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Abstract : We prove that for a class of zero-sum differential games with incomplete information
on both sides, the value admits a probabilistic representation as the value of a zero-sum stochastic
differential game with complete information, where both players control a continuous martingale.
A similar representation as a control problem over discontinuous martingales was known for
games with incomplete information on one side (see Cardaliaguet-Rainer [9]), and our result is
a continuous-time analog of the so called splitting-game introduced in Laraki [22] and Sorin [29]
in order to analyze discrete-time models. It was proved by Cardaliaguet [5, 6] that the value of
the games we consider is the unique solution of some Hamilton-Jacobi equation with convexity
constraints. Our result provides therefore a new probabilistic representation for solutions of
Hamilton-Jacobi equations with convexity constraints as values of stochastic differential games
with unbounded control spaces and unbounded volatility.

Key-words : Zero-sum continuous-time game, incomplete information, Hamilton-

Jacobi equations, stochastic differential game
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1 Introduction.

In his seminal paper [5], Cardaliaguet introduced a class of zero-sum differential games where
each of the two players has a private partial information on the payoff of the game. He showed
in [6] that the value of these games is the unique solution of some Hamilton-Jacobi-Isaacs (HJI)-
equation with convexity constraints. In case only one player has a private information and there
are no dynamics, it was established in Cardaliaguet-Rainer [9] that the game has an interpre-
tation in terms of a control problem with complete information over a set of continuous time
martingales: these martingales translate how the informed player manages his private informa-
tion.
In the present work, we investigate a game where both players have private information. We
show that, in this case, there is an interpretation of the game in terms of a game with complete
information and martingale controls. Our model is therefore a continuous-time analog of the
so-called “splitting game” studied in Laraki [22] and Sorin [29] (see also De Meyer [13] and Gens-
bittel [17] for a similar representation formula for the value of repeated games with incomplete
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information on one side). But we profit here to go a step further: in opposition to [9], where
the controls are merely discontinuous martingales, we prove that the value of the deterministic
game with incomplete information is equal to the value of a stochastic differential game (SDG),
i.e. that an -almost- standard Brownian setting is an efficient framework for the analysis of
asymmetric information.
This way we provide a probabilistic representation of an HJI-equation with convexity constraints
of the type introduced in [6]. The presence of these convexity constraints is strongly linked with
the fact that in the class of zero-sum SDG we consider, the control sets and the volatility map are
unbounded. A further contribution is the notion of simple pathwise strategies, which provides
a less technical alternative to the definition proposed in Cardaliaguet-Rainer [10]

The introduction is divided in several subsections describing the framework and the known re-
sults concerning the initial deterministic game problem, our results and our definition of strate-
gies together with a discussion on the relationships with the existing literature.

1.1 Continuous time games with incomplete information

Differential games with incomplete information were introduced by Cardaliaguet in [5], as a
continuous-time analog to the model of repeated games with incomplete information studied by
Aumann and Maschler in the sixties (see [1] for a re-edition of their work) and by many authors
since then (see e.g. Mertens-Zamir [24], Laraki [22], De Meyer-Rosenberg [14], Cardaliaguet-
Laraki-Sorin [7], Gensbittel [17] and Laraki-Sorin [23] for more references). Let us briefly describe
the game whose value equals the value of the zero-sum SDG studied in the present work.
We fix two finite sets of indices I and J . At the beginning of the game, a pair (i, j) ∈ I × J is
chosen at random according to a product distribution p⊗ q. Here, p is a probability on the set I
and can be assimilated to an element of the simplex ∆(I) in R|I| (resp. q ∈ ∆(J) a probability on
J). Player 1 (the minimizing player) is only informed of i while player 2 (the maximizing player)
is only informed of j. The sets of controls K and L are compact and metric. The game has a
finite time horizon T and an integral payoff. The payoff function fij : [0, T ] × K × L → [0, 1]
depends on the chosen pair (i, j). Player 1 is allowed to choose a family of random control
processes k = (ki)i∈I . Similarly, player 2 is allowed to choose a family of random controls
ℓ = (ℓj)j∈J . The expected payoff is defined as

∑

i,j

piqjEP1⊗P2

[
∫ T

t
fij(s, k

i
s, ℓ

j
s)ds

]

,

where P1 (resp. P2) is the probability on an auxiliary probability space which is used as a
randomization device for Player 1 (resp. Player 2). The notion of strategies used in [5] is that
of random strategies with delay (see [5] or [9] for a precise definition), and in order for the value
to exist, one has to assume the following Isaacs’ condition

H(t, p, q) := sup
k

inf
ℓ

∑

i,j

piqjfi,j(t, k, ℓ) = inf
ℓ
sup
k

∑

i,j

piqjfi,j(t, k, ℓ). (1.1)

In Cardaliaguet [6], it is shown that the value of this game is the unique Lipschitz continuous
viscosity solution of the following equation :

min

{

max

{

−∂V
∂t

(t, p, q)−H(t, p, q);−λmin(p,D
2
pV (t, p, q))

}

;−λmax(q,D
2
qV (t, p, q))

}

= 0,

(1.2)
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with terminal condition V (T, p, q) = 0. Here the notation λmin(p,D
2
pV (t, p, q)) stands for the

smallest eigenvalue of the second derivative of V with respect to p, relative to the tangent space
of ∆(I) at p (see section 2 for the precise definition). Similarly, λmax(q,D

2
qV (t, p, q)) stands for

the largest eigenvalue of the second derivative of V with respect to q, relative to the tangent space
of ∆(J) at q. The model studied in [5] led to several generalizations by Cardaliaguet-Rainer
[8], Grün [18], Oliu-Barton [27], Gensbittel [16] and Cardaliaguet-Rainer-Rosenberg-Vieille [11].
A particular case is deepened in [9]: when J is reduced to a singleton (i.e. Player 1 has full
information), the equation becomes

max

{

−∂V
∂t

(t, p)−H(t, p);−λmin(p,D
2
pV (t, p))

}

= 0, (1.3)

with terminal condition V (T, p) = 0. It is then shown that its solution can be represented as

V (t, p) = min
(ps)s∈[t,T ]

E[

∫ T

t
H(s, ps)ds], (1.4)

where the minimum is over the set of (laws of) càdlàg martingales living in the simplex ∆(I).
The martingales (ps)s∈[t,T ] in the control problem (1.4) can be interpreted as the information
on the index i Player 1 discloses over time, and one may derive an optimal strategy for this
informed Player from the optimal martingale in (1.4).

1.2 Main contributions of the paper

Our main result is that the unique solution V of (1.2) is the value of a standard SDG (i.e.
with complete information) with unbounded control sets and unbounded volatility, providing
therefore an alternative probabilistic representation for the value function of differential games
with incomplete information. In this game, the control sets U, V are respectively the sets of
square matrices of size |I| and |J |. Let (Bs) = (B1

s , B
2
s ) denote a standard Brownian motion

with values in R|I|×R|J | defined on the canonical space endowed with the augmented canonical
filtration. For fixed (t, p, q) ∈ [0, T ]×∆(I)×∆(J) and a pair of progressively measurable controls
(us, vs), we consider the following controlled stochastic differential equations (SDE):

Xt,p,u
s = p+

∫ s

t
σ(Xt,p,u

r , ur)dB
1
r , s ∈ [t, T ], (1.5)

Y t,q,v
s = q +

∫ s

t
τ(Y t,q,v

r , vr)dB
2
r , s ∈ [t, T ], (1.6)

where for all (x, u) ∈ ∆(I)×U , σ(x, u) ∈ R|I×I| is the orthogonal projection of u on the tangent
space of ∆(I) at x, Tx(∆(I)). Similarly, for all (y, v) ∈ ∆(J) × V , τ(y, v) ∈ R|J×J | denotes
the orthogonal projection of v on the tangent space of ∆(J) at y. Roughly speaking, each
player controls the variance of his own martingale, X for player 1 and Y for player 2, and the
projections ensure that the martingales remain respectively in the simplices ∆(I) and ∆(J).

The payoff of our game is defined by

J(t, p, q, u, v) := Et

[∫ T

t
H(s,Xt,p,u

s , Y t,q,v
s )ds

]

,

where Player 1 plays u and wants to minimize J(t, p, q, u, v) while Player 2 plays v and wants to
maximize it. The players use simple pathwise strategies, where simple means here that controls
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are piecewise-constant on intervals with rational endpoints, and pathwise that each player reacts
to the realization of the control of his opponent and not to the full control (see the discussion in
subsection 1.5). This notion of strategies allows to define the lower and upper value functions

V −(t, p, q) := sup
β

inf
α
J(t, p, q, uα,β , vα,β), V +(t, p, q) = inf

α
sup
β
J(t, p, q, uα,β , vα,β),

where α, β range through the set of simple pathwise strategies and (uα,β , vα,β) denotes the unique
pair of controls induced by the pair of strategies (α, β) (see Lemma 2.7). With such a definition,
the inequality V − ≤ V + is immediate, and we only have to prove the reverse inequality in order
to prove that this game admits a value V = V − = V +. This is the content of Theorem 2.8.

As a corollary, if J is reduced to a singleton, we find a new stochastic representation for the
solution of (1.3):

V (t, p) = inf
u

E[

∫ T

t
H(s,Xt,u,p

s )ds]. (1.7)

One has to compare this result with the representation (1.4). Although we did not follow this
approach, one can see (1.4) as the relaxed version of (1.7) for some sufficiently weak topology.
An important advantage of (1.4) is the existence of an infimum, which is not true in general for
(1.7) since the optimal martingales in (1.4) are typically purely discontinuous (see the examples
in [9]). However, the formulation (1.7) introduced in the present work allowed us to extend this
probabilistic representation from the stochastic control case to the zero-sum game case and to
relate these results with the classical theories of stochastic control and zero-sum SDG.
Let us also mention that a control problem similar to (1.7) with a cost depending on the volatility
of the martingale and arising from the asymptotic analysis of repeated games with incomplete
information was analyzed in Gensbittel [16].

1.3 About control problems with unbounded control spaces

Control problems with square integrable controls (possibly unbounded) are considered for ex-
ample in Krylov [20] (see also his recent papers on games, e.g. [21]) and Touzi [30]. More
recently zero-sum SDG with unbounded controls and unbounded volatility have been studied
by Bayraktar-Yao [2]. However, none of these references deal with the associated equation with
convexity constraints which characterizes the value of the zero-sum SDG we are studying. In-
deed, if we formally write the standard upper and lower Hamilton-Jacobi-Isaacs (HJI) equations
in our model, assuming that the classical result applies, V − should be a viscosity supersolution
of

− ∂V −

∂t
(t, p, q)−H(t, p, q)− sup

v
inf
u

1

2
Tr(Mu,vD

2V −(t, p, q)) ≥ 0, (1.8)

with Mu,v =

(

σ(p, u)σ(p, u)t 0
0 σ(q, v)σ(q, v)t

)

, and similarly, V + should be a viscosity subsolu-

tion of

− ∂V +

∂t
(t, p, q)−H(t, p, q)− inf

u
sup
v

1

2
Tr(Mu,vD

2V +(t, p, q)) ≤ 0. (1.9)

Given a symmetric matrix S, the classical Isaacs’ condition:

H(t, p, q) + sup
u

inf
v

1

2
Tr(Mu,vS) = H(t, p, q) + inf

v
sup
u

1

2
Tr(Mu,vS), (1.10)
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does not always hold. Precisely, Isaac’s condition holds with both sides of (1.10) being finite if
and only if

S =

(

S1 ∗
∗ S2

)

,

with λmin(p, S1) ≥ 0 and λmax(q, S2) ≤ 0, and in this case both sides of (1.10) are equal to
H(t, p, q). If S does not fulfill these constraints, then both sides of (1.10) are infinite and
if λmin(p, S1) < 0 and λmax(q, S2) > 0, then the left-hand side of (1.10) is −∞ whereas the
right-hand side is +∞, so that (1.10) does not hold even in a generalized sense.

The variational characterization of the value function for our zero-sum SDG is -to our knowledge-
not covered by any result in the literature on SDG, in particular, one may not apply directly the
results of Bayraktar-Yao [2] in the present context since the assumptions called (A−u), (A− v)
in [2] do not hold in the present model. Actually, we claim that the HJI equations (1.8,1.9)
do not hold in general and thus do not characterize the value function of our problem. This
indicates that (1.2) cannot be rewritten as a classical HJI equation, and is structurally different.
This claim is proved rigorously through a very simple example detailed in subsection 1.4 below.

1.4 The simple example of the convex envelope

In order to give an easy and explicit illustration of our result, let us further simplify the model
by assuming that J is reduced to a singleton and that H does not depend on time. In this case
equation (1.3) becomes

max

{

−∂V
∂t

(t, p)−H(p);−λmin(p,D
2
pV (t, p))

}

= 0. (1.11)

The unique solution is V (t, p) = (T − t)V ex(H)(p), where V ex(H) is the convex envelope of H,
i.e. the largest convex function f defined on ∆(I) such that f ≤ H (see [6] and [9] for a detailed
proof). Our result implies that V is the value of the stochastic control problem with unbounded
volatility (1.7), and thus we have:

(T − t)V ex(H)(p) = inf
u

E[

∫ T

t
H(Xt,u,p

s )ds]. (1.12)

This kind of representation for the convex envelope is not surprising at all and was probably
already noticed by several authors (see e.g. [9], but also [30] for a quite similar formulation
with terminal cost). Moreover, a direct proof of (1.12) is not difficult to obtain. However, note
that this representation differs from the one suggested in Oberman [26] for the convex envelope,
which was a control problem with stopping and bounded volatility (let us also mention that
convergence in long time to the convex envelope for stochastic control problems with bounded
volatility was studied in [12]). This example will serve us to show very easily that the function
V is not characterized through the following Hamilton-Jacobi equation that one could naively
expect:

− ∂V

∂t
(t, p)−H(p)− inf

u

1

2
Tr(σ(p, u)σ(p, u)tD2V (t, p)) = 0. (1.13)

Indeed, V is a subsolution of (1.13) since for any test function φ ≥ V such that V (t, p) = φ(t, p),
the convexity of V implies λmin(p,D

2φ(t, p)) ≥ 0, and thus

−∂φ
∂t

(t, p)−H(p)− inf
u

1

2
Tr(σ(p, u)σ(p, u)tD2φ(t, p)) = −V ex(H)(p) −H(p) ≤ 0.
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However, one can see through a simple example that V is not a supersolution of (1.13). Let
I = {1, 2} and defineH(p) = 1

2−|p−p0| where p0 = (12 ,
1
2 ), so that H is strictly concave, positive

for p in the relative interior of ∆(I) and equal to 0 at points (0, 1) and (1, 0). It follows easily that
V ex(H) = 0 and one may thus use φ ≡ 0 as a test function such that φ(t, p) ≤ (T −t)V ex(H)(p)
and φ(0, p0) = V (0, p0). We obtain:

−∂φ
∂t

(t, p0)−H(p0)− inf
u

1

2
Tr(σ(p0, u)σ(p0, u)

tD2φ(t, p0)) = −H(p0) < 0,

which shows that V ex(H) is not a supersolution. This very simple example shows that this kind
of control problems with unbounded variance cannot be analyzed using classical Hamilton-Jacobi
equations, but requires to consider equations with convexity constraints as (1.2).

1.5 Simple pathwise strategies

The second contribution of this paper is to prove existence of the value for particular games
with unbounded controls and unbounded volatility, having discontinuous coefficients, using sim-
ple pathwise strategies. The importance of using pathwise strategies was already outlined
in Cardaliaguet-Rainer [10]. Recall that the standard definition of a strategy introduced in
Fleming-Souganidis [15] (see also the definition in Buckdahn-Li [4] and in most of the papers
on SDG) requires a player to react to the full control of his opponent. By full control, we mean
the map v(.) which associates to ω the control v(ω) (as we work on the canonical space here,
ω denotes the Brownian trajectory). In many game modeling situations, one cannot require for
a player to know what his opponent would have decided if another state of the world ω had
occurred. Pathwise strategies are strategies which depend only on the actual realization v(ω)
of the control. However, pathwise strategies introduced in Cardaliaguet-Rainer were universally
measurable maps and their construction relied on the construction of Nutz [25], hence on the
axiom of the continuum (actually only on the weaker assumption that there exists a medial limit
in the sense of Mokobodzki). The reason for this technical definition was the need of a pathwise
version of the stochastic integral, in order for the players to be able to play simple feedback
strategies.

We chose to work here with a simpler definition, to avoid very technical measurability issues
arising when trying to prove a dynamic programming principle. By requiring the players to play
piecewise-constant controls on some intervals with rational endpoints, the controlled stochastic
differential equations we consider are defined pathwise, which allow us to consider simple feed-
back strategies (actually quite close to the feedback strategies used in Pham-Zhang [28]), and
also to use a measurable selection result.

1.6 Open questions

We are interested in several developments. As in the framework of repeated games developed by
Laraki [22], replacing the simplices ∆(I) and ∆(J) by some compact convex sets C,D give rise to
a more general splitting game. On the other hand, in [11] and [16] the value of a continuous-time
Markov game with incomplete information satisfies the following PDE with obstacles:

min{max{−∂V
∂t

− L(V )− u ; −λmin(D
2
pV )} ; −λmax(D

2
qV )} = 0,

Here the convexity constraints are the same as in the case we consider in the present paper,
but the PDE is different. In particular it includes a drift term. More generally, it is likely
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that, looking on more involved models, we have to appeal to the theory of viability. Indeed, the
stochastic problem we introduce here can be seen as a game problem under constraints. However,
the particular structure of the constraints (with affine borders) and of the dynamics (without
drift term) permits a very specific approach. Relaxing both assumptions, on the constraints and
on the dynamics, this explicit treatment will not be possible anymore.

2 The model

2.1 Notations

Let T > 0 be a deterministic terminal time, and I, J be two non-empty finite sets which we will
identify with the sets {1, . . . , |I|} and {1, ..., |J |} respectively. Let ∆(I) = {p ∈ R|I| | ∀i ∈ I, pi ≥
0,
∑

i∈I pi = 1} and ∆(J) denote the associated simplices.

For all 0 ≤ t < t′ ≤ T , we consider the Wiener space Ωt,t′ = {ω : [t, t′] → R|I×J | continuous
s.t. ω(t) = 0} endowed with the topology of uniform convergence and the associated Borel
σ-algebra Ft,t′ . The Wiener measure on Ωt,t′ under which the canonical process (Bt,t′(s, ω) =
ω(s), s ∈ [t, t′]) is a standard Brownian motion, is denoted by Pt,t′ .

Let F0
t,t′ = (F0,t′

t,s )s∈[t,t′] be the filtration generated by the coordinate process on Ωt,t′ . We

denote by Ft,t′ = (F t′
t,s)s∈[t,t′] the smallest right-continuous filtration with respect to which the

coordinate process is adapted and which contains all negligible sets for Pt,t′ . In the sequel, we
have to decompose the canonical process (Bs(ω) := ω(s), s ∈ [t, T ]) on Ωt into Bs = (B1

s , B
2
s ),

where B1 and B2 are two independent Brownian motions with values in R|I| (resp. R|J |).
The control spaces are here U = R|I×I|, V = R|J×J |. U and V are seen as spaces of

matrices. On each euclidean space Rn, we can define a bounded distance by db(x, y) =
|x−y|

1+|x−y| ,
topologically equivalent to the usual Euclidean distance. Let Ut,t′ , Vt,t′ be the sets of equivalence
classes (with respect to the Lebesgue measure) of measurable maps from [t, t′] to U, V , endowed
with the topology of convergence in measure. Note that this topology is metricized by the
distance d1(u,u

′) =
∫

[t,t′] db(u(s),u
′(s))ds. Further let us introduce the set U(t, t′) of Ft,t′

progressively measurable processes on Ωt,t′ taking values in U and such that Pt,t′ [
∫ t′

t |us|2ds <
∞] = 1, and the set V(t, t′) of Ft,t′ progressively measurable processes on Ωt,t′ taking values in

V and such that Pt,t′ [
∫ t′

t |vs|2ds <∞] = 1. In all these notations, we drop the index t′ if t′ = T .
Finally, for two functions φ, φ′ from [t, t′] into a same space, we write φ ≡ φ′ on [t, t′], if

φ(s) = φ′(s) for Lebesgue-almost all s ∈ [t, t′].

2.2 The stochastic differential equations

For fixed (t, p) ∈ [0, T ]×∆(I) and u ∈ U(t), we consider the following SDE

Xt,p,u
s = p+

∫ s

t
σ(Xt,p,u

r , ur)dB
1
r , s ∈ [t, T ], (2.1)

where, for all (x, u) ∈ ∆(I) × U , σ(x, u) := Pxu ∈ R|I×I| where Px denotes the orthogonal
projection on the tangent space of ∆(I) at x, Tx(∆(I)).

In the same way we introduce for (t, q) ∈ [0, T ]×∆(J) and v ∈ V(t) the SDE

Y t,q,v
s = q +

∫ s

t
τ(Y t,q,v

r , vr)dB
2
r , s ∈ [t, T ], (2.2)
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where, for all (y, v) ∈ ∆(J) × V , τ(y, v) = Pyv ∈ R|J×J | where Py denotes the orthogonal
projection on the tangent space of ∆(J) at y.

Remark 2.1. Let us describe the structure of the tangent spaces of ∆(I). For p ∈ ∆(I), define
the support of p, S(p) := {i ∈ I | pi > 0} and its complementary E(p) = {i ∈ I | pi = 0}. Then
the tangent space Tp(∆(I)) depends only on S(p). More precisely, it holds that

Tp(∆(I)) = {y ∈ R|I| |
∑

i∈I

yi = 0 and ∀i ∈ E(p), yi = 0}. (2.3)

A useful consequence is that, if for p, p′ ∈ ∆(I) we have S(p) = S(p′), then Tp(∆(I)) =
Tp′(∆(I)). Furthermore we have an explicit formula for the orthogonal projection on the tangent
space: For all vector y ∈ R|I|,

(Ppy)i =

{

0 if i /∈ S(p)
yi − 1

|S(p)|

∑

i′∈S(p) yi′ if i ∈ S(p)
(2.4)

For any I ′ ⊂ I and any p ∈ ∆(I) such that S(p) = I ′, we write PI′ for Pp.

Throughout the proofs, we use the convention inf ∅ = +∞ when defining stopping times, al-
though the time interval is [t, T ].

Proposition 2.2. The SDE’s (2.1) and (2.2) have unique strong solutions such that, Pt-a.s.
for all s ∈ [t, T ], Xs ∈ ∆(I) and Ys ∈ ∆(J).

Proof. Because of the lack of regularity of σ (σ is not continuous in x!), we cannot use an existing
theorem. We prove the result only for (2.1), because the arguments for (2.2) are the same.

Set p ∈ ∆(I) and I ′ = S(p). Up to restrict ourselves to the set ∆(I ′) := {p′ ∈ ∆(I)|S(p′) ⊂ I ′},
we can suppose that S(p) = I. This is equivalent to say that p belongs to the relative interior
of ∆(I) denoted by Int(∆(I)). In this case, for all u ∈ U I , σ(p, u) = PIu.

Set τ0 := t and consider the constant process X0
s ≡ p, s ∈ [t, T ].

Suppose now that, for some k ∈ N, an Ft-stopping time τk ∈ [t, T ] and an Ft-adapted continuous
process Xk on [t, T ] are defined. Set Ik = S(Xk

τk
). Define the sequence of stopping times for

n ∈ N

θk,n := inf{s ∈ [τk, T ]|
∫ s

τk
|PIkur|2dr ≥ n} and θk,∞ = sup

n
θk,n,

and the process

Xk+1
s = Xk

s∧τk +

∫ s∨τk

τk
PIkurdB

1
r , s ∈ [t, θk,∞) ∩ [t, T ],

where the integral is a local martingale. We then extend (arbitrarily) the definition of Xk+1

by Xk+1
s = ei0 for some i0 ∈ I, if s ≥ θk,∞ whenever θk,∞ ≤ T so that Xk+1 is a well-defined

càdlàg process on [t, T ].

Define τk+1 := inf{s ∈ [t, T ]|Xk+1
s ∈ ∂(∆(Ik))} ∧ T , where ∂(∆(Ik)) is the relative boundary of

∆(Ik). Remark that, Pt-a.s. on {τk < T}, we have τk < τk+1.

Let us prove that Pt[θ
k,∞ ≤ τk+1] = 0. Assume that Pt[θ

k,∞ ≤ τk+1] > 0. Note that on this
event, the process Xk+1 stays in the relative interior of ∆(Ik) during the time-interval [t, θk,∞).
Therefore, we have for all n

2 ≥ Et[|Xk+1
θk,n∧τk+1 −Xk

τk |2] = Et

[

∫ θk,n∧τk+1

τk
|PIkus|2ds

]

≥ nPt[θ
k,∞ ≤ τk+1].
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This leads to a contradiction for large n.

Now we set Ik+1 = S(Xk+1
τk+1). Since, on {τk < T}, ∆(Ik+1) ⊂ ∂(∆(Ik)), its dimension is at most

dim(∆(Ik))− 1. Therefore, for all k ≥ |I|, τk = T almost surely. We set finally

Xt,p,u
s = X |I|

s , s ∈ [t, T ].

It is easy to check that Xt,p,u satisfies (2.1). Furthermore, by construction, we have Xt,p,u
s ∈

∆(I),Pt-a.s for all s ∈ [t, T ].

Let us prove now the uniqueness: Let X̂ denote another solution to (2.1). Define τ̂1 = inf{s ∈
[t, T ]|X̂s ∈ ∂(∆(S(p)))} ∧ T , and note that for s ∈ [t, T ], we have on the event {s < τ̂1}

X̂s = p+

∫ s

t
PpurdB

1
r = X1

s ,

which implies that τ̂1 = τ1, and thus that X̂τ1 = X1
τ1 since both processes have continuous

trajectories. Define then τ̂2 = inf{s ∈ [t, T ]|X̂s ∈ ∂(∆(S(X̂τ1)))} ∧ T , and note that for
s ∈ [t, T ], we have on the event {s < τ̂2}

X̂s = X1
s∧τ1 +

∫ s∨τ1

τ1
PX̂

τ1
urdB

1
r = X2

s ,

which implies that τ̂2 = τ2, and thus that X̂τ2 = X2
τ2 . Proceeding by induction, and using that

τ |I| = T almost surely, we deduce that X̂s = X
|I|
s for all s ∈ [t, T ].

Remark 2.3. Using the same proof, (2.1) and (2.2) have unique strong solutions starting at
t′ ∈ (t, T ) with any random Ft,t′ -measurable initial conditions taking values in ∆(I) × ∆(J)
and controls (u, v) ∈ U(t) × V(t) (the solutions depend actually only on the restrictions on the
time-interval [t′, T ] of these controls).

We shall use later a converse result, namely:

Proposition 2.4. If, for some p ∈ ∆(I) and u ∈ U(t), the process Xs = p+
∫ s
t urdB

1
r , s ∈ [t, T ]

is well defined and XT belongs to ∆(I), then, Pt-a.s., u ≡ PX·
u on [t, T ] and X· = Xt,p,u

· .

Proof. Since (Xs)s∈[t,T ] is a martingale and ∆(I) a convex set, we have, Pt-a.s. for all s ∈ [t, T ]
Xs ∈ ∆(I). Summing up all coordinates of XT , we get

1 =
∑

i∈I

Xi
T = 1 +

∫ T

t

∑

i∈I

uirdB
1
r ,

where for i ∈ I, ui ∈ R|I| denotes the i-th row of u. Therefore
∑

i u
i ≡ 0 Pt-a.s. on [t, T ].

Suppose further that, for some stopping time τ ∈ [t, T ], some set A ∈ Ft,τ and some coordinate
i, Xi

τ = 0 on A. Then, firstly,

Xi
τ1A = Et[X

i
T |Ft,τ ]1A = 0

with Xi
T ≥ 0, implies that Xi

T = 0 on A, and, setting τA := τ1A + T1Ac , the relation

Xi
T = Xi

τA +

∫ T

τA

uirdB
1
r

implies that ui ≡ 0 Pt-a.s. on [τA, T ]. The result follows by the explicit characterization (2.3)
of the tangent spaces Tp, p ∈ ∆(I).
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Let H : [0, T ] ×∆(I) ×∆(J) → R be a bounded map, Lipschitz continuous in all its variables.
Let C > 0 be both a Lipschitz constant and an upper bound for H:

|H(t, p, q)−H(t′, p′, q′)| ≤ C(|t− t′|+ |p− p′|+ |q − q′|)
|H(t, p, q)| ≤ C.

We set, for (t, p, q, u, v) ∈ [0, T ] ×∆(I)×∆(J)× U(t)× V(t),

J(t, p, q, u, v) := Et

[∫ T

t
H(s,Xt,p,u

s , Y t,q,v
s )ds

]

.

The game is the following: Given the initial data (t, p, q), Player 1 plays u and wants to
minimize J(t, p, q, u, v), Player 2 plays v and wants to maximize it.

We now introduce the controls and the strategies for the players. As explained in the
introduction, we restrict the players to use simple controls and simple strategies. On the one
hand, this choice allows to have a pathwise definition of strategies, which means that a player
reacts to the realization u(ω) of the control of his opponent without knowing the entire map
ω → u(ω). Indeed, simple controls allow to define easily pathwise stochastic integrals. Another
approach was initiated in [10], but this approach requires to assume the continuum hypothesis
(which, by the result of Nutz [25], implies the existence of a pathwise stochastic integral), and
also to consider universally measurable strategies, which would make the proofs of the dynamic
programming principle highly technical.

We denote by Us(t) (resp. Vs(t)) the set of piecewise constant controls with rational grid, i.e.
u ∈ Us(t) if there exist t = t0 < ... < tm = T and (Borel)-measurable maps gj from Ωt,tj to U
(resp. V ) for j = 0, ...,m − 1 such that t1, ..., tm−1 belong to Q ∩ (t, T ) and

u(ω, s) =
∑

j

1[tj ,tj+1)(s)gj(ω|[t,tj ]).

These controls will be called simple controls.

Similarly, let U s
t ⊂ Ut (resp. V

s
t ⊂ Vt) denote the subset of piecewise constant trajectories with

rational grid. Generic trajectories will be denoted u,v in contrast to controls u, v.

Definition 2.5.

An admissible strategy for Player 1 at time t is a Borel map α : Ωt× V s
t → U s

t such that there
exist a sequence t = t0 < t1 < ... < tm = T such that t1, ..., tm−1 belong to Q ∩ (t, T ) and

α(ω,v)(s) =

m−1
∑

j=0

1[tj ,tj+1)(s)α
j((ω,v)|[t,tj ]),

for some Borel maps αj : Ωt,tj × V s
t,tj → U . We denote by A(t) the set of admissible strategies

for Player 1.
The set of admissible strategies for Player 2, denoted by B(t) is defined similarly.

Remark that these strategies are pathwise strategies with delay. They are pahtwise strategies
because they depend on the realization of the control of the opponent v(ω) and not on the whole
map ω → v(ω). They are also strategies with delay in the spirit of e.g. [9] or [27]: it is easy to
see that, given the associated sequence t = t0 < t1 < ... < tm = T , for any j ∈ {0, . . . ,m− 1},
the answer of player 1 on the time interval [t, tj+1] depends on the Brownian path and the action
of player 2 only through their restriction to the time interval [t, tj ].

The next Lemma is stated without proof and easy to verify.

10



Lemma 2.6. For all α ∈ A(t) and v ∈ Vs(t), there exists a process α(v) ∈ Us(t) such that for
all ω ∈ Ωt,

α(v)(ω, .) ≡ α(ω, v(ω, .)).

The following lemma is standard and can be easily adapted from the existing literature, as for
instance in [8]).

Lemma 2.7. For all t ∈ [t, T ], for all (α, β) ∈ A(t)×B(t), there exists a unique pair of simple
controls (u, v) ∈ Us(t)× Vs(t) which satisfies, Pt-a.s.

u ≡ α(v), v ≡ β(u). (2.5)

We denote them by (uα,β, vα,β).

We are ready now to define the lower and upper value functions for the game:

V +(t, p, q) = inf
α∈A(t)

sup
β∈B(t)

J(t, p, q, uα,β , vα,β).

V −(t, p, q) = sup
β∈B(t)

inf
α∈A(t)

J(t, p, q, uα,β , vα,β).

Note that, as usual, V − ≤ V + and that

V +(t, p, q) = inf
α∈A(t)

sup
v∈Vs(t)

J(t, p, q, α(v), v),

V −(t, p, q) = sup
β∈B(t)

inf
u∈Us(t)

J(t, p, q, u, β(u)).

We need to introduce some notations before stating the main theorem. Let SI denote the set of
I × I symmetric matrices. For (p,A) ∈ ∆(I)× SI , define

λmin(p,A) := min
z∈Tp(∆(I))\{0}

〈Az, z〉/|z|2 ,

with the convention min(∅) = +∞. Similarly, for (q,B) ∈ ∆(J)× SJ , define

λmax(q,B) := max
z∈Tq(∆(J))\{0}

〈Bz, z〉/|z|2,

with the convention max(∅) = −∞.

The main theorem of this paper is the following.

Theorem 2.8. The game has a value V := V + = V − which is the unique Lipschitz viscosity-
solution of the following barrier equation:

min

{

max

{

−∂V
∂t

(t, p, q)−H(t, p, q);−λmin(p,D
2
pV (t, p, q))

}

;−λmax(q,D
2
qV (t, p, q))

}

= 0,

(2.6)
where D2

pV,D
2
qV the second-order derivatives with respect to p and q.

See section 6 for the precise definition of viscosity solution of (2.6).
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3 Regularity of the value functions.

The aim of what follows is to prove that the value functions are Lipschitz in all their variables.

Lemma 3.1. Let (t, p, q) ∈ [0, T ) ×∆(I)×∆(J) and h ∈ (0, T − t].

1. For all α ∈ A(t+ h) and v ∈ Vs(t), there exists α̃ ∈ A(t) and ṽ ∈ Vs(t+ h) such that

|J(t, p, q, α̃(v), v) − J(t+ h, p, q, α(ṽ), ṽ)| ≤ 8Ch,

2. for all α ∈ A(t) and v ∈ Vs(t+ h), there exists α̃ ∈ A(t+ h) and ṽ ∈ Vs(t) such that

|J(t+ h, p, q, α̃(v), v) − J(t, p, q, α(ṽ), ṽ)| ≤ 8Ch.

Proof. The proof looks very involved but it is not: based on the scaling property of the Brownian
motion and the linearity of σ and τ , it proceeds by very elementary transformations. We only
prove the first point as the second one follows by symmetry.
Let α ∈ A(t + h) and v ∈ Vs(t) and let t + h = t0 < t1 < ... < tm = T be the grid associated
to α and t = t′0 < t′1 < .... < t′n = T the grid associated to v. Let η ∈ [t + 2h, t + 3h] ∩ Q and
φ : [t+ h, T ] → [t, T ] defined by

φ(s) =

{

ψ(s), if s ∈ [t+ h, η),
s, if s ∈ [η, T ].

,

where ψ : [t+ h, η] → [t, η] is an increasing homeomorphism which can be chosen such that

• φ is piecewise-affine on the partition t+ h = s0 < s1 < ... < sN = T , with

{s1, . . . , sN−1} = {η} ∪
(

(

{tj, j = 1, ...,m − 1} ∪ {φ−1(t′j), j = 1, ..., n − 1}
)

∩ (t+ h, T )
)

.

• the image of {t1, ...., tm−1} ∩ [t+ h, η] by ψ belongs to Q,

• the image of {t′1, ...., t′n−1} ∩ [t, η] by ψ−1 belongs to Q,

• for all r, s ∈ [t+ h, η], |r − s| ≤ |ψ(r)− ψ(s)| ≤ 3|r − s|.

The proof that such a map ψ exists is left to the reader, the idea is to slightly perturb the
map s→ t+ η−t

η−(t+h)(s− (t+ h)) on [t+ h, η]. Remark that φ is an increasing homeomorphism

from [t+ h, T ] to [t, T ] and that the image of {t1, ...., tm−1} by φ belongs to Q and the image of
{t′1, ...., t′n−1} by φ−1 belongs to Q.

Let us define the map Rφ : Ωt → Ωt+h by:

∀s ∈ [t+ h, T ], Rφ(ω)(s) :=
N−1
∑

i=0

1
√

φ′(si)

(

ω(φ(s ∧ si+1))− ω(φ(si))
)

1s≥si,

where φ′(si) denote the right-derivative of φ at si.

We get a R|I×J |-valued, standard Brownian motion (B̃s)s∈[t+h,T ] on Ωt by setting:

∀ω ∈ Ωt,∀s ∈ [t+ h, T ], B̃(ω)(s) = Rφ(ω)(s).
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Define the process ṽ ∈ Vs(t+ h) by

∀(ω, s) ∈ Ωt+h × [t+ h, T ], ṽ(ω, s) :=

N−1
∑

i=0

√

φ′(si)v(R
−1
φ (ω), φ(s))1s∈[si,si+1).

For s ∈ [t+ h, T ], set Ȳs := Y t,q,v
φ(s)

. The process Ȳ satisfies:

Ȳs = q +

∫ φ(s)

t
τ(Y t,q,v

r , vr)dB
2
r

= q +

∫ s

t+h
τ(Ȳr, vφ(r))dB

2
φ(r) = q +

∫ s

t+h
PȲr

vφ(r)dB
2
φ(r)

= q +

∫ s

t+h
PȲr

ṽ(B̃(ω), r)dB̃2
r = q +

∫ s

t+h
τ(Ȳr, ṽ(B̃(ω), r))dB̃2

r ,

Define also the one-to-one continuous mappings:

Tφ : Vt → Vt+h, Tφ(v)(s) =

N−1
∑

i=0

√

φ′(si)v(φ(s))1[si,si+1)(s).

T ′
φ : Ut+h → Ut, T

′
φ(u)(s) =

N−1
∑

i=0

1
√

φ′(si)
u(φ−1(s))1[φ(si),φ(si+1))(s).

Using these notations, let us define a strategy α̃ : Ωt × V s
t → Ut by:

α̃(ω,v)(s) = (T ′
φ)(α(Rφ(ω), Tφ(v)))(s).

Let us show that α̃ belongs to A(t): since, by assumption the time grid t+h = t0 < . . . < tm = T
associated to α is a subset of t+ h = s0 < . . . < sN = T , we may rewrite α as:

α(ω,v)(s) =

N−1
∑

i=0

1[si,si+1)(s)α
i((ω,v)|[t+h,si]),

with αi Borel-measurable from Ωt+h,si × Vt+h,si to U . Therefore α̃ may be reformulated as

α̃(ω,v)(s) =
N−1
∑

i=0

1
√

φ′(si)
αi
(

(Rφ(ω), Tφ(v))|[t+h,si]

)

1[φ(si),φ(si+1))(s)

and satisfies clearly the assumptions of an admissible strategy given in Definition 2.5, related
to the time grid t = φ(s0) < . . . < φ(sN ) = T since (Rφ(ω), Tφ(v))|[t+h,si] is by construction a
measurable map of (ω,v)|[t,φ(si)].
Furthermore, for Pt ⊗ ds almost every (ω, s), it holds that:

α̃(v)(ω, s) =
N−1
∑

i=0

1
√

φ′(si)
α(B̃(ω), ṽ(B̃(ω), .))(φ−1(s))1[φ(si),φ(si+1))(s)

=

N−1
∑

i=0

1
√

φ′(si)
α(ṽ)(B̃(ω), .)(φ−1(s))1[φ(si),φ(si+1))(s).
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Then, for s ∈ [t+ h, T ], writing X̄s := X
t,p,α̃(v)
φ(s) , we have

X̄s = p+

∫ φ(s)

t
σ(Xt,p,α̃(v)

r , α̃(v)r)dB
1
r = p+

∫ s

t+h
PX̄r

α̃(v)φ(r)dB
1
φ(r)

= p+

∫ s

t+h
PX̄r

α(ṽ)(B̃(ω), r)dB̃1
r = p+

∫ s

t+h
σ(X̄r, α(ṽ)(B̃(ω), r))dB̃1

r .

Using the uniqueness of strong solutions for the system of SDE (2.1,2.2), the pairs (X̄, Ȳ ) and

(X,Y ) := (Xt+h,p,α(ṽ), Y t+h,q,ṽ)

have the same law. The same change of variables as above leads us to

J(t, p, q, α̃, v) = Et[
∫ T
t+hH(φ(s), X̄s, Ȳs)dφ(s)]

= Et[
∫ η
t+hH(φ(s),Xs, Ys)dφ(s)] + Et[

∫ T
η H(s,Xs, Ys)ds]

= A(h) + J(t+ h, p, q, α, ṽ),

with

A(h) := E[

∫ η

t+h
H(φ(s),Xs, Ys)dφ(s)] − E[

∫ η

t+h
H(s,Xs, Ys)ds].

Due to the boundedness of H and using that |φ′|∞ ≤ 3 and η ∈ [t+ 2h, t+ 3h], we have

|A(h)| ≤ 8‖H‖∞h,

and the result follows.

Proposition 3.2. The value functions V +, V − are Lipschitz in t : for all (t, p, q) ∈ [0, T ] ×
∆(I)×∆(J) and h ∈ [0, T − t],

|W (t+ h, p, q) −W (t, p, q)| ≤ 8Ch,

for W = V +, V −.

Proof. For W = V +, the proposition follows directly from Lemma 3.1. For W = V −, we use
the symmetric result to Lemma 3.1 where (α̃(v), v) is replaced by (u, β̃(u)) and (α(ṽ), ṽ) by
(ũ, β(ũ)).

The Lipschitz continuity of the values with respect to p and q is based on the following propo-
sition.

Proposition 3.3. (Lipschitz continuity in p) Let t ∈ [0, T ], u ∈ U(t) and p, p̄ ∈ ∆(I). Then
there exists some constant C̄ > 0 which depends only on |I|, such that, for all s ∈ [t, T ],

Et

[

|Xt,p,u
s −Xt,p̄,u

s |
]

≤ C̄|p − p̄|.

Proof. Recall the notation S(p) = {i ∈ I, pi > 0} and let us define As = |S(Xt,p,u
s )| +

|S(Xt,p̄,u
s )|, s ∈ [t, T ]. A is non-increasing, càdlàg, integer-valued process. Set τ0 = t and

τk+1 := inf{s ≥ τk|As < Aτk} ∧ T . As in the proof of Theorem 2.2, this defines a non-
decreasing sequence of stopping times which, at least for k ≥ 2|I| − 1 is constant equal to T .
Remark that, for all t ≤ s ≤ T , on {s < τ1}, S(Xt,p,u

s ) = S(p), S(Xt,p̄,u
s ) = S(p̄) and therefore
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PXt,p,u
s

= Pp and PXt,p̄,u
s

= Pp̄.
Set

ξ := Xt,p,u
τ1

= p+

∫ τ1

t
PpusdB

1
s and ξ̄ := Xt,p̄,u

τ1
= p̄+

∫ τ1

t
Pp̄usdB

1
s .

We have to compute Et[|ξi − ξ̄i|] for all i ∈ I:

If i /∈ S(p) ∪ S(p̄),
Et[|ξi − ξ̄i|] = 0 = |pi − p̄i|. (3.1)

If i ∈ S(p) \ S(p̄), |ξi − ξ̄i| = ξi = pi +
∑n

j=1

∫ τ1

t (Ppus)i,jdB
1,j
s and therefore

Et[|ξi − ξ̄i|] = pi = |pi − p̄i|. (3.2)

In the same way, if i ∈ S(p̄) \ S(p), then

Et[|ξi − ξ̄i|] = p̄i = |pi − p̄i|. (3.3)

Finally define I1 = S(p)∩S(p̄). The explicit projection-formula (2.4) leads to the following: for
all i ∈ I1,

ξi − ξ̄i = pi − p̄i −
∫ s

t
〈





1

|S(p)|
∑

i′∈S(p)

(us)i′,j −
1

|S(p̄)|
∑

i′∈S(p̄)

(us)i′,j





j∈I

, dB1
r 〉.

This implies that for all i′ ∈ I1,

ξi − ξ̄i − (pi − p̄i) = ξi′ − ξ̄i′ − (pi′ − p̄i′).

If I1 6= ∅, using this equality together with the fact that
∑

i′∈I(ξ − ξ̄)i′ = 0, we deduce that, for
all i ∈ I1:

|ξi − ξ̄i| ≤ |pi − p̄i|+ |ξi − ξ̄i − (pi − p̄i)|

= |pi − p̄i|+
1

|I1|

∣

∣

∣

∣

∣

∣

∑

i′∈I1

(

ξi′ − ξ̄i′ − (pi′ − p̄i′)
)

∣

∣

∣

∣

∣

∣

≤ 2|p− p̄|+ 1

|I1|

∣

∣

∣

∣

∣

∣

∑

i′∈I1

(

ξi′ − ξ̄i′
)

∣

∣

∣

∣

∣

∣

≤ 2|p− p̄|+ 1

|I1|
∑

i′∈I\I1

|ξi′ − ξ̄i′ |

= 2|p− p̄|+ 1

|I1|





∑

i′∈S(p)\S(p̄)

ξi′ +
∑

i′∈S(p̄)\S(p)

ξ̄i′



 .

We have

Et





1

|I1|





∑

i′∈S(p)\S(p̄)

ξi′ +
∑

i′∈S(p̄)\S(p)

ξ̄i′







 =
1

|I1|





∑

i′∈S(p)\S(p̄)

|pi′ − p̄i′ |+
∑

i′∈S(p̄)\S(p)

|pi′ − p̄i′ |





≤
√

|I||p− p̄|.
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It follows that, for i ∈ I1,
Et[|ξi − ξ̄i|] ≤ (2 +

√

|I|)|p − p̄|. (3.4)

Putting together (3.1)-(3.4), we get

Et[|ξ − ξ̄|] ≤ (2 +
√

|I|)|I||p − p̄|.

By induction, and using the same arguments as above, we have for all k

Et[|Xt,p,u
τk+1 −Xt,p̄,u

τk+1 | | Ft,τk ] ≤ (2 +
√

|I|)|I||Xt,p,u
τk

−Xt,p̄,u
τk

|.

However, for k ≥ 2|I| − 1, we have τk = T , so that

Et[|Xt,p,u
T −Xt,p̄,u

T |] ≤ ((2 +
√

|I|)|I|)2|I|−1|p− p̄|.

Using Jensen’s inequality, we deduce finally that:

∀s ∈ [t, T ], Et[|Xt,p,u
s −Xt,p̄,u

s |] ≤ ((2 +
√

|I|)|I|)2|I|−1|p − p̄|.

Proposition 3.4. The value functions V +, V − are CC̄T -Lipschitz in p and in q.

Proof. The Lipschitz continuity in p follows classically from the proposition 3.3. And by the
symmetric roles played by p and q, the Lipschitz continuity in q also follows.

4 Dynamic programming

The standard procedure would be to prove now the properties of convexity/concavity of the
value functions. The reason why we start with the dynamic programming principle (DPP) is
that its proof is very standard, while the convexity/concavity are not only harder to establish,
but borrow also some of the techniques developed for the DPP, which, by this way, will be firstly
exposed in this familiar setting.

Proposition 4.1. Let (t, p, q) ∈ [0, T ) ×∆(I) ×∆(J) and h > 0 such that t + h ∈ (t, T ] ∩ Q.
Then it holds that

V −(t, p, q) ≥ sup
β∈B(t)

inf
u∈Us(t)

Et

[
∫ t+h

t
H(s,Xt,p,u

s , Y t,q,β(u)
s )ds + V −(t+ h,Xt,p,u

t+h , Y
t,q,β(u)
t+h )

]

.

(4.1)

V +(t, p, q) ≤ inf
α∈A(t)

sup
v∈Vs(t)

Et

[∫ t+h

t
H(s,Xt,p,α(v)

s , Y t,q,v
s )ds+ V +(t+ h,X

t,p,α(v)
t+h , Y t,q,v

t+h )

]

.

(4.2)

Proof. We only prove (4.1), the proof of (4.2) being similar.

We denote by RHS the right-hand side of equation (4.1). For ε > 0, let β0 ∈ B(t) be ε-optimal
for RHS. We can find (O1, . . . , OM ) a measurable partition of ∆(I) × ∆(J) with diameter
smaller than ε. For each m ∈ {1, . . . ,M}, we pick some couple (pm, qm) ∈ Om and choose
βm ∈ B(t + h) which is ε-optimal for V −(t + h, pm, qm). Using Lemma 7.1, we have almost
surely

(Xt,p,u
t+h , Y

t,q,β0(u)
t+h ) = (ΦX

t,t+h(p, ω|[t,t+h],u|[t,t+h])(t+ h),ΦY
t,t+h(q, ω|[t,t+h], β

0(u)|[t,t+h])(t+ h)),
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where (ΦX
t,t+h,Φ

Y
t,t+h) are Borel maps. In the following we will identify (Xt,p,u

t+h , Y
t,q,β0(u)
t+h ) with

these Borel maps to simplify notations. Using this convention and the fact that β0(u)|[t,t+h] is a

measurable function of u|[t,t+h], we can define a new strategy β̃ by setting, for all (ω,u) ∈ Ωt×U s
t ,

β̃(ω,u)(s) =











β0(ω,u)(s), if t ≤ s < t+ h,
βm(ω|[t+h,T ] − ω(t+ h),u|[t+h,T ])(s), if (s, ω) ∈ [t+ h, T ]

and (Xt,p,u
t+h , Y

t,q,β0(u)
t+h )(ω) ∈ Om.

Let us show that it is also admissible in the sense of Definition 2.5: Let π1, ..., πM denote the
grid associated to β1, . . . , βM with πm = {t + h = tm0 < ... < tmNm

= T}. We consider a time
grid π = {t0 = t < . . . < tN} which coincides on [t, t + h) with the time grid associated to β0

and contains the time grids π1, ..., πm. Then we can write

β̃(ω,u) =

N−1
∑

j=0

1[tj ,tj+1)(s)β̃
j((ω,u)|[t,tj ]),

with, for all (ω,u) ∈ Ωt,tj+1 × U s
t,tj+1

,

β̃j(ω,u) =

M
∑

m=1

1Om(X
t,p,u
t+h , Y

t,q,β0(u)
t+h )1[tm

k(m,j)
,tm
k(m,j)+1

)(s)β
m,k(m,j)((ω|[t+h,tk(m,j)]−ω(t+h),u|[t+h,tk(m,j) ]),

where βm(ω,u)(s) =
∑Nm−1

k=0 1[tm
k
,tm
k+1)

(s)βm,k((ω,u)|[t+h,tm
k
]) is the decomposition of βm and

k(m, j) is the unique integer such that [tj, tj+1) ⊂ [tmk(m,j), t
m
k(m,j)+1).

Let us now use the identification Ωt = Ωt,t+h×Ωt+h with ω = ω1⊗ω2, where ω1 := ω|[t,t+h] and
ω2 := ω|[t+h,T ] − ω(t+ h). Let us fix u ∈ Us(t). Then, for all ω1 ∈ Ωt,t+h, the map

(s, ω2) ∈ [t+ h, T ]× Ωt+h → u(ω1 ⊗ ω2, s)

defines an element of Us(t + h) denoted by u(ω1). It follows from Lemma 7.1 that Xt,p,u
t+h is

almost surely equal to a measurable function of ω1 denoted X(ω1) and that we can write

∀s ∈ [t+ h, T ], Xt,p,u
s (ω1 ⊗ ω2) = Xt+h,X(ω1),u(ω1)

s (ω2), (4.3)

In the same way, Y
t,q,β0(u)
t+h (ω) = Y (ω1) almost surely for some Borel map Y (ω1). Then the sets

Am = {ω1 ∈ Ωt,t+h, (X,Y )(ω1) ∈ Om} are well defined and form a partition of Ωt,t+h. Moreover
we have, on each Am,

∀s ∈ [t+ h, T ], Y t,q,β̃(u)
s (ω1 ⊗ ω2) = Y t+h,Y (ω1),βm(u(ω1))

s (ω2). (4.4)

Note that the right-hand sides of (4.3) and (4.4) are Pt-almost surely equal to jointly measurable
functions in (ω1, ω2) (see Lemma 7.1). Proposition 3.3 implies that, for all s ∈ [t+ h, T ], for all
m ∈ {1, . . . ,M} and ω1 ∈ Am,

Et+h[|Xt+h,X(ω1),u(ω1)
s −Xt+h,pm,u(ω1)

s |] ≤ C̄ε,

Et+h[|Y t+h,Y (ω1),βm(u(ω1))
s − Y t+h,qm,βm(u(ω1))

s |] ≤ C̄ε.
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It follows that, setting C̃ = CC̄T , we have :

J(t, p, q, u, β̃) ≥Et

[
∫ t+h

t
H(s,Xt,p,u

s , Y t,q,β0(u)
s )ds

]

+

∫

Ωt,t+h

∑

m

1Am(ω1)Et+h

[∫ T

t+h
H
(

s,Xt+h,pm,u(ω1,·)
s , Y t+h,qm,βm(u(ω1))

s

)

ds

]

dPt,t+h(ω1)− 2C̃ε

≥Et

[

∫ t+h

t
H(s,Xt,p,u

s , Y t,q,β0(u)
s )ds+

∑

m

1AmV
−(t+ h, pm, qm)

]

− (2C̃ + 1)ε

≥Et

[
∫ t+h

t
H(s,Xt,p,u

s , Y t,q,β0(u)
s )ds+ V −(t+ h,Xt,p,u

t+h , Y
t,q,β0(u)
t+h )

]

− (3C̃ + 1)ε

≥RHS − (3C̃ + 2)ε.

The result follows as ε can be chosen arbitrarily small.

5 Convexity properties

A crucial step of our argumentation is to prove that V + and V − are convex in p and concave
in q. In opposition to previous works, where we were able to adapt without too much difficulty
the splitting arguments of the repeated game setting, we cannot avoid here to have recourse to
some technical machinery. We shall hide a part of this technicality in an appendix.

The following lemma is a key argument for the splitting procedure. It relies on the predictable
representation property for continuous martingales and shows how a stochastic integral with
respect to a Brownian motion of type (1.5) can mimic as close as possible the jump of a splitting
martingale.

Lemma 5.1. Let p1, p2 belong to the relative interior of ∆(I) and λ1, λ2 ∈ (0, 1) with λ1+λ2 = 1.
Set p = λ1p1+λ2p2. For h ∈ (0, T−t], let Z be a σ(B1

r , r ∈ [t, t+h])-measurable random variable
such that Pt[Z = pi] = λi, i ∈ {1, 2}. Then, for all ε > 0, there exists ū ∈ Us(t) such that

Et

[

|Xt,p,ū
t+h − Z|

]

≤ ε. (5.1)

An analogue result holds for q1, q2 in the relative interior of ∆(J).

Proof. Since Et[Z] = p and Z is σ(B1
r , r ∈ [t, t+h])-measurable, by the martingale representation

theorem, there is some process (as)s∈[t,t+h] ∈ U(t) such that

Z = p+

∫ t+h

t
ardB

1
r .

Since we have assumed that Z belongs to ∆(I), Proposition 2.4 applies:

Z = Xt,p,a
t+h .

This process being a martingale such that Xt,p,a
t+h ∈ {p1, p2}, it follows that, for all s ∈ [t, t+ h],

Xt,p,a
s = Et[X

t,p,a
t+h |FT

t,s] is almost surely a convex combination of p1 and p2, i.e. belongs to the
line segment [p1, p2] := {λp1 + (1− λ)p2 |λ ∈ [0, 1]}. Let M = R.(p2 − p1), then for any vector
w ∈M⊥, it holds that

0 = 〈w,Z − p〉 =
∫ t+h

t
(wtas)dB

1
s ,
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where wt denote the transpose of w. This implies that we have ds⊗ Pt almost surely wtas = 0.
Considering a countable dense subset of vectors w inM⊥, we deduce that as ∈ L, ds⊗Pt almost
surely, where L = {A ∈ R|I×I| |wtA = 0, ∀w ∈ M⊥}. Note that for all A ∈ L and all z ∈ R|I|,
we have Az ∈M , since 〈w,Az〉 = wtAz = 0 for all w ∈M⊥ and M = (M⊥)⊥.

Now it is well-known that there exists a sequence of simple processes an ∈ Us(t) such that

Et

[

sup
s∈[t,t+h]

|
∫ s

t
(ar − anr ) dB

1
r |2
]

→ 0, (5.2)

and we may choose this approximating sequence such that ans ∈ L ds ⊗ Pt almost surely, since
these approximations are constructed via averaging procedures (see e.g Lemma 2.4 p. 132 in
[19]). It follows that for all s ∈ [t, t + h],

∫ s
t a

n
s dB

1
s ∈ M almost surely. Let δ > 0 such that

p1 − δ(p2 − p1) and p2 + δ(p2 − p1) belong to ∆(I). Up to take a subsequence, we may assume
that convergence in (5.2) holds almost surely, and if we define

τn = inf{s ∈ [t, t+ h] | p +
∫ s

t
anr dB

1
r /∈ [p1 − δ(p2 − p1), p2 + δ(p2 − p1)]} ∧ (t+ h),

then Pt[τn = t+ h] → 1. Note that on the event {τn = t+ h}, we have

Xt,p,an

t+h = p+

∫ t+h

t
anr dB

1
r .

Therefore, if we define ū = an for some n such that

Pt[τn < t+ h] ≤ ε

4
, Et

[

sup
s∈[t,t+h]

|
∫ s

t
(ar − anr ) dB

1
r |2
]

≤ ε2

4
,

we get

Et

[

|Xt,p,ū
t+h − Z|1{τn=t+h}

]

= Et

[

|
∫ t+h
t (anr − ar)dB

1
r |1{τn=t+h}

]

≤ Et

[

sups∈[t,t+h] |
∫ s
t (a

n
r − ar)dB

1
r |2
]1/2

≤ ε
2 .

and, since |Xt,p,ū
t+h − Z| is bounded by 2,

Et

[

|Xt,p,ū
t+h − Z|1{τn<t+h}

]

≤ ε

2
.

The result follows.

Lemma 5.2. For any process a ∈ U(t) with Et[
∫ T
t |as|2ds] <∞, we have for all t′ ∈ [t, T ],

Et[

∫ t′

t
asdB

1
s | (B2

r )r∈[t,T ]] = 0.

Proof. We need to show that, for all i ∈ I and all σ{B2
r , r ∈ [t, T ]}-measurable, bounded random

variable Z, Et[Z
∫ t′

t airdB
1
r ] = 0, where (air)r∈[t,T ] denotes here the i-th line of the matrix-valued

process (ar)r∈[t,T ]. Applying the martingale representation theorem to Z, we obtain:

Z = z +

∫ T

t
HrdB

2
r ,
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with z = Et[Z] and (Hr)r∈[t,T ] an R|J |-valued square-integrable process adapted to the augmen-
tation of the filtration generated by (B2

r )r∈[t,T ]. Since B1 and B2 are independent, Itô formula
implies:

Et

[

Z

∫ t′

t
airdB

1
r

]

= zEt

[

∫ t′

t
airdB

1
r

]

+
∑

(i′,j′)∈I×J

Et

[

∫ t′

t
Hj′

r a
i,i′

r d〈B1,i′ , B2,j′〉r
]

= 0,

where (〈B1,i′ , B2,j′〉r)r∈[t,T ] denotes the quadratic covariation between B1,i′ and B2,j′.

Proposition 5.3. The functions V +, V − are convex in p and concave in q.

Proof. We only prove that V − is convex in p and concave in q, the proof for V + being similar.

1. V − is convex in p.

1.1 Fix p1, p2 ∈ ∆(I) and λ1, λ2 ∈ (0, 1) such that λ1 + λ2 = 1, and set p =
∑

i λip
i. As V − is

Lipschitz in p, it is sufficient to prove the inequality for p1, p2 in the relative interior of ∆(I). Let
0 < ε < |p1 − p2| and consider an arbitrary strategy β ∈ B(t). Let t = t0 < t1 < . . . < tm = T
be the time grid associated to β. The control induced by β on [t, t1) doesn’t depend on the
strategy of the opponent and is deterministic. Let us call it (v1s)s∈[t,t1).
Fix h ∈ (0, ε) such that t+ h ∈ (t, t1) ∩Q, and

Et

[

|Y t,q,v1

t+h − q|
]

≤ ε.

1.2 Let the random variable Z and ū ∈ Us(t) defined by Lemma 5.1. Set u1 = ū|[t,t+h]. With
the help of u1, we can define a continuation strategy for β: for all ω1 ∈ Ωt,t+h,

(ω2,u2) ∈ Ωt+h × U s
t+h → βω1(ω2,u2) := β(ω1 ⊗ ω2, u

1(ω1)⊗ u2)|[t+h,T ],

where u1(ω1) ⊗ u2(s) = u1(ω1, s) if s < t+ h and u2(s) else. Remark that, for all ω1 ∈ Ωt,t+h,
βω1 is a well-defined strategy in B(t+ h).

Using the measurable selection argument developed in Theorem 7.4 of the appendix, we can find
two measurable process-valued maps u2,1 and u2,2 : Ωt,t+h → Us(t + h) such that with Pt,t+h-
probability larger than 1−ε, the process (u2,i(ω1, ·))s)s∈[t+h,T ] is ε-optimal for infu∈Us(t+h) J(t+

h, pi, q, u, βω1(u)) and has a grid which is independent of ω1.

This allows us to define a new control in Us(t):

ũs(ω) = ũs(ω1 ⊗ ω2) =

{

u1s(ω1), if s ∈ [t, t+ h),
u2s(ω1, ω2), if s ∈ [t+ h, T ],

with

u2s(ω1, ·) =
{

u2,1s (ω1, ·), if s ∈ [t+ h, T ], Z(ω1) = p1,

u2,2s (ω1, ·), if s ∈ [t+ h, T ], Z(ω1) = p2.

1.3 By the same arguments as in the proof of Proposition 4.1, we can write for all (ω1, ω2):

∀s ∈ [t+ h, T ], Xt,p,ũ
s (ω1 ⊗ ω2) = Xt+h,X(ω1),u2(ω1)

s (ω2), with X(ω1) := Xt,p,u1

t+h (ω).

and

∀s ∈ [t+ h, T ], Y t,q,β(ũ)
s (ω1 ⊗ ω2) = Y

t+h,Y (ω1),βω1(u
2(ω1))

s (ω2), with Y (ω1) := Y t,q,v1

t+h (ω).
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We get

J(t, p, ũ, β(ũ)) = Et

[

∫ t+h
t H(s,Xt,p,ũ

s , Y
t,q,β(ũ)
s )ds

]

+
∫

Ωt,t+h
Et+h

[

∫ T
t+hH(s,X

t+h,X(ω1),u2(ω1)
s , Y

t+h,Y (ω1),βω1(u
2(ω1))

s )ds
]

dPt,t+h(ω1)

:= A+B.
(5.3)

Obviously |A| ≤ Ch ≤ Cε.
Concerning the second term of the right hand side, set

B′ :=

∫

Ωt,t+h

Et+h

[∫ T

t+h
H
(

s,Xt+h,Z(ω1),u2(ω1)
s , Y

t+h,q,βω1(u
2(ω1))

s

)

ds

]

Pt,t+h(ω1).

Choosing ε small enough, this expression can be arbitrarily close to B. Indeed:

|B −B′| ≤ C
∫

Ωt,t+h
Et+h

[ ∫ T
t+h

(

|Xt+h,Z(ω1),u2(ω1) −Xt+h,X(ω1),u2(ω1)|
+|Y t+h,q,βω1(u

2(ω1)) − Y t+h,Y (ω1),βω1 (u
2(ω1))|

)

ds
]

dPt,t+h(ω1)
≤ CC̄T

∫

Ωt,t+h
(|Z(ω1)−X(ω1)|+ |q − Y (ω1)|) dPt,t+h(ω1)

= CC̄TEt,t+h

[

|Z −Xt,p,ū
t+h |+ |q − Y t,q,v1

t+h |
]

≤ 2CC̄Tε.

(5.4)

Then we can estimate B′ :

B′ =
∑

i=1,2

∫

{Z(ω1)=pi} Et+h

[

∫ T
t+hH(s,X

t+h,pi,u2(ω1)
s , Y

t+h,q,βω1(u
2(ω1))

s )ds
]

dPt,t+h(ω1)

=
∑

i=1,2

∫

{Z(ω1)=pi} J(t+ h, pi, q, u2, βω1(u
2))dPt,t+h(ω1)

=
∑

i=1,2

∫

{Z(ω1)=pi} J(t+ h, pi, q, u2,i, βω1(u
2,i))dPt,t+h(ω1).

Because of the ε-optimality of u2,i with probability (1− ε) and of the fact that V − is Lipschitz
in t, it follows that

B′ ≤ ∑

i=1,2

∫

{Z(ω1)=pi} supβ′∈B(t+h) infu∈Us(t+h) J(t+ h, pi, q, u, β′(u))dPt,t+h(ω1) + (4CT + 1)ε

=
∑

i=1,2 λiV
−(t+ h, pi, q) + (4CT + 1)ε

≤ ∑

i=1,2 λiV
−(t, pi, q) + (4CT + 8C + 1)ε.

(5.5)
Summing up (5.3), (5.4) and (5.5), we get

J(t, p, ũ, β(ũ)) ≤ λ1V
−(t, p1, q) + λ2V

−(t, p2, q) +Kε,

where the constant K depends only on the parameters of the game. The result follows by a
standard argument.

2. V − is concave with respect to q.

We fix again λ1, λ2 ∈ (0, 1) such that λ1 + λ2 = 1 and choose now q1, q2, q ∈ ∆(J) with q =
λ1q

1+λ2q
2. As in step 1, we can take q1, q2 in the relative interior of ∆(J). Fix h > 0 such that

t+h ∈ (t, T ]∩Q. Using Lemma 5.1, we can find v̄ ∈ Vs(t) and Z a σ(B2
r , r ∈ [t, t+h])-measurable,

∆(J)-valued random variable such that Pt[Z = qi] = λi, i = 1, 2 and Et[|Y t,q,v̄
t+h − Z|] ≤ h.

Let us fix a measurable partition (Or)r∈{1,...,R} of ∆(I) of mesh h and (pr)r∈{1,...,R} ⊂ ∆(I)
with pr ∈ Or for all r ∈ {1, . . . , R}. For r ∈ {1, . . . , R} and i ∈ {1, 2}, let βr,i ∈ B(t + h)
be h-optimal for V −(t + h, pr, qi) and Au

r,i = {Xt,p,u
t+h ∈ Or, Z = qi}. Remark that the sets
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Au
r,i, i ∈ {1, 2}, r ∈ {1, . . . , R} form a partition of Ωt,t+h. Then, as in the proof of Proposition

4.1, we can prove that the following map from Ωt × U s
t to V s

t defines an admissible strategy for
Player 2:

β(ω, u)(s) =

{

v̄s, if s ∈ [t, t+ h),
βr,i(ω2, u|[t+h,T ])(s), if (s, ω1) ∈ [t+ h, T ]×Au

r,i
.

Now, for all u ∈ Us(t), by the definition of v̄ and the Lipschitz continuity of H,

J(t, p, q, u, β) ≥
∑

r,i

∫

Au
r,i

Et+h

[

∫ T
t+hH(s,X

t+h,pr ,u|[t+h,T ](ω1)
s , Y t+h,qi,βr,i(u|[t+h,T ](ω1)))ds

]

dPt,t+h(ω1)− C(2T + 1)h

≥ ∑

r,i Et

[

V −(t+ h, pr, qi)1Au
r,i

]

− (C(2T + 1) + 1)h

because of the h-optimality of βr,i,

≥ ∑

i Et

[

V −(t,Xt,p,u
t+h , q

i)1Z=qi

]

− C̃h

where in the last inequality we have used the Lipschitz continuity of V − in (t, p), with C̃ =
C(9 + 2T ) +CC̄T + 1. To conclude, note that by Lemma 5.2, we have

Et[X
t,p,u
t+h |(B2

r )r∈[t,T ]] = p.

Since Z is σ(B2
r , r ∈ [t, t+ h])-measurable, and using Jensen’s inequality for conditional expec-

tations (which we may apply as we already proved that V − is convex in p), we obtain that for
i = 1, 2:

Et

[

V −(t,Xt,p,u
t+h , q

i)1Z=qi|(B2
r )r∈[t,T ]

]

= 1Z=qiEt

[

V −(t,Xt,p,u
t+h , q

i)|(B2
r )r∈[t,T ]

]

≥ 1Z=qiV
−(t, p, qi).

We deduce that
J(t, p, q, u, β) ≥

∑

i

λiV
−(t, p, qi)− C̃h,

and since this relation holds true for for all u ∈ Us(t), it implies that

V −(t, p, q) ≥
∑

i

λiV
−(t, p, qi)− C̃h.

The result follows since h can be chosen arbitrarily small.

6 Viscosity solution

Now we have all the ingredients to establish the main result. First, let us recall the definition
of sub- and supersolutions for (2.6) given in [6].

Definition 6.1. 1. A function w : [0, T ] ×∆(I) ×∆(J) 7→ R is called a supersolution of (2.6)
if it is l.s.c. and satisfies, for any smooth test function ϕ : [0, T ] × ∆(I) × ∆(J) 7→ R and
(t, p, q) ∈ ∆(I)× Int(∆(J)): if ϕ− w has a local maximum at (t, p, q) then

max

{

min

{

∂ϕ

∂t
(t, p, q) +H(t, p, q);λmin(p,D

2
pϕ(t, p, q))

}

;λmax(q,D
2
qϕ(t, p, q))

}

≤ 0.
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2. The function w : [0, T ] ×∆(I)×∆(J) 7→ R is called a subsolution of (2.6) if it is u.s.c. and
satisfies, for any smooth test function ϕ : [0, T ] ×∆(I)×∆(J) 7→ R and (t, p, q) ∈ Int(∆(I)) ×
∆(J): if ϕ− w has a local minimum at (t, p, q) then

min

{

max

{

∂ϕ

∂t
(t, p, q) +H(t, p, q);λmax(q,D

2
qϕ(t, p, q))

}

;λmin(p,D
2
pϕ(t, p, q))

}

≥ 0;

3. w is called a solution of (2.6), if it is both a super- and a subsolution.

Theorem 6.2. The game has a value V = V − = V +, which is the unique Lipschitz viscosity
solution of (2.6).

Proof. We know already that V −, V + are convex in p, concave in q and Lipschitz in all their
variables. Moreover, the uniqueness of the solution of (2.6) in this class of functions has already
been established in [8].

Let us prove that V − is a supersolution:
Let ϕ be a map from [0, T ] ×∆(I) ×∆(J) to R which is C2 in all its variables and such that,
for some fixed (t, p, q) ∈ [0, T ] × Int(∆(I)) × ∆(J), ϕ − V − has a local maximum at (t, p, q).
Without loss of generality we can suppose that ϕ(t, p, q) = V −(t, p, q). Since V − is concave in
q, we have λmax(q,D

2
qϕ(t, p, q)) ≤ 0. Suppose that λmin(p,D

2
pϕ(t, p, q)) ≤ 0. Then the relation

max

{

min

{

∂ϕ

∂t
(t, p, q) +H(t, p, q);λmin(p,D

2
pϕ(t, p, q))

}

;λmax(q,D
2
qϕ(t, p, q))

}

≤ 0;

is satisfied. Suppose now that λmin(p,D
2
pϕ(t, p, q)) > 0. In this case we have to prove that

∂ϕ
∂t (t, p, q) + H(t, p, q) ≤ 0. But, as in [6] (see claim 3.3 in the proof of Theorem 3.3), we can
find h̄ ∈ (0, T − t) and δ > 0 such that, for all p′ ∈ ∆(I) and s ∈ [t, t+ h̄],

V −(s, p′, q) ≥ ϕ(s, p, q) +Dpϕ(s, p, q) · (p′ − p) + δ|p′ − p|2. (6.1)

By the dynamic programming principle 4.1, we have for h > 0, with t+ h ∈ [t, t+ h̄] ∩Q

0 ≥ supβ∈B(t) infu∈Us(t) Et

[

∫ t+h
t H(s,Xt,p,u

s , Y
t,q,β(u)
s )ds + V −(t+ h,Xt,p,u

t+h , Y
t,q,β(u)
t+h )− V −(t, p, q)

]

≥ infu∈Us(t) Et

[

∫ t+h
t H(s,Xt,p,u

s , q)ds+ V −(t+ h,Xt,p,u
t+h , q)− V −(t, p, q)

]

,

where the second inequality is obtained by choosing the particular strategy β ≡ 0.

Now we take ū ∈ Us(t) which is h2-optimal for this last right hand side term, and remark that
Et[Dpϕ(t+ h, p, q) · (Xt,p,ū

t+h − p)] = 0. Then, from relation (6.1),

Et

[
∫ t+h

t
H(s,Xt,p,ū

s , q)ds + ϕ(t+ h, p, q)− ϕ(t, p, q) + δ|Xt,p,ū
t+h − p|2

]

≤ h2.

This implies that

Et

[∫ t+h

t
(H(s,Xt,p,ū

s , q) +
∂ϕ

∂t
(s, p, q))ds

]

≤ h2. (6.2)

and also (sinceH and ∂ϕ
∂t are bounded) that there exists some constant C ′ such that Et

[

|Xt,p,ū
t+h − p|2

]

≤
C ′h. Therefore, by Jensen’s inequality, we have for all s ∈ [t, t+ h],

Et

[

|Xt,p,ū
s − p|2

]

≤ C ′h.
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Using this relation in (6.2), we get

∫ t+h
t (H(s, p, q) + ∂ϕ

∂t (s, p, q))ds ≤ Et

[

∫ t+h
t (H(s,Xt,p,ū

s , q) + ∂ϕ
∂t (s, p, q))ds

]

+C
∫ t+h
t (Et[|Xt,p,ū

s − p|2])1/2ds
≤ h2 + C

√
C ′h3/2.

The result follows.

The remaining of the proof is standard: By symmetric arguments, V + is a subsolution of
(2.6). From the comparison theorem of [8] we deduce that V + ≤ V −. But we know already
that V − ≤ V +. It follows that the two value functions are equal and both viscosity sub- and
supersolution of 2.6.

7 Appendix

Let us start with easy remarks on the set of simple trajectories and strategies.

Recall that Ut,t′ denote the set of equivalence classes (with respect to the Lebesgue measure) of
Borel measurable maps from [t, t′] to U . Let Πt,t′ denote the countable set of all finite partitions
π = {t = t0 < t1 < ... < tm = t′} with t1, ..., tm−1 in (t, t′) ∩ Q. Let |π| = m denote the size
of the partition (number of intervals). Given π ∈ Πt,t′ , let U

π
t,t′ denote the subset of maps that

are piecewise constant on π. Remark that Uπ
t,t′ is a Borel subset of Ut,t′ . Indeed, one may define

Uπ
t,t′ by a countable number of measurable constraints as follows:

∀j ∈ {0, ...,m − 1},∀s, s′, c, c′ ∈ [tj, tj+1] ∩Q with s < s′ and c < c′,

1

s′ − s

∫ s′

s
u(r)dr =

1

c′ − c

∫ c′

c
u(r)dr. (7.1)

The set of simple trajectories U s
t,t′ = ∪π∈Πt,t′

Uπ
t,t′ is a Borel subset of Ut,t′ as a countable union

of Borel subsets. The measurability of a map defined on U s
t,t′ is therefore equivalent to the

measurability of its restriction to Uπ
t,t′ for each π. Note finally that Uπ

t is homeomorphic to Um

by identifying u with
(

1
tj+1−tj

∫ tj+1

tj
u(s)ds

)

j=0,...,m−1
. Therefore, in order to prove that some

map g : Ωt,t′ ×U s
t,t′ → V is Borel-measurable, it is sufficient to prove that for each π, there exists

a measurable map gπ : Ωt,t′ × Um → V which coincides with the restriction of g to Uπ
t,t′ in the

sense that

∀ω ∈ Ωt,∀u ∈ Uπ
t,t′ , g(ω,u) = gπ



ω,

(

1

tj+1 − tj

∫ tj+1

tj

u(s)ds

)

j=0,...,m−1



 .

We will use this remark in the following Lemma.

Lemma 7.1. Given t, t′ ∈ [0, T ] with t < t′, there exist Borel maps:

(p, ω,u) ∈ ∆(I)× Ωt,t′ × U s
t,t′ → ΦX

t,t′(p, ω,u) ∈ C([t, t′],R|I|),

(q, ω,v) ∈ ∆(J)× Ωt,t′ × V s
t,t′ → ΦY

t,t′(q, ω,v) ∈ C([t, t′],R|J |),
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such that given any u ∈ Us(t) and β ∈ B(t), then with Pt-probability 1, we have

(Xt,p,u(ω), Y t,q,β(u)(ω)) = (ΦX
t,T (p, ω, u(ω)),Φ

Y
t,T (q, ω, β(u)(ω)).

Moreover, if h ∈ (0, T − t], then for all s ∈ [t, T ],

ΦX
t,T (p, ω,u)(s) =

{

ΦX
t,t+h(p, ω|[t,t+h],u|[t,t+h]) if s ≤ t+ h,

ΦX
t+h,T (Φ

X
t,T (p, ω,u)(t+ h), ω|[t+h,T ] − ω(t+ h),u|[t+h,T ])(s) if s > t+ h.

It follows that, using the notations of the proof of Proposition 4.1, we have almost surely

∀s ∈ [t+ h, T ], Xt,p,u
s (ω1 ⊗ ω2) = Xt+h,X(ω1),u(ω1)

s (ω2),

where X(ω1) := ΦX
t,t+h(p, ω1, u(ω1)) is Pt-almost surely equal to Xt,p,u

t+h (ω) .

Similar results hold for ΦY .

Proof. The proof follows from the fact that for simple trajectories of the controls, the stochastic
integrals appearing in the proof of Proposition 2.2 is explicit and pathwise. We only prove the
Lemma for ΦX as the construction is similar for ΦY .

Let (p, ω,u) ∈ ∆(I)× Ωt,t′ × U s
t,t′ , and define X1 = X1(p, ω,u) ∈ C([t, t′],R|I|) by:

(p, ω,u) → X1 = p+

∫ ·

t
Tpu(s)dB

1
s ∈ C([t, t′],R|I|),

using the standard pathwise definition for the stochastic integral of simple processes.

Then, for a generic trajectory x in C([t, t′],R|I|) and for k ∈ {1, ..., |I| − 1}, let

τk(x) = inf{s ∈ [t, t′] | |{i ∈ I|xi(s) 6= 0}| ≤ |I| − k}.

Note that τk being the hitting time of a closed set, it is a stopping time of the raw filtration of
C([t, t′],R|I|), and thus a Borel map from C([t, t′],R|I|) to [t, T ] ∪ {+∞}.
Then, define by induction for k = 1, ..., |I| − 1, Xk+1(p, ω,u) by

Xk+1
s = Xk

s∧τk(Xk) +

∫ s∨τk(Xk)

τk(Xk)
PXk

τk(Xk)

u(r)dB1
r , s ∈ [t, t′].

We set ΦX
t,t′(p, ω,u) := X |I| for u ∈ U s

t,t′ . In order to prove that ΦX
t,t′ is Borel, it is sufficient to

prove that for each partition π = {t = t0 < t1 < ... < tm = t′} in Πt,t′ , the restriction of ΦX
t,t′ to

∆(I)×Ωt,t′×Uπ
t,t′ is Borel. Let π ∈ Πt,t′ . In the following, given some vector (uj)j=0,...,m−1 ∈ Um,

let u denote the trajectory u(s) =
∑m−1

j=0 uj1s∈[tj ,tj+1) ∈ Uπ
t,t′ . We have to show that

∆(I)× Ωt,t′ × Um → C([t, t′],R|I|)

(p, ω, (uj)j=0,...,m−1) 7→ X |I| ,

is Borel. Note at first that the map

(p, ω, (uj)j=0,...,m−1) → X1 = p+

∫ ·

t
Tpu(s)dB

1
s (ω) ∈ C([t, t′],R|I|),

is Borel, using the standard pathwise definition for the stochastic integral of simple processes. It
follows that τ1(X1) is also Borel by composition. Remark then that the map (p, ω, (uj)j=0,...,m−1) 7→
X2 is the composition of the Borel measurable maps:
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• ∆(I)× Ωt,t′ × Um → Ωt,t′ × Um × C([t, t′],R|I|)× ([t, t′] ∪ {+∞})
(p, ω, (uj)j=0,...,m−1) 7→ (ω, (uj)j=0,...,m−1,X

1, τ1(X1))

•
Ωt,t′ × Um × C([t, t′],R|I|)× ([t, t′] ∪ {+∞}) → C([t, t′],R|I|)

(x, ω, (uj)j=0,...,m−1, δ) 7→
(

x(s ∧ δ) + 1δ≤s

∫ δ
s Px(δ)u(r)dB

1
r (ω)

)

s∈[t,t′]

The measurability of (p, ω,u) 7→ Xk(ω) for k ≥ 3 and finally from ΦX
t,t′ follows by induction.

To conclude the first point of the lemma, note that the construction coincides with the one
described in Proposition 2.2 for simple processes with t′ = T , so that for all u ∈ Us(t), we have
with Pt-probability 1:

Xt,p,u(ω) = ΦX
t,T (p, ω, u(ω)).

Since our definition of simple processes uses the raw filtration, it follows that ΦX
t,T (p, ω, u(ω)) is

a solution to (2.1) which is adapted to the raw filtration of B.

Let us prove the second part of the lemma. Let u ∈ Uπ
t and for ω ∈ Ωt, let us denote:

ω1 = ω|[t,t+h] ∈ Ωt,t+h, ω2 = ω|[t+h,T ] − ω(t+ h) ∈ Ωt+h.

u1 = u|[t,t+h] ∈ U s
t,t+h, u2 = u|[t+h,T ] ∈ U s

t+h.

At first, let s ∈ [t, t+ h], and recall that ΦX
t,T (p, ω,u)(s) = X

|I|
s where

X1
s = p+

∫ s

t
Tpu(r)dB

1
r (ω)

and for k ≥ 2

Xk+1
s = Xk

s∧τk(Xk) +

∫ s∨τk(Xk)

τk(Xk)
PXk

τk(Xk)

u(r)dB1
r (ω),

with τk(x) = inf{s ∈ [t, T ] | |{i ∈ I|xi(s) 6= 0}| ≤ |I| − k}. Similarly, ΦX
t,t+h(p, ω1,u1) = X̃

|I|
s

where

X̃1
s = p+

∫ s

t
Tpu1(r)dB

1
r (ω1)

and for k ≥ 2

X̃k+1
s = X̃k

s∧τ̃k(X̃k)
+

∫ s∨τ̃k(X̃k)

τ̃k(X̃k)
PX̃k

τ̃k(X̃k)

u1(r)dB
1
r (ω1),

with τ̃k(x) = inf{s ∈ [t, t + h] | |{i ∈ I|xi(s) 6= 0}| ≤ |I| − k}. By construction X1 = X̃1 on
[t, t + h], and therefore τ̃1(X̃1) = τ1(X1) if τ1(X1) ≤ t + h and τ̃1(X̃1) = +∞ otherwise. It
implies in turn that X2 = X̃2 on [t, t+h] and therefore that τ̃2(X̃2) = τ2(X2) if τ2(X2) ≤ t+h

and τ̃2(X̃2) = +∞ otherwise. The equality X
|I|
s = X̃

|I|
s follows by induction on k.

Let us now assume that s ∈ (t+h, T ]. Let p̂ = X
|I|
t+h = ΦX

t,T (p, ω,u)(t+h) and let k∗ = |I|−|S(p̂)|
(recall that S(x) = {i ∈ I, xi 6= 0}). Using the convention τ0 = t and X0 = p, we have by
construction τk

∗

(Xk∗) ≤ t+ h and Pp̂ = PXk∗

τk
∗
(Xk∗ )

. It follows that

Xk∗+1
s = p̂+

∫ s

t+h
Pp̂u(r)dB

1
r (ω).
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On the other hand, we have ΦX
t+h,T (p̂, ω2,u2)(s) = X̂

|I|
s where

X̂1
s = p̂+

∫ s

t
Pp̂u2(r)dB

1
r (ω2)

and for k ≥ 2

X̂k+1
s = X̂k

s∧τ̂k(X̂k)
+

∫ s∨τ̂k(X̂k)

τ̂k(X̂k)
PX̂k

τ̂k(X̂k)

u2(r)dB
1
r (ω2),

where τ̂k(x) = inf{s ∈ [t+ h, T ] | |{i ∈ I|xi(s) 6= 0}| ≤ |I| − k}. By induction, one checks easily
that for all k ≤ k∗, we have X̂k

t+h = p̂ and τ̂k(X̂k)) = t+ h so that

X̂k∗+1
s = p̂+

∫ s

t+h
Pp̂u2(r)dB

1
r (ω2).

We deduce that Xk∗+1 = X̂k∗+1 on [t + h, T ] and therefore τ̂k
∗+1(X̂k∗+1) = τk

∗+1(Xk∗+1). It
implies in turn that Xk∗+2 = X̂k∗+2 on [t+ h, T ] and therefore τ̂k

∗+2(X̂k∗+2) = τk
∗+2(Xk∗+2).

The equality X
|I|
s = X̂

|I|
s follows by induction.

Definition 7.2. Let U c(t) denote the set of simple controls that are continuous with respect to
ω, meaning that there exist t = t0 < ... < tm = T with t1, ..., tm−1 ∈ Q and continuous maps gj
from Ωt,tj to U such that

∀s ∈ [t, T ), u(ω, s) =
m−1
∑

j=0

1[tj ,tj+1)(s)gj(ω|[t,tj ]). (7.2)

Lemma 7.3. Let p ∈ ∆(I), u ∈ Us(t) and β ∈ B(t). Then, for all ε there exists ũ ∈ U c(t) such
that

Et

[

sup
s∈[t,T ]

(

|Xt,p,u
s −Xt,p,ũ

s |2 + |Y t,q,β(u)
s − Y t,q,β(ũ)

s |2
)

]

≤ ε.

Proof. For any u ∈ Us(t), there exist t = t0 < .... < tm = T and measurable maps gj from Ωt,tj

to U as defined in (7.2). Using inner regularity of measures and Lusin’s theorem, for each gj ,
there exists a compact set Kj ⊂ Ωt,tj such that Pt,tj (Kj) ≥ 1− ε

8m and such that the restriction
of gj to Kj is continuous. Let us consider some continuous map fj on Ωt,tj which coincides with
gj on Kj (Tietze extension theorem). Define ũ by

ũ(ω, s) =

m−1
∑

j=0

1[tj ,tj+1)(s)fj(ω|[t,tj ]).

The conclusion follows easily since both processes are bounded and coincide on the set

K = {ω ∈ Ωt | ∀j, ω|[t,tj ] ∈ Kj},

and Pt(K) ≥ 1− ε
8 .

Let us now state the measurable selection result used in the proof of Proposition 5.3.
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Theorem 7.4. Let ε > 0, (x, y) ∈ ∆(I) ×∆(J), a process u1 ∈ Us(t) and a strategy β ∈ B(t).
Let h > 0 such that t+ h ∈ (t, T )∩Q and smaller than the first point in the grid of the strategy
β so that v := β(u1)|[t,t+h] is a deterministic process independent of u1. Recall the identification
Ωt = Ωt,t+h × Ωt+h with ω = ω1 ⊗ ω2, where ω1 := ω|[t,t+h] and ω2 := ω|[t+h,T ] − ω(t + h) and
define the continuation strategy βω1 as in the proof of Proposition 5.3.

There exists a control u ∈ Us(t), which is equal to u1 on [t, t+ h), and such that for all ω1 in a
set of probability at least 1−ε, u2(ω1)(·) := u|[t+h,T ](ω1⊗·) is an ε-best reply to the continuation
strategy βω1 in the game starting at time t+ h with initial conditions (x, y).

Proof. Given π ∈ Πt+h, let Uπ(t + h) denote the set of simple controls which are piecewise
constant with grid π. We deduce from Lemma 7.3 that, for all β ∈ B(t+ h),

inf
u∈Us(t+h)

J(t+ h, p, q, u, β(u)) = inf
π∈Πt+h

inf
u∈Uπ(t+h)

J(t+ h, p, q, u, β(u))

= inf
π∈Πt+h

inf
u∈Uc(t+h)∩Uπ(t+h)

J(t+ h, p, q, u, β(u)). (7.3)

Let us fix π = {t+ h = t0 < ... < tm = T} ∈ Πt+h. For all j = 0, ...,m− 1, let Kπ
j be a compact

subset of Ωt+h,tj such that Pt+h,tj(K
π
j ) ≥ 1 − ε

6CmT so that Pt+h(∀j = 0, ...,m − 1, ω|[t+h,tj ] ∈
Kπ

j ) ≥ 1 − ε
6CT . Given u ∈ U c(t + h) ∩ Uπ(t + h), if we define ũ ∈ Uπ(t + h) by replacing the

continuous maps gj by fj = gj1Kπ
j
for j = 0, ...,m − 1, then for all (p, q, β), we have

|J(t+ h, p, q, u, β(u)) − J(t+ h, p, q, ũ, β(ũ))| ≤ ε

3
.

As a consequence, for all (p, q, β), we have

inf
u∈Uc(t+h)∩Uπ(t+h)

J(t+ h, p, q, ũ, β(ũ)) ≤ inf
u∈Uc(t+h)∩Uπ(t+h)

J(t+ h, p, q, u, β(u)) +
ε

3
. (7.4)

We can identify the set of processes ũ when u ranges through U c(t + h) ∩ Uπ(t + h) with
∏m−1

j=0 C(Kπ
j , U) through the map





m−1
∏

j=0

C(Kπ
j , U)



× Ωt+h ∋ (fj)j=0,...,m−1 7→ ũ ∈ Uπ(t+ h),

which is Borel-measurable with ũ(ω2)(s) =
∑m−1

j=0 1[tj ,tj+1)(s)fj(ω2|[t+h,tj ])1Kπ
j
(ω2|[t+h,tj ]). Us-

ing this identification, the previous inequality becomes

inf
(fj)j=0,...,m−1∈(

∏m−1
j=0 C(Kπ

j ,U)))
J(t+ h, p, q, ũ, β(ũ)) ≤ inf

u∈Uc(t+h)∩Uπ(t+h)
J(t+ h, p, q, u, β(u)) +

ε

3
.

(7.5)

By construction, the map

Ωt,t+h × Ωt+h × U s
t+h ∋ (ω1, ω2,u2) 7→ βω1(ω2,u2) = β(ω1 ⊗ ω2, u

1(ω1)⊗ u2)|[t+h,T ] ∈ V s
t+h,

is Borel measurable. By composition and using Lemma 7.1, it follows that

(ω1, ω2, (fj)j=0,...,m−1) 7→
∫ T

t+h
H(s,ΦX

t+h,T (x, ω2, ũ(ω2))(s),Φ
Y
t+h,T (y, ω2, βω1(ũ(ω2)))(s))ds,
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is Borel-measurable from Ωt,t+h×Ωt+h×
∏m−1

j=0 C(Kπ
j , U) to R. Applying Fubini’s theorem, and

using that

J(t+ h, x, y, ũ, βω1(ũ))

=

∫

Ωt+h

(
∫ T

t+h
H(s,ΦX

t+h,T (x, ω2, ũ(ω2))(s),Φ
Y
t+h,T (y, ω2, βω1(ũ(ω2)))(s))ds

)

dPt+h(ω2),

we deduce finally that the map

Ωt,t+h ×
m−1
∏

j=0

C(Kπ
j , U) ∋ (ω1, (fj)j=0,...,m−1) 7→ J(t+ h, x, y, ũ, βω1(ũ)),

is Borel measurable. As this map is defined on a product of Polish spaces, we may apply Von
Neumann’s selection theorem (see Proposition 7.50 p.184 in [3], having in mind that Borel maps
are lower-semi analytic and that analytically measurable maps are universally measurable)) to
deduce the existence of a universally measurable selection ũ2,π

Ωt,t+h → ∏m−1
j=0 C(Kπ

j , U)

ω1 7→ ũ2,π(ω1)
,

which is an ε/3-optimal best reply to βω1 in the considered class, i.e.:

J(t+ h, x, y, ũ2,π(ω1), βω1(ũ
2,π(ω1)) ≤ inf

(fj)j=0,...,m−1∈
∏m−1

j=0 C(Kπ
j ,U)

J(t+ h, x, y, ũ, βω1(ũ)) +
ε

3
.

(7.6)
This map is Pt,t+h- almost surely equal to a Borel map (see Lemma 7.27 p.173 in [3]) which,
with a slight abuse of notation, will be also denoted ũ2,π(ω1).

Consider now the countable family of Borel maps Fπ indexed by π ∈ Πt+h defined by:

Ωt,t+h ∋ ω1 7→ Fπ(ω1) := J(t+ h, x, y, ũ2,π(ω1), βω1(ũ
2,π(ω1))).

There exists a countable measurable partition (Dπ)π∈Πt+h
of Ωt,t+h such that the map F =

∑

π Fπ1Dπ verifies

F ≤ inf
π∈Πt+h

Fπ +
ε

3
,

and note that (7.3), (7.5) and (7.6) imply

F (ω1) ≤ inf
π∈Πt+h

Fπ(ω1) +
ε

3
≤ inf

u∈Us
t+h

J(t+ h, x, y, u, βω1(u)) + ε. (7.7)

Let (Dπ1 , ...,Dπn , R) be a finite partition of Ωt,t+h such that Pt,t+h(R) ≤ ε and let us define u
by:

us(ω) = us(ω1 ⊗ ω2) =

{

u1s(ω1), if s ∈ [t, t+ h),
u2s(ω1, ω2), if s ∈ [t+ h, T ],

with u2(ω1, ω2) =
∑n

i=1 ũ
2,πi(ω1)(ω2)1Dπi

(ω1).

In order to show that the control u is admissible, let us consider a time grid π = {t = t0 <
. . . < tm = T} which coincides on [t, t + h) with the time grid associated to u1 and contains
all the points of the partitions π1, . . . , πn. Let us denote πi = {t + h = ti0 < ... < timi

= T}

29



for i = 1, ..., n, and given any interval [tj, tj+1) of π, let k(i, j) be the unique integer such that
[tj , tj+1) ⊂ [tik(i,j), t

i
k(i,j)+1). Then u admits the decomposition

u(ω, s) =
m−1
∑

j=0

1[tj ,tj+1)(s)gj(ω|[t,tj ]),

which coincides with the decomposition of u1 on [t, t+ h), and, for s ∈ [tj , tj+1) with t+ h ≤ tj ,
the coefficient gj can be detailed as follows:

gj(ω|[t,tj ]) =
n
∑

i=1

1Dπi
(ω1)gi,k(i,j)(ω1)(ω2|[t+h,ti

k(i,j)
]),

where the term gi,k(i,j) appears in the decomposition of ũ2,πi(ω1):

ũ2,πi(ω1)(ω2, s) =

mi−1
∑

k=0

1[ti
k
,ti
k+1)

(s)gi,k(ω1)(ω2|[t+h,ti
k
]).

To conclude, note that u coincides with u1 on [t, t+ h) and that by construction for all ω1 /∈ R,
thanks to (7.7), u2(ω1, .) is an ε-best reply to the continuation strategy βω1 in the game starting
at time t+ h with initial conditions (x, y).

Acknowledgements: We like to thank the referees for their helpful comments and suggestions.
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