
HAL Id: hal-01275907
https://hal.science/hal-01275907

Submitted on 18 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Resource management for multimedia applications,
distributed in open and heterogeneous home networks

Maxime Louvel, Alain Plantec, Jean-Philippe Babau

To cite this version:
Maxime Louvel, Alain Plantec, Jean-Philippe Babau. Resource management for multimedia applica-
tions, distributed in open and heterogeneous home networks. Journal of Systems Architecture, 2013,
59 (3), pp.121-134. �10.1016/j.sysarc.2013.01.003�. �hal-01275907�

https://hal.science/hal-01275907
https://hal.archives-ouvertes.fr

Resource management for multimedia applications, distributed in open and
heterogeneous home networksI

Maxime Louvela,b,∗, Alain Plantecb, Jean-Philippe Babaub

aFrance Telecom R&D, 28 chemin du vieux chêne 38240 Meylan France
bUBO Université Eurepéenne de Bretagne, UFR Sciences et Techniques Département Informatique, 20 avenue Le Georgie

29200 Brest France

Abstract

The home network is an open, heterogeneous and distributed environment where ensuring multimedia ap-
plications’ quality of service is a main concern. Mechanisms to reserve resources (CPU, memory, network)
and architectures using them already exist. However, they require to modify the devices or the applications
and they do not take into account the heterogeneity of the home network.

This paper presents a non-intrusive and adaptable resource management framework. This framework is
developed upon an architecture, customized for the actual devices. This architecture uses global components
that delegate to local components the management of local resources. These components rely on the resource
reservation mechanisms provided by the Linux operating system in order to guarantee the resources to the
applications.

The framework has been implemented on real devices (PCs, laptops and embedded multimedia devices),
bridged with wireless and Ethernet networks. The evaluations of the framework show that reservations are
guaranteed even if noise is generated on the resources, which also guaranties the expected quality of service.

Keywords: Home network, quality of service, resources management, multimedia, heterogeneity

1. Introduction

In the recent years, the home network has evolved
from a few PCs connected to the Internet to an
open environment, interconnecting devices that ac-
cess distributed multimedia contents. Historically,
telecoms service providers were the only one in the
user home network. They are now sharing this mar-
ket with devices manufacturers and applications
providers. These three players provide the home
with applications and devices that are automati-
cally interconnected, thanks to standards such as
UPnP (Universal Plug and Play) [3].

Thanks to these standards and to the improved
embedded devices, multimedia application are now

IThis work is an extension of the work published in [1]
and [2]. This paper presents a more global and integrated
contribution, based on the work published in the two con-
ferences. Moreover new evaluations are detailed.

∗corresponding author
Email addresses: m.louvel@gmail.com (Maxime

Louvel), firstname.lastname@univ-brest.fr
(Jean-Philippe Babau)

spreading through all the home devices. For in-
stance, a user may want to render a movie, stored
in a PC somewhere in its network, on its mobile
phone using a Wifi link, or on the bedroom’s Set-
Top-Box using an Ethernet link.

Multimedia applications are considered as soft
real time since violating a timing constraint does
not lead to a system failure. However it degrades
the Quality of Serivce (QoS) provided to the user.
In the competitive home market its necessary to
provide the expected QoS to the user. To provide
such a QoS, a multimedia application requires a set
of Quantities of Resource (QoR).

To guarantee these QoR, it is possible to reserve
them to the applications [4, 5, 6]. During the last
years, an effort has been done to build distributed
resource management architecture [7, 8]. These
architectures help the designer to make applica-
tions sensitive to resources availability. However
these works focus on system or application design
and they require to use specific patterns. More-
over these architecture assume specific mechanisms

Preprint submitted to Journal of Systems Architecture February 18, 2016

such as Earliest Deadline First (EDF) scheduler to
be available on the devices. Devices of the home
network use General Purpose Operating Systems
(GPOS) such as Linux. Even if research works
have helped to integrate real-time scheduler inside
Linux [9, 5, 10], a modification of the operating sys-
tem is still required. In the home network neither
the applications nor the devices may be modified
easily. Finally these architecture are built using a
specific middleware when none has emerged in the
home network. Hence these solutions can not be
used in the home network.

Besides the home network is an heterogeneous
environment, in terms of devices, applications and
communication technologies. This aspect has not
been considered in the above solutions, limiting
their ability to be used in this environment. In-
deed, to be successfully used in the home network,
a resource management solution needs to take into
account this heterogeneity and to adapt itself to
the devices, the communication technologies and
the reservation mechanisms that are available.

1.1. Contributions of the paper

The first contribution of this paper is ARMOR
(A Resource Management framewORk), to address
these open issues. When a user asks to start a
multimedia application, ARMOR checks that the
required quantities of resource are available on all
the resources used. In that case, it reserves the
required quantities on all the resources using the
operating system’s mechanisms. Hence the appli-
cation has the required QoR and provides the ex-
pected user-level QoS. ARMOR is based on a dis-
tributed resource management architecture to sup-
port streaming applications. This architecture re-
lies on resource management components that are
configured according to the operating system of the
devices and the links used. Hence the components
handle the home network heterogeneity. These
components do the admission control tests and
make the QoR reservations using standard Linux
mechanisms and standard network protocols. Thus
ARMOR supports home devices without modify-
ing them. Finally, to support legacy application,
ARMOR has a non intrusive approach to estimate
and reserve the quantities of resources required by
multimedia applications.

The second contribution of this paper is the im-
plementation of ARMOR on real Linux based de-
vices. To show its ability to be used in home net-

Client 2

Lien Wi

Lien Ethernet

Client 1

Serveur 1

Serveur 2

Home

Gateway

Figure 1: a home network example, with two multimedia
applications

works, ARMOR has been tested on beagleboards1

which are embedded multimedia devices, emulating
typical home network devices such as mobile phones
or Set-Top-Boxes.

1.2. Paper structure

This paper is organized as follows. After intro-
ducing the context of this study, i.e. the home net-
work, the section 2 details the reservation mecha-
nisms available on the home device. After present-
ing related work on resource management, in sec-
tion 3, section 4 presents our resource management
framework called ARMOR. This section details the
internals of ARMOR and how it integrates existing
resource reservation mechanisms. Section 5 quali-
tatively evaluates ARMOR and shows it ability to
guarantee the resources required by multimedia ap-
plications. Finally section 6 concludes this paper
and gives future works.

2. Home network and resource reservation

Today’s home networks are based on a star topol-
ogy. The home gateway acts as a router (IP level),
an Ethernet switch and a Wifi access point. The
devices of this network are heterogeneous, and be-
long either to the user (mobile phone, PDA, PC) or
to the telecoms service provider (gateway, Set-Top-
Boxes).

The Figure 1 gives an example of a home network
with two multimedia applications: from server 1 to
client 1 and from server 2 to client 2. A multime-
dia application consists in sending a given encoded
stream, from the device executing the server to the
device executing the client, via a given network link,
with two given software.

1http://beagleboard.org/

2

Distributed multimedia applications use comput-
ing (CPU), storage (RAM) and communication re-
sources (network interfaces and links). Resources
belonging to a device (CPU, RAM and network in-
terfaces) are managed by a GPOS. Among the ex-
isting GPOS, Linux is open and nowadays widely
used; therefore this study focuses on Linux. The
communication resources (the links and the home
gateway) are shared among all the home devices.
They are accessed through standard network pro-
tocols.

Before explaining how the resources are accessed
and how they may be reserved, the next section
gives definitions on quantity of resource reservation.

2.1. Quantity of Resource reservation

In order to reserve a quantity of resource to an
application, it necessary to [11, 12, 13]:

• estimate the QoR required by the application
and the QoR available on the resource

• do an admission control test to accept or reject
the request

• guarantee and limit the reservation

• account for reservations’ utilization.

If the four above requirements are respected, then
two applications using the same resource will not
interfere with each other, even if one is trying to use
more than its reservation. This property is called
temporal isolation [5].

Finally, there is three types of QoR reserva-
tion [5]:

• hard: an application can not use more than its
reservation even if the resource is not used;

• firm: an application may use more than its
reservation only if the resource is not used;

• soft: an application may use more than its
reservation while this does not affect the other
reservations.

However, in most of the work using QoR reserva-
tion, only hard and soft reservations are used.

This section now details the reservation mecha-
nisms, that are available in the home network and
that may be used to reserve the required QoR,
starting with the network resources.

2.2. Network

A multimedia application uses three network re-
sources: the network interfaces of the server and the
client devices and the link between them. The link
include the Ethernet cables and the home gateway
or the Wifi link and the home gateway. It is not
possible to control the traffic arriving to a device.
Thus the reservations have to be done on the link
and the interface of the server device.

Links are accessed through layered network pro-
tocols, typically RTSP (Real Time Streaming Pro-
tocol) over RTP (Real-time Transport Protocol) or
UDP for streaming applications. RTP and UDP
are used over the IP protocol, used over the proto-
col matching the underlying technology (Ethernet
or Wifi) at the MAC layer. The home is a Local
Area Network (LAN). In a LAN, the network band-
width is managed at the MAC layer. Within this
layer, network QoS standards define traffic classes
and priority between traffic classes. For Ethernet,
the standard is 802.1p, containing 7 traffic classes,
and for Wifi the standard is 802.11e [14, 15], con-
taining 4 traffic classes. Thanks to these standards
the multimedia traffic accesses the link before the
default traffic. However these standards do not dif-
ferentiate the traffic of two multimedia applications.
Hence two applications using the same link may in-
terfere with each other. Dealing with this issue has
to be done on the network interface of the server
device. Finally, to use these standards, the server
device and the home gateway have to support the
same standard. Due to the heterogeneity and cost
constraints this is not always the case in a home
network. Once again this has to be dealt with at
the network interfaces of the devices.

On the server device, operating system’s mecha-
nisms allow to differentiate the traffic of each mul-
timedia application. In Linux, the Hierarchical To-
ken Bucket (HTB) [16] elements of the traffic con-
trol tool (called tc)2 offer scheduling and shaping
of the exiting traffic. Scheduling assigns the output
bandwidth to the different tc classes, while shap-
ing limit the output of the tc classes. The shaping
is done according to the token bucket model where
the output traffic is defined by a mean rate r and
a maximum burst b. Hence it is possible, on the
server device, to reserve bandwidth to an applica-
tion. This reservation is then guaranteed and the
kernel also enforces that the application will not use
more than its reservation.

2http://lartc.org/

3

2.3. CPU

There is two types of scheduling algorithms allow-
ing for CPU reservation [17, 18]. The algorithms
of the first type are based on a server and use a
real time scheduler. One of the most used is the
Constant Bandwidth Server (CBS) [19, 20] which
is based on the well known Earliest Deadline First
(EDF) scheduler. EDF executes the thread with
the shortest deadline. A thread τi is assumed to
have the parameters (Ci, Ti), where Ci is the Worst
Case Execution Time (WCET) of the thread and
Ti its activation period. With EDF, if the test (1)
is true then the set of n threads is schedulable [21].

n∑
i=1

Ci

Ti
≤ 1 (1)

Legacy multimedia applications do not have explicit
WCET and deadlines. Thus the CBS algorithm
uses CBS servers with explicit parameters (Cs, Ts).
A CBS server executes one or more threads. Hence
the threads gain explicit WCET and deadlines. If
the CBS server parameters match the thread pa-
rameters, then the thread deadlines are guaran-
teed [19]. The CBS scheduler allows soft or hard
CPU reservation.

The other type of scheduling algorithms are
called proportional share. They assign the CPU ac-
cording to the weights of the threads. The default
scheduler of the Linux kernel, the Completely Fair
Scheduler (CFS) [22], is a proportional share sched-
uler. It ensures that after a period Tsched, each
threads have its share of CPU Fi defined by (2),
where wi is the weight of the thread τi. By default
Tsched is 20 milliseconds. If the number of threads
grows too high, the kernel may increase Tsched in
order to decrease the scheduler overhead. However
in the context of this study, the number of threads
executing stays low and Tsched is assumed to stay
at 20 milliseconds. The CFS scheduler allows only
soft CPU reservation.

Fi =
wi∑n
j=1 wj

(2)

In addition, the scheduler CFS allows to man-
age the quantities of resource used by a group of
threads, with the control groups system also called
cgroups [23]. The share Fi defined in (2) is then
used to assign the CPU between cgroups instead of
between all the threads.

2.4. Memory

Multimedia and other applications require mem-
ory to work properly. When there is not enough
RAM memory to serve all the threads currently ex-
ecuting, the operating system moves pages to the
SWAP memory. The SWAP being slower than the
RAM, it is necessary to prevent a multimedia ap-
plication from using it. Otherwise deadline will be
missed and the QoS will be degraded.

Similarly to the CPU, Linux offers a per cgroup
memory management [24]. It allows to define a
limit (soft or hard) on the RAM used by a cgroup.
In the case of a hard limit, when a thread tries to
use the RAM above its cgroup’s limit, the mem-
ory management system moves pages belonging to
the same cgroup to the SWAP. When a soft limit
is used, a cgroup may use more of RAM than its
limit while this memory is not claimed by another
cgroup. Moreover, the Linux kernel move the mem-
ory to the SWAP on a per cgroup basis. If a thread
of a cgroup uses a lot of memory, then pages be-
longing to a thread of the same cgroup are move to
the SWAP. Thus the other cgroups are not move to
SWAP.

This section has presented the reservation mech-
anism for the resources used by multimedia appli-
cation. The next section presents related works, on
Quantity of Resource management solutions inte-
grating the above mechanisms.

3. Related works

This section details related works in the area of
quantity of resource management. It first details
works focusing on the architecture. Then it shows
the solution that are integrated within the operat-
ing system, solutions focused on network resources
and solutions integrated within the middleware. Fi-
nally it discusses the related works regarding the
home network constraints.

3.1. Architecture

The research works focusing on the architec-
ture used a centralized architecture with one global
manager in the network and several local man-
ager, installed on the devices. For instance the
Quality-based Adaptive Resource Management Ar-
chitecture (QARMA) [8], the Resource Allocation
and Control Engine (RACE) [7] and the FRSH/-
FORB [25] use this architecture and implement it

4

within a CORBA middleware. The same archi-
tecture is found at a local level only in Qinna [6]
where a central manager handles all the contracts
made to access the device’s resources. The con-
tracts for each resource are handled by a manager
dedicated to the resource. Finally in the home net-
work the UPnP consortium has defined the UPnP
QoS specification [26]. This specification considers
only the network resources but uses one global man-
ager (called QoSManager) and several local man-
agers (called QoSDevice) to manage the devices’
network interfaces.

This architecture is suitable for a home network
which is a closed environment with a relatively
small number of devices (compare wide area net-
works). Moreover a home network belongs to a sin-
gle user. Hence it is possible to control the devices
and the links.

3.2. Operating system based solutions

Several approaches has been chosen integrate re-
source management in the operating system:

• a dedicated operating system such as Qinna [6];

• a strong modification of the Linux kernel to
integrate a resource management architecture
inside the kernel as in the resource kernel [5]
or in Redline [27];

• a light modification of the Linux kernel, with
a patch and a new kernel module as in AQu-
oSA [9].

A distributed extension to the resource kernel
(distRK) [28] adds an admission control test for
the end to end deadlines of the tasks, considering
the network QoS characteristics (delay, jitter, loss
rate). However there is no reservation made on the
network to enforce the admission control test.

3.3. Network based solutions

In the home network community, research works
have focused on providing enough of network band-
width to multimedia application and guaranteeing
the network QoS characteristics. These works do
not focus on the whole problem of reserving the
required quantities of resources as in this paper.
In [29] the authors proposed a mapping between
different network layers for stream coming from out-
side of the home network. In [30], the authors pro-
posed a model based estimation of the available
network bandwidth. In [31], the authors propose

a joint admission and rate control. Their goal is to
share the wireless bandwidth where we seek to en-
force the bandwidth required by the multimedia ap-
plications. Finally, in [32], the authors propose the
QoSiLAN system. QoSiLAN provides automatic
discovery of the network and an automatic estima-
tion of the required network bandwidth. The reser-
vations are made by limiting the sending capacity of
the devices. As far as the knowledge of the authors
goes, their is no implementation of QoSiLAN.

3.4. Middleware based solutions

Several resource management solutions have been
integrated into middlewares to support distributed
applications. Traditional middleware are not effi-
cient for real-time application. The related works
detailed here use middleware such as TAO [33],
CIAO [34] or QuO [35], that have brought real-time
and adaptability features into CORBA. Relying on
these middlewares, it is possible to make resource
reservations for CORBA applications [36, 7]. The
reservations are made thanks to real-time operating
systems and specific network QoS standards.

Another promising approach is the FRSH/-
FORB [25] project. It is implemented with a
CORBA middleware but as far as our understand-
ing goes it could be implemented within another
middleware. FRSH/FORB focuses on the contract
made to ensure the quantities of resources to the
application. The contract can be done at several
layers and for several resources. A contract is seen
as a generic entity that is customized to fit a spe-
cific resource or different layer in their architec-
ture. However FRSH/FORB does not focus on the
heterogeneity of the available resource reservations
mechanisms. For instance FRSH/FORB may sup-
port different operating systems but expects all of
them to provide an EDF scheduler. For the net-
work resources, it relies on the 802.11e network QoS
standard.

3.5. Home network constraints

The table 1 summarizes the related works. The
first column reference the solution, the second give
the mechanisms used to guarantee the reservation,
the third shows how good is the solution to use
legacy applications. *** means the solution sup-
port legacy applications with known required QoR,
** means the applications have to modified and *
means the applications have to be redesigned. The
fourth column shows how close is a solution to be in-
stalled on existing devices. *** means the solutions

5

Solution Guarantee Leg. Intr. Res.

AQuoSA [9] patch *** ** C

Qinna [6] OS * * C,M

Redline [27] OS * * C,M,D

LinuxRK [5] OS *** **
C,M,
D,N

distRK [28] OS + AC ** ** C

E-to-E TimeSys
* * C,NQoS DiffServ

[36] shaping

RACE [7]
TAO

* * C,M,NDiffserv
RT-Linux

QARMA [8] QuO, RTOS * * C,M,N

FRSH/ AQuoSA,
*** *** C,D,N

FORB [25] 802.11e

UPnP QoS AC *** *** N

QoSiLAN bandwidth
*** *** N

[32] limit

Table 1: related works comparison (Leg.: Legacy applica-
tion support: *** → possible, * → poor; Intr.: Intrusivity
level: *** → low, * → high; Res. supported resource CPU,
Memory, Disk, Network; AC: Admission Control)

can be use on a device if it provides the reservation
mechanisms expected, ** means the Linux kernel
needs to be slightly modified and * means it has to
be strongly modified. Finally the last column gives
the resources supported by the solution.

Only the three last lines have a double *** which
means they are closer to be suitable for the home
network. However FRSH/FORB makes strong as-
sumption on the underlying operating system such
as an EDF scheduler. Hence it can not be used eas-
ily in a home network. The two last solutions deal
only with network resources. Moreover there is no
implementation on actual devices of these solutions.

In addition, the solutions presented in this sec-
tion do not consider the heterogeneity of the home
network. They all assume specific reservation mech-
anisms to be there when they should adapt to the
available mechanisms.

4. A Resource Management framewORk

This section details ARMOR, A Resource Man-
agement framewORk targeting quantity of re-
source management for multimedia applications,
distributed in home networks. This section firstly
describes how the quantities of resource are esti-
mated for an application. Then it details how these
quantities are expressed and what values are used

for an application. Afterward, this section details
the model of ARMOR and how it is integrated into
a home network, thanks to its component based
architecture. Then, this section describes the two
stages used by ARMOR: an initialization stage,
that is done only once, and a stage executed when-
ever a user wants to start a multimedia application.
Finally, this section explains how the reservation
are deleted when a multimedia application termi-
nates.

4.1. Quantity of resource estimation

The quantity of CPU and RAM resources re-
quired on a device, for the client of the streaming
(resp. the server) are function of:

• the content of the stream, its codec (e.g. H264)
and its encoding parameters (e.g. frame size)

• the software used

• the device itself and the other resources used on
the device (e.g. utilization of a Digital Signal
Processor (DSP)).

To cope with this heterogeneity ARMOR uses a
database filled with previous measurements. This
database associates a required QoR to every config-
uration, on every resource. The size of the database
may be decreased by aggregating the data [37] but
this is not the scope of this paper. If an unknown
configuration is requested, it is possible to execute
the application with the biggest possible reserva-
tions on every resource and to monitor their us-
age for a future execution [38]. In this paper, we
consider that the configuration is known when the
user ask to start a multimedia application. Once
ARMOR has read the necessary information into
the database, it fills a manifest describing required
quantities of CPU and RAM resources for the user
request.

The required quantity of network resource is the
same for all the network resources used. This quan-
tity is directly related to the stream that is sent
from the server to the client. To estimate the re-
quired network QoR, ARMOR analyzes the stream
on-line, when the user requests to start the applica-
tion, and computes the required network QoR [1].

4.2. Quantity of Resource expression

The QoR expression is function of the resource
type. For the network resources the QoR is ex-
pressed, for an application i as a bandwidth Xi in

6

kilobits/s. Multimedia applications are also sensi-
tive to the network QoS of the link. These require-
ments are expressed as constraints on the network
QoS characteristics: the delay, the jitter and the
loss rate of the link. For the CPU resources, the
QoR is expressed with (Cik, Ti) where Cik is the
quantity of CPU required by the application i on
the device k, in % and Ti is the period of the appli-
cation. Finally for the RAM resources, the QoR is
expressed with a quantity Yik in Megabytes for the
application i on the device k.

The quantities of resource used by an application
fluctuates over the time. For the network resources,
the streams used are encoded with a Variable Bit
Rate (VBR). For the CPU resources, the quantity
of CPU required to decode each frame, on the client,
is also fluctuating. The quantity of RAM is more
stable since almost all the memory allocations are
done when the application is started. In order to
simplify the admission control tests and the reser-
vations, ARMOR uses a few values to express the
required QoR on each resource, during the whole
application’s execution.

Network resources. Links, especially Wifi ones, are
shared by all the devices in the home network.
Over-reserving network resources, to ensure the
quality of service, resources may be wasted and the
number of applications that can run at the same
time may decrease. However it is mandatory to
ensure the QoS of multimedia applications. To
deal with this trade-off, ARMOR makes two reser-
vations for each application. One reservation, of
statMaxQoRi, is dedicated to the application. The
other reservation, of maxQoRi − statMaxQoRi, is
shared by all the applications using the same net-
work resource. The required QoR for the network
resources is expressed by:

• maxQoRi: the maximum quantity of network
required (in kbits/s).

• statMaxQoRi: the maximum quantity of net-
work required without the pics of utilization
(in kbits/s). statMaxQoRi is the value where
10% of the required quantities are above and
90% are below. To compute statMaxQoRi,
the Bienaymé–Chebyshev [39] inequality is
used. This inequality says that 89% of the val-
ues are under arithmetic mean+ 3σ.3

3this value makes no assumption on the data distribution.
If it is a Gaussian, a lower value such as arithmetic mean+
1.6σ may be used.

For the network QoS of the link, three values are
used to express an higher bound on every network
QoS characteristic (delay, jitter, loss rate).

CPU and RAM resources. For the CPU resources,
the reservation mechanisms do not allow to use a
statMaxQoR value. Hence the required quantity of
CPU is expressed, for an application i on a device
k with (maxQoRik, Ti) (in (%,milliseconds)). The
reservation period is set to Ti = 1

frame ratei
, for

the stream i, on the server and the client devices.
Finally, for the RAM resources, the required QoR
is maxQoRik (in MegaBytes).

After this presentation of the QoR expressions,
the internal of ARMOR is now detailed, starting
with its model.

4.3. ARMOR’s Model

ARMOR is made of resource management com-
ponents called Managers. The Figure 2 shows the
model of ARMOR using an UML class diagram. A
Manager has a type and is either a LocalManager

or a GlobalManager. The types currently sup-
ported are CPU, RAM and network. A LocalManager

is in charge of managing one LocalResource of the
same type. A LocalResource is a resource be-
longing to one device, such as the CPU, the RAM
or a network interface. A GlobalManager coordi-
nates the management of all the resources of the
same type. It is directly in charge of managing
the GlobalResources and it delegates the man-
agement of LocalResources to the corresponding
LocalManager. A GlobalManager may manage
several GlobalResources and delegate the manage-
ment of several LocalResources while they are all
of the same type. For instance, for the network
type, the GlobalManager manages the links and
delegates the management of the devices’ network
interfaces to LocalManagers. There is only one in-
stance of a GlobalManager per resource type and
there is only one instance of a LocalManager per
resource on a device.

This section now details how this model is imple-
mented and deployed in a home network.

4.4. ARMOR in a home network

All the GlobalManagers and all the
LocalManagers on a device are grouped into
composite components4. The composite for the

4a composite contains other components

7

Figure 2: Elements of ARMOR

global managers is called GRM (Global Resources
Managers) and the composites for the local man-
agers are called LRM (Local Resources Managers).
These composites are then installed on the home
devices. The Figure 3 shows an example of the AR-
MOR’s components for a home network with three
devices. In this example, there is three instances
of LRM: LRM 1, LRM 2 and LRM 3, respectively
installed on the three devices.

The GlobalManager in charge of the network,
resp. the CPU and the RAM, resources is called
GNRM (Global Network Resources Manager),
resp. GCRM (Global CPU Resources Manager)
and GMRM (Global Memory Resources Manager).
On the local side, the LocalManager in charge
of the network, resp. the CPU and the RAM
resource of the device is called LNRM (Local
Network Resource Manager), resp. LCRM (Local
CPU Resource Manager) and LMRM (Local Memory

Resource Manager).

The gray boxes in the Figure 3 represent com-
posites. The details of these components is out of
the scope of this paper, interested readers may look
at [1, 2] to go into more details.

The Figure 3 also contains the component
used to communicate with ARMOR: console 1

and cons com mgr and the components to com-
municate between the GlobalManagers and the
LocalManagers: lrm com mgr and grm com mgr.
All the communication start with the console 1

which forwards the requests to the GRM. The
cons com mgr handles the request that is exe-
cuted by the GNRM, the GCRM and the GMRM. The
lrm com mgr and grm com mgr implement an RPC
(Remote Procedure Call) like protocol to invoke
methods of local managers, installed on other de-
vices.

This component based architecture helps to han-
dle the resource heterogeneity. All the components
offers one QoR management interface containing
four methods:

Figure 3: Example of an ARMOR’s instance for a home
network with 3 devices

8

initialization
admissionControl

/ reservation

network
capacity maxQoRi

network QoS statMaxQoRi

CPU
capacity,

(maxQoRik, Ti)scheduler
RAM capacity maxQoRik

Table 2: Parameters of the LocalManager’ methods

• initialization()

• admissionControl()

• reservation()

• deletion(int id).

The first three methods, provided by the
GlobalManagers’ do not use any parameter in order
to be as generic as possible. The deletion method
only use the id of the reservation to be deleted.
The QoR expressions, specific to each resource type,
are only exposed by the LocalManagers. Since
a LocalManager’s method is called only by the
GlobalManager of the same type, they both know
how to express the QoR for their type. The Table 2
gives the parameters of the LocalManagers’ meth-
ods. The initialization method is called during the
initialization stage that is detailed in the next sec-
tion. The admissionControl and reservation meth-
ods are called when the user want to start an ap-
plication, as detailed after the initialization stage.
The deletion method is called with the same pa-
rameter on all the LocalManagers, thus it is not
shown in Table 2. This method is detailed at the
end of this section.

4.5. Initialization

ARMOR sees a device as a set of provided Quan-
tities of Resources and an application as a set of
required Quantities of Resources. Due to the het-
erogeneity of the home network, the operating sys-
tem’s resource management mechanisms differ from
one device to the other. In order to hide this hetero-
geneity, the initialization stage, executed once, con-
figures the LocalManagers components to use the
operating system’s mechanisms that are available
on the devices. Once this stage is completed the
user requests are handle independently of the un-
derlying operating system. Hence, ARMOR may
focus on the quantity of resource and not on the
reservation mechanisms. This mapping is let to the

component managing the resource. In addition to
adapting the ARMOR components to the device,
the initialization stage configures the resources’ ca-
pacity and the reservation mechanisms offered by
the operating system.

4.5.1. Capacity configuration

All the resources have a capacity that is the max-
imum quantity they may provide at all time. To
reflect this, each LocalManager has a capacity at-
tribute that is initialized as follows. For the net-
work interfaces, it is estimated with an active mea-
surement [1] because the actual capacity of a Wifi
interface is lower than the standard. For the CPU,
the capacity is set to 100% ∗ nb of CPUs. Indeed
ARMOR let the operating system handle the asso-
ciation of a thread to a CPU and consider a device
to have one CPU with one capacity. Finally for the
RAM, the capacity is set to the size of the RAM.
For the links, managed by a GlobalManager, the
capacity is set to the link standard (e.g. 45 Mbit-
s/s for a 802.11g link).

4.5.2. Operating systems configuration

For the network interfaces, the LocalManager in-
stalls a network policy to differentiate the multi-
media traffic and the default traffic. If the home
gateway and all the network interfaces in the home
support the same network QoS standard, then the
LocalManager configures the policy to use a class
with a higher priority for the multimedia traffic.
The latter will not be bothered by default traf-
fic. However, if a network interface or the home
gateway does not support a network QoS standard,
then ARMOR limits the default traffic on all the
devices. Hence the data sent by any equipment will
not bother the multimedia traffic. Finally the net-
work managers (global and local) are configured to
use either Ethernet of Wifi.

For the CPU, ARMOR supports two schedulers,
one server based scheduler and one proportional
share scheduler. The first scheduler is the Con-
stant Bandwidth Server (CBS) that is integrated
to the Linux kernel thanks to a patch [9]. The
second scheduler is the Completely Fair Scheduler
(CFS), that is the standard Linux scheduler. With
CBS, the threads with no reservation are scheduled
when no CBS server are ready to execute, thus no
initialization is required. With CFS, the CPU is
affected to the threads according to their weights.
In order to control the quantity of CPU used by

9

the threads which do no belongs to a multime-
dia application, ARMOR creates two cgroups: the
user group and the system group. All the user
threads are then moved to the cgroup user group

and all the system threads are moved to the cgroup
system group. The weights of these cgroups are
set to 1% of the CPU capacity to reserve them a
small piece of the CPU. Since CFS only provides
soft reservation, the user and system threads may
use more of CPU while this does not affect the mul-
timedia cgroups.

For the RAM, ARMOR also creates two cgroups
for the user and system threads. The Linux kernel
allows to limit the RAM utilization of a cgroup but
not to reserve it. Hence ARMOR limits the utiliza-
tion of the cgroups user group and system group

in order to reserve the RAM for the multimedia
application. The system group is limited to 1%
of the capacity, with a soft limit. Indeed, the sys-
tem threads use most of the time a small part of
the RAM; but they need to use more in a sporadic
manner, for example for cronjobs of updates. The
user group is limited to the rest of the RAM ca-
pacity, with a hard limit.

Once the initialization stage has been completed
for all the devices, a user may ask to start an ap-
plication. The next section explains the steps done
to answer this request.

4.6. Starting a multimedia application

When the user asks to start a multimedia appli-
cation, via the Global Resources Manager (GRM),
ARMOR firstly estimates the quantities of resource
required on all the resources. Then the GRM asks to
all the GlobalManagers to check if there is enough
of resources available. If yes, the GRM triggers a
reservation for all the resources used. This sec-
tion details the admission control and reservation
steps for each resource type, starting by the net-
work. Then it details how an application is linked
with the reservation made.

4.6.1. Network

The network resources are either global (links)
or local to a device (network interface). The GRM

lets the GlobalManager in charge of the network re-
sources (the Global Network Resources Manager

(GNRM)) handle all the network resources. The GNRM
manages directly the global resources and dele-
gates the management of the local resources to the
LocalManager in charge of the network resource

of the server device (the Local Network Resource

Manager (LNRM)).

The admission control, for the link and the
network interface of the server device, checks
that the sum of all the dedicated reservations
(statMaxQoRj) done for the j applications cur-
rently using the resource and the shared reservation
(sharedQoR) and the dedicated reservation of the
new application (statMaxQoRi) are lower than the
resource’s capacity, as show in (3).

capacity ≥
n∑

j=1

maxQoRj+sharedQoR+maxQoRi

(3)
The shared reservation is made for the highest pics
of all the application using the resource, as show
in (4) for n reservations, including the new applica-
tion.

sharedQoR = max(∪nj=1(maxQoRj−statMaxQoRj))
(4)

On the reservation step, the LNRM adds the new
reservation to the network policy installed on the
server device. This network policy guarantees the
required network quantity (maxQoRi), to the ap-
plication, on the network interface of the server de-
vice. It also limits the network usage of this appli-
cation to maxQoRi in order to guarantee to reser-
vation done on the link. The reservation and the
limitation are implemented with the Hierarchical
Token Bucket (HTB) elements of the traffic control
(tc) tool available in Linux. Implementation details
of this policy may be found in [1].

4.6.2. CPU

The CPU resources are local to a device.
The GRM lets the GlobalManager in charge of
the CPU resources (the Global CPU Resources

Manager (GCRM)) handle all the CPU resources.
The GCRM delegates the CPU management to the
LocalManagers involved, i.e. for one multime-
dia application the Local CPU Resource Manager

(LCRM) components of the server and the client de-
vices.

The LCRM components support two schedulers:
CBS and CFS. For CBS, the admission control
test of EDF is used, including the new application
as shown in (5) for j applications already using
the resource. This test uses Cik in milliseconds,
while maxQoRik is in %. To compute Cik from

10

maxQoRik, the operation (6) is done.

n∑
j=1

Cjk

Tj
+
Cik

Ti
< 1 (5)

Cik =
maxQoRik

capacityk
∗ Ti (6)

For CFS, the admission control test does not use the
period of the application since the CFS scheduler
only considers the scheduler period. Hence the ad-
mission control test checks that the CPU capacity
is higher than the sum of the weights of the cgroup
user group, the cgroup system group, the cgroups
created for the j applications using this CPU and
the required quantity of CPU for the new applica-
tion i, as shown in (7).

capacityk ≥ wuser group + wsystem group

+

n∑
j=1

maxQorjk +maxQorik (7)

The CFS scheduler guaranties that each cgroup i
has the CPU for a share Fi, proportional to its
weight, as show in (2), every Tsched = 20 mil-
liseconds. This equation is true no matter the
weights’ value. For example if 10 cgroups are cre-
ated with a weight of 20 then, each one has share
Fi = 20

200 = 10%. If each cgroup requires 20% of the
CPU then they do not have enough CPU. However,
this situation is prevented by the admission control
test and the sum of all the weights is never higher
than the CPU’s capacity. Hence all the cgroups
have at least their required quantity of CPU.

On the reservation step, the LCRM component, of
each device, make the reservation. For CBS, it cre-
ates a CBS server dedicated to the multimedia ap-
plication with the parameters (Cik, Ti). For CFS,
it creates a cgroup dedicated to the multimedia ap-
plication with a weight of maxQoRik.

Details on the internal of the CPU resources man-
agement components may be found in [2].

4.6.3. Memory

The RAM resources are local to a de-
vice. Similarly to the CPU, the Global

Memory Resources Manager (GMRM) delegates the
RAM management the Local Memory Resource

Manager (LMRM) components of the server and the
client devices.

As for the CPU with the scheduler CFS, the
LMRM component uses the cgroups to manage the

RAM accesses. During the initialization, two
cgroups have been created: the user group and the
system group. To make a reservation for a mul-
timedia application, the LMRM component decrease
the utilization limit of the cgroup user group. The
admission control test checks that the RAM capac-
ity if higher than the sum of the reservations for
the system group and the quantities reserved for
the j multimedia applications using this resource
and the required RAM quantity for the application
i, as shown in (8). The cgroup user group has
what is let free.

capacityk ≥ RAMsystem group +

n∑
j=1

maxQoRjk

(8)
The control cgroups for memory management do
not allow to decrease the utilization limit of cgroup
below its current utilization. If the admission con-
trol test is successful, the LMRM try to decrease the
user group limit. If the current memory usage al-
lows this, the admission control is successful and
the admission control is executed on the other re-
sources. However if this action fails, the admission
control test failed and the reservation is dropped.

On the reservation step, the LMRM creates a
cgroup dedicated to the application and limits the
memory usage of this cgroup to maxQoRik. The
memory management system of Linux uses a vari-
able called swappiness to determine when to start
moving memory of a cgroup to the SWAP. A swap-
piness of 0 means the SWAP is used only when there
is no more RAM available. For the multimedia ap-
plications, the limit is the maximum required mem-
ory. To prevent using the SWAP, the swappiness of
the new cgroup is set to 0. Hence the multimedia
application do not use the SWAP. The swappiness
of the user group and the system group are let to
the default value of 60.

4.6.4. Linking an application and its reservations

Once the application is started it needs to be
bound to the reservations made. For the net-
work resources, ARMOR uses the IP DEST and
PORT DEST field of the IP header. For the CPU
and RAM resources, ARMOR uses the PID5 of the
application on each device.

5Process ID

11

4.7. Deleting reservations

When an application ends, all its reservations
have to be deleted. To identify all the reservations
made for one application, ARMOR uses a global
id. This id is generated by the GRM component, en-
suring its uniqueness. When a manager (local or
global) make a reservation it associate the reserva-
tion with the global id. Hence when an application
ends, the deletion method is invoked on the GRM

with the corresponding id. The GRM then asks all
the managers to delete the associated reservation.

5. Evaluation

This section firstly evaluates ARMOR qualita-
tively. Then it details the experiments carried out
to demonstrate the ability of ARMOR to guarantee
the quantities of resource required by multimedia
applications.

5.1. Qualitive evaluation

It is difficult to formally evaluate a framework.
However, ARMOR has been implemented on real
devices and this implements may be evaluated. AR-
MOR is implemented with the component based
language Mind6. Mind is a C implementation of
the Fractal component model [40] targeting embed-
ded systems. Thanks to this language, the com-
ponents of ARMOR still exists at run time. AR-
MOR is available on GPL7 version 2 at https:

//sites.google.com/site/mlouvel/software.
The two main challenges arising from the home

network are its heterogeneity and the intrusivity
constraint on the resource management solutions.
ARMOR handles the heterogeneity in its architec-
ture with components dedicated to one type of re-
source (network, CPU, RAM memory). These com-
ponents are configured during an initialization stage
to hide the resource heterogeneity and the hetero-
geneity of the resource reservation mechanisms. On
the intrusivity challenge, ARMOR relies only on
standard Linux mechanism. Hence it may be in-
stall easily on Linux devices. Indeed, ARMOR has
been tested on real Linux devices: PCs, laptops
and beagleboards. The latter emulates traditional
home network devices such as mobile phones of set-
top-boxes. ARMOR is also not intrusive regard-
ing the multimedia applications. Indeed it is only

6http://mind.ow2.org/
7General Public License

Li BB1

configuration c c1 c2

CPU
Intel(R) ARM

Core(TM) 2 Cortex-A8
Duo 1.06GHz 700 Mhz

scheduler CFS CFS CBS

RAM (MB) 2000 256

interface Wifi G Wifi G

network QoS 802.11e no

distribution Ubuntu Ubuntu
Linux maverick maverick

noyau
standard standard AQuosA
2.6.35-25 2.6.35-25 2.6.32

Table 3: Features and configurations of devices

concerned by their resources requirements and the
application are linked to the reservations without
modifying them.

This evaluation shows that ARMOR may be used
in a home network.

The rest of this now section evaluates the main
goal of ARMOR: to guarantee the quantities of re-
sources required by the application in order to guar-
antee their quality of service.

5.2. Quantities of resource guaranty

To evaluate the resource reservation made by
ARMOR, three executions of the same application,
with the same stream are done:

1. reference execution: the application is started
and nothing else is running on the devices used;

2. noise, no reservation: the application is started
and noise is generated on one of the resources
used;

3. noise + ARMOR: a reservation is made by AR-
MOR, the application is started and noise is
generated on one of the resources used.

The Table 3 gives the device used to carry out
the evaluations detailed in this section. This ta-
ble contains several laptops (Li) running a com-
pletely standard ubuntu/Linux distribution. These
laptops support the Wifi network QoS standard:
802.11e. The table also contains a beagleboard
(BB1) with two configurations. The configuration
c1 is a standard ubuntu/Linux distribution, while
c2 has a modified Linux with a CBS scheduler. The
beagleboard doest not support any network QoS
standard.

12

This section first summarizes the evaluations re-
sults when noise is generated on one resource, start-
ing with the CPU. Then, this section offers a dis-
cussion.

5.2.1. CPU

To generate noise on the CPU resources, the tool
stress8 is used with -c 10 to start 10 threads.
Each thread uses as much of CPU as possible to
compute random squared roots. The CPU used by
the streaming client is measured with top. Top runs
with the highest real-time priority to avoid being
disturbed by the stress. The top delay is set to
400 ms in order to use a reasonably low quantity of
CPU for the measure.

In the evaluations described here, the client of the
streaming is started on the beagleboard BB1, using
the Wifi link. The stream used is “big buck bunny”,
that has been re-encoded from original file available
at http://www.bigbuckbunny.org/ with x264 9, a
free h264 encoder. Only the video stream is used.
It is encoded with the baseline profile, a resolution
of 352x288 (CIF format) and has a frame rate of
25 frames per second. The stream duration is 596
seconds. To decode the video, mplayer is used. The
video decoding on the beagleboard is done entirely
with the CPU.

Two evaluations are proposed for the CPU re-
sources. The first one is focused on one multime-
dia application, for the three executions (reference,
noise no reservation and noise + ARMOR). The
second evaluation adds a local multimedia appli-
cation on the streaming client, to be closer to the
device’s CPU capacity.

One multimedia application. The Figure 4 gives the
quantity of CPU used by mplayer for the three
executions. The Figure 4a compares the results
of the executions 1 (reference: black curve) and 2
(noise, no reservation: gray curve). By default the
Linux scheduler affects the CPU fairly between all
the threads. Hence, in execution 2, mplayer gets
a nearly constant quantity of CPU of about 10%,
as do all the threads of the stress process. The
Figure 4b compares the results of the executions 1
(black curve) and 3 (gray curve) for the configura-
tion c2. In this configuration a CBS scheduler is
available on the device. This scheduler affects the

8http://weather.ou.edu/~apw/projects/stress/
9http://www.videolan.org/developers/x264.html

CPU according to the threads deadline, as it is tra-
ditionally done to make CPU reservations. On this
figure, the two curves are almost merged, meaning
that mplayer gets the same quantity of CPU for the
two executions; it is not bothered by the stress. The
Figure 4c compares the results of the executions 1
(black curve) and 3 (gray curve) for the configu-
ration c1. In this configuration the default Linux
scheduler, a proportional share scheduler is used.
The reservation is made with the cgroups and their
weights. As for configuration c2, the two curves
are almost merged, meaning that mplayer gets the
same quantity of CPU in the two executions.

These experiments shows that the same results
are observed with the two schedulers. More details
on these experiments and its impact on the appli-
cation’s QoS may be found in [2].

One streaming application and a local application.
The reservation for the CFS scheduler are made
with the weights of the cgroups. During the
initialization stage, ARMOR creates two cgroups
user group and the system group with a weight of
1% of the CPU capacity. For instance, the beagle-
board BB1 has a capacity of 100, thus each cgroup
has a weight of 1. When a multimedia applica-
tion is started a dedicated cgroup is created with a
weight of maxQoRik on the device k. The CFS
scheduler then guarantees that after a period of
time Tsched, the multimedia application had the
CPU maxQoRik times more than the user group.
For instance, for the stream used maxQoRik = 45.
Hence ARMOR makes a reservation of 98% for the
streaming client. To evaluate the CFS with a lower
reservation, a local application is started on the
beagleboard BB1 together with the client of the
streaming application. This local application is also
mplayer and it decodes the same stream, stored lo-
cally. It requires the same quantity of CPU: 45%.
Hence in this experiment, the sum of all the reser-
vation is 45 + 45 + 1 + 1 = 92% which is closer to
the CPU capacity.

This evaluation makes four executions. Each
time the streaming application and the local appli-
cation are concurrently executed. First, the three
executions detailed in the previous evaluation are
done and the local application is executed with no
reservation. For the forth execution, noise is gener-
ated and a reservation is made for the two applica-
tions (streaming and local). The Figure 5 gives the
CPU used by the local application in the four execu-
tions. The CPU used by the streaming application

13

(a) without ARMOR (b) with ARMOR, configuration c2 (c) with ARMOR, configuration c1

Figure 4: Quantity of CPU used by mplayer

is the same as previously detailed in Figure 4.

The Figure 5a compares the CPU used by the
local application for the executions 1 (reference:
black curve) and 2 (noise, no reservation: gray
curve). As before, the CFS scheduler affects the
CPU fairly between all the threads and the local
mplayer has constantly less than 10% of the CPU.
When mplayer decodes a local stream, if it does not
have enough CPU it does not figure it out. Hence it
jumps clumsily from one frame to the next and the
video is jerky. This is shown on the figure, where
the gray curve continues after 600 seconds, when
the decoding should have stopped as in the refer-
ence execution. The Figure 5b compares the exe-
cutions 1 (black curve) and 3 (noise + ARMOR for
the streaming application only: gray curve). For
the first 600 seconds, the two applications decodes
the stream on the client. The streaming application
has a reservation and is not bothered by the stress;
the local application has a lower quantity of CPU.
After 600 seconds, the streaming application ends.
Afterward, the local application continue to execute
for a while with around 10% of the CPU, due to the
stress on the CPU. Finally the Figure 5c compares
the execution 1 (black) and the forth execution (a
reservation is made for both application). In this
figure the two curves are merged showing that the
local application is not bothered by the stress. As
in the execution 3 the streaming application is not
bothered either.

This evaluation shows that even if the sum of the
reservation is close to the CPU capacity, the reser-
vations made by ARMOR guaranty the required
quantity of CPU to the multimedia applications. It
has also evaluate that several reservations can suc-
cessfully be done on the same resource at the same
time.

The Table 4 evaluates the quality of service of the

(a) no reservation

(b) reservation for streaming only

(c) reservation for streaming and local appli-
cations

Figure 5: Quantity of CPU by the local application

14

execution
number ratio
of errors nb errors

nb frames

reference 66 0.005

noise, without ARMOR 6691 0.47

noise, with ARMOR,
67 0.005

one reservation

noise, with ARMOR,
76 0.005

two reservations

Table 4: Number of errors raised by mplayer for the stream-
ing application

streaming application in the four executions. The
first columns contains the execution, the second col-
umn is the number of errors raised by the client of
the streaming application and the third column is
the ratio nb errors

nb frames . When there is no reservation
for the streaming application (line 2), the number of
errors increases due to the generated noise. When
a reservation is made (line 3 and 4) the number of
errors is almost the same as in the reference execu-
tion (line 1). If these observations are linked to the
quantity of resource observation made on the Fig-
ure 4, we can conclude that the reservations made
by ARMOR guarantee the application’s quality of
service.

5.2.2. RAM

The evaluation for the RAM uses the same setup
as the first evaluation of the CPU, described in sec-
tion 5.2.1. This time the tool stress is used to
generate noise on the RAM memory. To generate
memory noise, stress has two parameters: the num-
ber of threads and the quantity of memory used by
each thread. The noise also uses a lot of CPU. To
avoid bias in the evaluation, a CPU reservation is
always made by ARMOR. This section details two
evaluations. For the first one, the streaming client
is executed on the beagleboard BB1 that has 256
megabytes of RAM and do not use the SWAP. For
the second one, the streaming client is executed on
the laptop L1 that has 2048 megabytes of RAM and
has a SWAP of 1000 megabytes.

Stress on the Beagleboard. The beagleboard has a
low CPU capacity. In this evaluation, to avoid using
too much of CPU, the streaming client is started
with ssh and the window manager is not used.

On the beagleboard, when there is not enough
RAM memory to serve all the processes, the Linux
kernel has to kill one process to free memory.

In our experiments, when stress is called with 7
threads, each of them using 32M, the Linux kernel
usually kills the stress. However there is no guaran-
tee to this. When 10 stress process are started, each
with one thread using 32M, the Linux kernel ran-
domly kills some stress or mplayer. When ARMOR
makes a reservation, the Linux kernel always kills a
stress process or another process in the user group.
Indeed the RAM is managed on a per cgroup ba-
sis and all the stress are started in the user group.
Hence, with ARMOR, the multimedia application
is not bothered by the stress.

Stress on the laptop. In this experiments, the win-
dow manager is used and the streaming client is it
not started by ssh.

On the laptop, when there is not enough RAM
memory to serve all the processes, the Linux kernel
moves one process to the SWAP. This may have two
consequences: slowing down the multimedia appli-
cation, which degrades its QoS, and slowing down
the whole system.

To test this, a stress is called with 8 threads, us-
ing 256 megabytes of memory, that is a total usage
of 2048 megabytes or the RAM capacity. Hence to
serve all the stress, all the other processes have to
be moved to the SWAP. When this happens the de-
vice becomes unusable due to a huge response time.
When ARMOR is used, a stress in the user group

still has a strong impact on the whole system. In-
deed, this cgroup contains all the gnome processes.
When the stress eats all the RAM, the other gnome
processes are moved to the swap. Hence the device
has a high response time which degrades the mul-
timedia application even if the latter has enough of
resources. However, if the stress is started within
a dedicated cgroup with a limit of 1500 megabytes,
then the device response time stays reasonable and
the multimedia application’s QoS is preserved.

Discussion. This evaluation has shown that when
memory is heavily used, ARMOR is efficient only
when the user group does not contains impor-
tant processes. This may be solved by using more
cgroups than for the user processes. But this has
not been implemented yet.

5.2.3. Network

ARMOR support both home network with and
without network QoS support. An evaluation with
the three executions, for Wifi networks, may be

15

found in [1]. This section focuses on the applica-
tions’ quality of service evaluation, not detailed in
previous paper.

To evaluate network reservation, noise is gener-
ated on the Wifi link used by the multimedia appli-
cations. To generate noise this noise, the software
iperf10 is used. iperf works with a client and a
server. The iperf client sends data to the iperf

server at a requested bandwidth, using the UDP
protocol.

Two evaluations are now detailed, for a home net-
work without and with network QoS support.

No network QoS. In this evaluation, the stream-
ing server is started on a laptop and the client is
started on the beagleboard BB1. Noise is generated
between four laptops, with four iperf servers and
four iperf clients. The table 5b summarizes the
network observations for the three execution. The
first four lines gives statistics (max, mean, standard
deviation and sum) on network bandwidth received
on the streaming client. The four last lines gives
statistics (max, mean and standard deviation) on
the network delay observed. The third column of
table is the reference execution (1), the forth if the
noise no reservation execution (2) and the fifth is
the noise + ARMOR execution (3).

The network bandwidth received on the stream-
ing client is measured with vnstat11 for the dura-
tion of the streaming application. The delay is mea-
sured with a ping from the streaming server to the
streaming client. As shown in Table 5b, for the exe-
cution 2 the bandwidth measured on the streaming
client is twice less than in the reference execution.
However, when ARMOR is used (execution 3), the
bandwidth measured is close to the reference mea-
sure. Similar results are observed on the delay. For
execution 2, the delay is 500 time more important
than in execution 1. In execution 3, the mean and
standard deviation of the delay are twice higher
than in execution 1 but stay low for a streaming
application. Only the max value is too high. How-
ever a few values are not as representative as the
mean and standard deviation.

The Table 6 evaluates the quality of service of the
streaming application in the three executions. In
the execution 2, the number of errors increased by
a factor of 12.7 compare to the execution 1. When
ARMOR makes a reservation for the application,

10http://iperf.sourceforge.net/
11http://humdi.net/vnstat/

execution
number ratio
of errors nb errors

nb frames

reference 65 0.005

noise, no reservation 823 0.06

noise + ARMOR 92 0.006

Table 6: Number of errors raised by mplayer, no network
QoS, big buck bunny

execution
number ratio
of errors nb errors

nb frames

reference 24 0.01

noise, no reservation 620 0.26

noise + ARMOR 24 0.01

Table 7: Number of errors raised by mplayer, network QoS,
trailer Harry Potter 6

the number of errors is only increased by a factor
of 1.5 compare to the execution 1.

Network QoS support. For this evaluation the only
the laptops are used. Hence ARMOR relies on the
network QoS standard 802.11e, supported by all the
devices, to make the reservations on the link. The
stream used in this evaluation is the trailer Harry
Potter 612.

6. Conclusion

This paper has presented ARMOR, a resource
management framework to guarantee the Quanti-
ties of Resources (QoR) required by multimedia
applications in home networks. The main chal-
lenges of this context are: support of legacy applica-
tions and existing devices, and the heterogeneity of
the home network regarding resources and resource
reservation mechanisms.

ARMOR guarantees the required QoR by re-
serving them in advance, when the application is
started. ARMOR integrates existing resource man-
agement mechanisms, provided by the Linux oper-
ating system, in order to support existing devices.
It is designed with a component based architecture,
configured to adapt to the devices. The current ver-
sion of ARMOR supports Ethernet and Wifi net-
work, with and without network QoS support. It
also support two kind of schedulers: the Constant

12available on http://trailers.apple.com/ The stream
used is the HP6 Large.mov

16

value

band- max
with mean

(kbits/s) std dev
sum

delay max
(ms) mean

std dev

(a)

reference
noise, no noise

reservation + ARMOR

1210 588 1120

257 116 236

204 136 206

91600 43812 92100

116 5320 632

3.82 1410 7.93

11.1 1710 30.0

(b) No network QoS, big buck bunny

reference
noise, no noise

reservation + ARMOR

5330 5170 4110

1180 425 608

881 728 833

66000 48000 68600

298 5530 510

4.53 880 8.81

20.2 1010 30.7

(c) Network QoS, trailer harry potter 6

Table 5: Network utilization statistics

Bandwidth Server and the Completely Fair Sched-
uler, which is the default Linux Scheduler. Regard-
ing the applications, ARMOR has a non intrusive
approach, considering only their required QoR and
not their design.

ARMOR has been implemented on real devices,
especially on beagleboards which are embedded de-
vices emulating typical home network devices. To
evaluate ARMOR, noise has been generated on the
network links, the CPU and the memory of the de-
vices. These evaluations have shown that ARMOR
guarantees the required QoR which guarantees the
user-level QoS, measured with the number of errors
raised by the client of the streaming application.

ARMOR focuses on the QoR required by the ap-
plications, it does not consider the elements shared
by multimedia applications and other applications
of the devices. A typical example is the X win-
dows server. Indeed if the X server does not have
enough of CPU or RAM to execute, the user-level
QoS is degraded even if the multimedia applica-
tion has enough of CPU and RAM. This has been
enlightened in the RAM evaluation. Future works
will dig into reserving resources for these shared el-
ements.

ARMOR reserves the QoR prior to the beginning
of a multimedia application. A reservation is made
only if all the admission control tests are successful.
These tests compare the required QoR to the cur-
rent available QoR on the resource, i.e. the resource
capacity minus the reservation done. Afterward
ARMOR assumes that the resource capacity does
no change. This may be erroneous for Wifi links or
battery powered devices. Hence future works will
also focus on integrating adaptation to the fluctua-
tion of the available QoR. This aspect has already
been considered in other research works. However
these works focused only on the adaptation part

and not on guaranteeing the application’s QoS by
reserving the QoR. Future work on ARMOR will
tackle this trade-off.

References

[1] M. Louvel, P. Bonhomme, J.-P. Babau, A. Plantec, A
network resource management framework for multime-
dia applications distributed in heterogeneous home net-
works, in: Poceedings of the IEEE International Con-
ference on Advanced Information Networking and Ap-
plications (AINA), 2011, pp. 724 –731.

[2] M. Louvel, J. Tous, A. Plantec, J.-P. Babau, Ensuring
qos of multimedia applications in heterogeneous home
networks: the cpu use case, in: IEEE/IFIP Inter-
national Conference on Embedded and Ubiquitous
Computing (EUC), 2011, to be published.
URL https://sites.google.com/site/mlouvel/

publications-2/cpu_euc_2011.pdf?attredirects=0&

d=1

[3] UPnP, www.upnp.org.
[4] K. Nahrstedt, J. Smith, The qos broker [distributed

multimedia computing], Multimedia, IEEE 2 (1) (1995)
53 –67.

[5] R. Rajkumar, K. Juvva, A. Molano, S. Oikawa, Re-
source kernels: A resource-centric approach to real-time
and multimedia systems, in: Conference on Multimedia
Computing and Networking, 1998, pp. 150—164.

[6] J. Tournier, J. Babau, V. Olive, Qinna, a component-
based qos architecture, in: Component-Based Software
Engineering, 8th International Symposium, St. Louis,
USA, Springer, 2005, pp. 107–122.

[7] N. Shankaran, N. Roy, D. C. Schmidt, X. D. Kout-
soukos, Y. Chen, C. Lu, Design and performance eval-
uation of an adaptive resource management frame-
work for distributed real-time and embedded systems,
EURASIP J. Embedded Syst. 8 (3) (2008) 1–20.

[8] D. Fleeman, M. Gillen, A. Lenharth, M. Delaney,
L. Welch, D. Juedes, C. Liu, Quality-based adaptive re-
source management architecture (QARMA): a CORBA
resource management service, in: proceedings of the
18th International Parallel and Distributed Processing
Symposium, 2004, p. 116.

[9] T. Cucinotta, L. Palopoli, L. Marzario, G. Lipari, AQu-
oSA—adaptive quality of service architecture, Software:
Practice and Experience 39 (1) (2009) 1–31.

17

[10] L. Abeni, C. Scordino, G. Lipari, L. Palopoli, Serv-
ing non real-time tasks in a reservation environment,
in: proceedings of the 9th Real-Time Linux Workshop,
2007.

[11] C. Mercer, S. Savage, H. Tokuda, Processor capacity
reserves: operating system support for multimedia ap-
plications, in: Proceedings of the International Confer-
ence on Multimedia Computing and Systems, 1994, pp.
90 –99.

[12] L. Steffens, G. Fohler, G. Lipari, G. Buttazzo., Resource
reservation in real-time operating systems - a joint in-
dustrial and academic position, in: International Work-
shop on Advanced Real-Time Operating System Ser-
vices (ARTOSS), 2003, pp. 25–30.

[13] R. M. Laverty, Robust open component based soft-
ware architecture for configurable devices project, Tech.
rep., Information Technology for European Advance-
ment (2003).

[14] D. Gao, J. Cai, K. Ngan, Admission control in IEEE
802.11e wireless LANs, IEEE network 19 (4) (2005) 6–
13.

[15] C. Liu, C. Zhou, Providing quality of service in ieee
802.11 wlan, in: Proceedings of the Advanced Informa-
tion Networking and Applications, 2006, pp. 817–824.

[16] M. Devera, Hierachical token bucket theory, http:

//luxik.cdi.cz/devik/qos/htb/manual/theory.htm

(2002).
[17] L. Abeni, G. Lipari, G. Buttazzo, Constant bandwidth

vs. proportional share resource allocation, in: proceed-
ings of the IEEE International Conference on Multime-
dia Computing and Systems, Vol. 2, 1999, pp. 107 –111
vol.2.

[18] G. F. (TUKL), A. N. (TUKL), K.-E. Årzén (ULUND),
C. L. (EPFL), M. M. (EPFL), V. N. (AKAtech), C. von
Platen (Ericsson), G. B. (SSSA), E. B. (SSSA), C. S.
(EVI), State of the art assessment, Tech. rep., ACTORS
Adaptivity and Control of Resources in Embedded Sys-
tems (2008).

[19] L. Abeni, G. Buttazzo, Integrating multimedia applica-
tions in hard real-time systems, in: proceedings of the
19th IEEE Real-Time Systems Symposium, 1998, pp.
4–13.

[20] L. Abeni, G. Buttazzo, Resource reservation in dynamic
real-time systems, Real-Time Systems 27 (2004) 123–
167.

[21] C. L. Liu, J. W. Layland, Scheduling algorithms for
multiprogramming in a Hard-Real-Time environment,
J. ACM 20 (1) (1973) 46–61.

[22] C. Pabla, Completely fair scheduler, Linux Journal
2009 (184) (2009) 4.

[23] P. Menage, Adding generic process containers to the
linux kernel, in: Proceedings of the Linux Symposium,
Vol. 2, 2007, p. 45–57.

[24] J. Corbet, Controlling memory use in containers, http:
//lwn.net/Articles/243795/ (2007).

[25] M. Sojka, P. Ṕısa, D. Faggioli, T. Cucinotta, F. Chec-
coni, Z. Hanzálek, G. Lipari, Modular software archi-
tecture for flexible reservation mechanisms on heteroge-
neous resources, Journal of Systems Architecture 57 (4)
(2011) 366 – 382.

[26] UPnPTM , Upnp-qos architecture v3.0, Tech. rep.,
UPnPTM Forum (2008).

[27] T. Yang, T. Liu, E. D. Berger, S. F. Kaplan, J. E. B.
Moss, Redline: first class support for interactivity in
commodity operating systems, in: Proceedings of the

8th USENIX conference on Operating systems design
and implementation, OSDI’08, USENIX Association,
Berkeley, CA, USA, 2008, pp. 73–86.

[28] K. Lakshmanan, R. Rajkumar, Distributed resource
kernels: OS support for End-To-End resource isolation,
in: proceedings of the 8th IEEE Real-Time and Embed-
ded Technology and Applications Symposium, 2008, pp.
195–204.

[29] F. Cuomo, An Architectural Model to Provide QoS in
a Home Network and its Evaluation in a Real Testbed,
Journal of Networks 3 (6) (2008) 44–53.

[30] D. Ko, S. Han, H. Cha, R. Ha, A traffic control system
for IEEE 802.11 networks based on available bandwidth
estimation, Wireless Communications and Mobile Com-
puting 8 (4) (2008) 407–419.

[31] R. Yu, Y. Zhang, C. Huang, R. Gao, Joint admission
and rate control for multimedia sharing in wireless home
networks, Comput. Commun. 33 (14) (2010) 1632–1644.

[32] C. Kohnen, C., V. Rakocevic, M. Rajarajan, R. Jager,
Qosilan - a heterogeneous approach to quality of service
in local area networks, in: proceedings of Advances in
Multimedia, International Conference on, IEEE Com-
puter Society, 2010, pp. 109–112.

[33] D. C. Schmidt, D. L. Levine, S. Mungee, The design
of the tao real-time object request broker, Computer
Communications 21 (1998) 294—324.

[34] N. Wang, C. Gill, Improving Real-Time system
con.guration via a QoS-Aware CORBA component
model, in: Proceedings of the 37th Annual Hawaii
International Conference on System Sciences - Track 9
- Volume 9, IEEE Computer Society, 2004, p. 90273.2.
URL http://portal.acm.org/citation.cfm?id=

963298

[35] R. Vanegas, J. A. Zinky, J. P. Loyall, D. Karr, R. E.
Schantz, D. E. Bakken, Quo’s runtime support for qual-
ity of service in distributed objects, in: Proceedings of
the IFIP International Conference on Distributed Sys-
tems Platforms and Open Distributed Processing, Mid-
dleware ’98, Springer-Verlag, London, UK, 1998, pp.
207–222.

[36] P. Manghwani, J. Loyall, P. Sharma, M. Gillen, J. Ye,
End-to-end quality of service management for dis-
tributed real-time embedded applications, in: Proceed-
ings. 19th IEEE International Parallel and Distributed
Processing Symposium, IEEE, 2005, p. 138a.

[37] M. Louvel, J. Pulou, A. Plantec, J.-P. Babau, Quan-
tity of resource aggregation for heterogeneous resource
reservation for multimedia applications, in: Work In
Progess session of the IEEE International Conference
on Emerging Technologies and Factory Automation
(ETFA), 2010, pp. 1–4.

[38] C. El Kaed, L. Petit, M. Louvel, A. Chazalet, Y. Den-
neulin, F.-G. Ottogalli, Insight: Interoperability and
service management for the digital home, in: Proceed-
ings of the 12th International Middleware Conference
Industrial track, Middleware Industrial Track, ACM,
New York, NY, USA, 2011, to be published.
URL https://sites.google.com/site/mlouvel/

publications-2/Middleware2011-Industrial.pdf?

attredirects=0&d=1

[39] S. Ghahramani, Fundamentals of probability(2nd Edi-
tion) , Prentice Hall, 2000.

[40] G. Blair, T. Coupaye, J. Stefani, Component-based ar-
chitecture: the Fractal initiative, Annals of Telecom-
munications 64 (1) (2009) 1–4.

18

