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Abstract: We present a survey of traffic models for communication networks
whose key performance indicators like blocking probability and mean delay are
independent of all traffic characteristics beyond the traffic intensity. This insen-
sitivity property, which follows from that of the underlying queuing networks,
is key to the derivation of simple and robust engineering rules like the Erlang
formula in telephone networks.
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1 Introduction

Since its publication in 1917, the Erlang formula has provided an essential tool
for sizing telephone networks [15]. It determines the required number of tele-
phone lines given a prediction of expected demand and a target blocking prob-
ability. A key property of the Erlang formula is its insensitivity: the blocking
probability does not depend on the holding time distribution beyond the mean
[27]. Traffic is in fact characterized by a unique parameter, the traffic intensity,
which is defined as the product of the call arrival rate and the mean holding
time. This makes the Erlang formula both simple to apply and robust to changes
in fine traffic characteristics, and explains its enduring success.

Contrary to common belief, it is not even necessary to assume that calls ar-
rive as a Poisson process. Each user typically generates several calls during the
same activity period, which may produce call bursts. Referring to a session as
the sequence of calls generated by the same user, it is in fact sufficient to assume
that sessions arrive as a Poisson process [4]. This assumption is reasonable for
a large user population. For a small user population, sessions may simply be
considered as permanent and this corresponds to the Engset model [12, 13]. The
Erlang model is just a limiting case of the Engset model when the user popula-
tion grows to infinity. Both are insensitive to all traffic characteristics beyond
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the traffic intensity. Call durations and idle period durations may have arbitrary
distributions and be correlated. The blocking probability is still given by the
corresponding Erlang or Engset formula, which is a function of traffic intensity
only [4]. This insensitivity property extends to circuit-switched networks where
users require circuits of different bandwidth. The blocking probability of a call
depends only on its resource requirement (bandwidth, path in the network) and
on the traffic intensity of each type of call [14, 16, 19, 22, 25].

Similar insensitive models have recently been applied to packet-switched
networks like the Internet. Most traffic in today’s Internet is generated by the
transfer of digital documents like web pages, audio and video files. This traffic
is elastic in that the duration of each transfer depends on network congestion.
Each document is split into a sequence of packets, referred to as a flow, whose
sending rate is adapted in response to congestion indications such as packet
losses, typically under the control of TCP1. The quality of the transfer then
depends on the time required to transfer all the packets of the flow. In this
sense, network performance for elastic traffic is mainly manifested at flow level
and can be gauged by measures like the mean flow duration.

An appropriate abstraction in this context entails entirely disregarding the
complex packet-level phenomena and considering each flow content as a fluid
which is transmitted as a continuous stream through the network. The rate of
this fluid data stream depends on the set of flows that compete for the same
network resources. The basic model is a processor-sharing queue that represents
a single bottleneck link whose bandwidth is equally shared by the ongoing flows
[24]. Both the distribution of the number of ongoing flows and the mean flow
duration are insensitive to all traffic characteristics beyond the traffic intensity
[1]. Like circuit traffic, referring to a session as the sequence of flows generated
by the same user, it is sufficient to assume that sessions arrive as a Poisson
process. For a finite user population, the analogue of the Engset model with a
fixed number of permanent sessions applies [2, 17].

The same insensitivity property holds for more general network models
whose resources are shared according to balanced fairness [6]. The mean dura-
tion of each flow then depends only on its characteristics (resource requirements,
rate limit) and on the traffic intensity of each type of flow. Again, this insen-
sitivity property is key to the derivation of simple and robust engineering rules
that do not require knowledge of fine traffic statistics.

In this paper, we present a survey of these insensitive traffic models in the
unified framework of Kelly-Whittle queuing networks. Circuit traffic and elastic
traffic are considered in Sections 2 and 3, respectively. The underlying queuing
networks and the corresponding insensitivity results are presented in Section 4.
Section 5 concludes the paper.

1Transmission Control Protocol, see [28].
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2 Circuit traffic

We start with networks where each communication necessitates the prior es-
tablishment of a physical or virtual circuit, corresponding to the set of required
resources. A typical example is the switched telephone network. By analogy, we
shall refer to any communication as a call. We are interested in the evaluation of
the call blocking probability, that is the probability that the resources required
by a new call are not available.

Unless otherwise specified, we assume that calls arrive as a Poisson process
and have independent, exponentially distributed durations. The insensitivity
property of the subsequent traffic models with respect to these traffic charac-
teristics will be shown in Section 4.

2.1 Erlang model

We first consider a single link consisting of C circuits. We denote by λ the call
arrival rate and by 1/µ the mean call duration. Let α = λ/µ be the traffic
intensity in Erlangs. By Little’s law, this corresponds to the mean number of
calls in the absence of blocking. The system is an M/M/C/C queue. The
number of ongoing calls has the stationary distribution:

π(x) = π(0)
αx

x!
, x = 0, 1, . . . , C.

By the PASTA2 property, the call blocking probability B is equal to π(C), the
stationary probability that all lines are occupied:

B =

αC

C!

1 + α +
α2

2
+ . . . +

αC

C!

. (1)

This is the well-known Erlang formula [15]. Note that B is decreasing in C for
fixed load ρ = α/C. This “economy of scale” property easily follows from the
integral representation of B:

1

B
=

∫ ∞

0
e−t

(

1 +
t

α

)C

dt.

2.2 Engset model

Now consider a finite number of sources, K. Each source is either active, i.e.,
with an ongoing call, or idle. Call durations are independent, exponentially
distributed with mean 1/µ. Idle period durations are independent, exponentially
distributed with mean 1/ν. We refer to α = ν/µ, the ratio of the mean call
duration to the mean idle period duration, as the traffic intensity per idle source.

2Poisson Arrivals See Time Averages, see [26].
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We assume that K > C so that some calls may be blocked. A source whose call
is blocked starts an new idle period as if the call were accepted and completed
instantaneously. The system corresponds to a closed network of two queues,
an ./M/∞ queue and an ./M/C/C queue, with K customers that alternately
visit both queues and jump over the ./M/C/C queue in case of blocking. The
number of ongoing calls has the stationary distribution [9]:

π(x) = π(0)

(

K

x

)

αx, x = 0, 1, . . . , C.

Note that the PASTA property does not hold in this case. The steady state
distribution as seen by new calls is in fact equal to the steady state distribution
of a system with K−1 sources, yielding the following expression for the blocking
probability:

B =

(

K−1
C

)

αC

1 + (K − 1)α + (K−1)(K−2)
2 α2 + . . . +

(

K−1
C

)

αC
. (2)

This is the Engset formula [13]. Note that B is decreasing in C and increasing
in K for fixed load ρ = Kα/C, the limiting case K → ∞ corresponding to the
Erlang formula. These properties easily follow from the expression:

1

B
= 1 + α−1 C

K − C
+

α−2

2

C(C − 1)

(K − C)(K − C + 1)

+ . . . +
α−C

C!

C!

(K − C)(K − C + 1) . . . K
.

2.3 Multi-rate model

The multi-rate model consists of a link of C bit/s shared by N types of calls.
Type-i calls require a circuit of constant bit rate ri ≤ C bit/s. They arrive as a
Poisson process of intensity λi and have independent, exponentially distributed
durations with mean 1/µi. We denote by αi = λi/µi the corresponding traffic
intensity in Erlangs. The system state is described by the line vector x =
(x1, . . . , xN ) of the number of ongoing calls of each type. Denoting by r the
column vector (r1, . . . , rN )′, this system has the stationary distribution:

π(x) = π(0)
αx1

1

x1!
. . .

αxN

N

xN !
, xr ≤ C.

By the PASTA property, the blocking probability of type-i calls is equal to the
probability that the link occupancy is higher than C − ri.

When the rates r1, . . . , rN and the link capacity C have integer values, the
stationary distribution of link occupancy can be evaluated through the following
recursion known as the Kaufman-Roberts algorithm [19, 25]. Let:

p(n) =
∑

x:xr=n

αx1

1

x1!
. . .

αxN

N

xN !
, n = 0, 1, . . . , C.
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This is, up to a normalization constant, the probability that the link occupancy
is equal to n. In particular, the blocking probability of type-i calls is given by:

Bi =

C
∑

n=C−ri+1

p(n)

C
∑

n=0

p(n)

. (3)

For all n = 1, . . . , C, we have:

p(n) =
N

∑

i=1

αiri

n
p(n − ri),

with p(0) = 1 and p(n) = 0 for all n < 0. Note that the computational
cost of this recursive formula is linear in the number of classes N , unlike the
direct calculation based on the stationary distribution which is exponential in
N . Similar results exist for non-Poisson arrivals, when calls are generated by a
finite number of sources like in the Engset model [10].

2.4 Network model

Finally, we consider a finite set of facilities that may represent any transmission
resource of a communication network (e.g. bandwidth, code, timeslot, power).
We consider J such resources. Resource j has a capacity of Cj units. There are
N types of calls. We denote by λi the arrival rate of type-i calls, by 1/µi their
mean duration and by αi = λi/µi the corresponding traffic intensity in Erlangs.
Type-i calls require a circuit with aij resource-j units, for all j = 1, . . . , J . We
may have aij = 0 in which case type-i calls require no resource-j unit. Denote
by A the matrix with i, j-entry aij and by C the line vector (C1, . . . , CJ ). As
above, the system state is described by the line vector x = (x1, . . . , xN ). The
state space is the set of states x such that xA ≤ C component-wise. The system
state has the stationary distribution:

π(x) = π(0)
αx1

1

x1!
. . .

αxN

N

xN !
, xA ≤ C.

By the PASTA property, the blocking probability of type-i calls, Bi, is equal
to the probability that the consumption of at least one resource j is higher
than Cj − aij . Equivalently, 1 − Bi is the steady-state probability that the
consumption of each resource j is less than or equal to Cj − aij . Denoting by
ai the i-th line of matrix A, we get:

Bi = 1 −

∑

x:xA≤C−ai

αx1

1

x1!
. . .

αxN

N

xN !

∑

x:xA≤C

αx1

1

x1!
. . .

αxN

N

xN !

.
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The exact evaluation of this expression turns out to be computationally expen-
sive, even using the generalization of the Kaufman-Roberts algorithm [11]. The
following bound proved by Whitt [29] allows one to decouple the system and to
evaluate the contribution of each resource independently. We have:

Bi ≤ 1 −
J

∏

j=1

(1 − Bij),

where Bij denotes the blocking probability of type-i calls when the network re-
duces to resource j (i.e. there is no other resource contraint). This corresponds
to the multi-rate model described in §2.3 for which the Kaufman-Roberts algo-
rithm applies. In practice, one may use the looser bound:

Bi ≤
J

∑

j=1

Bij . (4)

The model extends to a finite number of sources, like the Engset model
described in §2.2. Denote by Ki the number of type-i sources and by αi the
traffic intensity per type-i idle source (i.e. the ratio of the mean call duration
to the mean idle period duration of type-i sources, cf. §2.2). The stationary
distribution of the system state becomes:

π(x) = π(0)

(

K1

x1

)

αx1

1 . . .

(

KN

xN

)

αxN

N , xA ≤ C, x1 ≤ K1, . . . , xN ≤ KN .

We deduce the blocking probability as for the Engset model. The previous model
with Poisson call arrivals corresponds to the limiting case K1 → ∞, . . . , KN →
∞ for fixed total traffic intensities K1α1, . . . , KNαN .

3 Elastic traffic

We now consider fluid models of packet-switched networks, as described in Sec-
tion 1. Traffic is elastic in that each flow has a fixed size (in bits) but a variable
duration depending on its throughput. This is a key difference with the models
of circuit traffic considered so far, where the duration of each call is indepen-
dent of the network state. We are interested in the evaluation of the mean flow
duration, as well as in the flow blocking probability in the presence of admission
control.

Unless otherwise specified, we assume that flows arrive as a Poisson process
and have independent, exponentially distributed sizes. The insensitivity prop-
erty of the subsequent traffic models with respect to these traffic characteristics
will be shown in Section 4.

3.1 Processor sharing model

Consider a single link of C bit/s. We denote by λ the flow arrival rate and by σ
the mean flow size (in bits). The traffic intensity is given by β = λσ (in bit/s)
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and the link load by ρ = β/C. Let x be the number of ongoing flows. We assume
that flows equally share the link capacity so that each flow has throughput C/x
in the presence of x flows, for all x ≥ 1. The system is an M/M/1 processor-
sharing queue. In particular, the number of ongoing flows has the stationary
distribution:

π(x) = π(0)ρx, x = 0, 1, 2, . . . ,

under the stability condition ρ < 1. We deduce the mean number of flows:

x̄ =
ρ

1 − ρ
.

The mean per-bit delay τ , defined as the ratio of the mean flow duration to the
mean flow size, follows from Little’s law:

τ =
x̄

λσ
=

1

C(1 − ρ)
. (5)

In the presence of admission control that limits the number of ongoing flows
to some constant M ≥ 1, the stationary distribution of the number of flows is
the restriction of π to the state space {0, 1, . . . , M}. The mean per-bit delay
becomes:

τ =
x̄

λ(1 − B)σ
=

1 − (M + 1)B

1 − B

1

C(1 − ρ)
,

where B is the blocking probability, given by:

B =
ρM

1 + ρ + ρ2 + . . . + ρM
.

We verify that τ tends to M/C and B tends to 1 when ρ → ∞.

3.2 Finite source model

Now consider a finite number of sources, K. Each source is either active, i.e.,
with an ongoing flow, or idle. Flow sizes are independent, exponentially dis-
tributed with mean σ. Idle period durations are independent, exponentially
distributed with mean 1/ν. We refer to β = νσ, the ratio of the mean flow
size to the mean idle period duration, as the traffic intensity per idle source
(in bit/s). We denote by α = β/C the load per idle source and by ρ = Kα
the total load. The system corresponds to a closed network of two queues, an
./M/1 processor-sharing queue and an ./M/∞ queue, with K customers that
alternately visit both queues. The number of ongoing flows has the stationary
distribution:

π(x) = π(0)
K!

(K − x)!
αx, x = 0, 1, . . . , K.

Denote by λ the flow arrival rate. We have:

λ =
C

σ
(1 − π(0)).
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The mean per-bit delay then follows from Little’s law:

τ =
x̄

λσ
=

1

C

∑K
x=1 x K!

(K−x)!α
x

∑K
x=1

K!
(K−x)!α

x
. (6)

It may be verified that τ increases in K for fixed load ρ = Kα. The limiting
case K → ∞ corresponds to the processor sharing model.

In the presence of admission control that limits the number of ongoing flows
to some constant M < K, the stationary distribution of the number of flows is
the restriction of π to the state space {0, 1, . . . , M}. The mean per-bit delay
becomes:

τ =
1

C

∑M
x=1 x K!

(K−x)!α
x

∑M
x=1

K!
(K−x)!α

x
.

The steady state distribution as seen by new flows is equal to the steady state
distribution of a system with K − 1 sources, yielding the following expression
for the blocking probability:

B =

(K−1)!
(K−1−M)!α

M

1 + (K − 1)α + . . . + (K−1)!
(K−1−M)!α

M
.

We verify that τ tends to M/C and B tends to 1 when ρ → ∞.

3.3 A common rate limit

Assume flows are additionally constrained by some fixed bit rate r ≤ C. Flows
arrive as a Poisson process of intensity λ and have independent, exponentially
distributed sizes with mean σ. We denote by β = λσ the traffic intensity in bit/s
and by α = β/r the equivalent traffic intensity in Erlangs for virtual circuits of
r bit/s. This corresponds to the mean number of ongoing flows in the absence
of link capacity constraint, that is for C = ∞. The link load is ρ = β/C. In the
presence of x flows, each flow has throughput r if xr ≤ C and C/x otherwise.
The number of ongoing flows has the stationary distribution:

π(x) = π(0)
αx

x!
if xr ≤ C,

π(x) = ρπ(x − 1) otherwise,

under the stability condition ρ < 1. The mean per-bit delay τ follows from
Little’s law. When C/r is an integer, say m, we get:

τ =
1

r
+

S/ρ

C(1 − ρ)
, (7)

where S denotes the probability that the link is saturated:

S =
∑

x>m

π(x) =
αm

m!
ρ

1−ρ

1 + α + . . . + αm−1

(m−1)! + αm

m!
1

1−ρ

.
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In the presence of admission control that limits the number of ongoing flows to
some constant M ≥ m, the stationary distribution of the number of flows is the
restriction of π to the state space {0, 1, . . . , M}. We deduce the mean per-bit
delay as above. The flow blocking probability, given by

B =

αm

m!
ρM−m

1 + α + . . . +
αm−1

(m − 1)!
+

αm

m!
(1 + ρ + . . . + ρM−m)

,

coincides with the Erlang formula when M = m, in which case there is no elastic
bandwidth sharing. Similar results can be derived for the finite source model
of §3.2. In the presence of admission control with a maximum of M flows, the
flow blocking probability coincides with the Engset formula when M = m.

3.4 Multi-rate model

Consider the extension of the above model to N types of flows. Type-i flows
have the rate limit ri ≤ C. We denote by λi their arrival rate, by σi their
mean size in bits, by βi = λiσi their traffic intensity in bit/s, by αi = βi/ri

their traffic intensity in Erlangs for virtual circuits of ri bit/s and by ρi = βi/C

their contribution to the link load. We denote by β =
∑N

i=1 βi the total traffic

intensity (in bit/s) and by ρ =
∑N

i=1 ρi = β/C the link load.
The system state is described by the line vector x = (x1, . . . , xN ) of the

number of ongoing flows of each type. Let r be the column vector (r1, . . . , rN )′.
Each ongoing type-i flow has throughput ri when xr ≤ C and must share the
link capacity C with the other flows in progress when xr > C. Denoting by
φi(x) the total throughput of type-i flows in state x, the throughput constraints
are the following:

∀x ∈ N
N ,

N
∑

i=1

φi(x) ≤ C and φi(x) ≤ xiri, i = 1, . . . , N. (8)

The stationary distribution of the system state depends on the way flows share
link capacity when xr > C. We consider balanced fair sharing [6], which is
defined in such a way that the underlying queuing network is a Kelly-Whittle
network, as explained in Section 4.

In the following, we denote by ei the N -dimensional line vector whose i-th
component is equal to 1 and other components are equal to 0. Under balanced
fairness, the total throughput of type-i flows in state x is given by:

φi(x) =
Φ(x − ei)

Φ(x)
,

where Φ is the associated balance function, recursively defined by:

Φ(x) =
N
∏

i=1

1

rxi

i xi!
if xr ≤ C, (9)
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Φ(x) =
1

C

N
∑

i=1

Φ(x − ei) otherwise, (10)

with Φ(x) = 0 if x ̸∈ NN . Note that the capacity constraints (8) are satisfied:
the throughput of each flow is equal to its rate limit when xr ≤ C and the
total throughput is equal to C otherwise. For a unit capacity link with two
rate limits, r1 = 1 and r2 = 1/2, for instance, we verify that φ1(x) = 2/3 and
φ2(x) = 1/3 for x = (1, 1). Max-min fair sharing, on the other hand, that tends
to allocate resources as equally as possible, would give the same throughput to
both flows in state x = (1, 1) [3].

A key property of balanced fairness is that the associated system state has
an explicit stationary distribution, given by:

π(x) = π(0)Φ(x)
N
∏

i=1

βxi

i , x ∈ N
N , (11)

under the stability condition ρ < 1. In view of (9) and (10), the stationary
distribution satisfies the recursion:

π(x) = π(0)
N
∏

i=1

αxi

i

xi!
if xr ≤ C, (12)

π(x) =
N

∑

i=1

ρiπ(x − ei) otherwise, (13)

which generalizes the expression obtained for a common rate limit, cf. §3.3. The
mean duration of each type of flow then follows by Little’s law.

We have the analogue of the Kaufman-Roberts algorithm described in §2.3.
Assume the rates r1, . . . , rN and the link capacity C have integer values. Let:

p(n) =
∑

x:xr=n

Φ(x)
N
∏

i=1

βxi

i , n ∈ N.

For all n < C, this is, up to a normalization constant, the probability that the
link occupancy is equal to n. Defining:

p̄ =
∑

n>C

p(n),

the probability of link saturation is given by:

S =
∑

x:xr>C

π(x) =
p̄

1 + p(1) + . . . + p(C) + p̄
.

For all n = 1, . . . , C, we have:

p(n) =
N

∑

i=1

αiri

n
p(n − ri),
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with p(0) = 1 and p(n) = 0 for all n < 0, and

p̄ =
N

∑

i=1

ρip̄i

1 − ρ
with p̄i =

∑

C−ri<n≤C

p(n).

The former equality is the Kaufman-Roberts algorithm and follows from (12).
The latter follows from (13):

p̄ =
∑

x:xr>C

π(x) =
∑

x:xr>C

N
∑

i=1

ρiπ(x − ei) =
N

∑

i=1

ρi(p̄i + p̄).

A similar recursive algorithm is described in [8] for the mean per-bit delay.

3.5 Multi-need model

Now consider a single resource of C units shared by flows having different re-
source requirements. Specifically, there are N types of flows and type-i flows
require ai resource units per bit/s. Like for the multi-rate model, type-i flows
have a specific rate limit, here equal to C/ai. But now a type-i flow needs all
the resource units, C, to achieve this rate limit. We denote by λi the arrival rate
of type-i flows, by σi their mean size in bits, by βi = λiσi their traffic intensity
in bit/s and by ρi = βiai/C their contribution to the system load. The total
system load is given by ρ =

∑N
i=1 ρi.

The system state is described by the line vector x = (x1, . . . , xN ) of the
number of ongoing flows of each type. Denoting by φi(x) the total throughput
of type-i flows in state x, the throughput constraint is the following:

∀x ∈ N
N ,

N
∑

i=1

φi(x)ai ≤ C. (14)

Again, the stationary distribution of the system state depends on the way flows
share the resource. Balanced fair sharing is defined by

φi(x) =
Φ(x − ei)

Φ(x)
,

where the balance function Φ is recursively defined by Φ(0) = 1 and

Φ(x) =
1

C

N
∑

i=1

Φ(x − ei)ai,

with Φ(x) = 0 if x ̸∈ NN . Note that the capacity constraint (14) is attained in
all states x ̸= 0. We get:

Φ(x) =

(

x1 + . . . + xN

x1, . . . , xN

) N
∏

i=1

(ai

C

)xi
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and

φi(x) =
xi

x1 + . . . + xN

C

ai
. (15)

Note that φi(x)ai corresponds to the total amount of resource units allocated to
type-i flows in state x. In view of (15), the available resource units C are equally
shared under balanced fairness, which results in throughputs φ1(x), . . . , φN (x)
inversely proportional to the resources requirements a1, . . . , aN .

In view of (11), the system state has the stationary distribution:

π(x) = π(0)

(

x1 + . . . + xN

x1, . . . , xN

) N
∏

i=1

ρxi

i , x ∈ N
N ,

under the stability condition ρ < 1. We deduce the mean number of type-i
flows:

x̄i =
ρi

1 − ρ
,

and by Little’s law, the mean per-bit delay of type-i flows:

τi =
x̄i

λiσi
=

ai

C(1 − ρ)
. (16)

Thus the mean per-bit delay is proportional to the resource requirement.

3.6 Network model

Finally, we consider a general model that combines the previous two models
and extends them to the case of several resources. Various examples of data
networks covered by this model are described in [6]. We consider J resources
indexed by j. Resource j has a capacity of Cj units. There are N types of flows.
Type-i flows consume aij resource-j units per bit/s, for all j = 1, . . . , J . We
may have aij = 0 in which case type-i flows require no resource-j unit, but we
assume that aij > 0 for at least one resource j. Type-i flows have the rate limit
ri bit/s. We may have ri = ∞ in which case type-i flows have no rate limit. We
denote by λi the arrival rate of type-i flows, by σi their mean size in bits, by
βi = λiσi their traffic intensity in bit/s and by ρij = βiaij/C their contribution

to the resource-j load. The total resource-j load is given by ρj =
∑N

i=1 ρij .
The system state is described by the line vector x = (x1, . . . , xN ) of the

number of ongoing flows of each type. Let φi(x) be the total throughput of
type-i flows in state x. Denoting by φ(x) the line vector (φ1(x), . . . , φN (x)),
by A the matrix with i, j-entry aij and by C the line vector (C1, . . . , CJ ), the
throughput constraints are:

φ(x)A ≤ C and φi(x) ≤ xiri, i = 1, . . . , N, (17)

where the first inequality is component-wise. Note that for a single resource,
that is J = 1, the multi-rate model corresponds to the matrix A = (1, . . . , 1)′

while the multi-need model corresponds to the case ri = ∞ for all i = 1, . . . , N .
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Balanced fair sharing is defined by

φi(x) =
Φ(x − ei)

Φ(x)
,

where the balance function Φ is recursively defined by Φ(0) = 1 and

Φ(x) = max

{

max
j

1

Cj

N
∑

i=1

aijΦ(x − ei), max
i:xi>0

Φ(x − ei)

xiri

}

, (18)

with Φ(x) = 0 if x ̸∈ NN . The capacity constraints (17) are satisfied. Moreover,
at least one of these capacity constraints is attained in all states x.

The system state has the stationary distribution:

π(x) = π(0)Φ(x)
N
∏

i=1

βxi

i ,

under the stability condition ρj < 1 for all j = 1, . . . , J . The mean per-bit
delay follows from Little’s law. Its evaluation turns out to be computationally
expensive, however. Like in the case of circuit traffic, the following bound
allows one to decouple the system and evaluate the contribution of each resource
independently [5]:

τi ≤ δi +
J

∑

j=1

aij

Cj

ρj

1 − ρj
,

where δi = max{maxj
aij

Cj
, 1

ri
} is the minimum per-bit delay of type-i flows. In

practice, one may use the looser bound:

τi ≤
1

ri
+

J
∑

j=1

aij

Cj(1 − ρj)
.

This is the analogue of the bound (4) derived for the blocking probability in
circuit-switched networks: in view of (16), the j-th term of the sum is equal to
the mean per-bit delay of type-i flows when the network reduces to resource j
(i.e. there is no other resource constraint).

Like in the case of circuit traffic, the model extends to a finite number
of sources. Denote by Ki the number of type-i sources and by βi the traffic
intensity per type-i idle source (i.e. the ratio of the mean flow size to the mean
idle period duration of type-i sources, cf. §3.2). The stationary distribution of
the system state becomes:

π(x) = π(0)Φ(x)
N
∏

i=1

Ki!

(Ki − xi)!
βxi

i , x1 ≤ K1, . . . , xN ≤ KN .

The previous model with Poisson flow arrivals corresponds to the limiting case
K1 → ∞, . . . , KN → ∞ for fixed total traffic intensities K1β1, . . . , KNβN .
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For both finite and infinite source models, one may apply admission control
to guarantee a minimum throughput ui to each type-i flow in progress. In the
specific case ui = ri = 1 for all i = 1, . . . , N , traffic becomes inelastic and the
model reduces to that described in §2.4 for circuit traffic, with traffic intensity
αi = βi for type-i calls. The corresponding balance function is simply given by:

Φ(x) =
1

x1!
. . .

1

xN !
.

4 Insensitivity results

In this section, we show that all traffic models considered so far, that are covered
by the general model of §3.6, correspond to Kelly-Whittle networks and have
the insensitivity property.

4.1 State-dependent service rates

Consider a network of N processor-sharing queues with state-dependent service
rates. Customers arrive in queue i according to a Poisson process of intensity λi,
require independent, exponentially distributed services with mean σi (in service
units, say bits) and leave the network once served. We denote by βi = λiσi

the traffic intensity at queue i (in bit/s). The network state is described by
the line vector x = (x1, . . . , xN ) of the number of customers in each queue. We
denote by φi(x) the service rate of queue i in state x (in bit/s), with φi(x) = 0
if xi = 0. Note that this service rate does not only depend on xi, the number
of customers in queue i, but on the whole network state x: the N queues are
coupled through their service rates.

The network state is a Markov process with transition rates λi from state x
to state x + ei and φi(x)/σi from state x to state x − ei. Assume that:

∀i = 1, . . . , N, φi(x) =
Φ(x − ei)

Φ(x)
, (19)

for some positive function Φ on NN such that Φ(0) = 1 and Φ(x) = 0 if x ̸∈
NN . The network state is then a reversible Markov process whose stationary
distribution is given by:

π(x) = π(0)Φ(x)
N
∏

i=1

βxi

i , (20)

under the stability condition:

∑

x∈NN

Φ(x)
N
∏

i=1

βxi

i < ∞.

The local balance equations follow from (19):

π(x − ei)λi = π(x)
φi(x)

σi
.
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The queuing network is a Kelly-Whittle network, whose stationary distribution
is known to be independent of the distribution of service requirements beyond
the mean for the processor-sharing service discipline [7, 18, 20, 26, 30]. In
particular, the elastic traffic models of Section 3 with Poisson flow arrivals are
insensitive to the flow size distribution beyond the mean.

As mentioned in Section 1, it is in fact not necessary that flows arrive as a
Poisson process. In practice, each user typically generates a sequence of flows
during the same activity period. We refer to a session as the sequence of flows
generated by the same user, with an assumed idle period of random duration
between the end of a flow and the beginning of the following flow. It is then
sufficient to assume that sessions arrive as a Poisson process: the number of
flows of a session, the successive flow sizes and idle period durations of this
session may be arbitrarily distributed and correlated. The stationary distribu-
tion of the system state and the mean flow duration are insensitive to all traffic
characteristics beyond the traffic intensity.

This insensitivity property comes again from that of Kelly-Whittle networks.
Each session may be represented as the alternating visits of a customer to one
of the N queues and to an additional infinite-server queue representing the
idle periods. The associated queuing network is still a Kelly-Whittle network,
whose stationary distribution is independent of the customer routes beyond the
arrival rate at each queue [20]. There may be an arbitrary, predefined set of
fixed routes, with arbitrary distributions and correlation of successive service
requirements, allowing one to represent virtually any traffic characteristics.

Similarly, traffic models with a finite number of sources correspond to closed
queuing networks. Assume Ki customers visit alternately queue i and an
infinite-server queue with exponentially distributed service times with mean
1/νi. We refer to βi = νiσi as the traffic intensity per idle source at queue i (in
bit/s). The network state is again a reversible Markov process whose stationary
distribution is given by:

π(x) = π(0)Φ(x)
N
∏

i=1

Ki!

(Ki − xi)!
βxi

i , x1 ≤ K1, . . . , xN ≤ KN .

The local balance equations follow from (19):

π(x − ei)νi(Ki − xi + 1) = π(x)
φi(x)

σi
.

The queuing network is a closed Kelly-Whittle network, whose stationary dis-
tribution is independent of the distribution of service requirements beyond the
mean [7, 18, 20, 26]. The successive service requirements of a customer may
even be correlated. Thus finite-source models are insensitive to all traffic char-
acteristics beyond the traffic intensity of each source.

It is worth noting that Kelly-Whittle networks are the only networks of
processor-sharing queues that satisfy the insensitivity property [7]. Thus it
is essential that network resources are shared according to balanced fairness.
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For other common resource allocations like max-min fairness and proportional
fairness, the balance property (19) is violated in most cases and performance
is sensitive to traffic characteristics like the flow size distribution [6]. Some
structural properties of proportional fairness make its performance close to that
of balanced fairness, however, and thus approximately insensitive [23].

4.2 State-dependent arrival rates

Previous results apply to traffic models without admission control. In the pres-
ence of admission control, the arrival rate at each queue is a function of the
network state. Assume customers arrive in queue i according to a Poisson pro-
cess of intensity λi(x) in state x, require independent, exponentially distributed
services with mean σi and leave the network once served. Denote by X the set
of admissible states and assume λi(x) is equal to some constant λi if x+ ei ∈ X
and to 0 otherwise. The stationary distribution of the network state is still given
by (20) on the state space X and is independent of the distribution of service
requirements beyond the mean [7, 18, 20, 26]. In particular, the circuit traffic
models of Section 2 with Poisson call arrivals are insensitive to the call duration
distribution beyond the mean.

Again, the insensitivity property extends to the flow arrival process provided
sessions arrive as a Poisson process. It is sufficient to assume that the session
goes on in case of blocking, as if the blocked flow were completed instantaneously,
to preserve the stationary distribution of the network state [9, 18]. Other models
that allow one to represent random retrials in case of blocking are described in
[4]. Key performance indicators like blocking probability and mean delay are the
same for all flows of the same type, independently of the session they belong to
and of their position in this session (e.g. first, second or last flow of the session).
In particular, the circuit traffic models of Section 2 with Poisson call arrivals
are insensitive to all traffic characteristics beyond the traffic intensity of each
type of call.

Finally, these insensitivity properties extend to finite-source models as in the
absence of admission control. The corresponding queuing network is a closed
Kelly-Whittle network with state-dependent routing probabilities. We conclude
that all traffic models of Sections 2 and 3 are insensitive.

5 Conclusion

The insensitivity property is key to the derivation of simple and robust engi-
neering rules that do not require the knowledge of fine traffic statistics. Since
Erlang’s pioneer work, telephone networks have been sized based on the predic-
tion of average demand only, and not on the distribution of call holding times
that has been evolving over the years. We believe the insensitive traffic models
described in the present paper are useful for sizing communication networks and
could serve as guidelines for the design of new traffic control mechanisms in next
generation networks.
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