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Compared to active microrheology where a known force or modulation is periodically imposed to a 
soft material, passive microrheology relies on the spectral analysis of the spontaneous motion of 
tracers inherent or external to the material. Passive microrheology studies of soft or living 
materials with atomic force microscopy (AFM) cantilever tips are rather rare because, in the 
spectral densities, the rheological response of the materials is hardly distinguishable from other 
sources of random or periodic perturbations. To circumvent this difficulty, we propose here a 
wavelet-based decomposition of AFM cantilever tip fluctuations and we show that when applying 
this multi-scale method to soft polymer layers and to living myoblasts, the structural damping 
exponents of these soft materials can be retrieved.

Local stiffness and internal friction of soft materials

(passive or active such as living cells) have lately been

addressed at the nanoscale thanks to the development of

pico- to nano-Newton force sensing systems and of nanome-

ter resolution position detection devices.1 Atomic force mi-

croscopy (AFM) is one of these methods, where a sharply

tipped flexible cantilever is indented inside a material to

extract its local viscoelasticity from the shift and spreading

of the cantilever spectral resonance modes.2–4 However,

these estimations are limited to rather narrow frequency

bands surrounding the cantilever resonance modes or their

higher harmonics. Spectral decomposition of cantilever fluc-

tuations in contact with soft living tissues in the low fre-

quency range has more rarely been explored. The few

attempts which can be found in the literature were performed

with small amplitude harmonic excitations (50 nm) of the

sample position driven by a piezo-translator, in the 0.1 to

100 Hz frequency range, for a small and finite number of fre-

quencies.5,6 Whereas passive (driven by thermal fluctuations)

microrheology has been performed for the past two decades

by a variety of techniques capturing micro-probe spatial fluc-

tuations,7 it has not been applied yet to AFM cantilever fluc-

tuations. The limitation of AFM-based passive rheology in

the low frequency range comes from the mixing of the back-

ground vibrations of the liquid chamber with the cantilever

fluctuations given by the rheological response of the material

which are difficult to disentangle by standard FFT-based

spectral averaging methods. In this work, we show that in

quasi-stationary situations, these limitations can be circum-

vented using a wavelet-based spectral analysis of micro-

cantilever fluctuations under passive excitation. Two experi-

mental applications to passive polymer layers and living ad-

herent myoblast cells are reported.

Based on the generalized Stokes-Einstein relation

(GSER) and associated generalizing assumptions,8 passive

microrheology of soft materials enables the extraction of the

frequency-dependent complex modulus GðxÞ which is com-

mon to a large class of soft materials (foams, emulsions, slur-

ries, and cells).9–11 The observed scaling laws are explained

by a characteristic structural disorder and the metastability

of these materials which are embodied under the name of

“soft glassy materials” or structural damping model.12 Their

complex shear modulus behaves as

G xð Þ ¼ G0

x
x0

� �a

1þ igð Þcos
ap
2

� �
; (1)

with g ¼ tanðap=2Þ as the structural damping coefficient,13

x ¼ 2pf as the radian frequency, and a as a scaling expo-

nent. G0 and x0 are material dependent scaling factors for

stiffness and frequency and GðxÞ ¼ G0ðxÞ þ iG00ðxÞ, where

G0ðxÞ is the storage modulus and G00ðxÞ the loss modulus

(i2 ¼ �1). An additional viscous term ixl can be added to

Eq. (1) to include a linear viscous regime at high frequency.

Eq. (1) was established from fractional calculus13,14 to inter-

polate between purely elastic (a ¼ 0) and purely viscous

(a ¼ 1) behaviours. When a tends towards 0, the energy

dissipated within a cycle is independent of the frequency15

and is proportional to the deformation amplitude e2
m: Dcycle

¼ G0ðp2a=2Þ e2
m.

The local deflection signals of an AFM cantilever are

produced by different sources of fluctuations. At high fre-

quencies, the hydrodynamic coupling of the cantilever with

the surrounding liquid is exciting its resonance modes. At

low frequencies, the cantilever captures the acoustic vibra-

tions of the chamber, but also the local random deformations

of the material it is in contact with. Each time the material in

contact with the cantilever tip breaks locally, or changes its

rigidity by fluctuations, the cantilever tip is displaced verti-

cally by dz. In AFM experiments, the cantilever tip is not
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completely immersed in the viscoelastic medium, so the con-

tinuum approach of Stokes equations must be modified to

take into account different boundary conditions. The linear-

ized Hertz-Sneddon16 equation defines the viscoelastic com-

pliance of the material as proportional to the ratio of the

infinitesimal displacement of the tip dzðxÞ ¼ hðxÞ � h0

inside the media and the cantilever deflection change ddðxÞ

v xð Þ ¼ 1

G xð Þ ¼
8 tan h

p 1� �ð Þ
h0 dz xð Þ
kc dd xð Þ ; (2)

where h is the half cone tip angle (�15�), h0 is the mean

depth of indentation of the tip, � is the Poisson ratio, and kc

is the stiffness constant of the cantilever.

Within the same approximations as those used in

GSER,8 the spectral density EzðxÞ of the vertical tip position

z can be computed by Fourier transforming its auto-

covariance function CzðsÞ. EzðxÞ is related to the imaginary

part v00ðxÞ of the medium surrounding the tip17

Ez xð Þ ¼ Ĉz xð Þ ¼
ð1
1

Cz sð Þe ixsds ¼ � bkBTv00 xð Þ
h0

; (3)

where ĈzðxÞ denotes the Fourier transform of CzðsÞ.
CzðsÞ ¼ EfzðtÞzðtþ sÞg is even and integrable over R and

decreases fast enough to zero as s!1. Efug is the expec-

tation of u. h0 is a characteristic indentation depth depending

of the loading force and the visco-elasticity of the sample, kB

is the Boltzmann constant and b ¼ pð1� �Þ=ð8 tan hÞ. When

the complex modulus behaves as in Eq. (1), then

EzðxÞ / x a : (4)

Thus, the spectral density EzðxÞ gives access to the imagi-

nary part v00ðxÞ of vðxÞ and its real part v0ðxÞ can be

obtained by the Kramers-Kronig transformation18

v0 xð Þ ¼ 2

p
P

ð1
0

f v00 fð Þ
f2 � x2

df ; (5)

where P stands for Cauchy principal value. GðxÞ is then

obtained by inverting vðxÞ (Eq. (2)).

As illustrated in Fig. 1, the spectral density19 of the

AFM micro-cantilever fluctuations exhibits two different

behaviours: at high frequencies, we observe the cantilever

resonance modes with a characteristic Lorentzian shape; and

at low frequencies (from 150 to 10 kHz in air, and from 10

to 1 kHz in liquid), the spectrum looks similar to white or

coloured noise spectra. From the least square fits of the reso-

nance modes, mechanical parameters of the cantilever (stiff-

ness, quality factor, resonance frequency, damping) are

usually retrieved.20,21 The grey (resp., black) FFT-based

spectra plotted in Fig. 1 are computed by FFT transform of

the z signals captured at 2.5 MHz rate for 2 s (5� 106

points), without averaging (resp. with averaging in log-log

scales over frequency windows D log10x ¼ 0:003). It comes

out from these two periodograms that without averaging it is

impossible to retrieve the shape of the resonance peaks. But

let us point out that the averaging is much less efficient at

low frequency due to the finite length of the z signal. Outside

the resonance regions, these spectra collect a combination of

external sources of noise or vibrations which increase con-

siderably in liquid chambers (Fig. 1(b)) when the cantilever

tip is approached to the chamber bottom wall. In the contact

limit, the cantilever is used as a local vibration sensor and no

more as a vibrating structure with intrinsic resonance

modes.20

Separating all these sources of fluctuations is a rather

tricky problem at low frequencies.22 The main drawbacks of

FFT-based spectral densities are amplified when scaling

laws must be retrieved. Only a sub-interval of the frequen-

cies can actually be used for the linear fit (in a logarithmic

representation). The continuous wavelet transform (CWT) is

a time-frequency technique that turns out to be very helpful

for smoothing the power spectra.19 The CWT is defined by a

convolution integral proposed in the early eighties by

Grossmann et al.23,24 using L2 normalization

Tz b; að Þ ¼ 1

a
p
ð1
1

w
t� b

a

� �
z tð Þdt : (6)

It can also be written in Fourier space as

Tz b; að Þ ¼ a
p

2p

ð1
1

ŵ axð Þẑ xð Þeixbdx : (7)

Tzðb; aÞ contains information on the signal z at the scale a
¼ xmax=x around the point b and xmax is a reference fre-

quency.25 We choose for this study the complex-valued

Cauchy analyzing wavelet of order n:15,25,26 wðtÞ ¼ wnðtÞ
¼ ði=ðtþ iÞÞðnþ1Þ

with n ¼ 31. The variance of Tzðb; aÞ can

be written as an integral19

E jTz b; að Þj2
n o

¼ a

2p

ð1
1
Ez xð Þjŵ axð Þj2dx ; (8)

¼ 1

2p

ð1
1
Ez

x
a

� �
jŵ xð Þj2dx : (9)

From the variance of Tzðb; aÞ, the wavelet spectral function

is defined as

Ez;CWT að Þ ¼ 1

kwk2
E jTz b; að Þj2
n o

: (10)

FIG. 1. Comparison of FFT based spectra EzðxÞ and wavelet based spectra

Ez;CWTðxÞ of free cantilever fluctuations in two different media. (a) Air and

(b) liquid aqueous chamber. The curves correspond to raw FFT (grey), aver

aged FFT (black), and wavelet based (red) spectra.
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For a white noise z of common variance r2, Ez;CWTðaÞ ¼ r2

does not depend on the scale a. If the wavelet is chosen such

that kwk2 ¼ 1, the wavelet spectrum function yields an

unbiased estimator of spectral power laws. For instance, if

EzðxÞ � x b for x 2 X ¼ ½x1;x2�, then for a given interval

½a1¼xmax=x2; a2¼xmax=x1�; Ez;CWTðaÞ�ab¼ðx=xmaxÞ b
.

The wavelet spectra of free cantilever fluctuations are plotted

in red over the FFT-based spectra (averaged in black, non

averaged in grey) in Figs. 1(a) and 1(b) and follow very

closely the shape of the cantilever resonance peaks.

The advantage of the wavelet method is to get rid of

fluctuations more efficiently than FFT-averaging at low fre-

quencies (because the wavelet averaging window size

depends on the scale) and to facilitate the characterization of

the out of resonance behaviour when the cantilever comes in

contact with a soft material.25 This is illustrated in Fig. 2

where we compare Ez and Ez;CWT on five different spectra;

the grey line corresponds to a free cantilever in liquid, the

black line to the same cantilever tip in hard contact with a

glass coverslip, and the blue, green, and red spectra are

obtained when the cantilever tip is in contact with a soft pol-

ydimethylsiloxane (PDMS) layer.25 The noticeable draw-

back of the wavelet method is the widening of the cantilever

resonance modes but their maxima are correctly estimated.

The five spectra shown in Fig. 2 reveal some interesting fea-

tures. When the cantilever is oscillating freely in the liquid

chamber (grey curve of Fig. 2(b)), the wavelet spectrum

from f ¼ x=2p ¼ 10 Hz to f ¼ 1 kHz is much lower than

when the cantilever is pressed on the bottom coverslip (black

curve), and this spectrum changes very little with the fre-

quency x, reminiscent of an uncorrelated white noise. When

the cantilever is placed in contact with the bottom chamber

coverslip (black curve), the background vibrations of the liq-

uid chamber are amplified, the largest one emerges around f
¼ 800 Hz. The spectral density of the cantilever fluctuations

when it is pressed on a soft layer (PDMS) is drastically dif-

ferent at low frequency (<8 kHz) from that obtained for the

same cantilever in contact with a solid coverslip, in particu-

lar, the chamber vibration peak is partly damped by the

PDMS layer. Its higher frequency resonance modes are

slightly shifted to lower frequencies (order 2 mode: from

f¼ 59 kHz to f ¼ 53.4 kHz and order 3 mode: from f
¼ 187 kHz to f ¼ 179 kHz), and its broader resonance peak

at 7.3 kHz is flattened in its leftmost part to make place to a

flat curve (power-law behaviour). The slope of this line gives

an exponent b ¼ 0:20860:003,25 the hallmark of a coloured

noise signal with persistent correlations.27–29 From the slope

b, the exponent a of Eq. (1) can be estimated, in the low fre-

quency limit (x! 0), as a ¼ b � 0:2. This value of a is

characteristic of a viscoelastic material with a more pro-

nounced elasticity than viscosity. Let us point out that this

exponent does not change much when increasing the loading

force; at this depth of indentation (less than a few micro-

meters) the material complex modulus is robustly estimated

over the range of loading forces considered.

Finally, we have performed the same spectral analysis

of the cantilever thermal fluctuations when pressed inside a

living myoblast (C2C12 cell).25 Fig. 3(a) shows consecutive

approach (red)-retract (green) force curves recorded above

the nucleus of the adherent myoblast cell shown in Fig. 3(b).

We report in Figs. 3(c) and 3(d) the comparison of FFT-

based spectra EzðxÞ with the wavelet-based spectra

Ez;CWTðxÞ for a free cantilever in culture media (grey) and

for the same cantilever indented inside the cell, above its nu-

cleus, for three loading forces 0.44 (blue), 1.1 (green), and

FIG. 2. Comparison of FFT based spectra EzðxÞ and wavelet spectra

Ez;CWTðxÞ of cantilever fluctuations in contact with PDMS thin layers. (a)

FFT based spectra. (b) Wavelet based spectra. Grey: free cantilever in liq

uid, black: cantilever in hard contact with glass (1 nN contact force), blue,

(resp., green and red): cantilever in contact with a PDMS thin layer with 0.5

nN (resp., 1 and 2 nN) contact force.

FIG. 3. Comparison of FFT based spectra and wavelet spectra of AFM can

tilever fluctuations in pressed within a living myoblast. (a) Approach (red)

retract (green) force curves captured on a living C2C12 myoblast cell. (b)

Transmission image of the myoblast cell (left) with the cantilever (right)

before the scan. Scale bar: 30 lm. (c) Averaged FFT based spectra. (d)

Wavelet based spectra. (e) Corresponding storage G0ðxÞ (plain lines) and

loss G00ðxÞ (dashed lines) moduli computed with the GSER and Kramers

Kronig integral. Grey: free cantilever in liquid, blue: (resp., green and red):

cantilever in contact with a C2C12 myoblast cell with 0.44 nN (resp., 1.1

and 2.2 nN) loading force. G0ðxÞ and G00ðxÞ are expressed in Pa. Ez;CWTðxÞ
is given in pm2/Hz.
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2.2 nN (red). Similarly to the PDMS layer, we observe a

drastic flattening of the spectra, just below the first resonance

mode of the cantilever (f � 7 kHz) when the cantilever is

pressed on the cell. We note also that the FFT-based spec-

trum of the free cantilever in the culture medium containing

motile adherent and floating nonadherent cells (Fig. 3(c)) is

much more noisy than the spectrum recorded in pure water

(Figs. 1(a) and 2(a)). The presence of cells inside the cham-

ber introduces extra hydrodynamic perturbations that interact

with the background vibration modes of the chamber. The

wavelet-based spectra are again much smoother (Fig. 3(d))

and the characteristic scaling behavior of structural damping

material model emerges again in the lower frequency range

(<6 kHz), with a b exponent that significantly increases

with the loading force. The corresponding a values are 0.23

6 0.02 (Ref. 25) (low load) and 0.38 6 0.01 (higher load) as

an indicator of some increase of the viscous component

when the cantilever is pressed deeper inside the cell, closer

to the nucleus. These cells are much softer than the PDMS

layer (G � 480650 Pa), however, when sensed at low loads,

their cytoskeleton (including the cell cortex) keeps a rather

high elastic to viscous proportion in their response to stress.

For deeper indentations, the increase of a suggests that these

deeper zones (related to nucleus responses) are more viscous

than the outer parts. It is interesting to note that the three

spectra intersect around the frequency f ¼ 1 kHz, suggesting

that the cantilever fluctuations do not depend on the loading

force, as the signature of the ability of the cell to robustly

respond to a stress independently of its magnitude. Around f
¼ 1 kHz, the energy dissipated inside the cell does not vary

with the load.

The values of a estimated at low loads with our passive

AFM rheology method are very close to those measured with

other techniques with adherent cells11 (a � 0:26 for myo-

blasts, a � 0:22 for macrophages, and a � 0:2 for fibro-

blasts). It seems that this exponent a would be an invariant

of adherent cells, independently of their static shear modulus

G0. Then, using Eqs. (2) and (5), we can compute the storage

G0ðxÞ and loss G00ðxÞ moduli of this myoblast cell for the

three loading forces (Fig. 3(e)). We note that at frequencies

lower that 1 kHz, the complex moduli of the cell (real and

imaginary parts) are larger for shallow indentation depths

(targeting the cytoskeleton) than for deep indentations (con-

tacting the nucleus), whereas at larger frequencies this

behaviour is inverted, the deeper indentations giving larger

complex moduli. This observation is very interesting since it

suggests that the elasticity and viscosity parameters of a cell

depend on both the speed at which it is stressed (the higher

the frequency, the faster the strain) and the depth of sensing.

It also points out the importance of performing spectral stud-

ies that would allow us to investigate larger spectral ranges.

Our study shows that in the acoustic frequency range (from

10 Hz to 20 kHz), the cell behaves as a material with a broad

range of delay times and that the distribution of these delays

behaves as a power law.

We have shown in this work that AFM can be used for

passive rheologic characterization of soft samples (polymers,

living cells), thanks to a wavelet-based computation of spec-

tral density of AFM micro-cantilever fluctuations. This

method is fast since from a single fluctuation signal, the

elastic and viscous characteristics of the sample can be

obtained without need of modulating periodically the sample

height for a finite set of frequencies. The advantage of AFM,

as compared to other particle tracing methods, is to provide

some estimate of the low frequency shear modulus G0 from

force indentation curves and to adapt the range of loading

forces to investigate the rheology of soft materials.

Furthermore, the possibility to work with cantilevers with

different stiffnesses should also allow to further enlarge the

frequency range for passive rheology. Indeed, the full per-

formance of this time-frequency decomposition was not used

in this work, since we computed a time-averaged variance of

the wavelet transform coefficients. To perform a rheological

characterization of slowly varying systems, like migrating or

dividing cells, a time-frequency decomposition of the com-

plex shear modulus would be very helpful. This work is

under progress.
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