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Balancing Elastic Traffic Sources
Thomas Bonald and Minh-Anh Tran

Abstract—We consider heterogeneous elastic traffic sources
that dynamically share a common link. We prove that balancing
these traffic sources decreases the mean throughput and increases
the blocking probability in the presence of admission control. The
result generalizes that of Dartois derived for telephone traffic.
Index Terms—Flow-level model, finite source, traffic balancing.

I. INTRODUCTION
Consider a set of sources that dynamically share a common

link. This link may be part of a cable, DSL or optical backhaul
network for instance, or the access link to a Web server. Each
source generates a sequence of data flows of random size, with
an idle period of random duration between the end of a flow
and the beginning of the following flow. Traffic is elastic in the
sense that the duration of data flows increases in congestion
periods where there is a high number of active sources. The
duration of idle periods, on the other hand, is assumed to be
independent of congestion.
This model proves very useful for dimensioning purposes

[1], [2], [3]. It is the analogue of the Engset model introduced
in 1915 for telephone traffic [4]. The Engset formula, that
relates the call blocking probability to the traffic intensity
and the number of telephone lines, was later extended to
account for heterogeneous traffic sources [5]. It turned out that
the corresponding results were too complex for any practical
purpose. This motivated the work of Dartois who proved in
1970 that traffic balancing increases the blocking probability
[6]. Thus telephone networks can be safely dimensioned
assuming homogeneous traffic sources.
In this paper, we prove the analogue of Dartois’ result

for elastic traffic. Specifically, we prove that traffic balancing
decreases the mean throughput and increases the blocking
probability in the presence of admission control, when a maxi-
mum number of active sources is imposed. Thus data networks
can also be safely dimensioned assuming homogeneous traffic
sources, despite the strong heterogeneity observed in practice.
The model is described in the next section. The impact

of traffic balancing is presented in Section III. Section IV is
devoted to admission control. Some extensions are presented
in Section V. All proofs are deferred to the Appendix.

II. MODEL

Consider N sources sharing a common link of capacity C
bit/s. Source i generates flows of mean size σi, with an idle
period of mean duration 1/νi between the end of a flow and
the beginning of the following flow. Successive flow sizes and
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idle durations of a given source have arbitrary distributions and
may be correlated. We denote by µi = C/σi the virtual flow
completion rate of source i when active and by ρi = νi/µi

the corresponding virtual load. We assume capacity sharing
is perfectly fair in the sense that each active source gets
throughput C/n when n sources are active.

A. Stationary distribution
Let x be the N -dimensional vector whose ith component xi

gives the activity state of source i: xi = 1 if source i is active
and xi = 0 is source i is idle. We denote by n =

∑N
i=1 xi

the number of active sources. By the insensitivity property, the
stationary distribution of x is the same as if flow sizes and idle
durations were independent and had exponential distributions
[7], [8]. The system state x is then a reversible Markov process
on the state space X = {0, 1}N , with stationary distribution:

α(x) = α(0)n!
N
∏

i=1

ρxi

i , x ∈ X . (1)

This follows from the local balance equations:

α(x)νi = α(x + ei)
µi

n + 1
, ∀x ∈ X : xi = 0, (2)

where ei denotes the unit vector whose i-th component is equal
to 1. Denoting by X (n) the set of states where n sources are
active, we deduce the stationary distribution of the number of
active sources:

π(n) = π(0)n!
∑

x∈X (n)

N
∏

i=1

ρxi

i , n = 0, 1, . . . , N. (3)

B. Mean throughput
We are interested in the mean throughput, defined as the

ratio of the mean flow size to the mean flow duration. Let τi

be the mean flow duration of source i. The mean throughput
of source i is given by:

γi =
σi

τi
.

Let pi be the probability that source i is active. By Little’s
law, the flow arrival rate λi of source i satisfies:

τi =
pi

λi
,

1

νi
=

1 − pi

λi
.

We deduce:
γi = C

ρi(1 − pi)

pi
. (4)

Now consider the mean throughput averaged over all
sources:

γ =
σ

τ
,
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where σ and τ denote the mean flow size and the mean flow
duration, respectively:

σ =
1

λ

N
∑

i=1

λiσi and τ =
1

λ

N
∑

i=1

λiτi, with λ =
N

∑

i=1

λi.

Let p be the probability that at least one source is active. Using
the local balance equations (2), we get:

N
∑

i=1

λiσi =
N

∑

i=1

(1 − pi)νiσi,

=
N

∑

i=1

∑

x:xi=0

α(x)νiσi,

=
N

∑

i=1

∑

x:xi=0

α(x + ei)
µi

n + 1
σi,

= C
N

∑

i=1

∑

x:xi=1

α(x)

n
,

= C
∑

x ̸=0

α(x)
∑

i:xi=1

1

n
= Cp.

Since
N

∑

i=1

λiτi =
N

∑

i=1

pi = E[n],

we deduce:
γ = C

p

E[n]
.

III. TRAFFIC BALANCING

In this section, we evaluate the impact of balancing the traf-
fic sources. Specifically, we assume all sources generate flows
of mean size σ separated by idle periods of mean duration
1/ν. We denote by µ = C/σ the virtual flow completion rate
of each source and by ρ = ν/µ the corresponding virtual load.
We assume the overall load is conserved, that is:

ρ =
1

N

N
∑

i=1

ρi. (5)

A. Stationary distribution

In view of (3), the stationary distribution of the number of
active sources is given by:

π′(n) = π′(0)n!ρn
∑

x∈X (n)

1,

= π′(0)
N !

(N − n)!
ρn. (6)

We have the following key result:
Theorem 1: The number of active sources is higher in

distribution when the traffic sources are balanced:
∑

n≥m

π′(n) ≥
∑

n≥m

π(n), for all m = 0, 1, . . . , N.

B. Mean throughput
The higher number of active sources results in a lower mean

throughput:
Theorem 2: The mean throughput is lower when the traffic

sources are balanced.
Note that this result is true for the mean throughput averaged

over all sources, not for the mean throughput of each source.
In the case of N = 2 sources for instance, it follows from (4)
that:

γ1 = C
1 + ρ2

1 + 2ρ2
, γ2 = C

1 + ρ1

1 + 2ρ1
.

Thus a source benefits from traffic balancing if and only if the
other source contributes most to traffic load.

IV. ADMISSION CONTROL

We now limit the number of active sources to a fixed value
M ≤ N , which guarantees a minimum throughput of C/M
to all data transfers. If a source attempts to generate a new
flow while M sources are active, this flow is blocked and the
source reenters the idle state. We are interested in both the
blocking probability and the mean throughput.

A. Stationary distribution
By the insensitivity and the reversibility properties, the

stationary distribution α of the system state in the presence
of admission control is the restriction of the stationary distri-
bution (1) to the set of states X such that n ≤ M . In particular,
the stationary distributions π and π′ of the number of active
sources without and with traffic balancing, respectively, are
the restrictions of the stationary distributions (3) and (6) to
n ≤ M . We have the analogue of Theorem 1:
Theorem 3: The number of active sources is higher in

distribution when the traffic sources are balanced:
∑

n≥m

π′(n) ≥
∑

n≥m

π(n), for all m = 0, 1, . . . , M.

B. Blocking probability
Let Xi ⊂ X be the set of states where source i is idle and

Xi(n) ⊂ Xi be the set of states where source i is idle and n
sources are active. The blocking probability of source-i flows
is equal to the probability that M sources are active while
source i is idle, that is:

Bi =

∑

x∈Xi(M) α(x)
∑

x∈Xi
α(x)

.

The average blocking probability is given by:

B =

∑N
i=1 νi

∑

x∈Xi(M) α(x)
∑N

i=1 νi

∑

x∈Xi
α(x)

. (7)

It is not true in general that traffic balancing increases the
blocking probability. For N = 2 sources and at most M = 1
active source for instance, we get:

B1 =
ρ2

1 + ρ2
and B2 =

ρ1

1 + ρ1
.
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Thus a source benefits from traffic balancing if and only if the
other source contributes most to traffic load. For the average
blocking probability, we obtain:

B =
ν1ρ2 + ν2ρ1

ν1(1 + ρ2) + ν2(1 + ρ1)
.

which is not maximum for ρ1 = ρ2 in general.
A sufficient condition for this property to hold is that all

sources have the same mean idle durations of mean 1/ν in
the original system with unbalanced traffic sources. It then
follows from (7) that

B =
(N − M)π(M)

∑M
n=0(N − n)π(n)

=
(N − M)π(M)

N − E[n]

and the result is a consequence of Theorem 3.

C. Mean throughput
Unlike the blocking probability, the mean throughput is

always reduced by traffic balancing independently of the
original mean idle durations:
Theorem 4: The mean throughput is lower when the traffic

sources are balanced.

V. EXTENSIONS
The results extend to the case where each source doesn’t

have full access to the link capacity but is limited by some
fixed bit rate representing the speed of its access line for
instance. Assuming all sources have the same rate limit, the
corresponding model is a processor-sharing queue with state-
dependent service rate [8]. In the particular case where the
admission policy does not allow any elastic sharing, the system
reduces to the Engset model and the result on the blocking
probability corresponds to that of Dartois [6].

APPENDIX
The proofs are based on the following two lemmas:
Lemma 1: Let a1, . . . , aN , b1, . . . , bN and t1, . . . , tN be

positive numbers such that a1/b1 ≥ a2/b2 ≥ . . . ≥ aN/bN

and t1 ≤ t2 ≤ . . . ≤ tN . Then:
∑N

i=1 tiai
∑N

i=1 tibi

≤

∑N
i=1 ai

∑N
i=1 bi

.

Proof. The inequality is equivalent to:
N

∑

i=1

tiai

N
∑

j=1

bj ≤
N

∑

i=1

ai

N
∑

j=1

tjbj

⇐⇒
∑

i̸=j

(ti − tj)aibj ≤ 0

⇐⇒
∑

i>j

(ti − tj)(aibj − ajbi) ≤ 0.

✷

Lemma 2: Let a1, . . . , aN be positive numbers such that:
1
N

∑N
i=1 ai = 1. For all n = 1, . . . , N , let:

S(n) =
∑

x∈X (n)

N
∏

i=1

axi

i .

Then:
S(n)
(

N
n

) ≥
S(n + 1)

(

N
n+1

) for all n = 1, . . . , N − 1.

Proof. For all n = 1, . . . , N − 1, we have:

S(1)S(n) =
N

∑

i=1

aiS(n) = (n + 1)S(n + 1) + U(n),

with

U(n) =
N

∑

i=1

a2
i

∑

x∈X (n−1),xi=0

N
∏

j=1

a
xj

j .

Now

(N − n)U(n) =
∑

i̸=j

(a2
i + a2

j)
∑

x∈X (n−1),xi=xj=0

N
∏

k=1

axk

k ,

≥
∑

i̸=j

2aiaj

∑

x∈X (n−1),xi=xj=0

N
∏

k=1

axk

k ,

= 2

(

n + 1

2

)

S(n + 1).

We deduce:

S(1)S(n) ≥ (n + 1)S(n + 1) +
2

N − n

(

n + 1

2

)

S(n + 1),

= N
n + 1

N − n
S(n + 1).

The result then follows from the fact that S(1) = N . ✷

Using (5) and Lemma 2, we get:
∑

x∈X (n)

∏N
i=1

(

ρi

ρ

)xi

(

N
n

) ≥

∑

x∈X (n+1)

∏N
i=1

(

ρi

ρ

)xi

(

N
n+1

) .

We deduce π(n)/π′(n) ≥ π(n + 1)/π′(n + 1). The proof of
Theorems 1 and 3 then follows from the application of Lemma
1 to the positive numbers ti = 0 if i < m and ti = 1 otherwise,
for all i = 0, . . . , N and i = 0, . . . , M , respectively; that of
Theorems 2 and 4 follows from the application of Lemma
1 to the positive numbers ti = i for all i = 1, . . . , N and
i = 1, . . . , M , respectively.
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