which infor-
mation of the outsourced data requires protection and which queries are executed
on the data in a policy profile (see Figure 1). Furthermore, a set of available stor-
age providers (SPs) to which the data will be outsourced can be specified.

Attacker model: The worst case Securus protects against is that each SP
constitutes an honest-but-curious attacker or is compromised by one. We assume
that the attackers a) do not collude and b) do not have background knowledge
on data inserts/deletions/updates or incoming queries that can be used to in-
fer information on data records. For instance, knowing that SELECT...WHERE

name=’john’ is the most frequently executed query can be used to reveal en-
crypted names of the result records of the most frequently executed queries.

Based on the policy profile, Securus chooses a matching set of confidentiality
enhancing techniques and generates a mediator software component that auto-
matically applies them before outsourcing the data. Users can utilize mediators
to transparently execute queries on the outsourced data, i.e., without taking
the applied confidentiality enhancing techniques into account. Securus provides
strong performance guarantees in terms of induced overhead during query exe-
cutions, regardless of the outsourced dataset’s composition.

The paper is structured as follows: We summarize related work and exist-
ing approaches Securus builds on in Section 2. In Section 3, we introduce the
components of policy profiles and show how we adapted the building blocks of
the policy profile (and thus the policy transformation process) to reflect the as-
sumed attacker’s knowledge more precisely compared to the already published



Query Plaintext
Deterministic Probabilistic

Substitute Substitute

Equality Selection X
Det. Encryption &

5
Hash indices [7, 4]

Range Selection X
Bucket Hash

5
Indices [10]

Aggregation X
Homomorphic Homomorphic

Encryption [11, 15] Encryption [11, 15]
Table 1. Catalog of security mechanisms for different queries and substitution cat-
egories. The X symbol indicates that no security mechanisms need to be applied,
5 indicates that no security mechanisms are known that have the required properties.

version of Securus [14]. In Section 4 we show how to transform policy profiles
into an outsourcing solution. As addition to our previous work [14] we highlight
the differences between Securus and other existing approaches and provide an
extended evaluation of our approach in Section 5. Finally, the paper is concluded
in Section 6.

2 Related Work

In the Database-as-a-Service community, several contributions that share the
goal of confidential data outsourcing exist. These can be categorized into ap-
proaches that encrypt data in a way that allows for the execution of specific
queries [4, 7, 10, 11, 15], approaches that only encrypt parts of the data [17] and
approaches that protect sensitive information by fragmenting the data on several
non colluding providers [5, 1].

Various security mechanisms have been proposed that encrypt attribute val-
ues while still allowing the efficient execution of queries containing equality
selections (e.g. ...WHERE name=’Doe’) [4, 7], range selections (e.g. ...WHERE

age<30) [10] and aggregations (e.g. SELECT SUM(salary)...) [11, 15]. These
security mechanisms can be categorized as shown in Table 1. We distinguish be-
tween mechanisms that map equal plaintext values on the same encrypted values
(deterministic substitute) and mechanisms that map equal plaintext values on
different encrypted values that cannot be distinguished (probabilistic substitute).
While an attacker with background knowledge like the frequency distribution of
an attribute can infer information from deterministic substitutes [4, 8], no infor-
mation can be inferred from probabilistic substitutes. However, in our model it
is also impossible to evaluate equality or range selections on them. While cryp-
tographic methods to search probabilistically encrypted data exist [18, 6], the
proposed methods require to “touch” every data record instead of using index-
ing structures or reveal information upon processing queries that can be used to
distinguish records in a similar way deterministic ciphertexts do. Homomorphic
encryption schemes enable the storage provider to aggregate encrypted values
before returning the query result to the client.

Additionally to these security mechanisms, the approach to protect sensitive
attribute combinations by fragmenting the critical attributes across multiple SPs



has been proposed [1]. For instance, while the attribute name and the attribute
salary of a dataset may be viewed in plaintext by the attacker, the combination
of them might be considered sensitive. Therefore, plaintext attribute values of
name have to be stored by another SP than plaintext attribute values of salary.

CryptDB [17] is an approach that initially encrypts all attributes of the
database that is outsourced to an external SP. Once a query needs to be ex-
ecuted, the key for the relevant attributes is passed to the SP. Thus, the SP
incrementally unveils attributes and is able to execute queries efficiently. While
providing performance guarantees regarding query execution, the protection of
sensitive attributes cannot be guaranteed and depends on the query workload.

Securus makes use of both security mechanisms and attribute fragmentation
to fulfill the user’s requirements. Previous approaches [5, 9] also propose to let
the user specify which information contained in the data is sensitive and the
query workload that will be executed on the data. They provide heuristics to
find the best-effort attribute fragmentation that protects confidential relation-
ships between attributes and produces as little overhead as possible for the given
workload. Securus goes beyond true fragmentation and considers storing partic-
ular attributes at multiple SPs to allow for a more efficient query execution.
Furthermore, Securus allows the user to specify hard performance requirements
that must not be violated (cf. Section 5.1).

3 Policy Profiles

Before Securus can generate a mediator, the user has to specify his particular
requirements in a policy profile. Besides the attributes that are contained in the
dataset that is outsourced, the user defines the following three types of policies:

– Access Policies (APs) describe the queries that have to be efficiently ex-
ecutable. For instance, the AP [Name,Salary] expresses, that queries like
SELECT * FROM db WHERE Name=‘‘xy’’ AND Salary=10000 have to be ef-
ficiently executable. Besides equality selections, Securus also supports range
selections and aggregation. For the sake of simplicity and space constraints
we do not introduce them in this paper.

– A Confidentiality Constraint (CC) [1, 5, 9, 19] constitutes a set of at-
tributes that are considered sensitive if they are combined. For instance, the
CC [Name,Salary] expresses that no name should be mapable on a salary
value and vice versa. However, revealing the names or the salaries to an SP
is tolerable. A special case are CCs containing a single attribute: [Salary]
expresses that the salaries are sensitive and must not be revealed to any SP.

– Inference Constraints (ICs) specify a set of attributes. By including an
attribute in the ICs it can be expressed that the assumed attacker is not
able to infer any information from deterministically encrypted values of the
attribute1. In particular, this assumption holds for attributes that are guar-
anteed to be unique [8]. We are aware of the fact that ICs constitute very

1 For instance, if an attacker would know the most frequently occurring attribute
value, he could reveal the most frequently occurring deterministic ciphertext.



crude assumptions that users cannot confidently make in many scenarios.
However, they provide an “interface” that enables us to explore a more
fine-grained modeling of the attacker’s capabilities in our future research.
For instance, ICs could be derived from a more fine-grained attacker model
specified by users.

4 Policy Transformation

4.1 General Concept

The workflow of an example mediator that was automatically generated by Secu-
rus is shown in Figure 2. To outsource a dataset (e.g. Employees), the attribute
values of each record are encrypted probabilistically and put in the main table
that can be stored by an arbitrary SP. As the probabilistic ciphertexts are in-
distinguishable for the SPs, no CC is violated. However, while it is possible to
request specific records, no other queries can be executed based on the main
table. Therefore, for each AP an index table that allows for efficient query ex-
ecution is stored by at least one SP. Index tables contain attribute values in
plaintext or protected by a security mechanism that does not prohibit the effi-
cient execution of queries that comply to the AP (cf. Section 2). Thus, queries
can be executed efficiently based on the according index table.

However, index tables might violate CCs. For instance, consider two index
tables that store the attributes {address} and {disease} in plaintext, respec-
tively. If those two index tables are stored by the same SP, this would violate the
CC [address,disease]. The violation of CCs might be prevented by distribut-
ing the index tables on multiple, non colluding SPs and/or selectively applying
security mechanisms on the attributes of the index table. For instance, in Fig-
ure 2, the CC [name,salary] is not violated as neither SP1 nor SP2 store
both name and salary in plaintext or as deterministic ciphertexts that an at-
tacker with – for instance – knowledge about the frequency of attribute values
might infer plaintext values from. The CC [name,age] can be satisfied even
though both attributes have to appear together in one index table to satisfy
the AP [name,age]. This is due to the defined IC {age} that specifies, that
it is assumed that the attacker cannot infer information from deterministically
encrypted attribute values. Therefore, it suffices to encrypt age in index table 1
deterministically to comply with CC [name,age].

4.2 Solving the puzzle

Finding an appropriate distribution of the index tables on the SPs that mini-
mizes the required application of security mechanisms and satisfies the defined
APs, CCs and ICs is not a trivial task and can be shown to be NP-hard. Securus
reduces the problem of finding a suitable solution on an Integer Linear Program-
ming (ILP) problem. ILP is a well understood mathematical model to specify
optimization problems. ILP problems consist of constraints that define feasible
solutions and an optimization criterion that characterizes the optimal solution.



ID name age salary

1 Amy 55 90000
2 John 55 75000

. . . . . . . . . . . .

Employees

Defined CCs:

CC [name,salary]
CC [name,age]
IC {age}

AP: [age,salary]AP: [name,age]

ID name age salary

1 5!d$. . . e6e?. . . f&3a. . .
2 8t§a. . . !u4X. . . K7}-. . .

. . . . . . . . . . . .

name age ID

Amy β 1
John β 2
. . . . . . . . .

Main Table Index Table 1

age salary ID

55 90000 1
55 75000 2
. . . . . . . . .
Index Table 2

SP1 SP2
Det. EncryptedProb. Encrypted

P
la

in
te

x
t

E
n

cr
y
p

te
d

Fig. 2. Exemplary mediator generation.

While the exact formulation of the ILP problem is out of scope of this paper,
we introduce the basic ideas. We utilize the constraints of the ILP to model the
policies defined in the policy profile:

– Access Policies: To satisfy an AP, every attribute of the AP has to be
stored in plaintext or as deterministic substitute by at least one SP to allow
for an efficient execution of equality and range selections (cf. Table 1). The
SP that stores all attributes of an AP may also store the AP’s index table.

– Confidentiality Constraints: A CC is satisfied if at each SP at least one
contained attribute is not revealable. To guarantee that, for each SP it must
hold that at least one of the attributes contained in the CC is not stored at
all, stored as probabilistic substitute or stored deterministically encrypted
and contained in the specified ICs.

In order to apply security mechanisms only when necessary, we define the
optimization criterion of the ILP as follows:

min
∑

j∈SPs

∑
i∈Attributes

(di,j + pi,j) (1)

where

di,j =

{
1, if SP j stores deterministic substitutes of attribute i
0, else

pi,j =

{
1, if SP j stores probabilistic substitutes of attribute i
0, else

The versatile nature of the ILP optimization criterion allows us to consider
fine-grained performance differences of security mechanisms and database sys-
tems of the SPs in future work.

Once the ILP problem is solved by existing ILP solvers the solution of the
ILP problem can be used to derive an optimal distribution of the index tables
across the SPs and to determine which security mechanisms need to be applied



on the attributes of the index tables. For instance, from Table 1 it can be deduced
that if SP1 may store attribute age as deterministic substitute, hash indices can
be used in an index table that should enable efficient queries that contain an
equality selection on age (cf. Figure 2).

5 Evaluation

5.1 Benefit of redundantly storing attributes

One feature that distinguishes Securus from previous approaches is that while
encryption and fragmentation is used to protect data confidentiality, we do not
enforce true fragmentation of the attributes on the SPs. In many scenarios,
true fragmentation is an unnecessarily strict way of fulfilling confidentiality con-
straints. For instance, consider the example depicted in Figure 3. While gender
and ZIP must not be stored by the same SP to satisfy the CC [gender,ZIP],
it is legitimate to store age at both SPs. True fragmentation would dictate that
age may only be present at a single SP in plaintext.

ID gender age

1 m 30

2 m 50

3 m 40

4 f 20

5 f 40

6 f 40
Exemplary index table at SP1

(AP: [gender, age])

ID ZIP age

1 76131 30

2 51362 50

3 76131 40

4 51362 20

5 76131 40

6 51362 40
Exemplary index table at SP2

(AP: [ZIP, age])

Fig. 3. Exemplary index tables at two SPs. APs: [ gender, age ], [ ZIP, age ],
CC: [ gender, ZIP ]

The example shown in Figure 3 also illustrates the advantages of storing
attributes redundantly at multiple SPs. Consider the query SELECT ID FROM

index table 1 WHERE gender=f AND age=50. This query would return zero
records as no record matches the query. However, if the attributes were truly
fragmented and age would not be part of index table 1 but of index table 2,
the query would have to be reformulated to SELECT ID FROM index table 1

WHERE gender=f. Consequently, records 3-6 would be transmitted to the medi-
ator and would then all be discarded when evaluating the second part of the
query: SELECT * FROM results WHERE age=50. Thus, for this example, three
records would have been transmitted unnecessarily due to true fragmentation.

Furthermore, the example illustrates why Securus can provide hard perfor-
mance guarantees for specified APs. Securus enforces that for each specified AP,
an index table that holds all attributes of the AP exists. Thus, instead of having
to evaluate parts of the query in the mediator, queries can be entirely executed
by the SPs. As shown in the example above, true fragmentation can not guaran-
tee that all returned records are part of the query’s result. In fact, the number



Number of policies/elements Duration (s)

Attr. APs ICs CCs SPs mean max

10 5 1 10 3 0.004 0.056

20 10 2 40 4 0.015 0.217

20 15 2 10 4 0.016 0.330

40 40 3 50 4 0.555 8.169

40 40 3 60 4 0.658 6.714

80 40 3 40 4 0.036 0.812

80 60 3 80 4 0.887 16.602

80 80 3 100 4 5.474 692.235

Table 2. Time required to generate a mediator from policy profiles of various sizes.

of unnecessarily transmitted records depends on the datasets structure. As the
example shows, it is possible that, to answer a query that would not return any
results at all, half of the dataset needs to be transmitted to the mediator first.
Thus, client-side validation whether a record is really contained in the result or
not can lead to a massive and potentially unpredictable performance overhead.

5.2 Policy Transformation Performance

To evaluate the policy transformation performance, we randomly generated pol-
icy profiles of different sizes and measured the time needed to transform the
policy profiles into mediators. For each policy profile size, we generated 5000
policy profiles. We ran the Gurobi solver2 on a commodity computer with 4GB
RAM and a 2.93GhZ Dual Core CPU to conduct the measurements shown in
Table 2. The results show that Securus scales well for reasonably sized scenarios.
The maximum transformation time was less than 693 seconds even for datasets
with 80 attributes, 80 APs and 100 CCs. This is feasible, as mediator generation
only has to be performed once, initially.

5.3 Discussion

Securus allows the definition of APs that guarantee an efficient query execution
of the according queries and CC that prevents SPs from viewing attribute com-
binations or even from inspecting single attribute values. Policy profiles that are
inherently unsolvable exist. As a trivial example, consider a policy profile with
a CC [a1,a2] and an AP [a1,a2]. The CC and the AP contradict each other:
both attributes have to be present at an SP in plaintext or as deterministic sub-
stitutes to satisfy the AP, however, at least one attribute must not be stored as
plaintext or as deterministic substitute to satisfy the CC. In future work, we will
investigate how to support the user in resolving policy conflicts. In particular,
the solution will tell the user why his policy profile is infeasible.

In terms of query constructs, Securus supports equality and range selections
as well as aggregation. It can be easily extended to support further query con-

2 http://www.gurobi.com



structs such as LIKE or GROUP operators. Just like the range and equality selec-
tions, these would have to be bound to a required representation (e.g., plaintext
or deterministic substitute) at the SP.

We assume that the CCs, APs and ICs are known by the user before generat-
ing the mediator and are not subject to changes. However, CCs might change in
reality, for instance, due to shifting legal requirements concerning privacy. APs
might change due to the arising demand to efficiently execute queries that have
not been addressed by existing APs. To account for changing policies, a new
mediator has to be generated and the dataset has to be re-outsourced.

The proposed concept considers each SP as an honest-but-curious attacker.
Unlike other approaches [17, 9], we do not assume that the attacker is not ca-
pable of monitoring operations on the data or queries. We only assume that
the attacker lacks applicable background knowledge on the executed operations
and queries such as the frequency distribution of executed queries. In particu-
lar, using Securus an SP without background knowledge can not violate CCs by
monitoring the effects of an insert operation on the data tables. In future work
we plan to extend Securus to also address attackers with background knowledge
on incoming queries.

6 Conclusion

We presented an outline of Securus, a framework that simplifies data outsourcing
by allowing users to specify their requirements in terms of data confidentiality
and queries that have to be efficiently executable. Based on this information a
software adapter is generated that can be used to outsource the data compli-
antly to the specified requirements and that can execute the specified queries
efficiently. We extended our previous publication of Securus [14] by highlighting
the differences to other data outsourcing frameworks in this paper. One major
difference constitutes that Securus makes use of both fragmentation and encryp-
tion techniques, but also stores attributes redundantly at multiple SPs for a more
efficient query execution if this does not undermine the required data confiden-
tiality. Furthermore, it was shown that Securus can provide hard performance
and confidentiality guarantees. We altered the policy model of the originally
published version of Securus by specifying ICs that make assertions on the as-
sumed attacker’s knowledge. In future work, we can utilize the strict semantics
of ICs to pursuit one of our future research directions: enabling users to model
the attacker’s capabilities in a fine-grained manner. Furthermore, we aim to ex-
plore methods to resolve conflicting requirements and to adapt the approach to
consider fine-grained performance differences of both security mechanisms and
database backends. Although Securus abstracts from confidentiality enhancing
techniques, users are still required to specify which information needs protection.
Enabling users to accurately define their company’s individual confidentiality
needs constitutes an interdisciplinary challenge that needs to be addressed not
only in computer science but also in law and social sciences.
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