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Abstract

A large amount of research has been devoted to the detection and investigation of epistatic interactions in

genome-wide association study (GWAS). Most of the litterature focuses on low-order interactions between

single-nucleotide polymorphisms (SNPs) with significant main effects.

In this paper, we propose an original approach for detecting epistasis at the gene level, without

systematically filtering on significant genes. We first compute interaction variables for each gene pair by

finding its Eigen-epistasis Component defined as the linear combination of Gene SNPs having the highest

correlation with the phenotype. The selection of the significant effects results from a penalized regression

method based on group Lasso controlling the False Discovery Rate.

The method is compared to three recent alternative proposals from the literature using synthetic data

and exhibits high performance in different settings. Using a genome-wide association study on ankylosing

spondylitis cases, we demonstrate the power of the approach by detecting new gene-gene interactions.
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Introduction

Genome Wide Association Studies (GWAS) aim at finding genetic markers associated with a phenotype

of interest. Typically, hundreds of thousands of single nucleotide polymorphism (SNP) are studied for

a limited number of individuals using high density genotyping arrays. The association between each

SNP and the phenotype is usually tested by single marker approaches. Multiple markers may also be

considered but are typically selected with simple forward selection methods. GWAS represent a powerful

tool to investigate the genetic architecture of complex diseases and have shown success in identifying

hundreds of variants. However, they have explained only a small part of the phenotypic variations

expected from classical family studies [Manolio et al., 2009]. Many reasons for this missing heritability

have been proposed, among which the inadequate accounting for shared environment among relatives or

the idea that much larger numbers of variants of small effect are yet to be found. Rare variants, which

can hardly be captured by existing genotyping arrays [Manolio et al., 2009], seem to be important causal

factors, as well as structural variations. But complex diseases may also partly result from complex genetic

structures such as multiple interactions between markers, known as epistasis. Indeed, the genetic effect

on phenotype appears as part of the additive genetic variance in pedigree studies but as an unmeasured

gene-gene interaction in GWAS [Haig, 2011]. For example Zuk et al. [2012] proposed a model that takes

into account epistatic interaction on Crohn’s disease. They found that 80% of the missing heritability

could be due to genetic interactions.

In past years, numerous methods have been proposed for studying epistasis and have been reported

in various reviews [Wei et al., 2014; Steen, 2012]. They vary in terms of data analysis (genome-wide or

filtering) and statistical methodology (Bayesian, frequentist, machine learning or data mining). Most of

them focus on single-locus interactions, but considering interactions at gene level may offer many advan-

tages. Firstly, as genes are the functional unit of genome, results can be more biologically interpretable.

Furthermore, genetic effects can be more easily detected when SNP effects are aggregated together. Fi-

nally, gene based analysis simplifies the multiple testing problem by decreasing the number of variables.

Several gene-gene methods have thereby been proposed. Basically, they rely on a summarizing step which

is used to obtain information at the gene level. Then, for the most recent methods, filters or penalized

models are used to make the method applicable to a large number of genes while oldest methods are only

applicable to a couple or a reduced number of genes. For the summarizing step, most methods resort to

a principal components (PC) approach but each of them presents its own specificity. We describe below

some of them.

Chatterjee et al. [2006] developed Tukey’s one df method to investigate interaction between two genes.

This method assumes that the SNPs included in each gene region act as surrogates for an underlying

biological phenotype. The genotypic information of the gene region is extracted as a single component

by a weighted sum of all SNPs. The weights are determined according to the SNP’s correlation with the
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trait. Then, the product of the two sums is introduced in a logistic model as the gene-gene interaction

term with marginal effects represented by the respective sums. Following this idea, Wang et al. [2009]

compared two different interaction tests. On the one hand, they used principal component analysis

(PCA) to summarize SNPs information within a gene, on the other hand they used partial least squares

(PLS) to extract components that summarize both the information among SNPs in a gene and the

correlation between SNPs and the outcome of interest. Then, they proposed an interaction test based

on either the first PC or the PLS component for each gene. They showed that the PCA and PLS

methods often had better performance than the Tukey 1-df method. But it is worth noting that the main

objective of these three methods was more to increase the power to detect association in the presence

of gene-gene interactions than to identify interactions themselves. Other approaches based on principal

component analysis have then been proposed for epistasis detection. Li et al. [2009] proposed to select

PCs that explain at least 80% of the variation as the gene representation. He et al. [2011] proposed

another approach using linkage disequilibrium information to weight genotype scores which are then

aggregated using principal components. Other approaches are based on linkage disequilibrium. As an

example, Rajapakse et al. [2012] developed a gene-based test of interactions for case-control studies which

compares LD patterns between cases and controls. In other respects, Wang et al. [2014a] proposed the

Gene-Trait similarity regression (Simreg). This method does not resort to a PC approach to summarize

gene information but to a genetic similarity measure calculated for each gene across the individuals.

However, most of theses methods are only applicable to a reduced number of genes. Indeed, directly

modeling all gene-gene interactions would be inefficient due to computational challenge and lack of power.

One possibility is to reduce the gene-gene search space by eliminating unimportant genes. Hence, two-

step procedures that first filter out specific genes or SNPs through genome wide search before testing

for interactions have been developed. One example is the model-based kernel machine method (3G-

SPA) proposed by Li and Cui [2012] which first performs a search for gene pairs contributing to the

overall phenotypic variations. Then, significant pairs are tested for interaction effects.Another attractive

alternative is offered by penalized regression methods that allow to select a subset of important predictors

from a large number of potential ones. These methods operate by shrinking the size of the coefficients.

The coefficients of predictors with little or no apparent effect are pushed on a trait down toward zero,

allowing to reduce the effective degrees of freedom and in many cases to performs model selection. A few

approaches using penalized models have been proposed. Thus, D’Angelo et al. [2009] combined principal

component analysis and the penalized regression LASSO. Wang et al. [2014b] also used a principal

component analysis combined to a L1 penalty with adaptive weights based on gene size, pathway support

and effect size.

Here we propose a Group LASSO approach [Yuan and Lin, 2006] that takes into account the group

structure of each gene in order to detect epistasis. We introduce the Gene-Gene Eigen Epistasis (G-GEE)
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as a new approach to compute the gene-gene interaction part of the model and we compare G-GEE

with three different interaction variable modeling approaches inspired by previous literature proposals:

Principal Component Analysis (PCA), Partial Least squares (PLS) and Canonical-Correlation Analysis

(CCA). An adaptive ridge cleaning approach is then used in order to compute p-values for each group. In

the next section, we detail the different models. Then, in Section 3, we present results from a simulation

study performed to compare the performance of the different approaches. In section 4, we apply our

proposed G-GEE Group LASSO method on a real data set on Ankylosing Spondylitis. Finally, the

proposed approach and the results are discussed in Section 5.

Methods

We consider n individuals where y = (y1, y2, ..., yn)
T denotes the vector of trait values. For each indi-

vidual, genetic variants among G genes are considered. Each gene is described by a given number of

SNPs pg where
∑

g pg = p. The SNP matrix X ∈ R
n×p considers an additive coding scheme in which the

genotype value of each SNP j from individual i is denoted Xij ∈ {0, 1, 2}. Xi is a p-dimensional vector

of covariates for observation i and for j ∈ {1, . . . , p}. Xg denotes the submatrix of X whose columns are

the pm SNPs of gene g. In the following, we assume a linear model where the phenotype is considered

as a random variable yi whose conditional expectation can be written as a function of the covariates Xi

and their interactions Zi,

E[yi|X ] = XT
i β +ZT

i γ,

where

β =




β1,1, β1,2, ..., β1,p1

︸ ︷︷ ︸

gene1

, ..., βG,1, ..., βG,pG

︸ ︷︷ ︸

geneG






T

,

and Zi is the ith line of the matrix of interactions and γ a parameter vector of appropriate dimension.

The main effect of each gene is thus modeled through the sum of all its SNPs effects. Concerning

interaction effects, we compute new variables representing interaction for two specific genes and define

as a group all the interaction variables related to a given pair of genes. The matrix of interaction is thus

structured into G(G− 1)/2 submatrices:

Z = [Z11 · · ·Zrs · · ·ZG(G−1)/2]

where Zrs describes the interactions between the two genes r and s. The parameter vector γ is accordingly

structured into sub-vectors γrs. In the following, we present and compare four different approaches for

modeling gene-gene interactions.
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Modeling Gene-Gene interaction

Let consider two genes r and s described respectively by pr and ps SNPs. A possible interaction term

describing the epistasis between the two genes is

Zrs
i

T
γrs =

∑

jk

γrs
jkX

r
ijX

s
ik. (1)

In that case the submatrix coding interactions would be Zrs = W rs = {Xr
ijX

s
ik}j=1,··· ,pr;k=1,··· ,ps

i=1···n and

γrs = {γrs
jk} a vector of size

∑

rs prps. The number of parameters of such a model is obviously too large

for being reliably estimated. Many papers in the literature thus consider reducing the dimension of γ.

In the remaining of the paper we do consider four different dimension reduction methods: principal

component analysis (PCA), canonical-correlation analysis (ACC), partial least squares (PLS) and our

proposed approach named G-GEE for Gene-Gene EigenEpistasis.

Principal Component Analysis

Principal Component Analysis (PCA) allows to reduce the number of variables describing each gene r

from pr to qr < pr. Considering gene r described by pr SNPs, we compute the matrix of the q first

principal components

Cr = XrU r,

where U r is the matrix of the first qr principal axis. Using Cr and Cs instead of Xr and Xs in the

computation of the interaction allows to control the number of parameters relative to each interaction.

This control is achieved by choosing the number of principal components q. The PCA model that we

described is related to the ideas of previously published work by Zhang and Wagener [2008]. In this

context the interaction term takes the form

Zrs
i

T
γrs =

q
∑

j=1

q
∑

k=1

γrs
jkC

r
ijC

s
ik.

Relating this expression to the general form of the interaction term W rs
i presented in the previous

section, it appears that performing PCA prior to computing the interactions is a way to constrain the

linear interaction term of Equation 1.

The matrix of interactions is Z = {Cr
ijC

s
ik}

jk=1···
∑

rs
qrqs

i=1···n and γ = {γjk} is a vector of size
∑

rs qrqs

with successive chunks of qr × qs coefficients, each describing an interaction between genes r and s. In

particular if a unique principal component is chosen, there will be only one parameter to estimate per

interaction.
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Canonical Correlation Analysis

Canonical Correlation Analysis (CCA) aims at finding linear combination of groups of variable which

have maximum correlation. In our setting we do consider each gene as a group of SNPs. For two genes r

and s, we define new variables Ar and Bs which are linear combination of the original variables Xr and

Xs: 





Ar = XrU r,

Bs = XsV s

where U r and V s are the matrices whose columns define the weight vectors, which are solution of the

CCA. We propose to code the interaction of a couple of genes (r, s) by the first q component couples of

a CCA:

Zrs
i

T
γrs =

q
∑

j=1

γrs
j Ar

ijB
s
ij .

Partial Least Square

Wang et al. [2009] proposed an alternative method for integrating interactions using a partial least squares

approach (PLS). Let (Xr,Xs) be the genotypic matrix for the given pair of gene (r, s). The approach

of Wang et al. [2009] computes components maximizing cov2(Xru,Tv), with T = (y,Xs) and (u,v)

the weight vectors. This approach allows to keep the phenotypic information in the construction of the

interaction variables.

The G-GEE group LASSO model

We propose an original approach in order to model interaction. The general idea is to consider the

interaction variable between the two genes r and s as a function fu(X
r
i ,X

s
i ) parametrized by u. One

way to estimate u is to maximize to correlation between the interaction function and the phenotype:

û = arg max
u,‖u‖=1

cor(y, fu(X
r
i ,X

s
i )).

If we consider the function f to be linear our problem becomes easily tractable with a unique solution.

Setting

Zrs = fu(X
r
i ,X

s
i ) = W rsu,

where W rs = {Xr
ijX

s
ik}j=1··· ,pr ;k=1,··· ,ps

i=1···n and u ∈ R
prps we get the following problem:

max
u,‖u‖=1

|| ˆcor[W rsu,y]||2 = max
u,‖u‖=1

||uTW rsTy||2 = max
u,‖u‖=1

uTW rsTyyTW rsu . (2)
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The solution u is the eigenvector associated to the largest eigenvalue of the matrix W rsTyyTW rs. We

then use the projection of the matrix W rs on u as the interaction variable. The resulting Eigen-epistasis

vector Z is the linear combination of the all SNP-SNP interactions which is the most correlated with the

phenotype. As in the PLS approach, this method allows to take into account the phenotypic information

in the construction of the interaction variables.

Coefficients estimation

We propose a group lasso model for estimating the parameters of all models. A group is either made of

the SNPs of a given gene or of interaction terms relative to a given gene-pair interaction.

θ̂ = (β̂, γ̂) = argmin
β,γ

(
∑

i

(yi −Xiβ −Ziγ)
2 + λ

[
∑

g

√
pg||βg||2 +

∑

rs

√
prps||γrs||2

])

,

The parameter λ is selected by cross-validation.

In order to improve estimation accuracy and to obtain p-values for each selected groups, we use the

adaptive ridge cleaning approach proposed by Bécu et al. [2015]. This screen and clean procedure is a two-

stage method. The group lasso model is first fitted on half of the data. The coefficient of the candidate

groups selected by the model are then introduced in a ridge regression model fitted on the second half of

the data with a specific penalty allowing to take into account the group structure. Significances of the

regression coefficients for each group are then estimated by permutation tests.

Simulation study

To evaluate the performance of the proposed approach, we conduct a simulation study. The proposed G-

GEE model is compared to the three other interaction variable modeling through data which is generated

in order to mimic realistic genotypes and phenotypes.

Design

Genotypes

The n lines of the genotype matrix are an i.i.d. sample from a multivariate random vector Xi ∼ Np(0,Σ).

The correlation matrix Σ is block diagonal, each block corresponding to a gene. Two variables belonging

to the same gene are correlated at level ρ = 0.8 while all other correlations are null. Each SNP (column of

the genotype matrix) is randomly assigned a minor allele frequency (MAF) p from a uniform distribution

between 0.05 and 0.5. A MAF value of 0.2 is assigned to all causal SNPs. The genotype frequencies

derived from the Hardy-Weinberg equation were then used to discretized Xik values to 0, 1 or 2. In
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practice, Xik is set to 0 if Xik < qp2;N(0,1), Xik is set to 3 if Xik < q(1−p)2;N(0,1) and Xik is set to 2

otherwise.

Phenotypes

Phenotype vectors are generated following two different schemes. We first considered the model proposed

by Wang et al. [2014b] :

Yi = β0 +
∑

g

βg

(
∑

k∈C

Xg
ik

)

+
∑

rs

γrs




∑

(j,k)∈C2

Xr
ijX

s
ik



 + ǫi, (3)

where C and C2 are respectively the set of causal SNPs and causal interactions, and ǫi a random Gaussian

variable. For each causal gene g, we consider two causal SNPs and a coefficient βg is assigned to the

standardized sum of these causal SNPs. Following the same idea for the interactions, all the causal SNPs

from a causal pair (r, s) are pairwise multiplied and a coefficient γrs is assigned to the standardized sum

of the product.

The second phenotype simulation model relies on the following model:

Yi = β0 +
∑

g

βg

(
∑

k∈C

Xg
ik

)

+
∑

rs

γrs




∑

(j,k)∈C2

Cr
ijC

s
ik



+ ǫi. (4)

The difference with the previous model concerns the simulation of the interaction effect. In the last model

the interaction effect for a causal couple (r, s) is defined as the product of the first PCA component Cr
.1

of gene r and the first PCA component Cs
.1 of gene s.

In both model, β0 is set to 0, and ǫi are generated independently from a N (0, σ2) with σ2 determined

from the coefficient of determination R2 that calibrates the strength of the association. Both simulation

model can be written as yi = XT
i β+ZT

i γ + ǫi where X the marginal effect genotype matrix and Z the

interaction effect matrix.

Let us denote Qφ = [X,Z]






β

γ




 and

R2 =

∑
(Qiφ− ȳ)2

∑
(Qiφ+ ǫi − ȳ)2

=

∑
(Qiφ− ȳ)2

∑
(Qiφ− ȳ)2 +

∑
ǫ2i +

∑
2(ǫi(Qiφ− ȳ))

=

∑
(Qiφ− ȳ)2

∑
(Qiφ− ȳ)2 + n v̂ar(ǫi) + 2n ˆcov(ǫi,Qiφ− ȳ)

.
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Let us remark that:

2n cov(ǫi,Qiφ− ȳ) = 2n cov(ǫi,Qiφ−
∑

j yj

n
)

= 2n cov(ǫi,Qiφ)−
∑

j

2n
n

cov(ǫi, yj)

= 0− 2cov(ǫi, ǫi) = −2σ2

Thus replacing v̂ar(ǫi) by σ2 and ˆcov(ǫi,Qiφ−ȳ) by −σ2/n we get R2 ≈
∑

(Qiφ− ȳ)2
∑

(Qiφ− ȳ)2 + nσ2 − 2σ2
. This

relation between R2 and σ2 allows us to get an expression for σ2 depending on R2, σ2 =
(R2 − 1)

∑
(Qiφ− ȳ)2

R2(2− n)
.

In order to investigate the respective roles of main and interactions effects in the model we decide

to examine the part of the coefficient of determination R2 that is explained by one or the other. With

similar motivation, Wang et al. [2014b] control the part of the partial R2 due to interactions effects when

they simulate phenotype. The coefficient values are selected so that 30% of the partial R2 was explained

by interactions effects. Li and Cui [2012] didn’t use the R2 directly but simulated data assuming different

proportions of interaction effects among the total genetic variance. Once the phenotype y has been set

for each simulated design matrix, we computed the part of the R2 that can be attributed to interaction or

main effects as respectively pR2

I

=
R2

I

R2
T

and pR2

M

=
R2

M

R2
T

with R2
I being the R-square value for the model

containing only simulated interaction effects, R2
M the R-square value when there are only simulated main

effects and R2
T the R-square value for the model containing both simulated main and interaction effects.

Scenarios

We first consider a simple scenario where we have 6 genes composed each of 6 SNPs for 600 subjects.

We define one causal interaction between genes and two causal genes with main effects and consider two

different simulation settings:

• a first setting where the main effects and interaction effects involve the same genes,

• a second setting where interaction genes are different from main effect genes.

Both main effects and interaction effects are weighted with the same coefficient values (βg = γrs =

2, ∀g, r, s). For these two settings, different coefficients of determination, from 0.05 to 0.7, are considered.

To evaluate the performance of the different methods with a more complicated scenario, we also

consider a third setting where we simulate 25 genes with four causal interactions between genes and two

genes with causal main effects. In these simulations, interaction genes are different from main effect

genes. We only consider the case where R2 = 0.7.

For each of these scenarios, we perform 1000 simulations. For each interaction, the power is estimated

as the proportion of detected interactions over the total number of simulations. In the last setting, where

four interactions are present, we consider the averaged power over the four interactions.
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Results

Figure 1 displays results obtained for the first and second settings in which six genes are considered. The

first two columns show heatmap matrices reflecting proportion of significant values for each variable and

each method over the 1000 simulations for different R2 values. The third column presents the estimated

power to detect the gene interaction as a function of the R2 values.

In the first setting (Fig. 1(A,B)), we consider the two first genes both having main and interaction

effects. When the phenotype is simulated under the model proposed by Wang et al. [2014b] (Fig. 1(A)),

G-GEE and PLS methods have a better power to detect the interaction effect than PCA and CCA

methods which tend to capture only the two main effects of the two genes (Fig. 1(A)). While the power

is non-decreasing with R2 for CCA, PCA and PLS, we obtain a U-shaped curve for G-GEE. Indeed,

for the smallest R2 values, which correspond to the most difficult cases, the power of G-GEE to detect

the interaction tends to decrease. When R2 values reach 0.4 the G-GEE power to detect the interaction

starts to increase. The situation is different for the main effects as the power of G-GEE method to

detect them increases continuously with R2 (data not shown). For PLS method, the power to detect the

interaction effect is continuously non decreasing. However note that for this method one of the two main

effects (here gene 1) is detected to the detriment of the second regardless the R2 value. Under the PCA

phenotype simulation model (Fig. 1(B)), G-GEE method has a better power than the other methods

to detect interaction effects while keeping a good specificity, whatever the R2 value is. The reasonably

high power of the PCA method can be explained by the similitude between the phenotype simulation

model and the estimation model. It is worth noting that in this first setting, only few variables are falsly

significant, what reflects a good specificity for all methods (the worst being for the gene 3 × gene 4

interaction variable under Wang et al. [2014b] model and r2 = 0.1 with a false discovery rate value of

0.068).

In the second setting (Fig. 1(C,D)), the two first genes have only main effects and the third and fourth

genes have only an interaction effect. When the phenotype is simulated using the model proposed by

Wang et al. [2014b], the interaction power of G-GEE method is uniformly greater than the one of the

other methods (Fig. 1(C)). For all R2 values, PCA and CCA methods tend to detect false main effects

for genes 3 and gene 4 but not the interaction. Under the PCA phenotype simulation (Fig. 1(D)), PCA

method leads to a large power to detect interaction effects, but once again these good performances can

be explained by the similitude between the simulation model and the estimation model. The interaction

power for G-GEE method is lower but still large. Power of PLS and CCA methods are almost null. Gene

3 and gene 4 are not detected neither as main nor as interaction effects for both CCA and PLS method.

Under this model, only G-GEE method tends to attributes false main effect to the third and fourth genes.

In this second setting, whatever the phenotype simulation model is, PLS method only identifies the first

gene as having a main effect while the effects of gene 3 and gene 4 are not detected, neither as main nor
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as interaction effects. Moreover, PLS method tends to attribute a false interaction effect between the two

first genes.

The results obtain with these two first settings point out a certain phenomenon of confusion between

main and interaction effects. This is easier to see in the second setting where the false discovery rate is

higher. In this setting the false discoveries refer whether to main effects of genes which are simulated to

have only an interaction effect with an other gene or to interaction variables which refer to gene with

main effects. This phenomenon can be observed for all methods but is more or less marked depending of

the scenarios. That could explain the U-shaped power curve for G-GEE in the first setting when effect

are simulated using the Wang et al. [2014b] model: as the problem becomes harder the genetic effects of

both genes are preferentially assigned to the interaction effect contributing to the better power to detect

interaction for small R2 values.
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Figure 1: The figures present on the first two columns show the ratio of the number of times where each variable was
significant on the total number of simulations for a given r2. On the last column is represented the power of the four
methods depending on the r2. (A) and (B) correspond to the setting where gene 1 and gene 2 are simulated with
main and interaction effects, (C) and (D) to the one where gene 1 and gene 2 are simulated with main effect and gene
3 and gene 4 with interaction effect. In (A) and (C) the phenotype was simulated under Wang et al. [2014b] model
and under the PCA model in (B) and (D).
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A B C D NE

r2=0.7 r2=0.05 r2=0.7 r2=0.05 r2=0.6 r2=0.3 r2=0.7 r2=0.2 r2=0.7

pR2

I
97.73 92.08 33.11 32.80 33.32 33.47 33.51 33.57 66.69

pR2

M
98.84 95.57 66.42 66.97 66.60 66.57 66.70 66.56 33.62

TABLE I: Average part of the R2 attributable to interaction or main effects by setting. (A) and (B)
correspond to the setting where gene 1 and gene 2 are simulated with main and interaction effects, (C)
and (D) to the one where gene 1 and gene 2 are simulated with main effect and gene 3 and gene 4 with
interaction effect. In (A) and (C) the phenotype was simulated under Wang et al. [2014b] model and
under the PCA model in (B) and (D). (NE) corresponds to the setting with numerous effects.

In the third setting, we consider 25 genes with two main effects for the two first genes and four

interaction effects between gene 3 and gene 4, gene 5 and gene 6, gene 7 and gene 8, gene 9 and gene

10. The phenotype was simulated under the model proposed by Wang et al. [2014b] with a coefficient

of determination R2 set to 0.7. In this setting, the G-GEE method has a good power to detect all the

simulated effects. The power varies between 0.50 and 0.53 for the four interactions. PCA and CCA

methods detect the two main effects but tend to attribute false main effects for genes simulated with only

interaction effects (Fig. 2). Only the first gene is detected with a high frequency for PLS method while

the effects of other genes are less often detected as main or interaction effects. Moreover, the method

tends to attributes a false interaction effect between the two first genes.

G-GEE CCA PCA PLS

{Gene1…Gene10

Gene1.Gene2

Gene3.Gene4

Gene5.Gene6

Gene7.Gene8

Gene9.Gene10

Figure 2: Matrix of the ratio of the number of times where each variable was significant on the total
number of simulations for r2 = 0.7 under Wang et al. [2014b] model for the phenotype simulation

Under each setting we determine the pR2
I and pR2

M average values that correspond to the proportion of

the R2 attributed to interaction and main effects, respectively. For most settings, the pR2
I depends on the

number of simulated effects. With one interaction and two main effects simulated the R2 part attributable

to interaction effects is around 33% (Tab. I). Under the setting with numerous effect the average pR2
I is
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67% because we consider four interaction effects for only two main effects. The R2 distribution between

main and interaction effects is not distinguishable in the setting where the phenotype is simulated under

Wang et al. [2014b] model with the same main and interaction effects. The pR2
I and pR2

M values are

respectively 98% and 99% (Tab. I).

Application

Ankylosing spondylitis (AS) is a common form of inflammatory arthritis predominantly affecting the

spine and pelvis. It occurs with a prevalence of 0.1% to 1.4% depending on the considered population

[Sieper et al., 2002]. Genetic factors contribute for more than 90% to the susceptibility risk to AS. Human

leukocyte antigen (HLA) class I molecule HLA B27, belonging to the Major Histocompatibility Complex

(MHC) region, was the first genetic risk factor identified as associated with ankylosing spondylitis in the

1970’s [Schlosstein et al., 1973; Woodrow and Eastmond, 1978] and remains the most important risk locus

for this pathology. Despite the strong association only a small portion of HLA-B27 carriers develop the

disease. Furthermore studies in families suggest that less than 50% of the overall genetic risk is due to

HLA-B27, what suggests that other genetic factors are involved [Thomas and Brown, 2010]. A number

of updated reviews on AS genetics, including genome-wide association study (GWAS) results, identified

new ankylosing spondylitis-susceptibility genes outside of the MHC region [Tsui et al., 2014; Reveille

et al., 2010].

We applied all previously described methods to the AS dataset. The data contain 408 cases and 358

controls, and each individual was genotyped for 116, 513 SNPs with Immunochip technology. For each

SNPs we obtained detailed genetic information, as gene affiliation, with the NCBI2R package [Melville,

2015] which annotates lists of SNPs with current information from NCBI. We considered only SNPs

located within a single gene in order to form gene groups without overlap. We focused our analysis on a

list of 29 genes previously identified as having a main effect in GWAS.

The four tested methods lead to different results and only PLS and G-GEE methods identify interac-

tions. Indeed, none effects is detected by CCA whereas PCA detect only the main effect HLA-B without

any interaction. PLS detects the main effect HLA-B but also identifies one interaction effect between the

genes EOMES and BACH2. Our method G-GEE does not detect any main effect, but it exhibits two

significant interactions, the first between the genes HLA-B and SULT1A1 and the second between IL23R

and ERAP2.

Discussion

In this paper we compared different approaches to model gene gene epistasis in a penalized regression

framework. Our first concerned was the detection of interaction effects. We thus defined a general model
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and tested different interaction terms. We focused our analysis at the gene scale and compared four ways

to design the interaction term. Some methods were inspired by previous proposed approaches based on

dimensional reduction methods as principal component analysis (PCA), canonical component analysis

(CCA) or partial least square analysis (PLS). We additionally proposed a new interaction modeling ap-

proach we called Gene-Gene Eigen Epistasis (G-GEE), allowing to build one interaction variable for each

couple. The interaction variable was defined based on a criterion that maximizes the correlation between

the phenotype and the pairwize SNP products matrix of the two genes. The interaction components were

then introduced in a group LASSO penalized regression model which allows to take the gene structure

into account and to simultaneously consider an important number of genes.

The power study of the different methods evaluated from simulated data provides us with rich infor-

mation. In different papers, similar methods have been compared with different phenotype simulation

settings. In this work we compared two simulation models, the first from a previous study [Wang et al.,

2014b] that simulated the interaction component of each couple in a SNP pairwise product fashion. The

second that defined interaction component as a pairwise product of representative variables of each gene.

The G-GEE, PCA and CCA approaches performed better in the second setting whereas the PLS method

was not very sensitive to the difference. Overall the G-GEE method performs well to detect interactions

in all tested settings. The PLS method is characterized by a lack of power in detecting interactions. Fa-

vorable contexts for the PLS method appear only when the related main effect are also present. When the

simulated main and interaction effects do not concern the same genes the detection performances of the

PLS approach drastically collapses. The other methods primarily detect the main effects but encounter

problem with the interactions which are often considered as main effects. This confusion phenomenon

is mainly visible in the Wang et al. [2014b] simulation where the main and interaction effects concern

different genes.

The gene scale dimension of the proposed method drastically reduces the number of interaction vari-

ables to consider for a genetic region compared to SNP-SNP interaction approaches. This reduction of

problem size allows to deal with larger problems. Moreover using a penalized regresgenet.bstsion method

allows to consider a true multivariate approach on a larger number of genes. Notice that it also extends

other proposed gene scale approaches such as the one presented by Wang et al. [2009]. The advantage

to simultaneously consider a relatively important number of genes gives us the possibility to detect in-

teractions between various genetic regions. The method can thus be used to point out whole genetic

regions. It can be viewed as a first step before using SNP-SNP interaction methods which may provide

more accurate information.

As the G-GEE method is not able yet to consider all the human genes at the same time, it is necessary

to specify a gene list, which we want to explore for potential interactions. As the method is not powerful

for main effect detection, it is safer to use previously acquired knowledge of the genetic effects, or to
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use a pre-step method to detect main effects. Another limitation of the method is the gene size. The

computation of the Gene-Eigen epistasis vector of two genes of size pr and ps requires the computation

and eigen decomposition of (prps)× (prps) matrix.

The perspective of this work is to increase the performance of the G-GEE method by optimizing the

computational cost and explore new interaction functions to plug in the G-GEE criterion.
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