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Local well-posedness of the curve shortening flow, that is, local existence, uniqueness and smooth dependence of solutions on initial data, is proved by applying the Local Inverse Theorem and L 2 -maximal regularity results for linear parabolic equations.

Introduction

Optimal or maximal regularity results for linear evolution equations on Banach spaces are now widely used in order to prove local existence, uniqueness, regularity of solutions of abstract nonlinear parabolic evolution equations of the form [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF] u + F(u) = f on (0, T), u(0) = u 0 ;

among the first articles, we cite for example Da Prato & Grisvard [START_REF] Da Prato | Equations d'évolution abstraites non linéaires de type parabolique[END_REF], Amann [START_REF] Amann | Existence and regularity for semilinear parabolic evolution equations[END_REF][START_REF] Amann | Quasilinear evolution equations and parabolic systems[END_REF], Angenent [START_REF] Angenent | Nonlinear analytic semiflows[END_REF][START_REF] Angenent | Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature[END_REF], Clément & Li [START_REF] Ph | Abstract parabolic quasilinear problems and application to a groundwater flow problem[END_REF], but we mention also the monograph by Lunardi [START_REF] Lunardi | Analytic Semigroups and Optimal Regularity in Parabolic Problems[END_REF] and more recent works by Escher, Pr üss & Simonett [START_REF] Escher | A new approach to the regularity of solutions of parabolic equations[END_REF],

Pr üss [START_REF] Pr | Maximal regularity for evolution equations in L p -spaces[END_REF] and Amann [START_REF] Amann | Maximal regularity and quasilinear parabolic boundary value problems, Recent advances in elliptic and parabolic problems[END_REF][START_REF] Amann | Quasilinear parabolic problems via maximal regularity[END_REF]. In these articles, but also in [START_REF] Bothe | L P -theory for a class of non-Newtonian fluids[END_REF][START_REF] Guidetti | A maximal regularity result with applications to parabolic problems with nonhomogeneous boundary conditions[END_REF][START_REF] Hieber | Quasilinear parabolic systems with mixed boundary conditions on nonsmooth domains[END_REF][START_REF]Strong solutions for the Navier-Stokes equations on bounded and unbounded domains with a moving boundary[END_REF][START_REF] Simonett | The Willmore flow near spheres[END_REF] (the list is not exhaustive), the authors applied the contraction mapping principle in order to prove local existence and uniqueness of solutions. The contraction mapping principle is of course a standard tool in nonlinear analysis, although finding an appropriate contraction is sometimes quite technical. We want to show that, besides another advantage, an application of the Inverse Function Theorem avoids this problem; in some sense, the problem is hidden in the proof of the Inverse Function Theorem. In [START_REF] Angenent | Nonlinear analytic semiflows[END_REF][START_REF] Angenent | Parabolic equations for curves on surfaces. I. Curves with p-integrable curvature[END_REF], Angenent remarked that optimal regularity of underlying linear evolution equations not only gives local existence and uniqueness of solutions of the nonlinear equation [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF], but also time regularity of solutions and continuous / smooth dependence of solutions on data. The solutions are as regular and the dependence is as smooth as F is, that is, equation [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF] behaves very much like an ordinary differential equation for which analoguous results are classical. In order to achieve his goal, Angenent applied -besides the contraction mapping principle -the Implicit Function Theorem in a most elegant way (see also [START_REF] Escher | A new approach to the regularity of solutions of parabolic equations[END_REF] where the so-called parameter trick was further developped).

In this article, we show that the Inverse Function Theorem may be an efficient alternative to the contraction mapping principle and the Implicit Function Theorem: by applying the Inverse Function Theorem, the proof of local existence of solutions is simpler and it gives continuous / smooth dependence on data at the same time, at least in the context of L p -maximal regularity. An application of the Inverse Function Theorem is moreover natural since optimal / maximal regularity just translates the fact that a certain linear operator is an isomorphism between appropriate Banach spaces. In order to avoid much abstract notation, we illustrate the approach only in the particular case of the curve shortening flow equation [START_REF] Amann | Maximal regularity for nonautonomous evolution equations[END_REF] u t -κ(u) = 0, but the interested reader will certainly understand how to apply the Inverse Function Theorem in different, more abstract situations. For the curve shortening flow we show in addition that the approach via the Inverse Function Theorem yields -with very little additional effort -smooth solutions.

Smoothness is here obtained without the use of the Implicit Function Theorem but follows from smooth dependence on data.

We have chosen the example of the curve shortening flow because it is one of the simplest examples of geometric flows. Analytic properties of the flow and its applications in physics or image analysis have been widely studied in the literature. Moreover, local existence and uniqueness of various types of solutions for appropriate initial data is well known; at least this question is not an issue at all even in specialized monographs (see, for example, [START_REF] Chou | The curve shortening problem[END_REF][START_REF] Ecker | Regularity Theory for Mean Curvature Flow[END_REF][START_REF] Zhu | Lectures on mean curvature flows[END_REF]). Among the possible approaches to obtain short time existence of solutions, we mention geometric measure theory (Brakke [START_REF] Brakke | The motion of a surface by its mean curvature[END_REF]), the theory of quasilinear parabolic equations (here one frequently refers to Ladyzhenskaya et al. [START_REF] Ladyženskaja | Linear and quasilinear equations of parabolic type[END_REF] in combination with a reparametrization argument by DeTurck [START_REF] Deturck | Deforming metrics in the direction of their Ricci tensors[END_REF], but this approach comprises also the above mentioned use of optimal / maximal regularity and the contraction mapping principle / the Implicit Function Theorem, see Huisken & Polden [START_REF] Huisken | Geometric evolution equations for hypersurfaces, Calculus of variations and geometric evolution problems[END_REF]), the level set approach in combination with the theory of viscosity solutions (Giga [START_REF] Giga | Surface Evolution Equations[END_REF] and references therein), or variational approaches (Almgren et al. [START_REF] Almgren | Curvature-driven flows: a variational approach[END_REF], Deckelnick [START_REF] Deckelnick | Weak solutions of the curve shortening flow[END_REF], Luckhaus & Sturzenhecker [25]).

The curve shortening flow equationfunctional setting

The curve shortening flow equation for parametrizations of closed curves is the partial differential equation

(3)            u t -κ(u) = 0 in [0, T] × R, u(t, x) = u(t, x + 2π) for (t, x) ∈ [0, T] × R, u(0, x) = u 0 (x) for x ∈ R.
Here, each u(t, •) : R → R d is the parametrization of a closed curve Γ t in R d . By definition, a parametrization of a closed curve Γ ⊆ R d is a 2π-periodic, continuously differentiable function u : R → R d such that Γ = {u(x) : x ∈ R} and inf x∈R |u x (x)| > 0 (the latter assumption on the derivative guarantees in particular that u is locally injective and therefore an immersion).

In the following, we consider the Sobolev spaces

H k per := {u ∈ H k loc (R; R d ) : u(x) = u(x + 2π
)}, and we denote analogously by C k per the space of all 2π-periodic, k times continuously differentiable functions. We assume that the initial value u 0 in ( 3) is a parametrization in the Sobolev space H 2 per . This space has the simple advantage of being a Hilbert space. Moreover, this Sobolev space is continuously embedded into C 1 per so that the set of all parametrizations in

H 2
per is open. Finally, given a parametrization u ∈ H 2 per , we can define the associated curvature vector field κ(u) by

κ(u) := 1 |u x | u x |u x | x = u xx |u x | 2 - u x |u x | u xx |u x | 2 , u x |u x | = P ⊥ u xx |u x | 2 .
Here,

P ⊥ v := v - u x |u x | v, u x |u x |
is the orthogonal projection along the tangent space u x onto the normal space along u.

Reduction of the curve shortening flow equation

Following an idea of DeTurck in [START_REF] Deturck | Deforming metrics in the direction of their Ricci tensors[END_REF], one may introduce reparametrizations of a solution u of the curve shortening flow equation in such a way that the reparametrizations satisfy a strictly parabolic equation (see, for example, Zhu [START_REF] Zhu | Lectures on mean curvature flows[END_REF]). This strictly parabolic equation can be obtained by "projecting" the time derivative of the function u into the space which is normal along u 0 (the equation thus obtained therefore depends on u 0 ). Here, we somehow proceed in the opposite way (see also Deckelnick [START_REF] Deckelnick | Weak solutions of the curve shortening flow[END_REF]): instead of projecting the curve shortening flow equation into normal direction we rather leave out the normal projection P ⊥ which appears in the definition of the curvature vector κ(u). That is, instead of the curve shortening flow equation (3) we consider the following problem (4)

             v t - v xx |v x | 2 = 0 in [0, T] × R, v(t, x) = v(t, x + 2π) for (t, x) ∈ [0, T] × R, v(0, x) = u 0 (x) for x ∈ R;
(same initial value u 0 as in (3)!). In this problem, (v(t, •)) is again a family of parametrizations of closed curves in R d . We show in this section that a smooth solution v of the problem (4) and a smooth solution u of the curve shortening flow equation ( 3) parametrize the same family of curves. As a consequence, if one is only interested in the evolution of the associated curves, it suffices to solve the reduced problem (4). For simplicity, we work only with C ∞ solutions here and we do not try to find the weakest possible regularity on v which ensures existence and uniqueness of sufficiently regular reparametrizations θ (see the following lemma).

Lemma 1. Let v ∈ C ∞ ([0, T]; C ∞ per )
be a solution of the problem (4). Then there exists a unique function

θ ∈ C ∞ ([0, T] × R), θ = θ(t, x),
(same existence time as for v!) satisfying

(5)          θ t + 1 |v x (t, θ)| v xx (t, θ) |v x (t, θ)| 2 , v x (t, θ) |v x (t, θ)| = 0 in [0, T] × R, θ(0, x) = x for x ∈ R.
Proof. For every fixed x ∈ R the equation ( 5) is an ordinary differential equation for the function θ(•, x). For this ordinary differentiable equation, the classical results for local / global existence and uniqueness of solutions and smooth dependence on initial data apply and yield the claim.

Let v and θ be as in Lemma 1 and define

u(t, x) := v(t, θ(t, x)) for (t, x) ∈ [0, T] × R.
Note carefully that u is 2π-periodic in the second variable. Moreover, by the chain rule and since v and θ are solutions of ( 4) and ( 5), respectively,

u t (t, x) = v t (t, θ(t, x)) + v x (t, θ(t, x)) θ t (t, x) = v xx (t, θ(t, x)) |v x (t, θ(t, x))| 2 - v x (t, θ(t, x)) |v x (t, θ(t, x))| v xx (t, θ(t, x)) |v x (t, θ(t, x))| 2 , v x (t, θ(t, x)) |v x (t, θ(t, x))| = κ(v(t, θ(t, x))) = κ(u(t, x)).
In the last equality we have used the equality κ(v(t, θ(t, x))) = κ(u(t, x)), that is, the curvature vector at the point v(t, θ(t, x)) = u(t, x) does not depend on the particular parametrization. Since we have also that

u(0, x) = v(0, θ(0, x)) = v(0, x) = u 0 (x),
the function u defined above is indeed a solution of the curve shortening flow equation.

Existence and regularity for the reduced problem by the local inverse theorem

In this section we solve the reduced problem (4). More precisely, we prove existence and uniqueness of solutions which belong to the maximal regularity space MR := H 1 (0, T; H 1 per ) ∩ L 2 (0, T; H 3 per ). This space is equipped with the natural norm, so that it becomes a Banach (or: Hilbert) space. One has two continuous embeddings

MR ⊆ C([0, T]; H 2 per ) ⊆ C([0, T]; C 1 per ).
The second embedding follows from the Sobolev embedding H 2 per ⊆ C 1 per , while the first embedding follows from interpolation theory and the fact that H 2 per is the trace space (or: interpolation space) between H 1 per and H 3 per associated with the maximal regularity space MR. The subset

U := {u ∈ MR : inf (t,x) |u x (t, x)| > 0}
is, by the above embeddings, an open subset of the maximal regularity space. For every parametrization u 0 ∈ H 2 per there exists an element u ∈ U such that u(0) = u 0 . In fact, since H 2 per is the trace space associated with MR, there exists an element ũ ∈ MR such that ũ(0) = u 0 . Then, by a simple continuity and compactness argument, there exists T ∈ (0, T] such that inf

(t,x)∈[0,T ]×R
| ũx (t, x)| > 0. Now, the function u(t, x) = ũ( T T t, x) belongs to U and satisfies u(0) = u 0 .

Theorem 2 (Local existence and smooth dependence of local solutions on data). For every parametrization u 0 ∈ H 2 per and every f ∈ L 2 (0, T; H 1 per ) there exists a local existence time T ∈ (0, T] and a constant r > 0 such that for every v 0 ∈ H 2 per and every g ∈ L 2 (0, T ; H 1 per ) with v 0u 0 H 2 per < r and gf L 2 (0,T ;H 1 per ) < r the problem

(6)              v t - v xx |v x | 2 = g in [0, T ] × R, v(t, x) = v(t, x + 2π) for (t, x) ∈ [0, T ] × R, v(0, x) = v 0 (x) for x ∈ R,
admits a unique solution v ∈H 1 (0, T ; H 1 per ) ∩ L 2 (0, T ; H 3 per ). Moreover, the mapping which maps every pair (g, v 0 ) ∈ B( f, r) × B(u 0 , r) (the open balls in L 2 (0, T ; H In particular, for every parametrization u 0 ∈ H 2 per the problem (4) admits a unique local solution v ∈ H 1 (0, T ;

H 1 per ) ∩ L 2 (0, T ; H 3 per ). Proof. Consider the function G : U → L 2 (0, T; H 1 per ) × H 2 per v → (v t - v xx |v x | 2 , v(0)
). It is analytic in the sense of [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications[END_REF]. We show that G is a local diffeomorphism. Denote by G the Fréchet derivative of G. For every v ∈ U and every w ∈ MR,

G ( v)w = (w t - w xx | vx | 2 + vxx | vx | 4 vx , w x , w(0)). Saying that G ( v) is a linear isomorphism from MR onto L 2 (0, T; H 1 per ) × H 2
per is then clearly equivalent to saying that for every right-hand side h ∈ L 2 (0, T; H 1 per ) and every initial value w 0 ∈ H 2 per the problem ( 7)

             w t - w xx | vx | 2 + vxx | vx | 4 vx , w x = h in [0, T] × R, w(t, x) = w(t, x + 2π) for (t, x) ∈ [0, T] × R, w(0, x) = w 0 for x ∈ R,
admits a unique solution w ∈ MR. We take this fact for granted, or we refer to Section 5 below, where we briefly sketch why this linear, nonautonomous problem has L 2 -maximal regularity in H 1 per .

Now the problem ( 6) can be solved in the following way. Given a parametrization u 0 ∈ H 2 per and a function f ∈ L 2 (0, T; H 1 per ), there exists an element v ∈ U such that v(0) = u 0 . Since G ( v) is linear and continuously invertible (by the above granted assumption), and by the Local Inverse Theorem [31, Theorem 4.F, p.172], there exists a neighbourhood V ⊆ U of v and a neighbourhood W ⊆ L 2 (0, T; H 1 per ) × H 2 per of G( v) =: ( f , u 0 ) such that G is a diffeomorphism between V and W. More precisely, G and its local inverse G -1 are analytic [START_REF] Zeidler | Nonlinear Functional Analysis and Its Applications[END_REF]Corollary 4.37,p.172]. Now, choose first r > 0 so small that B( f , 2r) × B(u 0 , r) ⊆ W, and choose then T ∈ (0, T] so small such that

f -f L 2 (0,T ;H 1 per ) < r;
here it is crucial that we work with L 2 -maximal regularity, since this ensures that such a time T exists. Let v 0 ∈ H 2 per and g ∈ L 2 (0, T ; H 1 per ) be such that v 0u 0 H 2 per < r and gf L 2 (0,T ;H 1 per ) < r. We extend g by f on (T , T] and we denote this extension by Eg. Then Eg ∈ L 2 (0, T; H 1 per ) and Eg -f

L 2 (0,T;H 1 per ) = g -f L 2 (0,T ;H 1 per ) ≤ g -f L 2 (0,T ;H 1 per ) + f -f L 2 (0,T ;H 1 per ) < 2r.
In particular, (Eg,

v 0 ) ∈ B( f , 2r) × B(u 0 , r) ⊆ W. Since G : V → W is invertible, there exists v ∈ V ⊆ MR such that G(v) = (Eg, v 0 )
. By definition of G and Eg, this implies that the restriction of v to [0, T ] × R is a local solution of [START_REF] Amann | Quasilinear evolution equations and parabolic systems[END_REF].

The mapping which maps every

(g, v 0 ) ∈ B( f, r) × B(u 0 , r) ⊆ L 2 (0, T ; H 1 per ) × H 2 per
to the local solution v ∈ H 1 (0, T ; H 1 per ) ∩ L 2 (0, T ; H 3 per ) is the composition of the affine extension operator E (the sum of a linear operator and a constant), the inverse G -1 and a linear restriction operator, and it is thus analytic.

Since the parametrization u 0 ∈ H 2 per and the right-hand side f ∈ L 2 (0, T; H 1 per ) were arbitrary (so that we may take f = 0), the above arguments yield in particular the existence of a local solution v of (4).

The smooth dependence on the data implies higher space regularity if the data are more regular, too.

Corollary 3. Let u 0 ∈ H 2
per , f ∈ L 2 (0, T; H 1 per ) and T ∈ (0, T] be as in Theorem 2, and let v ∈ H 1 (0, T ; H 1 per ) ∩ L 2 (0, T ; H 3 per ) be the local solution of (6) with g = f and v 0 = u 0 . If u 0 ∈ H 2+k per and f ∈ L 2 (0, T; H 1+k per ) for some integer k ≥ 0, then v ∈ H 

→ f (•, • + h) is k times continuously differentiable from R into L 2 (0, T; H 1 per ). Since v(•, • + h)
is the (unique) solution of ( 6) with initial value u 0 replaced by u 0 (• + h) and right-hand side f replaced by f (•, • + h), the smooth dependence of solutions on initial data (Theorem 2) implies that the mapping h → v(•, • + h) is k times continuously differentiable from R into H 1 (0, T ; H 1 per ) ∩ L 2 (0, T ; H 3 per ) ∩ C([0, T ]; H 2 per ). This gives the desired regularity.

With little additional effort, we now show that the unique local solution v found in Theorem 2 is smooth for t > 0. Note that the following corollary may also be proved by applying the beautiful argument of Angenent (see [START_REF] Angenent | Nonlinear analytic semiflows[END_REF], [START_REF] Escher | A new approach to the regularity of solutions of parabolic equations[END_REF]); there, the Implicit Function Theorem first gives time regularity while the space regularity can for example be obtained by using the equation ( 4).

Here, the smooth dependence on data implies first the space regularity, and the time regularity is obtained in the second place. imply first that v ∈ C 1 ((0, T ]; C ∞ per ), and then, by iterating this argument, that v ∈ C ∞ ((0, T ]; C ∞ per ).

Corollary 4. Let v ∈ H 1 (0, T ; H 1 per ) ∩ L 2 (

Maximal regularity for the linear, nonautonomous problem

In this section, we briefly sketch an idea why the linear problem (7) has L 2 -maximal regularity in H 1 per . Let us first note that the problem ( 7) is a special case of the linear, nonautonomous problem (8)

           w t -m(t, x)w xx + b(t, x, w x ) = h in [0, T] × R, w(t, x) = w(t, x + 2π) for (t, x) ∈ [0, T] × R, w(0, x) = w 0 (x) for x ∈ R, where m : [0, T] × R → [ε, 1/ε] (ε > 0 fixed) and b : [0, T] × R × R d → R d are
two measurable functions such that (i) m ∈ C([0, T]; H 1 per (R)), (ii) b is linear in the third variable and 2π-periodic in the second variable, (iii) |b(t, x, p)| ≤ β 1 (t, x) |p| for some β 1 ∈ L 2 (0, T; L ∞ per (R)) and every (t, x, p), (iv) |b x (t, x, p)| ≤ β 2 (t, x) |p| for some β 2 ∈ L 2 (0, T; L 2 per (R)) and every (t, x, p). In order to prove L 2 -maximal regularity of the problem ( 8) in H 1 per , it is convenient to proceed in several steps and to consider the following three cases:

(1) the case when m(t, •) = m(•) ∈ H 1 per does not depend on time and b vanishes identically (autonomous case);

(2) the case when m is arbitrary (but satisfies the conditions above) and b vanishes identically; (3) the general case (m and b satisfy the conditions above). The first case is of course the simplest one. In order to prove L 2 -maximal regularity in H 1 per , it suffices to know that the operator -mw xx with domain H 3 per generates an analytic C 0 -semigroup on the Hilbert space H 1 per and to refer to [START_REF] Simon | Un applicazione della teoria degli integrali singolari allo studio delle equazioni differenziali lineari astratte del primo ordine[END_REF]. Alternatively, one can show by variational methods that the operator -mw xx with domain H 1 per has L 2 -maximal regularity on H -1 per and then to use a similarity argument.

Once the first case is settled, the cases 2 and 3 follow by perturbation arguments (using the Neumann series, for example). For the second case, due to assumption (i), one may apply either [27, Theorem 2.5], [2, Theorem 7.1], or [START_REF] Arendt | L p -maximal regularity for nonautonomous evolution equations[END_REF]Theorem 2.7] in combination with the first case. The third, general case follows similarly [2, Theorem 7.1].

  Proof. Note that u 0 ∈ H 2+k per if and only if the mapping h → u 0 (• + h) is k times continuously differentiable from R into H 2 per . Similarly, f ∈ L 2 (0, T; H 1+k per ) if and only if the mapping h

	1 (0, T ; H 1+k per ) ∩ L 2 (0, T ; H 3+k per ) ⊆ C([0, T ]; H 2+k per ).

  0, T ; H 3 per ) be a solution of the homogeneous problem (4) (the existence of a local solution is guaranteed by Theorem 2).

	Hence, an induction on k ≥ 0 shows that v ∈ C((0, T ]; C ∞ per ). This regularity
	and the equality	
	v t =	v xx |v x | 2

Then v ∈ C ∞ ((0, T ]; C ∞ per ). Proof. We start by showing space regularity. Note that if v ∈ H 1 loc ((0, T ]; H 1+k per ) ∩ L 2 loc ((0, T ]; H 3+k per ) for some k ≥ 0, then, for almost every t ∈ (0, T ), v(t) ∈ H 3+k per . By Corollary 3, this implies that v ∈ H 1 ([t, T ]; H 2+k per ) ∩ L 2 ([t, T ]; H 4+k per ) for almost every t ∈ (0, T ), and therefore v ∈ H 1 loc ((0, T ]; H 2+k per ) ∩ L 2 loc ((0, T ]; H 4+k per ) ⊆ C((0, T ]; H 3+k per ).
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