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We establish the complete bifurcation diagram for a class of nonlinear problems on the whole space. Our model corresponds to a class of semilinear elliptic equations with logistic type nonlinearity and absorption. Since this problem arises in population dynamics or for fishery or hunting management, we are interested only in situations allowing the existence of positive solutions. The proofs combine elliptic estimates with the method of sub-and super-solutions.

Introduction and the main results

Bifurcation problems have a long history and their treatment goes back to the XVIIIth century. One of the first bifurcation problems is related to the buckling of a thin rod under thrust and was investigated by Daniel Bernoulli and Euler around 1744. In the case in which the rod is free to rotate at both end points, this yields the one-dimensional bifurcation problem

   u ′′ + λ sin u = 0 in (0, L) 0 ≤ u ≤ π u ′ (0) = u ′ (L) = 0 .
In this paper we are concerned with the existence, uniqueness or the non-existence of positive solutions of the eigenvalue logistic problem with absorption

-∆u = λ (V (x)u -f (u)) in R N , N ≥ 3, ( 1 
)
where V is a smooth sign-changing potential and f : [0, ∞) → [0, ∞) is a smooth function. Equations of this type arise in the study of population dynamics. In this case, the unknown u corresponds to the density of a population, the potential V describes the birth rate of the population, while the term -f (u) in [START_REF] Bocher | The smallest characteristic numbers in a certain exceptional case[END_REF] signifies the fact that the population is self-limiting. In the region where V is positive (resp., negative) the population has positive (resp., negative) birth rate. Since u describes a population density, we are interested in investigating only positive solutions of problem [START_REF] Bocher | The smallest characteristic numbers in a certain exceptional case[END_REF]. Bifurcation problems of this type, as well as the associated evolution equations, are naturally related to certain physical phenomena. For example, super-diffusivity equations of this type have been proposed by de P. G. de Gennes [START_REF] De Gennes | Wetting: statics and dynamics[END_REF] as a model for long-range Van der Waals interactions in thin films spreading on solid surfaces. Such equations appear in the study of cellular automata and interacting particle systems with self-organized criticality, as well as to describe the flow over an impermeable plate. We also mention Brusselator type reactions, the combustion theory, dynamics of population, the Fitzhugh-Nagumo system, morphogenesis, superconductivity, superfluids, the buckling of the Euler rod, the appearance of Taylor vortices, and the onset of oscillations in an electric circuit. Problem (1) may be treated as a linear perturbation of the logistic equation on the whole space ∆u = f (u) in R N , but also as a nonlinear perturbation of a related linear eigenvalue problem with anisotropic potential on the whole space. We recall in what follows the results that we need in the sequel. Let Ω be an arbitrary open set in R N , N ≥ 3. Consider the eigenvalue problem

-∆u = λV (x)u in Ω , u = 0 on ∂Ω. (2) 
Problems of this type have a long history. If Ω is bounded and V ≡ 1, problem ( 2) is related to the Riesz-Fredholm theory of self-adjoint and compact operators. The case of a non-constant potential V has been first considered in the pioneering papers of Bocher [START_REF] Bocher | The smallest characteristic numbers in a certain exceptional case[END_REF], Hess and Kato [START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF], Minakshisundaran and Pleijel [START_REF] Minakshisundaran | Some properties of the eigenfunctions of the Laplace operator on Riemann manifolds[END_REF][START_REF] Pleijel | On the eigenvalues and eigenfunctions of elastic plates[END_REF]. For instance, Minakshisundaran and Pleijel [START_REF] Minakshisundaran | Some properties of the eigenfunctions of the Laplace operator on Riemann manifolds[END_REF], [START_REF] Pleijel | On the eigenvalues and eigenfunctions of elastic plates[END_REF] studied the case where Ω is bounded,

V ∈ L ∞ (Ω), V ≥ 0 in Ω and V > 0 in Ω 0 ⊂ Ω with |Ω 0 | > 0.
An important contribution in the study of the anisotropic eigenvalue problem [START_REF] Costa | Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in R N[END_REF] if Ω is bounded has been given by Cuesta [START_REF] Cuesta | Eigenvalue problems for the p-Laplacian with indefinite weights[END_REF] under the assumption that V is a given potential which may change sign and satisfying (H)

V + = 0, and V ∈ L s (Ω) for some s > N/2.

We have denoted V + (x) = max{V (x), 0}. Obviously, V = V + -V -, where V -(x) = max{-V (x), 0}.

In order to find the principal eigenvalue of (2), Cuesta [START_REF] Cuesta | Eigenvalue problems for the p-Laplacian with indefinite weights[END_REF] proved that the minimization problem min

Ω |∇u| 2 dx; u ∈ H 1 0 (Ω), Ω V (x)u 2 dx = 1 has a solution ϕ 1 = ϕ 1 (Ω) ≥ 0 which is an eigenfunction of (2) corresponding to the eigen- value λ 1 (Ω) = Ω |∇ϕ 1 | 2 dx.
Moreover, the least positive eigenvalue λ 1 (Ω) is simple, isolated in the spectrum and it is the unique eigenvalue associated to a nonnegative eigenfunction. Throughout this paper the sign-changing potential V : R N → R is assumed to be a Hölder function that satisfies

(V ) V ∈ L ∞ (R N ) , V + = V 1 + V 2 = 0 , V 1 ∈ L N/2 (R N ) , lim |x|→∞ |x| 2 V 2 (x) = 0 .
We suppose that the nonlinear absorption term

f : [0, ∞) → [0, ∞) is a C 1 -function such that (f 1) f (0) = f ′ (0) = 0 and lim inf uց0 f ′ (u) u > 0; (f 2)
the mapping f (u)/u is increasing in (0, +∞).

This assumption implies lim u→+∞ f (u) = +∞. We impose that f has a superlinear growth at infinity, in the sense that

(f 3) lim u→+∞ f (u) u > V L ∞ .
Our framework includes the following important particular cases: (i) f (u) = u 2 that corresponds to the Fisher equation [START_REF] Costa | Positive solutions to semilinear elliptic equations with logistic type nonlinearities and constant yield harvesting in R N[END_REF][START_REF] Fisher | The wave of advance of advantageous genes[END_REF] and the Kolmogoroff-Petrovsky-Piscounoff equation [START_REF] Kolmogoroff | Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem[END_REF] (see also [START_REF] Kazdan | Scalar curvature and conformal deformation of Riemannian structure[END_REF] for a comprehensive treatment of these equations); (ii) f (u) = u (N +2)/(N -2) (for N ≥ 6) which is related to the conform scalar curvature equation, cf. [START_REF] Li | On conformal scalar curvature equations in R N[END_REF].

For any R > 0, denote B R = {x ∈ R N ; |x| < R} and set

λ 1 (R) = min B R |∇u| 2 dx; u ∈ H 1 0 (B R ), B R V (x)u 2 dx = 1 . (3) 
Consequently, the mapping R -→ λ 1 (R) is decreasing and so, there exists

λ * := lim R→∞ λ 1 (R) ≥ 0 .
We first state a sufficient condition so that λ * is positive. For this aim we impose the additional assumptions

there exists A, α > 0 such that V + (x) ≤ A|x| -2-α , for all x ∈ R N (4) 
and lim

x→0 |x| 2(N -1)/N V 2 (x) = 0. (5) 
Theorem 1.1. Assume that V satisfies conditions (V ), (4) and ( 5). Then λ * > 0.

Our main result asserts that λ * plays a crucial role for the nonlinear eigenvalue logistic problem

     -∆u = λ (V (x)u -f (u)) in R N , u > 0 in R N , lim |x|→∞ u(x) = 0 . (6) 
The following existence and non-existence result shows that λ * serves as a bifurcation point in our problem [START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF].

Theorem 1.2. Assume that V and f satisfy the assumptions (V ), (4), (f 1), (f 2) and (f 3).

Then the following hold: (i) problem ( 6) has a unique solution for any λ > λ * ; (ii) problem ( 6) does not have any solution for all λ ≤ λ * .

The additional condition (4) implies that V + ∈ L N/2 (R N ), which does not follow from the basic hypothesis (V ). As we shall see in the next section, this growth assumption is essential in order to establish the existence of positive solutions of (1) decaying to zero at infinity.

In particular, Theorem 1.2 shows that if V (x) < 0 for sufficiently large |x| (that is, if the population has negative birth rate) then any positive solution (that is, the population density) of (1) tends to zero as |x| → ∞.

Existence of solutions for λ large

We show in this section that λ * plays a crucial role in our analysis, in the sense that the logistic equation ( 1) has entire positive solutions if λ is sufficiently large. However, at this stage, we are not able to establish that this solution decays to zero at infinity. Proposition 2.1. Assume that the functions V and f satisfy conditions (V ), (f 1), (f 2) and (f 3). Then the problem

-∆u = λ (V (x)u -f (u)) in R N , u > 0 in R N (7) 
has at least one solution, for any λ > λ * .

Proof. For any R > 0, consider the boundary value problem

   -∆u = λ (V (x)u -f (u)) in B R , u > 0 in B R , u = 0 on ∂B R . (8) 
We first prove that problem (8) has at least one solution, for any λ > λ 1 (R). Indeed, the function u(x) = M is a super-solution of ( 8), for any M large enough. This follows from (f 3) and the boundedness of V . Next, in order to find a positive sub-solution, let us consider the problem min

u∈H 1 0 (B R ) B R |∇u| 2 -λV (x)u 2 dx .
Since λ > λ 1 (R), it follows that the least eigenvalue µ 1 is negative. Moreover, the corresponding eigenfunction e 1 satisfies

   -∆e 1 -λV (x)e 1 = µ 1 e 1 in B R , e 1 > 0 in B R , e 1 = 0 on ∂B R . (9) 
Then the function u(x) = εe 1 (x) is a sub-solution of the problem [START_REF] Kolmogoroff | Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem[END_REF]. Indeed, it is enough to check that -∆(εe 1 ) -λεV e 1 + λf (εe

1 ) ≤ 0 in B R ,
that is, by [START_REF] Li | On conformal scalar curvature equations in R N[END_REF],

εµ 1 e 1 + λf (εe 1 ) ≤ 0 in B R . ( 10 
) But f (εe 1 ) = εf ′ (0)e 1 + εe 1 o(1), as ε → 0.
So, since f ′ (0) = 0, relation [START_REF] Minakshisundaran | Some properties of the eigenfunctions of the Laplace operator on Riemann manifolds[END_REF] becomes

εe 1 (µ 1 + o(1)) ≤ 0
which is true, provided ε > 0 is small enough, due to the fact that µ 1 < 0. Fix λ > λ * and an arbitrary sequence R 1 < R 2 < . . . < R n < . . . of positive numbers such that R n → ∞ and λ 1 (R 1 ) < λ. Let u n be the solution of (8) on B Rn . Fix a positive number M such that f (M )/M > V L ∞ (R N ) . The above arguments show that we can assume u n ≤ M in B Rn , for any n ≥ 1. Since u n+1 is a super-solution of (8) for R = R n , we can also assume that u n ≤ u n+1 in B Rn . Thus the function u(x) := lim n→∞ u n (x) exists and is well-defined and positive in R N . Standard elliptic regularity arguments imply that u is a solution of problem [START_REF] Kazdan | Scalar curvature and conformal deformation of Riemannian structure[END_REF].

The above result shows the importance of the assumption (4) in the statement of Theorem 1.2. Indeed, assuming that V satisfies only the hypothesis (V ), it is not clear whether or not the solution constructed in the proof of Proposition 2.1 tends to 0 as |x| → ∞. However, it is easy to observe that if λ > λ * and V satisfies (4) then problem (6) has at least one solution. Indeed, we first observe that

u(x) = εe 1 (x), if x ∈ B R 0, if x ∈ B R (11) 
is a sub-solution of problem ( 6), for some fixed R > 0, where e 1 satisfies (9). Next, we observe that u(x) = n/(1 + |x| 2 ) is a super-solution of (6). Indeed, u satisfies

-∆u(x) = 2[n(1 + |x| 2 ) -4|x| 2 ] (1 + |x| 2 ] 2 u(x), x ∈ R N .
It follows that u is a super-solution of (6) provided

2[n(1 + |x| 2 ) -4|x| 2 ] (1 + |x| 2 ) 2 ≥ λV (x) -λf n 1 + |x| 2 , x ∈ R N .
This inequality follows from (f 3) and ( 4), provided that n is large enough.

3 Proof of Theorem 1.1

For any R > 0, fix arbitrarily u ∈ H 1 0 (B R ) such that B R V (x)u 2 dx = 1. We have 1 = B R V (x)u 2 dx ≤ B R V + (x)u 2 dx = B R V 1 (x)u 2 dx + B R V 2 (x)u 2 dx. Since V 1 ∈ L N/2 (R N
), using the Cauchy-Schwarz inequality and Sobolev embeddings we obtain

B R V 1 (x)u 2 dx ≤ V 1 L N/2 (B R ) u 2 L 2 * (B R ) ≤ C 1 V 1 L N/2 (R N ) B R |∇u| 2 dx, (12) 
where 2 * = 2N/(N -2). Fix ǫ > 0. By our assumption (V ), there exists positive numbers δ, R 1 and R such that

R -1 < δ < R 1 < R such that for all x ∈ B R satisfying |x| ≥ R 1 we have |x| 2 V 2 (x) ≤ ǫ . ( 13 
)
On the other hand, by (V ), for any x ∈ B R with |x| ≤ δ we have

|x| 2(N -1)/N V 2 (x) ≤ ǫ. ( 14 
)
Define Ω := ω 1 ∪ ω 2 , where

ω 1 := B R \ B R 1 , ω 2 := B δ \ B 1/R , and ω := B R 1 \ B δ .
By (13) and Hardy's inequality we find

ω 1 V 2 (x)u 2 dx ≤ ǫ ω 1 u 2 |x| 2 dx ≤ C 2 ǫ B R |∇u| 2 dx. ( 15 
)
Using now ( 14) and Hölder's inequality we obtain

ω 2 V 2 (x)u 2 dx ≤ ǫ ω 2 u 2 |x| 2(N -1)/N dx ≤ ǫ ω 2 1 |x| 2(N -1)/N dx N/2 dx 2/N u 2 L 2 ⋆ (B R ) ≤ Cǫ δ 1/R 1 s N -1 s N -1 ω N ds 2/N B R |∇u| 2 dx ≤ C 3 δ - 1 R 2/N B R |∇u| 2 dx. ( 16 
)
By compactness and our assumption (V ), there exists a finite covering of ω by the closed balls B r 1 (x 1 ), ..., B r k (x k ) such that, for all 1

≤ j ≤ k if |x -x j | ≤ r j then |x -x j | 2(N -1)/N V 2 (x) ≤ ǫ. ( 17 
)
There exists r > 0 such that, for any 1

≤ j ≤ k if |x -x j | ≤ r then |x -x j | 2(N -1)/N V 2 (x) ≤ ǫ k .
Define A := ∪ k j=1 B r (x j ). The above estimate, Hölder's inequality and Sobolev embeddings yield

Br(x j ) V 2 (x)u 2 dx ≤ ǫ k Br(x j ) u 2 |x -x j | 2(N -1)/N dx ≤ ǫ k Br(x j ) |x -x j | -2(N -1)/N N/2 dx 2/N u 2 L 2 ⋆ (B R ) ≤ C ǫ k Br 1 |x| N -1 dx 2/N B R |∇u| 2 dx = C ǫ k r 0 1 s N -1 s N -1 ω N ds 2/N B R |∇u| 2 dx = C ′ B R |∇u| 2 dx,
for any j = 1, . . . , k. By addition we find

A V 2 (x)u 2 dx ≤ C 4 B R |∇u| 2 dx. (18) 
It follows from (17) that V 2 ∈ L ∞ (ω \ A). Actually, if x ∈ ω \ A it follows that there exists j ∈ {1, ..., k} such that r j > |x -x j | > r > 0. Thus,

V 2 (x) ≤ r -2(N -1)/N ǫ . Hence ω\A V 2 (x)u 2 dx ≤ ǫr -2(N -1)/N ω\A u 2 dx ≤ C 5 B R |∇u| 2 dx. (19) 
Now from inequalities (12), ( 15), ( 16), ( 18) and (19) we have

λ 1 (R) ≥ C 1 V 1 L N/2 (R N ) + C 2 ǫ + C 3 δ -R -1 2/N + C 4 + C 5 -1
and passing to the limit as R → ∞ we conclude that

λ * ≥ C 1 V 1 L N/2 (R N ) + C 2 ǫ + C 3 δ 2/N + C 4 + C 5 -1 > 0.
This completes the proof of Theorem 1.1.

Proof of Theorem 1.2

We split the proof of our main result into several steps. Throughout this section we assume that the hypotheses of Theorem 1.2 are fulfilled.

Proposition 4.1. Let u be an arbitrary solution of problem [START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF]. Then there exists C > 0 such that |u(x)| ≤ C|x| 2-N for all x ∈ R N .

Proof. Let ω N be the surface area of the unit sphere in R N . Consider the function V + u as a Newtonian potential and define

v(x) = 1 (N -2)ω N R N V + (y)u(y) |x -y| N -2 dy.
A straightforward computation shows that

-∆v = V + (x)u in R N . (20) 
But, by (4) and since u is bounded,

V + (y)u(y) ≤ C|y| -2-α , for all y ∈ R N .
So, by Lemma 2.3 in Li and Ni [START_REF] Li | On conformal scalar curvature equations in R N[END_REF],

v(x) ≤ C|x| -α , for all x ∈ R N ,
provided that α < N -2. Set w(x) = Cv(x) -u(x). Hence w(x) → 0 as |x| → ∞. Let us choose C sufficiently large so that w(0) > 0. We claim that this implies

w(x) > 0, for all x ∈ R N . (21) 
Indeed, if not, let x 0 ∈ R N be a local minimum point of w. This means that w(x 0 ) < 0, ∇w(x 0 ) = 0 and ∆w(x 0 ) ≥ 0. But ∆w(x 0 ) = -CV + (x 0 )u(x 0 ) + λ (V (x 0 )u(x 0 ) -f (u(x 0 ))) < 0, provided that C > λ. This contradiction implies (21). Consequently,

u(x) ≤ Cv(x) ≤ C|x| -α , for any x ∈ R N .
So, using again (4),

V + (x)u(x) ≤ C|x| -2-2α , for all x ∈ R N .
Lemma 2.3 in [START_REF] Li | On conformal scalar curvature equations in R N[END_REF] yields the improved estimate v(x) ≤ C|x| -2α , for all x ∈ R N , provided that 2α < N -2, and so on. Let n α be the largest integer such that n α α < N -2.

Repeating n α + 1 times the above argument based on Lemma 2.3 (i) and (iii) in [START_REF] Li | On conformal scalar curvature equations in R N[END_REF] we obtain u(x) ≤ C|x| 2-N , for all x ∈ R N .

Proposition 4.2. Let u be a solution of problem [START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF].

Then V + u, V -u, f (u) ∈ L 1 (R N ), and u ∈ H 1 (R N ).
Proof. For any R > 0 consider the average function

u(R) = 1 ω N R N -1 ∂B R u(x)dσ = 1 ω N ∂B 1 u(rx)dσ,
where ω N denotes the surface area of S N -1 . Then

u ′ (R) = 1 ω N ∂B 1 ∂u ∂ν (rx)dσ = 1 ω N R N -1 ∂B R ∂u ∂ν (x)dσ = 1 ω N R N -1 B R ∆u(x)dx. Hence ω N R N -1 u ′ (R) = -λ B R (V (x)u -f (u)) dx = -λ B R V + (x)udx + λ B R V -(x)u + f (u) dx. (22) 
By Proposition 4.1, there exists C > 0 such that |u(r)| ≤ Cr -N +2 , for any r > 0. So, by (4),

1≤|x|≤r V + (x)udx ≤ CA 1≤|x|≤r |x| -N -α dx ≤ C,
where C does not depend on r. This implies V + u ∈ L 1 (R N ). By contradiction, assume that V -u + f (u) ∈ L 1 (R N ). So, by (22), u ′ (r) > 0 if r is sufficiently large. It follows that u(r) does not converge to 0 as r → ∞, which contradicts Proposition 4.1. So, V -u + f (u) ∈ L 1 (R N ). Next, in order to establish that u ∈ L 2 (R N ), we observe that our assumption (f 1) implies the existence of some positive numbers a and δ such that f ′ (t) > at, for any 0 < t < δ. This implies f (t) > at 2 /2, for any 0 < t < δ. Since u decays to 0 at infinity, it follows that the set {x ∈ R

N ; u(x) ≥ δ} is compact. Hence R N u 2 dx = [u≥δ] u 2 dx + [u<δ] u 2 dx ≤ [u≥δ] u 2 dx + 2 a [u<δ] f (u)dx < +∞ , since f (u) ∈ L 1 (R N ).
It remains to prove that ∇u ∈ L 2 (R N ) N . We first observe that after multiplication by u in (1) and integration we find

B R |∇u| 2 dx - ∂B R u(x) ∂u ∂ν (x)dσ = λ B R (V (x)u -f (u)) dx,
for any r > 0. Since V u -f (u) ∈ L 1 (R N ), it follows that the left hand-side has a finite limit as r → ∞. Arguing by contradiction and assuming that ∇u ∈ L 2 (R N ) N , it follows that there exists R 0 > 0 such that 

C(R) = B R |∇u(x)| 2 dx .
The integro-differential inequality (23) can be rewritten as

A(R) ≥ 1 2 C(R), for any R ≥ R 0 . ( 24 
)
On the other hand, by the Cauchy-Schwarz inequality,

A 2 (R) ≤ ∂B R u 2 dσ ∂B R ∂u ∂ν 2 dσ ≤ B(R)C ′ (R).
Using now (24) we obtain 

C ′ (R) ≥ C 2 (R) 4B ( 

Proposition 4 . 3 .

 43 for any R ≥ R 0 . (25) But, since u ∈ L 2 (R N ), it follows that ∞ 0 B(t)dt converges, so lim hand, our assumption |∇u| ∈ L 2 (R N ) implies lim ), (26) and (27) yield a contradiction, so our proof is complete. Let u and v be two distinct solutions of problem[START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF]. Then lim
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Proof. By multiplication with v in [START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF] and integration on B R we find

So, by Proposition 4.2, there exists and is finite lim R→∞ ∂B R u ∂v ∂ν dσ. But, by the Cauchy-Schwarz inequality,

Our conclusion now follows by relations (28) and (29).

Proof of Theorem 1.2 concluded. (i) The existence of a solution follows with the arguments given in the preceding section. In order to establish the uniqueness, let u and v be two solutions of [START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF]. We can assume without loss of generality that u ≤ v. This follows from the fact that u = min{u, v} is a super-solution of ( 6) and u defined in ( 11) is an arbitrary small sub-solution. So, it sufficient to consider the ordered pair consisting of the corresponding solution and v.

Since u and v are solutions we have, by Green's formula,

By Proposition 4.3, the left hand-side converges to 0 as R → ∞. So, (f 1) and our assump-

(ii) Arguing by contradiction, let λ ≤ λ * be such that problem [START_REF] Hess | On some linear and nonlinear eigenvalue problems with indefinite weight function[END_REF] has a solution for this λ.

By Propositions 4.2 and 4.3 and letting R → ∞ we find

On the other hand, using the definition of λ * and (3) we obtain

), the Sobolev embedding theorem implies that that u ∈ L 2N/(N -2) (R N ). So, the Lebesgue dominated convergence theorem yields

We claim that

Indeed, let Ω n := {x ∈ R N ; n < |x| < 2n}. Applying Hölder's inequality we find

But, since |∇u| ∈ L 2 (R N ), it follows by Lebesgue's dominated convergence theorem that

Next, we observe that

Relations ( 33)-(36) imply our claim (32). Since

So, by (30) and (37), it follows that there exists n 0 ≥ 1 such that

This means that we can write (31) for ζ replaced by Ψ n ∈ C 2 0 (R N ). Using then (32) and (37) we find

Relations ( 30) and (38) yield a contradiction, so problem (6) has no solution if λ ≤ λ * .