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Parametrization of Catmull-Clark Subdivision Surfaces for Posture
Generation

Adrien Escande1, Stanislas Brossette1,2 and Abderrahmane Kheddar1,2

Abstract— In this paper we propose a method to build a
smooth and non-singular map from the unit sphere to a
Catmull-Clark subdivision surface. We use a tailored ray-
casting algorithm to associate a point of the surface to each
point of the sphere. This allows us to have smooth approximate
representations for a large variety of (possibly non-convex)
meshes that we can use to write numerically well-behaved
constraints in gradient-based optimization. In particular, we
address the writing of contact constraints between a robot and
objects of its environment. We first detail our algorithm, taking
care of speed and robustness, then show several use-cases for
posture generations with a humanoid robot or a hand.

I. INTRODUCTION

In the control and planning of complex robots, it is some-
times needed to find a configuration of the robot satisfying
a set of constraints [1] [2] [3]. For example, for a humanoid
robot, one might want to find a configuration where the
two feet are on a surface and the hand reaches an object,
while ensuring the robot is stable, within its joint and torque
limits, and free of collisions. We refer to this configuration
posture problem as Posture Generation (PG), and it can be
formulated as a non-linear constrained optimization problem
and solved by adequate numerical algorithms [4].

For underactuated robots such as humanoid robots, contact
is an important notion, as it is the only mean to move and
maintain stability. Symmetrically, contact plays an important
role in manipulation, where the manipulated object is under-
actuated and is moved and maintained stable by the robot.
Writing constraints expressing contacts is thus a central
part of posture generation. For contacts between a body
of the robot and simple geometry forms (planes, spheres,
cylinders, ...), ad hoc constraints can be written easily. They
are sufficient to tackle a large number of interesting sce-
narios, especially for robots in structured environments [3].
However, contacts with more complex objects is needed too,
for unstructured environment or for manipulating objects.

One extension is to express contact with parametric sur-
faces (see [5] for an example): given a surface defined by
the function (u, v) ∈ [0, 1]

2 7→ s(u, v) ∈ R3 and a point p
fixed on a body of a robot, we can write the constraints1

s(u, v) = p(q) (1)
νs(u, v) = −νp(q) (2)
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1note that in practice, for a better numerical behavior of the optimization,

we write that νs is perpendicular to the tangent plane of the robot surface at
p and has opposite direction with νp, instead of simply νs(u, v) = −νp(q).

where q is the configuration of the robot, and νs (resp. νp)
is the outer normal vector to the parametric surface (resp.
the robot’s surface) at s(u, v) (resp. p). All quantities are
expressed in the same frame. The variables u and v be-
come parameters of the optimization problem. To work with
derivative-based optimization algorithms, such as Sequential
Quadratic Programming (SQP) or Interior Points (IP), which
are much faster than derivative-free algorithms, the functions
involved in an optimization problem need to be at least C1

and gradients must be full rank at the solution (for ensuring
constraints qualification, see [6]). This requests s and nus
to be at least C1, with respect to (w.r.t.) (u, v) and since the
solution can be anywhere, we need their derivatives to be
always full rank.

This approach has two limits: (i) for a given object, a
parametrization of its surface is rarely available, especially a
parametrization conforming with the continuity requirement.
On the contrary, we usually have an approximation of
the object as a mesh; (ii) for surfaces of closed objects
topologically like a sphere, which are a large part of the
objects of interest in applications, a parametrization from
[0, 1]

2 with full rank and continuous gradient does not exist,
because there is no diffeomorphism between the unit sphere
and a subset of R2.

The contribution of this paper is to provide a systematic
way to obtain a parametric surface closely approximating
a mesh and meeting the regularity requirements mentioned
above, for a large class of objects, namely star-convex
objects. To that end, we combine the use of Catmull-Clark
subdivision surfaces with a tailored ray casting algorithm,
and propose an efficient and robust numerical method to
evaluate a point, a normal and their derivatives at a given
set of parameters.

The paper is organized as follows: we first give a very brief
overview of Catmull-Clark subdivision surfaces and of the
method we use to evaluate them (Sec. II), then propose our
parametrization (Sec. III). We then describe the computations
of the normal vector (Sec. IV) and the derivatives (Sec. V),
carefully addressing possible numerical issues. In Sec. VI,
we provide a mean to speed up the computations, before
giving timings and showing several examples where we
use constraints (1)-(2) with the proposed parametrization
(Sec. VII). We then offer some perspectives (Sec. VIII).

II. CATMULL-CLARK SUBDIVISION SURFACES

With the years, Catmull-Clark subdivision surfaces (CCS),
first introduced in 1978, have become a powerful tool for



Fig. 1. Several Catmull-Clark subdivisions of a cube. From left to right:
original mesh, after 1, 2 and 6 iterations

Fig. 2. Left: a regular face (in blue) with its local u-v coordinates and
the ordering of the surrounding vertices. Right: a face (in grey) containing
a extraordinary vertex with valence N (in red).

modeling, and have been widely adopted in computer graph-
ics. For a given initial mesh, to which we will refer as control
mesh, the corresponding CCS is the limit surface obtained
when applying iteratively the following subdivision scheme:

1) for each face, create a face point defined as the average
of the vertices of the face,

2) for each edge, compute its middle point me, the middle
point mf of the two newly computed face points
corresponding to the adjacent faces, and create an edge
point pe = αeme + βemf ,

3) for each vertex v, compute the average af of the face
points corresponding to the faces the vertex belongs to,
the average ae of the edge points corresponding to the
edges the vertex belongs to, and create a vertex point
pv = αvaf + βvae + γvv

4) for each (original) edge, create an edge between the
edge point and each neighbour vertex point and face
point.

5) The created points in 1-3, the edges created in 4 and
the faces they define give the subdivided mesh.

The parameters for CCS are αe = βe = 1/2, αv = 1/N ,
βv = 2/N and γv = (n− 3)/N where N is the valence of
vertex v, i.e. the number of edges the vertex belongs to. Fig. 1
illustrates the process. Note that new vertices are obtained
by linear combination of the old ones.

It was shown by Stam in a seminal paper [7] that points on
CCS can be computed by direct analytical formula without
explicitly subdividing the control mesh. In the remainder of
this section, we recall Stam’s methodology.

A vertex whose valence is 4 is called an ordinary vertex.
Otherwise it is coined extraordinary. We can suppose that
each face of the control mesh is a quadrilateral and contains
at most one extraordinary vertex. If it is not the case,
subdividing at most twice the mesh with the above scheme
and taking the result as the new control mesh will ensure

(0,0)

(1,1)

Fig. 3. Mapping from the unit square Ω0
0 and its subdivision to a surface

patch. Snk is the image of Ωn
k by si.

these properties while yielding the same limit surface. To
each face of the control mesh we can associate a surface
patch which is the limit of the subdivisions for this face.
The CCS is the union of all patches. Each patch can be
represented as a parametric surface and we now explicit the
function si : (u, v) ∈ [0, 1]

2 7→ si(u, v) ∈ R3 corresponding
to the i-th face.

For a regular face, i.e. a face with no extraordinary
vertex, the patch is simply a bi-cubic B-spline, depending
solely on the 16 vertices surrounding the face (see Fig. 2).
Therefore, there is no need to further subdivide this face to
compute its patch. Given the 16-by-3 matrix Ci regrouping
the coordinates of those 16 points ordered as Fig. 2 (left),
we simply have si(u, v) = CT

i b(u, v) where b(u, v) is the
vector of the b-spline basis obtained by concatenating the
columns of B(u, v):

B(u, v)=


1
u
u2

u3


T

MTM


1
v
v2

v3

, with M=
1

6


1 −3 3 −1
4 0 −6 3
1 3 3 −3
0 0 0 1


For a non-regular face, the idea is that one subdivision

replaces the face by 3 regular faces, which can be evaluated
as above and one non regular one which need to be subdi-
vided further. More precisely, let Ω0

0 = [0, 1]
2 and define an

infinite partition of it as illustrated in Fig. 3, for n = 1..∞:

Ωn
0 =

[
0, 2−n

]2
,Ωn

1 =
[
0, 2−n

]
×
[
2−n, 2−n+1

]
,

Ωn
2 =

[
2−n, 2−n+1

]2
,Ωn

3 =
[
2−n, 2−n+1

]
×
[
0, 2−n

]
We denote by Snk the surface image of Ωn

k by si. For each
n we have Ωn−1

0 = Ωn
0 ∪ Ωn

1 ∪ Ωn
2 ∪ Ωn

3 , and likewise for
Sn−1

0 .
We choose the parametrization so that (0, 0) corresponds

to the extraordinary vertex. To evaluate S0
0 , we need the K =

2N + 8 vertices surrounding the face (see Fig. 2, right).
Let us denote by Ci,0 the K-by-3 matrix containing in each
row the coordinates of these vertices. To evaluate S1

0 , we
need K vertices as well, whose matrix of coordinates C1 can
be computed as ANCi,0, where AN is the K-by-K matrix
expressing locally the subdivision process. To evaluate S1

k ,
k = 1..3, we need 9 more vertices, obtained from C0 as
C̄i,1 = ĀNCi,0. By recursion, the coordinates of the vertices
needed to evaluate Sn0 (resp. Snk , k = 1..3) are given by
Ci,n = An

NCi,0 and (resp. C̄i,n = ĀNA
n−1
N Ci,0).

For n ≥ 1, the surfaces Snk , k = 1..3 correspond to
regular faces of the mesh obtained after n subdivisions of



c

Fig. 4. 2d illustration of a control mesh (in red) and the CCS (in blue).
The dashed lines depict the supporting planes and define the kernel (light
blue). c is the center of the largest sphere (black circle) in it.

the control mesh, and therefore can be evaluate as above: the
16 coordinates are extracted from C̄n by a selection matrix
Pk, and we have the restriction of si to Ωn

k :

si(u, v)
∣∣
Ωn

k

= C̄T
n P

T
k b(tn,k(u, v)) (3)

where tn,k maps Ωn
k to [0, 1]

2: tn,1(u, v) = (2nu− 1, 2nv),
tn,2(u, v) = (2nu−1, 2nv−1) and tn,3(u, v) = (2nu, 2nv−
1).

The last step of Stam’s work is to make use
of the eigen decomposition AN = V ΛV −1 where
Λ = diag(λ1, · · · , λK): C̄i,n can be computed effi-
ciently as ĀNV Λn−1V −1C0. Noting Ĉi,0 = V −1C0, and
xN (u, v, k) = (PkĀNV )T b(u, v), eq. (3) can be rewritten,
with a bit a algebra

si(u, v)
∣∣
Ωn

k

=

K∑
j=1

λn−1
j xN,j(tn,k(u, v), k)pj (4)

with pj the j-th column of Ĉi,0. Since λ1 = 1 and all 0 <
λi < 1 for i = 2..K, si(0, 0) is simply p1 (xN,1(0, 0, k) = 1
by taking the limit).

Because AN depends solely on the valence N , its eigen
decomposition can be done once and for all, and Ĉi,0 needs
only be computed once for a given control mesh.

III. RAY-CASTING BASE PARAMETRIZATION

For a mesh with nf faces, the previous section gives nf
function si which are local parametrization of the CCS. In
this section we propose a global C1 parametrization with
full-rank gradient. We are interested in closed object and we
know it is not possible to get such a parametrization over a
subset of R2, therefore we propose a parametrization over
S2 the unit sphere in R3. The general idea is to take a point
c inside the object and to associate to each unit vector d the
point of the object on the ray c+ td, t > 0. This is akin to
computing the inverse of the CCS projection onto a sphere
centered at c.

A. Determination of a center point

For every ray to correspond to a single point of the surface,
the segment from c to any point of the surface must remain
inside the object. By definition, such a point c exists if and
only if the CCS defines a star-convex volume.

Fig. 5. Patches corresponding to the different faces of the control mesh are
depicted in different colors. The cones are delimited by the gray lines. The
casted ray (in green)intersects a face (in bold red). From the intersection
point (in green) a point (in blue) is deduced on the corresponding patch.

u
v u

v
(0,0) (0,0)

(1,1) (1,1)

Fig. 6. Example of coordinates change when changing from the left patch
to the right one. With the depicted frames, the change is unew = vold and
vnew = 2 − uold. There are in total 16 different changes of coordinates
depending on the relative orientation of the frames.

Each face of the control mesh is made of two triangles
(that need not be coplanar), each of which defines a half-
space on the side of its supporting planes indicated by the
inward normal. The intersection of all these half-spaces is
named the kernel of the mesh (see e.g. [8, Ex. 33.3-4]) and
is the locus of all points seeing all the surface of the control
mesh (Fig. 4).

We use the following heuristic to get c: we compute the
Chebyshev center of the above kernel (i.e. the center of the
largest ball inside the kernel). This is done simply by linear
programming: given the half-spaces described as aTi x ≤ bi,
we solve (see [9, Sec. 4.3.1])

max.
c,r

r (5)

s.t. aTi c+ ‖ai‖ r ≤ bi, i = 1..2nf

This particular choice of c is motivated by robustness con-
siderations as detailed in next subsection.

Since the computation of c is based on the control mesh
and not on the CCS, we could devise extreme examples
where c is not suitable. However, this works well in practice
especially because to get isolated extraordinary vertices we
subdivide twice the original mesh so that the actual control
mesh is close to the final CCS. Should it be needed, we could
subdivide the control mesh a few times before computing c.

B. Central ray-casting algorithm

To determine the intersection of a ray c+td with the CCS,
we borrow the idea from ray-casting in computer graphics.
For a parametric surface, one idea (see [10]) is to solve
numerically in (u, v, t) the equation c + td = s(u, v) with
t > 0. In the general case rays can come from anywhere and
there is a great deal of refinements to ensure the robustness



of the scheme. This is not our case however, since we have
the particularity of casting rays from inside the object and
are guaranteed to have a single solution to the equation.

Assume we know which patch i the ray intersects. Then
we know that t > 0 and we simply solve the equation
fi(x) = 0 by Newton method, where x =

[
u v t

]
and

fi(x) = si(u, v) − c − td. In practice we do not know i
beforehand and we need to provide an initial guess x0 =[
u0, v0, t0

]
close to the solution for the method to converge.

Since the CCS is not far from the control mesh, we take i
to be the index of the face of the control mesh intersected by
our ray. The test to check if the ray intersects a face is very
simple: the point c and the 4 points of a face defines a cone
of apex c, see Fig. 5. Each side of the cone has an outward
normal vector nci,j and we can define AT

i =
[
nci,1 · · ·nci,4

]
.

There is intersection if Aid ≤ 0. A basic way to find i is
thus to test the previous condition for each face in order. We
give a more efficient solution in Section VI.

Once we know the face, we compute its intersection point
with the ray, and retrieve the (u,v) coordinates in the face of
this point by a perspective mapping of the face onto a unit
square (see [11]). This gives us our initial guess x0.

The patch intersected by the ray may not correspond to
the face we found. This is easily detected and taken care of
during the iterations of the Newton method: if at an iteration
the uv part of the current x is not in [0, 1]

2, we change to the
adequate neighbour patch, estimate the uv in this new patch,
and resume the computation. By adequate, we mean that if
for example u > 1 we change to the patch on the other side
of the edge corresponding to u = 1. To estimate the new uv,
we proceed as if both neighbour faces were coplanar unit
square and make a simple change of coordinates, see Fig. 6.
If the new uv coordinates are still out of [0, 1]

2 (because
both were originally out), we repeat the process.

The overall algorithm is summarized by Alg. 1. From a
vector d, it returns the index i of the patch intersected by
the ray c + td, and the triplet x(d) = (u(d), v(d), t(d))
localizing the intersection point p(d) = si(u, v) = c + td
on the patch and on the ray. For practical implementation,
a safeguard must be added to avoid infinite cycles (which
we never encountered). We could also add a line search to
prevent the Newton iteration to diverge. In practice however,
the initial guess is sufficiently close to the solution so that
unit steps can be taken and the convergence is quadratic: we
typically need 3−4 iterations to get a norm of residual below
ε = 10−14. The Jacobian matrix of ∂fi/∂x is

Ji =
∂fi
∂xi

=
[
δu,i δv,i −d

]
, with δy,i =

∂si
∂y

, y = u, v

It can be badly conditioned in three situations: (i) the
derivative in u and v diverge, which happens close to
extraordinary vertices with Stam’s proposed parametrization,
(ii) d is (almost) in the subspace spanned by δu,i and δv,i
which is the tangent plane to the patch at the current (u, v),
or (iii) the patch is orders of magnitude longer than large so

that
∂si
∂u

and
∂si
∂v

are almost colinear. Situation (i) can occur
only if the initial guess is extremely close to the extraordinary

vertex (say u, v ≤ 10−30), in which case we perturb slightly
the guess (e.g. take u = v = 10−16). The iterations will never
come back to such an extreme case because convergence will
be reached before. Situation (ii) is avoided by our choice of
c. Situation (iii) should rarely occur and can be handled by
pre-processing of the mesh.

Algorithm 1 (i, x) = raycasting(d)

1: i← findFace(d)
2: x← initialGuess(i, d)
3: e← fi(x)
4: while ‖e‖ > ε do
5: x← x− (∂fi/∂x)

−1
e //Newton step

6: if x /∈ [0, 1]
2 × R then

7: inew ← neighbour(i, x)
8: x← changeCoordinates(i, inew, x)
9: i← inew

10: end if
11: ei ← fi(x)
12: end while
13: return (i, x)

IV. NORMAL VECTOR COMPUTATION

Given a patch i and local coordinates (u, v), the normal
vector νi(u, v) is obtained by computing the cross product
δu,i× δv,i and normalizing it, as is classical with parametric
surfaces. Thus for our global parametrization, the normal
vector ν(d) is obtained by first determining i(d), u(d) and
v(d) with Alg. 1 then computing ν(d) = νi(d)(u(d), v(d)).

For regular patches, the computation is straightforward.
For non-regular patches, care must be taken in the computa-
tions to avoid numerical issue when nearing (0, 0). Indeed,
we have

δu,i(u, v)
∣∣
Ωn

k

= 2n
K∑
j=1

λn−1
j

∂

∂u
xN,j(tn,k(u, v), k)pj (6)

(and likewise for v), where the 2n comes from the derivative
of tn,k. It was observed in [12] that the first term of this sum
is 0, and it is important to not compute it (i.e. start the sum
at j = 2) because numerically it will not be exactly 0 and
the error will be multiplied by a potentially huge 2n.

We can suppose without loss of generality that the eigen-
values are given in decreasing orders. Whatever N , we have
λ2 = λ3 > 0.5 (see [7]), so that the δu,i and δv,i diverge
when (u, v) goes to (0, 0). However, since we are normaliz-
ing the cross product to get the normal, the magnitude of the
δu,i and δv,i is not important. In particular, we can divide
them by κn = 2nλn−1

2 so that with δ′y,i = 1/κnδy,i,

νi(u, v) =
δ′u,i × δ′v,i∥∥δ′u,i × δ′v,i∥∥ (7)

and all terms stay bounded an non-zero (when (u, v)

tends to (0, 0), δ′u,i behaves like
∂

∂u
xN,2(tn,k(u, v), k)p2 +

∂

∂u
xN,3(tn,k(u, v), k)p3, likewise for δ′v,i, and the xN



derivatives are bounded and non-zero). Because CCS are
tangent plane continuous (see [12]), νi(u, v) converges in
(0, 0).

V. DERIVATIVES

In this section, we compute the derivatives ∂(p)/∂(d) and
∂(ν)/∂(d), and study their properties. Since i is known for
a given d we drop it in the notation for conciseness.

First we compute the derivatives of (u(d), v(d), t(d)) w.r.t.
d. (u(d), v(d), t(d)) verify the relation s(u, v)− c− td = 0.
Deriving this relation w.r.t. d, we get

[
δu δv − d

] ∂u/∂d∂v/∂d
∂t/∂d

 = tI (8)

from which we can compute the derivatives w.r.t. d and
define∂u′/∂d∂v′/∂d

∂t/∂d

 def
=

κn∂u/∂dκn∂v/∂d
∂t/∂d

 = t
[
δ′u δ′v − d

]−1
(9)

[
δ′u δ′v − d

]
is well conditioned and bounded so that

∂u′/∂d, ∂v′/∂d and ∂t/∂d are bounded and non-vanishing.
We get immediately

∂p

∂d
=
[
δu δv

] [∂u/∂d
∂v/∂d

]
=
[
δ′u δ′v

] [∂u′/∂d
∂v′/∂d

]
(10)

(the second form yields more stable computations) which is
continuous because all the quantities are (CCS are C2 except
at extraordinary vertices where they are C1). As a product of
rank 2 matrices, it is however not full rank. This is because
p(d) = p(αd) for a > 0. But for the same reason, if p is
seen as an application from S2 to R3, its derivative w.r.t a
local parametrization of S2 is full rank.

The derivative of the normal is given (for i = 1..3) by

∂ν

∂di
=

1

‖δ′u × δ′v‖
(
I − ννT

)(∂δ′u
∂di
× δ′v + δ′u ×

∂δ′v
∂di

)
(11)

It is continuous everywhere but at extraordinary vertices
where it diverges. The same discussion about rank as above
applies.

VI. ACCELERATING THE FACE IDENTIFICATION

In section III, we proposed a simple test to find which
face of the control mesh is intersected by the ray c + td,
t > 0. This test takes most of the time in Alg. 1 (typically
75% of the time for nf around 5000). We present a cheaper
alternative.

We denote Ci the cone defined by the center c and the
i-th face of the control mesh, as described in Sec. III. We
have Ci =

{
x ∈ R3, Aix ≤ 0

}
. For each vertex vi,j , j =

1..4 belonging to the face, we define ri,j = vi,j − c the
vectors supporting the edges of the cone and denote r̂i their
average. Finally, we call opposite to Ci and note C̄i the unique
cone Cj containing −r̂i (note that this is not a one-to-one
relationship).

Given a direction d, we identify the intersected face with
the algorithm given in Alg. 2: we start from an initial face

Algorithm 2 i = findFace(d, i0)

1: i← i0
2: if Aid ≤ 0 then
3: return i
4: else
5: if dT ri,j ≤ 0 for all j = 1..4 then
6: i← opposite(i)
7: end if
8: while Aid > 0 do
9: j ← arg max. j(Aid)j

10: i← neighbour(i, j)
11: end while
12: end if
13: return i

i (by default i = 0 or random), and check if d is in Ci. If
it is not, we check if Ci intersects the open half-space Hd

defined by d. This is the case if and only if dT ri,j > 0 for
at least one j. If not, we go to the opposite of Ci which then
necessarily intersects Hd: all vectors −ri,j are in Hd, thus
−r̂i is in it as well, so that by definition, −r̂i ∈ C̄i∩Hd 6= ∅.
From there we iteratively pass from one cone to the other by
choosing each time the adjacent cone indicated by the line
of Aid with the largest value, i.e. the cone on the other side
of the (cone’s) face for which the condition Aid ≤ 0 is the
most violated. We loop until i is such that Aid ≤ 0.

The matrices Ai and the opposite of each cone can be
precomputed offline. The naive algorithm works in O(nf ).
Intuitively, Alg. 2 roughly follows a one-dimensional se-
quence of cones within a two-dimensional arrangement of
cones, so that it should perform in O(

√
nf ). This is exactly

what we observe empirically (see next section). It would be
possible to devise scheme in O(log nf ) by implementing a
tree of tests where each leaf contains only one cone, be it
based on the cones’ faces or on an octree/spherical quadtree,
but (i) our scheme is easy to implement and fast enough (only
taking a few percents of the total ray-casting algorithm),
(ii) it can take advantage of spatial coherency, i.e when
a request is made with directions d close to the previous
request (as is often the case in our application cases), one
can use the preceding solution to initialize the algorithm. For
small changes in d we can reach amortized O(1).

VII. TESTS AND EXAMPLES

A. Timings

We illustrate here the speed of our algorithm. All compu-
tations are performed on a Intel Core i7-4960 HQ at 2.6GHz,
on a single core.

We begin with measurements for Alg. 2. For objects with
increasing number of faces, we first test for a large number
of directions d, uniformly distributed over S2, initializing the
algorithm with i0 = 0. Then we do the same, but for each
d we make 1000 tests, using dk = R(kθ)d (k = 1..1000) as
a direction where R denotes a rotation of angle kθ around
an axis orthogonal to d, and θ is an angle step that we take
from 0.001 to 0.5. For these tests, we take i0 as the solution
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Fig. 7. Computation time (in ns) for one call to Alg. 2 w.r.t. the number
of faces of the control mesh. The curve in blue shows the case where
no specific initialization was made. The others illustrate the use of spatial
coherency for directions closer and closer from one another.

Fig. 8. Left: the CCS (in blue) corresponding to the mesh (in green) of an
HRP-2 link. The red line is the image of R(kθ)d for a particular d. Right:
we first apply twice a simple subdivision scheme, before using Catmull-
Clark subdivisions, thus obtaining a surface closer to the original mesh but
less smooth. The red line corresponds to the same directions as on the left,
but is slightly changed due to a difference in the center c.

of the previous request. The results are depicted in Fig. 7.
They clearly show the O(

√
nf ) behavior when no spatial

coherency is used, and a quasi-constant computation time
for the lower increments θ.

It is difficult to give a systematic and fair timing of Alg. 1,
because it is depends much more on how close the CCS
is from the control mesh (and hence how good the initial
guess is for Newton iterations) than on number of faces.
It is not easy to measure this proximity and much less to
generate families of objects with increasing complexity w.r.t.
this measure. An extreme example about the influence of the
number of faces is to take a cube and divide each of its faces
in k by k, k = 1... to generate a family of control meshes.
In this case the computation time decreases with the number
of faces, with the average number of Newton iterations even
dropping below 1 when faces are divided in 6 by 6 or more!
While at first counter-intuitive, this is not a surprise: the more
the faces are divided, the closer the CCS is to the control
mesh. In the case of the cube, more and more patches are
equal to their corresponding face. This behavior is actually
general. It suggests than performing explicitly a few more
Catmull-Clark iterations on the control mesh might actually
improve the algorithm speed, until Alg. 2 becomes limiting.
We keep the study of this as future work.

To still get an idea of the speed of the algorithm we
perform a test similar to the coherency test above, with
θ = 2π/1000, on an object typical of our target applications:
a leg body of the HRP-2 robot. The result for one particular
d is depicted in Fig. 8. In average, the computation time
for one call to Alg. 1 is 5.3µs, 3.2 Newton iterations are
performed, and there is 0.048 switches to a neighbour face.

B. Posture generation examples

We now show some examples of PG using the proposed
approach to introduce complex objects to contact with. We
make use of the capacity of our optimization solver (see [5])
to directly work with variables on S2 to represent the
direction d. When using more classical non-linear solvers,
it is sufficient to take d in R3 and to add a constraints of
unit norm for d: the presented algorithm do not need a unit
d to work, and at the solution, the gradient will be full rank
on the null-space of this constraint, which is enough for a
good convergence. However, working directly on S2 presents
advantages [5].

In the first example (Fig. 9, left), a HRP-4 robot is asked
to grasp an object (here a leg part of HRP-2) and to hold it as
far as possible in front of him, with the following constraints:
contacts must occur between predefined points on the hands
of HRP-4 and points free to move on the surface of the
object, modeled as a parametric surface with the approach
of this paper; furthermore the robot has to keep its left foot at
a given fixed position and has its right foot anywhere on the
floor. The forces applied by the robot on the object must be
sufficient to counter the gravity, and the system (robot,object)
must be stable with all forces within their friction cones.
Additionally, the robot must stay within its joint limits. We
do not check here for collisions or torque limits. The solver
finds a solution in about 70 iterations.

Our second example (Fig. 9, middle) demonstrates our PG
applied to grasping an object. The base of the hand is fixed,
and the contact points on the fingers are given. The contact
points on the objects are parametrized with our method and
are free to move on the entire (approximated) surface of
the object: the optimization finds automatically how to grasp
the object so as to be able to maintain it, taking about 50
iterations. Note that the object is non-convex.

Our third example (Fig. 9, right) involves a stack of cubes
on which the robot must stand, using its hands and feet
to maintain its stability. The stack is modeled as a single
object. Once again, contact points are fixed on the robot
and free on the surface. The optimization takes around 115
iteration to converge to a solution. Since their is a single
surface to contact with, we do not need to specify with which
faces, edges or corners the robot needs to be in contact with.
The optimization decides it automatically. This is a very
attractive feature of our approach as it allows to include
discrete choices directly into our PG. This can be used to
alleviate the work to be done by the user, be it a human
or a planning algorithm: the user still has to specify the
bodies in contact, but part of the combinatorics relative to
the matching of a body with a particular surface or object is



Fig. 9. Left: HRP-4 holding an object, modeled with CCS, as far as possible in front of it. The red arrows depict the contact forces and the gravity forces
applied at each object. Middle: example of grasp generation. Right: HRP-4 climbing a pile of cubes modeled as a single object with a single surface.

handled directly by the PG. Note that here again we do not
check for collision, so that we have a slight penetration of
the left foot with the cube in front.

VIII. CONCLUSION

In this paper, we presented a method to parametrize
the surface of closed objects so that they can be used in
optimization problems. We validated the approach through
PG examples.

We use CCS to smooth meshes, but our scheme needs
actually only patches of parametric surface to work with, so
that it could be extended to many other surface subdivision
techniques, or patches of NURBS for example. This would
allow for possibly more continuity properties.

The proposed parametrization is C1 everywhere and even
C2 but at extraordinary vertices. Normal vectors to the
parametrized surface are C1 everywhere but at extraordinary
vertices. Although this violates the requirements for opti-
mization methods, it happens at isolated points and is not
a problem: the probability to converge to such a point is 0,
and even if close to those points the gradient becomes large,
this is not an issue in practice, although not fully ideal.

Depending on the control mesh, the CCS may not be
a close enough approximation. However we can make the
approximation as tight as we want by simply subdividing
the edges and faces with their center points and keeping
the original vertices, which corresponds to taking weights
αe = 1, βe = 0, αv = βv = 0 and γv = 1 in the subdivision
scheme of Sec. II. Indeed, bi-cubic B-splines have the very
important property to be contained in the convex hull of their
control points. Therefore, adding points on the original mesh
will constrain the patches to be closer to the control mesh.
An illustration of this is depicted in Fig. 8 (right). Another
option would be to use extensions of the CCS, especially the
notion of crease that allows for sharper edges and corners
while retaining smoothness. Of course, the closer we become
to the original mesh, the closer we are of loosing gradient
continuity at edges and vertices.

We took here the point of view of approximating a mesh
by a CCS. However in computer graphics, this is usually
the other way around: the control mesh is chosen so that
the CCS match the intended object, an approach that we can

use too and that would eliminate the possible problem of
approximation.

The ability to take contacts anywhere on a complex surface
is very attractive. Although we did not show it here, paramet-
ric surfaces can also be used to have non-fixed contact point
on the robot. However, if contact is made between points of
two parametric surfaces, it requires to be able to associate a
full frame to one of the points, not only a normal, so as to
write qualified constraints, which is not always possible.

This ability of contacting anywhere also raises the problem
of collisions, when faced with non convex surfaces, what we
purposefully oversaw in this paper. Being able to write at
the same time that a body must be in contact with a surface
and not collide with it is not a simple task and in particular
requires a careful handling of safety margins. This is one of
our top priority in extending the capabilities of our PG.
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