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We are concerned with the Lane-Emden-Fowler equation -∆u = λk(x)u q ± h(x)u p in Ω, subject to the Dirichlet boundary condition u = 0 on ∂Ω, where Ω is a smooth bounded domain in R N , k and h are variable potential functions, and 0 < q < 1 < p. Our analysis combines monotonicity methods with variational arguments.

Introduction and the main results

In this paper we are concerned with the study of combined effects in a class of nonlinear bifurcation problems that arise in anisotropic continuous media. Bifurcation problems have a long history and their treatment goes back to the XVIIIth century. To the best of our knowledge, the first bifurcation problems is related to the buckling of a thin rod under thrust and was investigated by Daniel Bernoulli and Euler around 1744. In the case in which the rod is free to rotate at both end points, this yields the one-dimensional bifurcation problem

   u ′′ + λ sin u = 0 in (0, L) 0 ≤ u ≤ π u ′ (0) = u ′ (L) = 0 .
Consider the bifurcation problem

-∆u = λf (u) in Ω u = 0 on ∂Ω , (1) 
where Ω ⊂ R N is a bounded domain with smooth boundary. Problems of this type have been studied starting with the pioneering paper [START_REF] Gelfand | Some problems in the theory of quasi-linear equations[END_REF] by Gelfand, who considered the case f (u) = e u . We also refer to the important contributions due to Amann [START_REF] Amann | Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces[END_REF] and Keller & Cohen [START_REF] Keller | Some positone problems suggested by nonlinear heat generation[END_REF], who assumed that f is a function of class C 1 which is convex and positive, such that f ′ (0) > 0. They proved the following basic facts: (i) there exists λ * ∈ (0, ∞) such that problem (1) has (resp., has no) classical solution if λ ∈ (0, λ * ) (resp., λ > λ * );

(ii) for λ ∈ (0, λ * ), among the solutions of (1) there exists a minimal one, say u(λ);

(iii) the mapping λ -→ u(λ) is convex, increasing and of class C 1 ;

(iv) u(λ) is the only solution of problem [START_REF] Agarwal | Ordinary and Partial Differential Equations[END_REF] such that the operator -∆ -λf ′ (u) is coercive.

Motivated by a problem raised by Brezis, Mironescu and Rȃdulescu studied in [START_REF] Mironescu | A bifurcation problem associated to a convex, asymptotically linear function[END_REF][START_REF] Mironescu | The study of a bifurcation problem associated to an asymptotically linear function[END_REF] the case where f fulfills the above hypotheses and has a linear growth at infinity, that is, there exists lim t→∞ f (t)/t =: a ∈ (0, ∞). The results in this framework are strongly related with the sign of b := lim t→∞ (f (t) -at). For instance , if b ≥ 0 then the following properties hold: (i) λ * = λ 1 /a; (ii) u(λ) is the unique solution of problem (1) for all λ ∈ (0, λ * ); (iii) lim λ→λ * -u(λ) = +∞ uniformly on compact subsets of Ω; and (iv) problem [START_REF] Agarwal | Ordinary and Partial Differential Equations[END_REF] 

has no solution if λ = λ * . A different behaviour holds if b ∈ [-∞, 0).
The perturbed nonlinear problem

   -∆u = λf (u) + a(x)g(u) in Ω u > 0 in Ω u = 0 on ∂Ω , (2) 
was studied in [START_REF] Cîrstea | Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type[END_REF], where f has either a sublinear or a linear growth at infinity, g is a singular nonlinearity, and a is a nonnegative potential. The framework discussed in [START_REF] Cîrstea | Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type[END_REF] includes the case f (t) = t p and g(t) = t -γ , where 0 < p ≤ 1 and 0 < γ < 1. For instance, if f is sublinear and inf x∈Ω a(x) > 0 then problem (2) has a unique solution for all λ ∈ R.

From a physical point of view, problem (2) arises in the context of chemical heterogenous catalysis, in the theory of heat conduction in electrically conducting materials, as well as in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids. Such equations are also encountered in glacial advance (see [START_REF] Whitham | Linear and Nonlinear Waves[END_REF]), in transport of coal slurries down conveyor belts (see [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF]), and in several other geophysical and industrial contents (see [START_REF] Callegari | A nonlinear singular boundary value problem in the theory of pseudoplastic fluids[END_REF] for the case of the incompressible flow of a uniform stream past a semi-infinite flat plate at zero incidence). The above results are summarized and completed in the recent works [START_REF] Bandle | Solutions of quasilinear second-order elliptic boundary value problems via degree theory[END_REF], [START_REF] Ghergu | Singular Elliptic Problems: Bifurcation and Asymptotic Analysis[END_REF], [START_REF] Kristály | Variational Principles in Mathematical Physics, Geometry and Economics: Qualitative Analysis of Nonlinear Equations and Unilateral Problems[END_REF], and [START_REF] Rȃdulescu | Qualitative Analysis of Nonlinear Elliptic Partial Differential Equations[END_REF].

In this paper we are concerned with the competition between convex and concave nonlinearities and variable potentials. Such problems arise in the study of anisotropic continuous media. We point out that nonlinear elliptic equations with convex-concave nonlinearities have been studied starting with the seminal paper by Ambrosetti, Brezis and Cerami [START_REF] Ambrosetti | Combined effects of concave and convex nonlinearities in some elliptic problems[END_REF]. They considered the Dirichlet problem

   -∆u = λu q + u p , in Ω u > 0, in Ω u = 0, on ∂Ω , (3) 
where λ is a positive parameter, Ω ⊂ R N is a bounded domain with smooth boundary, and

0 < q < 1 < p < 2 ⋆ -1 (2 ⋆ = 2N/(N -2) if N ≥ 3, 2 ⋆ = +∞ if N = 1, 2). Ambrosetti,
Brezis and Cerami proved that there exists λ * > 0 such that problem (3) admits at least two solutions for all λ ∈ (0, λ * ), has one solution for λ = λ * , and no solution exists provided that λ > λ * . In [START_REF] Alama | Elliptic problems with nonlinearities indefinite in sign[END_REF], Alama and Tarantello studied the related Dirichlet problem with indefinite weights

   -∆u -λu = k(x)u q -h(x)u p , if x ∈ Ω u > 0, if x ∈ Ω u = 0, if x ∈ ∂Ω , (4) 
where h, k are nonnegative and 1 < p < q. We refer to [START_REF] Pucci | Combined effects in quasilinear elliptic problems with lack of compactness[END_REF] for a related problem with lack of compactness.

In the present paper we are concerned with the nonlinear elliptic problem

   -∆u = λk(x)u q ± h(x)u p , if x ∈ Ω u > 0, if x ∈ Ω u = 0, if x ∈ ∂Ω , (P λ ) ±
under the basic assumption 0 < q < 1 < p.

If λ = 0, equation (P λ ) ± is called the Lane-Emden-Fowler equation and arises in the boundary-layer theory of viscous fluids (see [START_REF] Wong | On the generalized Emden-Fowler equation[END_REF]). This equation goes back to the paper by H. Lane [START_REF] Lane | On the theoretical temperature of the sun under the hypothesis of a gaseous mass maintaining its volume by its internal heat and depending on the laws of gases known to terrestrial experiment[END_REF] in 1869 and is originally motivated by Lane's interest in computing both the temperature and the density of mass on the surface of the sun. Equation (P λ ) ± describes the behaviour of the density of a gas sphere in hydrostatic equilibrium and the index p, which is called the polytropic index in astrophysics, is related to the ratio of the specific heats of the gas. Problem (P λ ) ± may be also viewed as a prototype of pattern formation in biology and is related to the steady-state problem for a chemotactic aggregation model introduced by Keller and Segel [START_REF] Keller | Initiation of slime mold aggregation viewed as an instability[END_REF]. Problem (P λ ) ± also plays an important role in the study of activator-inhibitor systems modeling biological pattern formation, as proposed by Gierer and Meinhardt [START_REF] Gierer | A theory of biological pattern formation[END_REF]. Problems of this type, as well as the associated evolution equations, describe super-diffusivities phenomena. Such models have been proposed by de Gennes [START_REF] De Gennes | Wetting: statics and dynamics[END_REF] to describe long range Van der Waals interactions in thin films spread on solid surfaces. This equation also appears in the study of cellular automata and interacting particle systems with self-organized criticality (see [START_REF] Chayes | On singular diffusion equations with applications to selforganized criticality[END_REF]), as well as to describe the flow over an impermeable plate (see [START_REF] Callegari | A nonlinear singular boundary value problem in the theory of pseudoplastic fluids[END_REF]). Problems of this type are obtained from evolution equations of the form

u tt = div (u m-1 ∇u) + h(x, u)
in Ω × (0, T ) through the implicit discretization in time arising in nonlinear semigroup theory (see [START_REF] Vázquez | Nonexistence of solutions for nonlinear heat equations of fast-diffusion type[END_REF]).

Throughout this paper we assume that the variable weight functions k, h ∈ L ∞ (Ω) satisfy ess inf x∈Ω k(x) > 0 and ess inf x∈Ω h(x) > 0 .

We are concerned with the existence of weak solutions of problems (P λ ) + and (P λ ) -, that is, functions u ∈ H 1 0 (Ω) such that (i) u ≥ 0 a.e. on Ω and u > 0 on a subset of Ω with positive measure; (ii) for all ϕ ∈ H 1 0 (Ω) the following identity holds

Ω ∇u∇ϕ dx = Ω [λk(x)u q ± h(x)u p ] ϕ dx .
The main results of this paper give a complete description of both cases arising in problem (P λ ) ± . The first theorem is concerned with problem (P λ ) + and establishes the existence of a minimal solution, provided that λ > 0 is small enough. This result gives a complete qualitative analysis of the problem and the proof combines monotonicity arguments with variational techniques. We refer to Bartsch and Willem [START_REF] Bartsch | On an elliptic equation with concave and convex nonlinearities[END_REF] for a related problem that is treated by means of a new critical point theorem, which guarantees the existence of infinitely many critical values of an even functional in a bounded range. In this framework, Bartsch and Willem proved that there exists a sequence (u n ) of solutions (not necessarily positive!) with corresponding energy E(u n ) < 0 and such that E(u n ) → 0 as n → ∞.

Theorem 1.1. Assume 0 < q < 1 < p < 2 ⋆ -1. Then there exists a positive number λ * such that the following properties hold: a) for all λ ∈ (0, λ * ) problem (P λ ) + has a minimal solution u(λ). Moreover, the mapping

λ -→ u(λ) is increasing. b) problem (P λ ) + has a solution if λ = λ * ; c) problem (P λ ) + does not have any solution if λ > λ * .
The next result is concerned with problem (P λ ) -and asserts that there is some λ * > 0 such that (P λ ) -has a nontrivial solution if λ > λ * and no solution exists provided that λ < λ * . Theorem 1.2. Assume 0 < q < 1 < p < 2 ⋆ -1. Then there exists a positive number λ * the following properties hold: a) if λ > λ * , then problem (P λ ) -has at least one solution; b) if λ < λ * , then problem (P λ ) -does not have any solution.

We point out that related results have been established by Il'yasov [START_REF] Il'yasov | On nonlocal existence results for elliptic equations with convex-concave nonlinearities[END_REF] and Lubyshev [START_REF] Lubyshev | Multiple positive solutions of an elliptic equation with a convex-concave nonlinearity containing a sign-changing term[END_REF][START_REF] Lubyshev | Multiple solutions of an even order nonlinear problem with convex-concave nonlinearity[END_REF]. However, the proof techniques of [START_REF] Il'yasov | On nonlocal existence results for elliptic equations with convex-concave nonlinearities[END_REF][START_REF] Lubyshev | Multiple positive solutions of an elliptic equation with a convex-concave nonlinearity containing a sign-changing term[END_REF][START_REF] Lubyshev | Multiple solutions of an even order nonlinear problem with convex-concave nonlinearity[END_REF] are completely different from the arguments in the present paper and they rely on the global fibering method introduced by S.I. Pohozaev [START_REF] Pohozaev | On an approach to nonlinear equations[END_REF], which is among the most powerful tools for studying nonlinear differential equations. The fibering scheme allows Il'yasov and Lubyshev to find constructively constrained minimization problems which have the property of ground among all constrained minimization problems corresponding to the given energy functional. We also refer to Bozhkov and Mitidieri [START_REF] Bozhkov | Existence of multiple solutions for quasilinear systems via fibering method[END_REF][START_REF] Bozhkov | Existence of multiple solutions for quasilinear equations via fibering method[END_REF] for relatively closed "convex-concave" settings, both for nonlinear differential equations and for quasilinear elliptic systems with Dirichlet boundary condition. Garcia Azorero and Peral Alonso [START_REF] Garcia Azorero | Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term[END_REF] used the mountain pass theorem to obtain the existence of a sign-changing solution in a related quasilinear setting.

Proof of Theorem 1.1

We first prove that if λ > 0 is sufficiently small then problem (P λ ) + has a solution. For this purpose we use the method of sub-and super-solutions.

Consider the problem

   -∆w = λk(x)w q , in Ω w > 0,
in Ω w = 0, on ∂Ω .

(5)

Then, by [START_REF] Brezis | Sublinear elliptic equations in R n[END_REF], problem (5) has a unique solution w. We prove that the function u := εw is a sub-solution of problem (P λ ) + provided that ε > 0 is small enough. For this purpose it suffices to show that ελk(x)w q ≤ λk(x)ε q w q + h(x)ε p w p in Ω, which is true for all ε ∈ (0, 1). Let v be the unique solution of the linear problem

-∆v = 1, in Ω v = 0, on ∂Ω .
We prove that if λ > 0 is small enough then there is M > 0 such that u := M v is a super-solution of (P λ ) + . Therefore it suffices to show that

M ≥ λk(x)(M v) q + h(x)(M u) p in Ω. ( 6 
) Set A := k L ∞ • v q L ∞ and B := h L ∞ • v p L ∞ .
Thus, by [START_REF] Bandle | Solutions of quasilinear second-order elliptic boundary value problems via degree theory[END_REF], it is enough to show that there is M > 0 such that

M ≥ λAM q + BM p . or, equivalently, 1 ≥ λAM q-1 + BM p-1 . (7) 
Consider the mapping (0, ∞) ∋ t -→ λAt q-1 + Bt p-1 . A straightforward computation shows that this function attains its minimum for t = Cλ 1/(p-q) , where C = [AB -1 (1q)(p -1) -1 ] (q-1)/(p-q) . Moreover, the global minimum of this mapping is (AC q-1 + BC p-1 )λ (p-1)/(p-q) . This shows that condition [START_REF] Bartsch | On an elliptic equation with concave and convex nonlinearities[END_REF] is fulfilled for all λ ∈ (0, λ 0 ] and M = Cλ 1/(p-q) , where λ 0 > 0 satisfies (AC q-1 + BC p-1 )λ (p-1)/(p-q) 0 = 1.

It remain to argue that εw ≤ M v. This is a consequence of the maximum principle (see [START_REF] Pucci | The strong maximum principle revisited[END_REF]), provided that ε > 0 is small enough. Thus, problem (P λ ) + has at least one solution u(λ) for all λ < λ * . Set λ * := sup{λ > 0; problem (P λ ) + has a solution}.

By the definition of λ * , problem (P λ ) + does not have any solution if λ > λ * . In what follows we claim that λ * is finite. Denote

m := min {ess inf x∈Ω k(x), ess inf x∈Ω h(x)} > 0.
Let λ ′ > 0 be such that m(λ ′ + t p-q ) > λ 1 t 1-q for all t ≥ 0, where λ 1 stands for the first eigenvalue of (-∆) in H 1 0 (Ω). Denote by ϕ 1 > 0 an eigenfunction of the Laplace operator corresponding to λ 1 . Since u(λ) solves (P λ ) + we have for all λ > λ ′ ,

λ 1 Ω u(λ)ϕ 1 dx = Ω (λk(x)u(λ) q + h(x)u(λ) p ) ϕ 1 dx ≥ Ω m(λu(λ) q + u(λ) p )ϕ 1 dx > λ 1 Ω u(λ)ϕ 1 dx.
This implies that λ * ≤ λ ′ < +∞, which proves our claim.

Let us now prove that u(λ) is a minimal solution of (P λ ) + . Consider the sequence (u n ) n≥0 defined by u 0 = w (w is the unique solution of ( 5)) and u n is the unique solution of the problem

   -∆u n = λk(x)u q n-1 + h(x)u p n-1 , in Ω u n > 0,
in Ω u n = 0, on ∂Ω .

Then, by the maximum principle, u n ≤ u n+1 ≤ u(λ). Moreover, by the same argument as in [START_REF] Ambrosetti | Combined effects of concave and convex nonlinearities in some elliptic problems[END_REF], the sequence (u n ) n≥0 converges to u(λ). In order to show that u(λ) is a minimal solution, let U be an arbitrary solution of problem (P λ ) + . Thus, by the maximum principle, w = u 0 ≤ U and, by recurrence, u n ≤ U for all n ≥ 1. It follows that u(λ) ≤ U . At this stage it is easy to deduce that the mapping λ -→ u(λ) is increasing. Fix 0 < λ 1 < λ 2 < λ * . Then u(λ 2 ) is a super-solution of problem (P λ 1 ) + , hence, by minimality, u(λ 1 ) ≤ u(λ 2 ). The fact that λ 1 < λ 2 , combined with the maximum principle implies that u(λ 1 ) < u(λ 2 ). It remains to show that problem (P λ ) + has a solution if λ = λ * . For this purpose it is enough to prove that (u(λ)) is bounded in H 1 0 (Ω) as λ → λ * . Thus, up to a subsequence, u(λ) ⇀ u * in H 1 0 (Ω) as λ → λ * , which implies that u * is a weak solution of (P λ ) + provided that λ = λ * . Moreover, since the mapping λ -→ u(λ) is increasing, it follows that u * ≥ 0 a.e. on Ω and u * > 0 on a subset of Ω with positive measure. A key ingredient of the proof is that all solutions u(λ) have negative energy. More precisely, if E :

H 1 0 (Ω) → R is defined by E(u) := 1 2 Ω |∇u| 2 dx - λ q + 1 Ω k(x)|u| q+1 dx - 1 p + 1 Ω h(x)|u| p+1 dx then E(u(λ)) < 0 for all λ ∈ (0, λ * ). (8) 
To deduce [START_REF] Bozhkov | Existence of multiple solutions for quasilinear systems via fibering method[END_REF] we split the proof into the following steps: (i) the solution u(λ) is semi-stable, that is, the linearized operator -∆-λqk(x)u(λ) q-1ph(x)u(λ) p-1 is coercive:

Ω |∇ψ| 2 -(λqk(x)u(λ) q-1 + ph(x)u(λ) p-1 )ψ 2 dx ≥ 0 for all ψ ∈ H 1 0 (Ω).
Therefore

Ω |∇u(λ)| 2 -(λqk(x)u(λ) q+1 + ph(x)u(λ) p+1 ) dx ≥ 0. (9) 
This follows by the same proof as in [37, Theorem 1.9].

(ii) Since u(λ) is a solution of (P λ ) + we have

Ω |∇u(λ)| 2 dx = λ Ω k(x)u(λ) q+1 dx + Ω h(x)u(λ) p+1 dx. (10) 
Combining relations ( 9) and [START_REF] Brezis | Sublinear elliptic equations in R n[END_REF] we deduce that

λ(1 -q) Ω k(x)u(λ) q+1 dx ≥ (p -1) Ω h(x)u(λ) p+1 dx. (11) 
Next, we observe that relation [START_REF] Brezis | Sublinear elliptic equations in R n[END_REF] implies

E(u(λ)) = λ 1 2 - 1 q + 1 Ω k(x)u(λ) q+1 dx + 1 2 - 1 p + 1 Ω h(x)u(λ) p+1 dx = -λ 1 -q 2(q + 1) Ω k(x)u(λ) q+1 dx + p -1 2(p + 1) Ω h(x)u(λ) p+1 dx ≤ -λ 1 -q 2(q + 1) Ω k(x)u(λ) q+1 dx + λ 1 -q 2(p + 1) Ω k(x)u(λ) p+1 dx ≤ 0,
by [START_REF] Callegari | A nonlinear singular boundary value problem in the theory of pseudoplastic fluids[END_REF].

To complete the proof, it remains to argue that sup λ<λ * u(λ) H 1 0 < +∞. This follows after combining relations ( 8) and ( 9), Sobolev embeddings, and using the fact that k, h ∈ L ∞ (Ω). This completes the proof.

3 Proof of Theorem 1.2

The energy functional associated to problem (P λ ) -is F λ : H 1 0 (Ω) → R and it is defined by

F λ (u) := 1 2 Ω |∇u| 2 dx - λ q + 1 Ω k(x)|u| q+1 dx + 1 p + 1 Ω h(x)|u| p+1 dx . Set u := Ω |∇u| 2 dx 1/2 ; u q+1 := Ω |u| q+1 dx 1/(q+1) ; u p+1 := Ω |u| p+1 dx 1/(p+1)
.

We first prove that F λ is coercive. Indeed,

F λ (u) ≥ 1 2 u 2 -C 1 u q+1 q+1 + C 2 u p+1 p+1 ,
where C 1 = λ(q + 1) -1 k L ∞ and C 2 = (p + 1) -1 essinf x∈Ω h(x) are positive constants. Since q < p, a straightforward computation shows that the mapping (0, +∞) ∋ t -→ At p+1 -Bt q+1 attains its global minimum m < 0 at t = B(q + 1)

A(p + 1) 1/(p-q) . Therefore F λ (u) ≥ 1 2 u 2 + m , hence F λ (u) → +∞ as u → ∞.
Let (u n ) be a minimizing sequence of F λ in H 1 0 (Ω). Since F λ is coercive, it follows that (u n ) is bounded. Without loss of generality, we may assume that u n is non-negative and that (u n ) converges weakly to some u in H 1 0 (Ω). Standard arguments based on the lower semi-continuity of the energy functional show that u is a global minimizer of F λ , hence a non-negative solution of problem (P λ ) -.

In what follows we prove that the weak limit u is a non-negative weak solution of problem (P λ ) -if λ > 0 is large enough. We first observe that F λ (0) = 0. So, in order to prove that the non-negative solution is nontrivial, it suffices to prove that there exists Λ > 0 such that inf

u∈H 1 0 (Ω)
F λ (u) < 0 for all λ > Λ.

For this purpose we consider the constrained minimization problem

Λ := inf 1 2 Ω |∇v| 2 dx + 1 p + 1 Ω h(x)|v| p+1 dx; v ∈ H 1 0 (Ω) and 1 q + 1 Ω k(x)|v| q+1 dx = 1 .
(12) Let (v n ) be an arbitrary minimizing sequence for this problem. Then (v n ) is bounded, hence we can assume that it weakly converges to some v ∈ H 1 0 (Ω) with

1 q + 1 Ω k(x)|v| q+1 dx = 1 and Λ := 1 2 Ω |∇v| 2 dx + 1 p + 1 Ω h(x)|v| p+1 dx .
Thus, F λ (v) = Λ -λ < 0 for all λ > Λ. Set λ * := inf{λ > 0; problem (P λ ) -admits a nontrivial weak solution} ≥ 0.

The above remarks show that Λ ≥ λ * and that problem (P λ ) -has a solution for all λ > Λ. We now argue that problem (P λ ) -has a solution for all λ > λ * . Fix λ > λ * . By the definition of λ * , there exists µ ∈ (λ * , λ) such that F µ has a nontrivial critical point u µ ∈ H 1 0 (Ω). Since µ < λ, it follows that u µ is a sub-solution of problem (P λ ) -. We now want to construct a super-solution that dominates u µ . For this purpose we consider the constrained minimization problem inf F λ (v); v ∈ H 1 0 (Ω) and v ≥ u µ .

The same arguments as those used to treat [START_REF] Carleman | Problèmes mathématiques dans la théorie cinétique des gaz[END_REF] show that problem (13) has a solution u λ ≥ u µ . Moreover, u λ is a solution of problem (P λ ) -, for all λ > λ * . With the arguments developed in [17, p. 712] we deduce that problem (P λ ) -has a solution if λ = λ * . The same monotonicity arguments as above show that (P λ ) -does not have any solution if λ < λ * . Fix λ > λ * . It remains to argue that the non-negative weak solution u is, in fact, positive. Indeed, using similar arguments as in Pucci and Servadei [START_REF] Pucci | On weak solutions for p-Laplacian equations with weights[END_REF], which are based on the Moser iteration, we obtain that u ∈ L ∞ (Ω). Next, by bootstrap regularity, u is a classical solution of problem (P λ ) -. Since u is a non-negative smooth weak solution of the differential inequality ∆u -h(x)u p ≤ 0 in Ω, with p > 1, we deduce that u > 0 in Ω. This follows by applying the methods developed in Section 4.8 of Pucci and Serrin [START_REF] Pucci | On the strong maximum and compact support principles and some applications[END_REF] and the comments therein. This completes the proof.
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