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Introduction

Many supervised machine learning problems are naturally cast as the minimization of a smooth function defined on a Euclidean space. This includes least-squares regression, logistic regression (see, e.g., [START_REF] Hastie | The Elements of Statistical Learning[END_REF] or generalized linear models [START_REF] Mccullagh | Generalized Linear Models[END_REF]. While small problems with few or low-dimensional input features may be solved precisely by many potential optimization algorithms (e.g., Newton method), large-scale problems with many high-dimensional features are typically solved with simple gradient-based iterative techniques whose per-iteration cost is small.

In this paper, we consider a quadratic objective function f whose gradients are only accessible through a stochastic oracle that returns the gradient at any given point plus a zero-mean finite variance random error. In this stochastic approximation framework [START_REF] Robbins | A stochastic approxiation method[END_REF], it is known that two quantities dictate the behavior of various algorithms, namely the covariance matrix V of the noise in the gradients, and the deviation θ 0 -θ * between the initial point of the algorithm θ 0 and any of the global minimizer θ * of f . This leads to a "bias/variance" decomposition [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF][START_REF] Hsu | Random design analysis of ridge regression[END_REF] of the performance of most algorithms as the sum of two terms: (a) the bias term characterizes how fast initial conditions are forgotten and thus is increasing in a well-chosen norm of θ 0 -θ * ; while (b) the variance term characterizes the effect of the noise in the gradients, independently of the starting point, and with a term that is increasing in the covariance of the noise.

For quadratic functions with (a) a noise covariance matrix V which is proportional (with constant σ 2 ) to the Hessian of f (a situation which corresponds to least-squares regression) and (b) an initial point characterized by the norm θ 0 -θ * 2 , the optimal bias and variance terms are known separately. On the one hand, the optimal bias term after n iterations is proportional to

L θ 0 -θ * 2 n 2
, where L is the largest eigenvalue of the Hessian of f . This rate is achieved by accelerated gradient descent [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF], and is known to be optimal if the number of iterations n is less than the dimension d of the underlying predictors, but the algorithm is not robust to random or deterministic noise in the gradients [START_REF]Smooth optimization with approximate gradient[END_REF][START_REF] Devolder | First-order methods of smooth convex optimization with inexact oracle[END_REF]. On the other hand, the optimal variance term is proportional to σ 2 d n [START_REF] Tsybakov | Optimal rates of aggregation[END_REF]; it is known to be achieved by averaged gradient descent [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF], which for the bias term only achieves L θ 0 -θ * 2 n instead of L θ 0 -θ * 2 n 2 . Our first contribution in this paper is to present a novel algorithm which attains optimal rates for both the variance and the bias terms. This algorithm analyzed in Section 4 is averaged accelerated gradient descent; beyond obtaining jointly optimal rates, our result shows that averaging is beneficial for accelerated techniques and provides a provable robustness to noise.

While optimal when measuring performance in terms of the dimension d and the initial distance to optimum θ 0 -θ * 2 , these rates are not adapted in many situations where either d is larger than the number of iterations n (i.e., the number of observations for regular stochastic gradient descent) or L θ 0 -θ * 2 is much larger than n 2 . Our second contribution is to provide in Section 5 an analysis of a new algorithm (based on some additional regularization) that can adapt our bounds to finer assumptions on θ 0 -θ * and the Hessian of the problem, leading in particular to dimension-free quantities that can thus be extended to the Hilbert space setting (in particular for non-parametric estimation).

In order to characterize the optimality of these new bounds, our third contribution is to consider an application to non-parametric regression in Section 6 and use the known lower bounds on the statistical performance (without computational limits), which happen to match our bounds obtained from a single pass on the data and thus show optimality of our algorithm in a wide variety of particular trade-offs between bias and variance.

Our paper is organized as follows: in Section 2, we present the main problem we tackle, namely least-squares regression; then, in Section 3, we present new results for averaged stochastic gradient descent that set the stage for Section 4, where we present our main novel result leading to an accelerated algorithm which is robust to noise. Our tighter analysis of convergence rates based on finer dimension-free quantities is presented in Section 5, and their optimality for kernel-based non-parametric regression is studied in Section 6.

Least-Squares Regression

In this section, we present our least-squares regression framework, which is risk minimization with the square loss, together with the main assumptions regarding our model and our algorithms. These algorithms will rely on stochastic gradient oracles, which will come in two kinds, an additive noise which does not depend on the current iterate, which will correspond in practice to the full knowledge of the covariance matrix, and a "multiplicative/additive" noise, which corresponds to the regular stochastic gradient obtained from a single pair of observations. This second oracle is much harder to analyze.

Statistical Assumptions

We make the following general assumptions:

• H is a d-dimensional Euclidean space with d ≥ 1. The (temporary) restriction to finite dimension will be relaxed in Section 6.

• The observations (x n , y n ) ∈ H × R, n ≥ 1, are independent and identically distributed (i.i.d.), and such that E x n 2 and Ey 2 n are finite.

• We consider the least-squares regression problem which is the minimization of the function f (θ) = 1 2 E( x n , θ -y n ) 2 .

Covariance matrix. We denote by Σ = E(x n ⊗ x n ) ∈ R d×d the population covariance matrix, which is the Hessian of f at all points. Without loss of generality, we can assume Σ invertible by reducing H to the minimal subspace where all x n , n ≥ 1, lie almost surely. This implies that all eigenvalues of Σ are strictly positive (but they may be arbitrarily small). Following [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF], we assume there exists R > 0 such that

E x n 2 x n ⊗ x n R 2 Σ, (A 1 )
where A B means that B -A is positive semi-definite. This assumption implies in particular that (a) E x n 4 is finite and (b) tr Σ = E x n 2 ≤ R 2 since taking the trace of the previous inequality we get E x n 4 ≤ R 2 E x n 2 and using Cauchy-Schwarz inequality we get E x n 2 ≤ E x n 4 ≤ R E x n 2 .

Assumption (A 1 ) is satisfied, for example, for least-square regression with almost surely bounded data, since

x n 2 ≤ R 2 almost surely implies E x n 2 x n ⊗ x n E R 2 x n ⊗ x n = R 2 Σ.
This assumption is also true for data with infinite support and a bounded kurtosis for the projection of the covariates x n on any direction z ∈ H, e.g, for which there exists κ > 0, such that:

∀z ∈ H, E z, x n 4 ≤ κ z, Σz 2 . (A 2 ) Indeed, by Cauchy-Schwarz inequality, Assumption (A 2 ) implies for all (z, t) ∈ H 2 , the following bound E z, x n 2 t, x n 2 ≤ κ z, Σz t, Σt , which in turn implies that for all positive semi-definite symmetric matrices M, N , we have E x n , M x n x n , N x n ≤ κ tr(M Σ) tr(N Σ). Assumption (A 2 ), which is true for Gaussian vectors with κ = 3, thus implies (A 1 ) for

R 2 = κ tr Σ = κE x n 2 .
Eigenvalue decay. Most convergence bounds depend on the dimension d of H. However it is possible to derive dimension-free and often tighter convergence rates by considering bounds depending on the value tr Σ b for b ∈ [0, 1]. Given b, if we consider the eigenvalues of Σ ordered in decreasing order, which we denote by s i , they decay at least as

(tr Σ b ) 1/b i 1/b
. Moreover, it is known that (tr Σ b ) 1/b is decreasing in b and thus, the smaller the b, the stronger the assumption. For b going to 0 then tr Σ b tends to d and we are back in the classical low-dimensional case. When b = 1, we simply get tr Σ = E x n 2 , which will correspond to the weakest assumption in our context.

Optimal predictor. In finite dimension the regression function

f (θ) = 1 2 E( x n , θ -y n ) 2 always admits a global minimum θ * = Σ -1 E(y n x n ).
When initializing algorithms at θ 0 = 0 or regularizing by the squared norm, rates of convergence generally depend on θ * , a quantity which could be arbitrarily large.

However there exists a systematic upper-bound 1 Σ 1 2 θ * ≤ 2 Ey 2 n . This leads naturally to the consideration of convergence bounds depending on Σ r/2 θ * for r ≤ 1. In infinite dimension this will correspond to assuming Σ r/2 θ * < ∞. This new assumption relates the optimal predictor with sources of ill-conditioning (since Σ is the Hessian of the objective function f ), the smaller r, the stronger our assumption, with r = 1 corresponding to no assumption at all, r = 0 to θ * in H and r = -1 to a convergence of the bias of least-squares regression with averaged stochastic gradient descent in O Σ -1/2 θ * 2 n 2 [START_REF] Dieuleveut | Non-parametric stochastic approximation with large step sizes[END_REF][START_REF] Défossez | Averaged least-mean-squares: bias-variance trade-offs and optimal sampling distributions[END_REF]. In this paper, we will use arbitrary initial points θ 0 and thus our bounds will depend on Σ r/2 (θ 0 -θ * ) .

Noise. We denote by ε n = y n -θ * , x n the residual for which we have E[ε n x n ] = 0. Although we do not have E[ε n |x n ] = 0 in general unless the model is well-specified, we assume the noise to be a structured process such that there exists σ > 0 with

E[ε 2 n x n ⊗ x n ] σ 2 Σ. (A 3 )
Assumption (A 3 ) is satisfied for example for data almost surely bounded or when the model is well-specified, (e.g., y n = θ * , x n + ε n , with (ε n ) n∈N i.i.d. of variance σ 2 and independent of x n ).

1 Indeed for all θ ∈ R d and in particular θ = 0, by Minkowski inequality, Σ

1 2 θ * -Ey 2 n = E θ * , xn 2 - Ey 2 n ≤ E( θ * , xn -yn) 2 ≤ E( θ, xn -yn) 2 ≤ E(yn) 2 .

Averaged Gradient Methods and Acceleration

We focus in this paper on stochastic gradient methods with and without acceleration for a quadratic function regularized by λ 2 θ -θ 0 2 . Stochastic gradient descent (referred to from now on as "SGD") can be described for n ≥ 1 as

θ n = θ n-1 -γf ′ n (θ n-1 ) -γλ(θ n-1 -θ 0 ), (1) 
starting from θ 0 ∈ H, where γ ∈ R is either called the step-size in optimization or the learning rate in machine learning, and f ′ n (θ n-1 ) is an unbiased estimate of the gradient of f at θ n-1 , that is such that its conditional expectation given all other sources of randomness is equal to f ′ (θ n-1 ).

Accelerated stochastic gradient descent is defined by an iterative system with two parameters (θ n , ν n ) satisfying for n ≥ 1

θ n = ν n-1 -γf ′ n (ν n-1 ) -γλ(ν n-1 -θ 0 ) ν n = θ n + δ θ n -θ n-1 , (2) 
starting from θ 0 = ν 0 ∈ H, with γ, δ ∈ R 2 and f ′ n (θ n-1 ) described as before. It may be reformulated as the following second-order recursion

θ n = (1 -γλ) θ n-1 + δ(θ n-1 -θ n-2 ) -γf ′ n θ n-1 + δ(θ n-1 -θ n-2 ) + γλθ 0 .
The momentum coefficient δ ∈ R is chosen to accelerate the convergence rate [START_REF] Nesterov | A method of solving a convex programming problem with convergence rate O(1/k 2 )[END_REF][START_REF] Beck | A fast iterative shrinkage-thresholding algorithm for linear inverse problems[END_REF] and has its roots in the heavy-ball algorithm from [START_REF] Polyak | Some methods of speeding up the convergence of iteration methods[END_REF]. We especially concentrate here, following [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF], on the average of the sequence

θn = 1 n + 1 n i=0 θ n , (3) 
and we note that it can be computed online as θn = n n+1 θn-1 + 1 n+1 θ n . The key ingredient in the algorithms presented above is the unbiased estimate on the gradient f ′ n (θ), which we now describe.

Stochastic Oracles on the Gradient

We consider the standard stochastic approximation framework [START_REF] Kushner | Stochastic approximation and Recursive Algorithms and Applications[END_REF].

That is, we let (F n ) n≥0 be the increasing family of σ-fields that are generated by all variables (x i , y i ) for i ≤ n, and such that for each θ ∈ H the random variable

f ′ n (θ) is square-integrable and F n -measurable with E[f ′ n (θ)|F n-1 ] = f ′ (θ)
, for all n ≥ 0. We will consider two different gradient oracles.

Additive noise. The first oracle is the sum of the true gradient f ′ (θ) and an uncorrelated zero-mean noise that does not depend on θ. Consequently it is of the form

f ′ n (θ) = f ′ (θ) -ξ n , (A 4 )
where the noise process

ξ n is F n -measurable with E[ξ n |F n-1 ] = 0 and E[ ξ n
2 ] is finite. Furthermore we also assume that there exists τ ∈ R such that

E[ξ n ⊗ ξ n ] τ 2 Σ, (A 5 )
that is, the noise has a particular structure adapted to least-squares regression. For optimal results for unstructured noise, with convergence rate for the noise part in O(1/ √ n), see Lan (2012). Our oracle above with an additive noise which is independent of the current iterate corresponds to the first setting studied in stochastic approximation [START_REF] Robbins | A stochastic approxiation method[END_REF][START_REF] Duflo | Random Iterative Models[END_REF][START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF]. While used by [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF] as an artifact of proof, for least-squares regression, such an additive noise corresponds to the situation where the distribution of x is known so that the population covariance matrix is computable, but the distribution of the outputs (y n ) n∈N remains unknown and thus may be related to regression estimation with fixed design [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF]. This oracle is equal to

f ′ n (θ) = Σθ -y n x n . (4) 
and has thus a noise vector ξ n = y n x n -Ey n x n independent of θ. Assumption (A 5 ) will be satisfied, for example if the outputs are almost surely bounded because

E[ξ n ⊗ ξ n ] E[y 2 n x n ⊗ x n ] τ 2 Σ if y 2 n ≤ τ 2 almost surely.
But it will also be for data satisfying Assumption (A 2 ) since we will have

E[ξ n ⊗ ξ n ] E[y 2 n x n ⊗ x n ] = E[( θ * , x n + ε n ) 2 x n ⊗ x n ] 2E[ θ * , x n 2 x n ⊗ x n ] + 2σ 2 Σ 2(κ Σ 1/2 θ * 2 + σ 2 )Σ 2(4κE[y 2 n ] + σ 2 )Σ,
and thus Assumption (A 4 ) is satisfied with

τ 2 = 2(4κE[y 2 n ] + σ 2 ).
Stochastic noise ("multiplicative/additive"). This corresponds to:

f ′ n (θ) = ( x n , θ -y n )x n = (Σ + ζ n )(θ -θ * ) -ξ n , (5) 
with

ζ n = x n ⊗x n -Σ and ξ n = (y n -x n , θ * )x n = ε n x n .
This oracle corresponds to regular SGD, which is often referred to as the least-mean-square (LMS) algorithm for least-squares regression, where the noise comes from sampling a single pair of observations. It combines the additive noise ξ n of Assumption (A 4 ) and a multiplicative noise ζ n . This multiplicative noise makes this stochastic oracle harder to analyze which explains it is often approximated by an additive noise oracle. However it is the most widely used and most practical one. Note that for the oracle in Eq. ( 5), from Assumption (A 3 ), we have E[ξ n ⊗ ξ n ] σ 2 Σ; it has a similar form to Assumption (A 5 ), which is valid for the additive noise oracle from Assumption (A 4 ). We use different constants σ 2 and τ 2 to highlight the difference between these two oracles.

Averaged Stochastic Gradient Descent

In this section, we provide convergence bounds for regularized averaged stochastic gradient descent. The main novelty compared to the work of [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF] is (a) the presence of regularization, which will be useful when deriving tighter convergence rates in Section 5 and (b) a simpler more direct proof. We first consider the additive noise in Section 3.1 before considering the multiplicative/additive noise in Section 3.2.

Additive Noise

We study here the convergence of the averaged SGD recursion defined by Eq. (1) under the simple oracle from Assumption (A 4 ). For least-squares regression, it takes the form:

θ n = I -γΣ -γλI θ n-1 + γy n x n + λγθ 0 . (6) 
This is an easy adaptation of the work of Bach and Moulines (2013, Lemma 2) for the regularized case.

Lemma 1. Assume (A 4,5 ). Consider the recursion in Eq. ( 6) with any regularization parameter λ ∈ R + and any constant step-size γ(Σ + λI) I. Then

Ef ( θn ) -f (θ * ) ≤ λ + 1 γn 2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 + τ 2 tr Σ 2 (Σ + λI) -2 n . (7) 
We can make the following observations:

• The proof (see Appendix A) relies on the fact that θ n -θ * is obtainable in closed form since the cost function is quadratic and thus the recursions are linear, and follows from [START_REF] Polyak | Acceleration of stochastic approximation by averaging[END_REF].

• The constraint on the step-size γ is equivalent to γ(L + λ) 1 where L is the largest eigenvalue of Σ and we thus recover the usual step-size from deterministic gradient descent [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF].

• When n tends to infinity, the algorithm converges to the minimum of f (θ)+ λ 2 θ -θ 0 2 and our performance guarantee becomes λ 2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 . This is the standard "bias term" from regularized ridge regression [START_REF] Hsu | Random design analysis of ridge regression[END_REF] which we naturally recover here. The term τ 2 n tr Σ 2 (Σ + λI) -2 is usually referred to as the "variance term" [START_REF] Hsu | Random design analysis of ridge regression[END_REF], and is equal to τ 2 n times the quantity tr Σ 2 (Σ + λI) -2 , which is often called the degrees of freedom of the ridge regression problem [START_REF] Gu | Smoothing Spline ANOVA Models[END_REF].

• For finite n, the first term is the usual bias term which depends on the distance from the initial point θ 0 to the objective point θ * with an appropriate norm. It includes a regularization-based component which is function of λ 2 and optimizationbased component which depends on (γn) -2 . The regularization-based bias appears because the algorithm tends to minimize the regularized function instead of the true function f .

• Given Eq. ( 7), it is natural to set λγ = 1 n , and the two components of the bias term are exactly of the same order 4 γ 2 n 2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 . It corresponds up to a constant factor to the bias term of regularized least-squares [START_REF] Hsu | Random design analysis of ridge regression[END_REF], but it is achieved by an algorithm accessing only n stochastic gradients. Note that here as in the rest of the paper, we only prove results in the finite horizon setting, meaning that the number of samples is known in advance and the parameters γ, λ may be chosen as functions of n, but remain constant along the iterations (when λ or γ depend on n, our bounds only hold for the last iterate).

• Note that the bias term can also be bounded by 1 γn Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2 when only θ 0 -θ * is finite. See the proof in Appendix A.2 for details.

• The second term is the variance term. It depends on the noise in the gradient. When this one is not structured the variance turns to be also bounded by

γ tr Σ(Σ + λI) -1 E[ξ n ⊗ ξ n ] (see Appendix A.
3) and we recover for γ = O(1/ √ n), the usual rate of 1 √ n for SGD in the smooth case [START_REF] Shalev-Shwartz | Stochastic convex optimization[END_REF].

• Overall we get the same performance as the empirical risk minimizer with fixed design, but with an algorithm that performs a single pass over the data.

• When λ = 0 we recover Lemma 2 of [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF]. In this case the variance term τ 2 d n is optimal over all estimators in H [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF] even without computational limits, in the sense that no estimator that uses the same information can improve upon this rate.

Multiplicative/Additive Noise

When the general stochastic oracle in Eq. ( 5) is considered, the regularized LMS algorithm defined by Eq. (1) takes the form:

θ n = I -γx n ⊗ x n -γλI θ n-1 + γy n x n + λγθ 0 . (8) 
We have a very similar result with an additional corrective term (second line below) compared to Lemma 1.

Theorem 1. Assume (A 1,3 ). Consider the recursion in Eq. (8). For any regularization parameter λ ≤ R 2 /2 and for any constant step-size γ ≤ 1 2R 2 we have

Ef ( θn ) -f (θ * ) 3 2λ + 1 γn 2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 + 6σ 2 n + 1 tr Σ 2 (Σ + λI) -2 +3 (Σ + λI) -1/2 (θ 0 -θ * ) 2 tr(Σ(Σ + λI) -1 ) γ 2 (n + 1) 2 .
We can make the following remarks:

• The proof (see Appendix B) relies on a bias-variance decomposition, each term being treated separately. We adapt a proof technique from [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF] which considers the difference between the recursions in Eq. ( 8) and in Eq. ( 6).

• As in Lemma 1, the bias term can also be bounded by 1 γn Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2 and the variance term by γ tr[Σ(Σ + λI) -1 ξ n ⊗ ξ n ] (see proof in Appendices B.4 and B.5). This is useful in particular when considering unstructured noise.

• The variance term is the same than in the previous case. However there is a residual term that now appears when we go to the fully stochastic oracle (second line). This term will go to zero when γ tends to zero and can be compared to the corrective term which also appears when [START_REF] Hsu | Random design analysis of ridge regression[END_REF] go from fixed to random design. Nevertheless our bounds are more concise than theirs, make significantly fewer assumptions and rely on an efficient single-pass algorithm.

• In this setting, the step-size may not exceed 1/(2R 2 ), whereas with an additive noise in Lemma 1 the condition is γ ≤ 1/(L + λ), a quantity which can be much bigger than 1/(2R 2 ), as L is the spectral radius of Σ whereas R 2 is of the order of tr(Σ). Note that in practice, computing L is as hard as computing θ * so that the step-size γ ∝ 1/R 2 is a good practical choice.

• For λ = 0 we recover results from [START_REF] Défossez | Averaged least-mean-squares: bias-variance trade-offs and optimal sampling distributions[END_REF] with a non-asymptotic bound but we lose the advantage of having an asymptotic equivalent.

Accelerated Stochastic Averaged Gradient Descent

We study the convergence under the stochastic oracle from Assumption (A 4 ) of averaged accelerated stochastic gradient descent defined by Eq. (2) which can be rewritten for the quadratic function f as a second-order iterative system with constant coefficients:

θ n = I -γΣ -γλI θ n-1 + δ(θ n-1 -θ n-2 ) + γy n x n + γλθ 0 . ( 9 
)
Theorem 2. Assume (A 4,5 ). For any regularization parameter λ ∈ R + and for any constant step-size γ(Σ + λI) I, we have for any δ ∈ 1-

√ γλ 1+ √
γλ , 1 , for the recursion in Eq. ( 9):

Ef ( θn ) -f (θ * ) ≤ 2 λ + 36 γ(n + 1) 2 Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2 + 8τ 2 tr Σ 2 (Σ + λI) -2
n + 1 .

The numerical constants are partially artifacts of the proof (see Appendices C and E). Thanks to a wise use of tight inequalities, the bound is independent of δ and valid for all λ ∈ R + . This results in the simple following corollary for λ = 0, which corresponds to the particularly simple recursion (with averaging):

θ n = I -γΣ (2θ n-1 -θ n-2 ) + γy n x n . ( 10 
)
Corollary 1. Assume (A 4,5 ). For any constant step-size γΣ I, we have for δ = 1,

Ef ( θn ) -f (θ * ) ≤ 36 θ 0 -θ * 2 γ(n + 1) 2 + 8 τ 2 d n + 1 . ( 11 
)
We can make the following observations:

• The proof technique relies on direct moment computations in each eigensubspace obtained by O'Donoghue and Candès (2013) in the deterministic case. Indeed as Σ is a symmetric matrix, the space can be decomposed on an orthonormal eigenbasis of Σ, and the iterations are decoupled in such an eigenbasis. Although we only provide an upper-bound, this is in fact an equality plus other exponentially small terms as shown in the proof which relies on linear algebra, with difficulties arising from the fact that this second-order system can be expressed as a linear stochastic dynamical system with non-symmetric matrices. We only provide a result for additive noise.

• The first bound 1 γn 2 θ 0 -θ * 2 corresponds to the usual accelerated rate. It has been

shown by [START_REF] Nesterov | Introductory Lectures on Convex Optimization[END_REF] to be the optimal rate of convergence for optimizing a quadratic function with a first-order method that can access only to sequences of gradients when n ≤ d. We recover by averaging an algorithm dedicated to stronglyconvex function the traditional convergence rate for non-strongly convex functions.

Even if it seems surprising, the algorithm works also for λ = 0 and δ = 1 (see also simulations in Section 7).

• The second bound also matches the optimal statistical performance τ 2 d n described in the observations following Lemma 1. Accordingly this algorithm achieves joint bias/variance optimality (when measured in terms of τ 2 and θ 0 -θ * 2 ).

• We have the same rate of convergence for the bias than the regular Nesterov acceleration without averaging studied by [START_REF] Flammarion | From averaging to acceleration, there is only a step-size[END_REF], which corresponds to choosing δ n = 1 -2/n for all n. However if the problem is µ-strongly convex, this latter was shown to also converge at the linear rate O (1 -γµ) n and thus is adaptive to hidden strong-convexity (since the algorithm does not need to know µ to run). This explains that it ends up converging faster for quadratic function since for large n the convergence at rate 1/n 2 becomes slower than the one at rate (1 -γµ) n even for very small µ. This is confirmed in our experiments in Section 7.

Thanks to this adaptivity, we can also show using the same tools and considering its weighted average θn =

2 n(n+1) n k=0 kθ k that the bias term of Ef ( θn ) -f (θ * ) has a convergence rate of order λ 2 + 1 γ 2 (n+1) 4 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 without
any change in the variance term. This has to be compared to the bias of averaged SGD

λ+ 1 γ(n+1) 2 Σ 1/2 (Σ+λI) -1 (θ 0 -θ * ) 2 in
Section 3 and may lead to faster convergence for the bias in presence of hidden strong-convexity.

• Overall, the bias term is improved whereas the variance term is not degraded and acceleration is thus robust to noise in the gradients. Thereby, while second-order methods for optimizing quadratic functions in the singular case, such as conjugate gradient (Polyak, 1987, Section 6.1) are notoriously highly sensitive to noise, we are able to propose a version which is robust to stochastic noise.

• Note that when there is no assumption on the covariance of the noise we still have the variance bounded by γn 2 tr Σ(Σ + λI) -1 V ; setting γ = 1/n 3/2 and λ = 0 leads to the bound θ 0 -θ * 2

√ n + tr V √ n . We recover the usual rate for accelerated stochastic gradient in the non-strongly-convex case [START_REF] Xiao | Dual averaging methods for regularized stochastic learning and online optimization[END_REF]. When the value of the bias and the variance are known, we can achieve the optimal trade-off of Lan ( 2012

) R 2 θ 0 -θ * 2 n 2 + θ 0 -θ * √ tr V √ n for γ = min 1/R 2 , θ 0 -θ * √ tr V n 3/2 .

Tighter Convergence Rates

We have seen in Corollary 1 above that the averaged accelerated gradient algorithm matches the lower bounds τ 2 d/n and L n 2 θ 0 -θ * 2 for the prediction error. However the algorithm performs better in almost all cases except the worst-case scenarios corresponding to the lower bounds. For example the algorithm may still predict well when the dimension d is much bigger than n. Similarly the norm of the optimal predictor θ * 2 may be huge and the prediction still good, as gradients algorithms happen to be adaptive to the difficulty of the problem. In this section, we provide such a theoretical guarantee.

The following bound stands for the averaged accelerated algorithm. It extends previously known bounds in the kernel least-mean-squares setting [START_REF] Dieuleveut | Non-parametric stochastic approximation with large step sizes[END_REF].

Theorem 3. Assume (A 4,5 ); for any regularization parameter λ ∈ R + and for any constant step-size such that γ(Σ + λI) I we have for δ ∈ 1-

√ γλ 1+ √
γλ , 1 , for the recursion in Eq. ( 9):

Ef ( θn ) -f (θ * ) ≤ min r∈[0,1], b∈[0,1] 2 Σ r/2 (θ 0 -θ * ) 2 λ -r 36 γ(n + 1) 2 + λ + 8 τ 2 tr(Σ b )λ -b n + 1 .
The proof is straightforward by upper bounding the terms coming from regularization, depending on Σ(Σ + λI) -1 , by a power of λ times the considered quantities. More precisely, the quantity tr(Σ(Σ+λI) -1 ) can be seen as an effective dimension of the problem [START_REF] Gu | Smoothing Spline ANOVA Models[END_REF], and is upper bounded by λ

-b tr(Σ b ) for any b ∈ [0; 1]. Similarly, Σ 1/2 (Σ + λI) -1/2 θ * 2 can be upper bounded by λ -r Σ r/2 (θ 0 -θ * ) 2 . A detailed proof of these results is given in Appendix D.
In order to benefit from the acceleration, we choose λ = (γn 2 ) -1 . With such a choice we have the following corollary:

Corollary 2. Assume (A 4,5 ), for any constant step-size γ(Σ + λI) I, we have for λ = 1 γ(n+1) 2 and δ ∈ 1 -2 n+2 , 1 , for the recursion in Eq. ( 9):

Ef ( θn ) -f (θ * ) ≤ min r∈[0,1], b∈[0,1] 74 Σ r/2 (θ 0 -θ * ) 2 γ 1-r (n + 1) 2(1-r) + 8 τ 2 γ b tr(Σ b ) (n + 1) 1-2b .
We can make the following observations:

• The algorithm is independent of r and b, thus all the bounds for different values of (r, b) are valid. This is a strong property of the algorithm, which is indeed adaptative to the regularity and the effective dimension of the problem (once γ is chosen). In situations in which either d is larger than n or L θ 0 -θ * 2 is larger than n 2 , the algorithm can still enjoy good convergence properties, by adapting to the best values of b and r.

• For b = 0 we recover the variance term of Corollary 1, but for b > 0 and fast decays of eigenvalues of Σ, the bound may be much smaller; note that we lose in the dependency in n, but typically, for large d, this can be advantageous.

• For r = 0 we recover the bias term of Corollary 1 and for r = 1 (no assumption at all) the bias is bounded by Σ 1/2 θ * 2 ≤ 4R 2 , which is not going to zero. The smaller r is, the stronger the decrease of the bias with respect to n is (which is coherent with the fact that we have a stronger assumption). Moreover, r is only considered between 0 and 1: indeed, if r < 0, the constant (γΣ) r/2 (θ 0 -θ * ) is bigger than θ 0 -θ * , but the dependence on n cannot improve beyond (γn 2 ) -1 . This is a classical phenomenon called "saturation" [START_REF] Engl | Regularization of inverse problems[END_REF]. It is linked with the uniform averaging scheme: here, the bias term cannot forget the initial condition faster than n -2 .

• A similar result happens to hold, for averaged gradient descent, with λ = (γn) -1 :

Ef ( θn ) -f (θ * ) ≤ min r∈[-1,1], b∈[0,1] (18 + Res(b, r, n, γ)) Σ r/2 (θ 0 -θ * ) 2 γ 1-r (n + 1) (1-r) + 6 σ 2 γ b tr(Σ b ) (n + 1) 1-b ,( 12 
)
where Res(b, r, n, γ)) corresponds to a residual term, which is smaller than tr(Σ b )n b γ 1+b if r ≥ 0 and does not exist otherwise. The bias term's dependence on n is degraded, thus the "saturation" limit is logically pushed down to r = -1, which explains the [-1; 1] interval for r. The choice λ = (γn) -1 arises from Th. 1, in order to balance both components of the bias term λ + (γn) -1 . This result is proved in Appendix D.

• Considering a non-uniform averaging, as proposed as after Theorem 1 the min 0≤r≤1 in Th. 3 and Corollary 2 can be extended to min -1≤r≤1 . Indeed, considering a nonuniform averaging allows to have a faster decreasing bias, pushing the saturation limit observed below.

In finite dimension these bounds for the bias and the variance cannot be said to be optimal independently in any sense we are aware of. Indeed, in finite dimension, the asymptotic rate of convergence for the bias (respectively the variance), when n goes to ∞ is governed by

L θ 0 -θ * 2 /n 2 (resp. τ 2 d/n).
However, we show in the next section that in the setting of non parametric learning in kernel spaces, these bounds lead to the optimal statistical rate of convergence among all estimators (independently of their computational cost). Moving to the infinite-dimensional setting allows to characterize the optimality of the bounds by showing that they achieve the statistical rate when optimizing the bias/variance tradeoff in Corollary 2.

Rates of Convergence for Kernel Regression

Computational convergence rates give the speed at which an objective function can decrease depending on the amount of computation which is allowed. Typically, they show how the error decreases with respect to the number of iterations, as in Theorem 1. Statistical rates, however, show how close one can get to some objective given some amount of information which is provided. Statistical rates do not depend on some chosen algorithm: these bounds do not involve computation, on the contrary, they state the best performance that no algorithm can beat, given the information, and without computational limits. In particular, any lower bound on the statistical rate implies a lower bound on the computational rates, if each iteration corresponds to access to some new information, here pairs of observations. Interestingly, many algorithms these past few years have proved to match, with minimal computations (in general one pass through the data), the statistical rate, emphasizing the importance of carrying together optimization and approximation in large scale learning, as described by [START_REF] Bottou | The tradeoffs of large scale learning[END_REF]. In a similar flavor, it also appears that regularization can be accomplished through early stopping [START_REF] Yao | On early stopping in gradient descent learning[END_REF][START_REF] Rudi | Less is More: Nyström Computational Regularization[END_REF], highlighting this interplay between computation and statistics.

To characterize the optimality of our bounds, we will show that accelerated-SGD matches the statistical lower bound in the context of non-parametric estimation. Even if it may be computationally hard or impossible to implement accelerated-SGD with additive noise in the kernel-based framework below (see remarks following Theorem 5), it leads to the optimal statistical rate for a broader class of problems than averaged-SGD, showing that for a wider set of trade-offs, acceleration is optimal.

A natural extension of the finite-dimensional analysis is the non-parametric setting, especially with reproducing kernel Hilbert spaces. In the setting of non-parametric regression, we consider a probability space X × R with probability distribution ρ, and assume that we are given an i.i.d. sample (x i , y i ) i=1,...,n ∼ ρ ⊗n , and denote by ρ X the marginal distribution of x n in X; the aim of non-parametric least-squares regression is to find a function g : X → R, which minimizes the expected risk:

f (g) = E ρ [(g(x n ) -y n ) 2 ]. ( 13 
)
The optimal function g is the conditional expectation g(x) = E ρ (y n |x). In the kernel regression setting, we consider as hypothesis space a reproducing kernel Hilbert space [START_REF] Aronszajn | Theory of reproducing kernels[END_REF][START_REF] Steinwart | Support Vector Machines[END_REF][START_REF] Schölkopf | Learning with Kernels[END_REF] associated with a kernel function K. The space H is a subspace of the space of squared integrable functions L2 ρ X . We look for a function g H which satisfies: f (g H ) = inf g∈H f (g), and g H belongs to the closure H of H (meaning that there exists a sequence of function

g n ∈ H such that g n -g H L 2 ρ X → 0)
. When H is dense, the minimum is attained for the regression function defined above. This function however is not in H in general. Moreover there exists an operator Σ : H → H, which extends the finite-dimensional population covariance matrix, that will allow the characterization of the smoothness of g H . This operator is known to be trace class when

E ρ X [K(x n , x n )] < ∞.
Data points x i are mapped into the RKHS, via the feature map: x → K x , where K x : H → R is a function in the RKHS, such that K x : y → K(x, y). The reproducing property 2 allows to express the minimization problem (13) as a least-squares linear regression problem: for

any g ∈ H, f (g) = E ρ [( g, K xn H -y n ) 2 ]
, and can thus be seen as an extension to the infinite-dimensional setting of linear least-squares regression.

However, in such a setting, both quantities Σ r/2 θ * H and tr(Σ b ) may exist or not. It thus arises as a natural assumption to consider the smaller r ∈ [-1; 1] and the smaller b ∈ [0; 1] such that

• Σ r/2 θ * H < ∞ (meaning that Σ r/2 θ * ∈ H), (A 6 ) • tr(Σ b ) < ∞. (A 7 )
The quantities considered in Sections 2 and 5 are the natural finite-dimensional twins of these assumptions. However in infinite dimension a quantity may exist or not and it is thus an assumption to consider its existence, whereas it can only be characterized by its value, big or small, in finite dimension.

In the last decade, De [START_REF] Vito | Model selection for regularized least-squares algorithm in learning theory[END_REF]; Cucker and Smale ( 2002) studied non-parametric least-squares regression in the RKHS framework. These works were extended to derive rates of convergence depending on assumption (A 6 ): [START_REF] Ying | Online gradient descent learning algorithms[END_REF] studied unregularized stochastic gradient descent and derived asymptotic rate of convergence O(n -1-r 2-r ), for -1 ≤ r ≤ 1; [START_REF] Zhang | Solving large scale linear prediction problems using stochastic gradient descent algorithms[END_REF] studies stochastic gradient descent with averaging, deriving similar rates of convergence for 0 ≤ r ≤ 1; whereas [START_REF] Tarrès | Online learning as stochastic approximation of regularization paths[END_REF] give similar performance for -1 ≤ r ≤ 0. This rate is optimal without assumption on the spectrum of the covariance matrix, but comes from a worst-case analysis: we show in the next paragraphs that we can derive a tighter and optimal rate for both averaged-SGD (recovering results from [START_REF] Dieuleveut | Non-parametric stochastic approximation with large step sizes[END_REF]) and accelerated-SGD, for a larger class of kernels for the latter.

We will first describe results for averaged-SGD, then increase the validity region of these rates (which depends on r, b) using averaged accelerated SGD. We show that the derived rates match statistical rates for our setting and thus our algorithms reach the optimal prediction performance for certain b and r.

Averaged SGD

We have the following result, proved in Appendix D and following from Theorem 1: for some fixed b, r, we choose the best step-size γ, that optimizes the bias-variance trade-off, while still satisfying the constraint γ ≤ 1/(2R 2 ). We get a result for the stochastic oracle (multiplicative/additive noise).

Theorem 4. With λ = 1 γn , we have, if r ≤ b, under Assumptions (A 1,3,6,7 ) and the stochastic oracle Eq. ( 5), for any constant step-size γ ≤ 1 2R 2 , with γ ∝ n -b+r b+1-r , for the recursion in Eq. ( 8):

Ef ( θn ) -f (θ * ) ≤ (27 + o(1)) Σ r/2 (θ 0 -θ * ) 2 + 6σ 2 tr(Σ b ) n -1-r b+1-r .
We can make the following remarks:

• The term o(1) stands for a quantity which is decreasing to 0 when n → ∞. More specifically, this constant is smaller than 3 tr(Σ b ) divided by n χ , where χ is bigger than 0 (see Appendix D). The result comes from Eq. ( 12), with the choice of the optimal step-size.

• We recover results from [START_REF] Dieuleveut | Non-parametric stochastic approximation with large step sizes[END_REF], but with a simpler analysis resulting from the consideration of the regularized version of the problem associated with a choice of λ. However, we only recover rates in the finite horizon setting.

• This result shows that we get the optimal rate of convergence under Assumptions (A 6,7 ), for r ≤ b. This point will be discussed in more details after Theorem 5.

We now turn to the averaged accelerated SGD algorithm. We prove that it enjoys the optimal rate of convergence for a larger class of problems, but only for the additive noise which corresponds to knowing the distribution of x n .

Accelerated SGD

Similarly, choosing the best step-size γ, it comes from Theorem 3, that in the RKHS setting, under additional Assumptions (A 6,7 ), we have for the the averaged accelerated algorithm the following result:

Theorem 5. With λ = 1 γn 2 , we have, if r ≤ b + 1/2, under Assumptions (A 4,5,6,7
), for any constant step-size γ ≤ 1

L+λ , with γ ∝ n -2b+2r-1 b+1-r , for the recursion in Eq. ( 9):

Ef ( θn ) -f (θ * ) ≤ 74 Σ r/2 (θ 0 -θ * ) 2 + 8τ 2 tr(Σ b ) n -1-r b+1-r .
We can make the following remarks:

• The rate 1-r b+1-r is always between 0 and 1, and improves when our assumptions gets stronger (r getting smaller, b getting smaller). Ultimately, with b → 0, and r → -1, we recover the finite-dimensional n -1 rate.

• We can achieve this optimal rate when r ≤ b + 1/2. Beyond, if r > b + 1/2, the rate is only n -2(1-r) . Indeed, the bias term cannot decrease faster than n -2(1-r) , as γ is compelled to be upper bounded.

• The same phenomenon appears in the un-accelerated averaged situation, as shown by Theorem 4, but the critical value was then r ≤ b. There is thus a region (precisely b < r ≤ b + 1/2) in which only the accelerated algorithm gets the optimal rate of convergence. Note that we increase the optimality region towards optimization problems which are more ill-conditioned, naturally benefiting from acceleration.

• This algorithm cannot be computed in practice (at least with computational limits). Indeed, without any further assumption on the kernel K, it is not possible to compute images of vectors by the covariance operator Σ in the RKHS. However, as explained in the following remark, this is enough to show optimality of our algorithm.

Note that the easy computability is a great advantage of the multiplicative/additive noise variant of the algorithms, for which the current point θ n can always be expressed as a finite sum of features θ n = n i=1 α i K x i , with α i ∈ R, leading to a tractable algorithm. An accelerated variant of SGD naturally arises from our algorithm, when considering this stochastic oracle from Eq. ( 5). Such a variant can be implemented but does not behave similarly for large step sizes, say, γ ≃ 1/(2R 2 ). It is an open problem to prove convergence results for averaged accelerated gradient under this multiplicative/additive noise.

• These rates happen to be optimal from a statistical perspective, meaning that no algorithm which is given access to the sample points and the distribution of x n can perform better for all functions that satisfy assumption (A 7 ), for a kernel satisfying (A 6 ). Indeed it is equivalent to assuming that the function lives in some ellipsoid in the space of squared integrable functions. Note that the statistical minimization problem (and thus the lower bound) does not depend on the kernel, and is valid without computational limits. The case of learning with kernels is studied by [START_REF] Caponnetto | Optimal rates for the regularized least-squares algorithm[END_REF] which shows these minimax convergence rates under (A 6,7 ), under assumption that -1 ≤ r ≤ 0 (but state that it can be easily extended to 0 ≤ r ≤ 1). They do not assume knowledge of the distribution of the inputs; however, [START_REF] Massart | Concentration Inequalities and Model Selection[END_REF] and [START_REF] Tsybakov | Introduction to Nonparametric Estimation[END_REF] discuss optimal rates on ellipsoids, and [START_REF] Györfi | A distribution-free theory of nonparametric regression[END_REF] proves similar results for certain class of functions under a known distribution for the input data, showing that the knowledge of the distribution does not make any difference. This minimax statistical rate stands without computational limits and is thus valid for both algorithms (additive noise that corresponds to knowing Σ, and multiplicative/additive noise). The optimal tradeoff is derived for an extended region of b, r (namely r ≤ b + 1/2 instead of r ≤ b) in the accelerated case which shows the improvement upon non-accelerated averaged SGD.

• The choice of the optimal γ is difficult in practice, as the parameters b, r are unknown, and this remains an open problem (see, e.g., [START_REF] Birgé | An alternative point of view on Lepski's method[END_REF], for some methods for nonparametric regression).

Experiments

We illustrate now our theoretical results on synthetic examples. For d = 25 we consider normally distributed inputs x n with random covariance matrix Σ which has eigenvalues 1/i 3 , for i = 1, . . . , d, and random optimum θ * and starting point θ 0 such that θ 0 -θ * = 1. The outputs y n are generated from a linear function with homoscedastic noise with unit signal to noise-ratio (σ 2 = 1), we take R 2 = tr Σ the average radius of the data and a step-size γ = 1/R 2 and λ = 0. The additive noise oracle is used. We show results averaged over 10 replications.

We compare the performance of averaged SGD (AvSGD), AccSGD (usual Nesterov acceleration for convex functions) and our novel averaged accelerated SGD from Section 4 (AvAccSGD, which is not the averaging of AccSGD) on two different problems: one deterministic ( θ 0 -θ * = 1, σ 2 = 0) which will illustrate how the bias term behaves, and one purely stochastic ( θ 0 -θ * = 0, σ 2 = 1) which will illustrate how the variance term behaves. For the bias (left plot of Figure 1), AvSGD converges at speed O(1/n), while AvAccSGD and AccSGD converge both at speed O(1/n 2 ). However, as mentioned in the observations following Corollary 1, AccSGD takes advantage of the hidden strong convexity of the quadratic function and starts converging linearly at the end. For the variance (right plot of Figure 1), AccSGD is not converging to the optimum and keeps oscillating whereas AvSGD and AvAccSGD both converge to the optimum at a speed O(1/n). However AvSGD remains slightly faster in the beginning.

Note that for small n, or when the bias L θ 0 -θ * 2 /n 2 is much bigger than the variance σ 2 d/n, the bias may have a stronger effect, although asymptotically, the variance always dominates. It is thus essential to have an algorithm which is optimal in both regimes, what is achieved by AvAccSGD.

Conclusion

In this paper, we showed that stochastic averaged accelerated gradient descent was robust to structured noise in the gradients present in least-squares regression. Beyond being the first algorithm which is jointly optimal in terms of both bias and finite-dimensional variance, it is also adapted to finer assumptions such as fast decays of the covariance matrices or optimal predictors with large norms.

Our current analysis is performed for least-squares regression. While it could be directly extended to smooth losses through efficient online Newton methods [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF], an extension to all smooth or self-concordant-like functions [START_REF] Bach | Adaptivity of averaged stochastic gradient descent to local strong convexity for logistic regression[END_REF] would widen its applicability. Moreover, our accelerated gradient analysis is performed for additive noise (i.e., for least-squares regression, with knowledge of the population covariance matrix) and it would be interesting to study the robustness of our results in the context of least-mean squares. Finally, our analysis relies on single observations per iteration and could be made finer by using mini-batches [START_REF] Cotter | Better mini-batch algorithms via accelerated gradient methods[END_REF][START_REF] Dekel | Optimal distributed online prediction using mini-batches[END_REF], which should not change the variance term but could impact the bias term.

A Proof of Section 3 A.1 Proof of Lemma 1

We proof here Lemma 1 which is the extension of Lemma 2 of [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF] for the regularized case. The proof technique relies on the fact that recursions in Eq. ( 6) are linear since the cost function is quadratic which allows us to obtain θ n -θ * in closed form.

For any regularization parameter λ ∈ R + and any constant step-size γ(Σ + λI) I we may rewrite the regularized stochastic gradient recursion in Eq. ( 6) as:

θ n -θ * = I -γΣ -γλI (θ n-1 -θ * ) + γξ n + λγ(θ 0 -θ * ).
We thus get for n ≥ 1 the expansion

θ n -θ * = (I -γΣ -γλI) n (θ 0 -θ * ) + γ n k=1 (I -γΣ -γλI) n-k ξ k +γλ n k=1 (I -γΣ -γλI) n-k (θ 0 -θ * ) = (I -γΣ -γλI) n (θ 0 -θ * ) + γ n k=1 (I -γΣ -γλI) n-k ξ k +λ I -(I -γΣ -γλI) n (Σ + λI) -1 (θ 0 -θ * ) = (I -γΣ -γλI) n [I -λ(Σ + λI) -1 ](θ 0 -θ * ) + γ n k=1 (I -γΣ -γλI) n-k ξ k +λ(Σ + λI) -1 (θ 0 -θ * ).
We then have using the definition of the average

n( θn-1 -θ * ) = n-1 j=0 (θ j -θ * ) = n-1 j=0 (I -γΣ -γλI) j [I -λ(Σ + λI) -1 ](θ 0 -θ * ) + γ j-k j=0 n k=1 (I -γΣ -γλI) n-k ξ k +nλ(Σ + λI) -1 (θ 0 -θ * ).
For which we will compute the two sums separately

n-1 j=0 (I -γΣ -γλI) j [I -λ(Σ + λI) -1 ](θ 0 -θ * ) = 1 γ I -(I -γΣ -γλI) n (Σ + λI) -1 [I -λ(Σ + λI) -1 ](θ 0 -θ * ),
and

γ n-1 j=0 n k=1 (I -γΣ -γλI) j-k ξ k = γ n k=1 n-1 j=k (I -γΣ -γλI) j-k ξ k = γ n k=1 n-1-k j=0 (I -γΣ -γλI) j ξ k = n k=1 I -(I -γΣ -γλI) n-k (Σ + λI) -1 ξ k .
Gathering the three terms together, we thus have

n( θn-1 -θ * ) = 1 γ I -(I -γΣ -γλI) n (Σ + λI) -1 [I -λ(Σ + λI) -1 ](θ 0 -θ * ) + n k=1 I -(I -γΣ -γλI) n-k (Σ + λI) -1 ξ k + nλ(Σ + λI) -1 (θ 0 -θ * ) = 1 γ I -(I -γΣ -γλI) n [I -λ(Σ + λI) -1 ] + nλI (Σ + λI) -1 (θ 0 -θ * ) + n k=1 I -(I -γΣ -γλI) n-k (Σ + λI) -1 ξ k .
Using standard martingale square moment inequalities which amount to consider ξ i , i = 1, • • • , n independent, the variance of the sum is the sum of variances and we have for

V = Eξ n ⊗ ξ n n 2 E Σ 1/2 ( θn-1 -θ * ) 2 = n k=1 tr I -(I -γΣ -γλI) n-k 2 Σ(Σ + λI) -2 V + 1 γ I -(I -γΣ -γλI) n [I -λ(Σ + λI) -1 ] + nλI Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 . (14) 
Since all the matrices in this equality are symmetric positive-definite we are allowed to bound

1 γ I -(I -γΣ -γλI) n [I -λ(Σ + λI) -1 ] + nλI 1 γ + nλ I (15) I -(I -γΣ -γλI) n-k 2 I.
This concludes the proof of the Lemma 1

E Σ 1/2 ( θn-1 -θ * ) 2 ≤ 1 nγ + λ 2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 + 1 n tr Σ(Σ + λI) -2 V. (16)
A.2 Proof when only θ 0θ * is finite

Unfortunately Σ -1 (θ 0 -θ * ) may not be finite. However we can use that for all u ∈ [0, 1] we have 1-(1-u) n nu ≤ 1 3 and have therefore the bound

1 γ I -(I -γΣ -γλI) n [I -λ(Σ + λI) -1 ] + nλI [Σ + λI] -1 1 γ I -(I -γΣ -γλI) n + nλI [Σ + λI] -1 1 γ I -(I -γΣ -γλI) n [Σ + λI] -1 + nλ[Σ + λI] -1 I + nI.
Combining with Eq. ( 15) we have

1 γ I -(I -γΣ -γλI) n [I -λ(Σ + λI) -1 ] + nλI Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 ≤ (n + 1) 1 γ + nλ Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2
which implies that

E Σ 1/2 ( θn-1 -θ * ) 2 ≤ 2 1 nγ + λ Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2 + 1 n tr Σ(Σ + λI) -2 V. ( 17 
)
which is interesting when only θ 0 -θ * is finite.

A.3 Proof when the noise is not structured

The bound in Eq. ( 16) becomes less interesting when the noise is not structured. However using the same technique we have that I -(I -γΣ -γλI) n-k 2 (Σ + λI) -1 (n -k)γI and we get the following upper-bound on the variance

n k=1 tr I -(I -γΣ -γλI) n-k 2 Σ(Σ + λI) -2 V ≤ γ n k=1 (n -k) tr Σ(Σ + λI) -1 V ≤ γ n(n + 1) 2 tr Σ(Σ + λI) -1 V.
Therefore we get

E Σ 1/2 ( θn-1 -θ * ) 2 ≤ 1 nγ + λ 2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 + γ tr Σ(Σ + λI) -1 V, (18) 
which is meaningful when the noise is not structured.

3 since 1-(1-u) n u = n k=0 (1 -u) k ≤ n

B Proof of Theorem 1

In this section, we will prove Theorem 1. The proof relies on a decomposition of the error as the sum of three main terms which will be studied separately. We state decomposition in Section B.1 then prove upper bounds for the different terms in Sections B.2 and B.3.

B.1 Expansion of the recursion

We may rewrite the regularized stochastic gradient recursion as:

θ n = I -γx n ⊗ x n -γλI θ n-1 + γε n x n + γ x n , θ * x n + λγθ 0 θ n -θ * = I -γx n ⊗ x n -γλI (θ n-1 -θ * ) + γε n x n + λγ(θ 0 -θ * ).
For i k, let

M (i, k) = I -γx i ⊗ x i -γλI • • • I -γx k ⊗ x k -γλI
be an operator from H to H. We have the expansion

θ n -θ * = M (n, 1)(θ 0 -θ * ) + γ n k=1 M (n, k + 1)ε k x k + γ n k=1 M (n, k + 1)λ(θ 0 -θ * ).
Our goal is to study these three terms separately and bound Σ 1/2 ( θn -θ * ) for each of them.

B.2 Regularization-based bias term

This is the term: θ n -θ * = γ n k=1 M (n, k +1)λ(θ 0 -θ * ), which corresponds to the recursion

θ n -θ * = I -γx n ⊗ x n -γλI (θ n-1 -θ * ) + λγ(θ 0 -θ * ), (19) 
initialized with θ 0 = θ * , and no noise.

Following the proof technique of [START_REF] Bach | Non-strongly-convex smooth stochastic approximation with convergence rate O(1/n)[END_REF], we are going to consider a related recursion by replacing in Equation ( 19) the operator x n ⊗ x n by its expectation Σ. Thus, we consider η n defined as

η n -θ * = γ n k=1 (I -γΣ -λγI) n-k λ(θ 0 -θ * ),
which satisfies the recursion (with initialization η 0 = θ * ) and

η n -θ * = I -γΣ -λγI (η n-1 -θ * ) + λγ(θ 0 -θ * ).
In order to bound Σ 1/2 (θ n -θ * ) , we will independently bound Σ 1/2 (η n -θ * ) and Σ 1/2 (θ n -η n ) using Minkowski's inequality.

Bounding Σ 1/2 (θ n -η n ) . We have θ 0 -η 0 = 0, and

θ n -η n = I -γx n ⊗ x n -λγI (θ n-1 -η n-1 ) + γ Σ -x n ⊗ x n (η n-1 -θ * ).
We can now bound the recursion for θ n -η n as follows, using standard online learning proofs [START_REF] Nemirovski | Robust stochastic approximation approach to stochastic programming[END_REF]:

θ n -η n 2 θ n-1 -η n-1 2 -2γ θ n-1 -η n-1 , (x n ⊗ x n + λI)(θ n-1 -η n-1 ) +2γ θ n-1 -η n-1 , Σ -x n ⊗ x n (η n-1 -θ * ) +γ 2 x n ⊗ x n + λI (θ n-1 -η n-1 ) -Σ -x n ⊗ x n (η n-1 -θ * ) 2 .
By taking conditional expectations given F n-1 , we get, using first the fact that E(Σx n ⊗ x n |F n-1 ) = 0 and the inequality (a + b) 2 ≤ 2(a 2 + b 2 ), then developing and using

E[(x n ⊗ x n ) 2 ] ≤ R 2 Σ, which is assumption A 1 . E θ n -η n 2 |F n-1 θ n-1 -η n-1 2 -2γ θ n-1 -η n-1 , (Σ + λI)(θ n-1 -η n-1 ) +2γ 2 E x n ⊗ x n + λI (θ n-1 -η n-1 ) 2 |F n-1 +2γ 2 E Σ -x n ⊗ x n (η n-1 -θ * ) 2 |F n-1 θ n-1 -η n-1 2 -2γ θ n-1 -η n-1 , (Σ + λI)(θ n-1 -η n-1 ) +2γ 2 θ n-1 -η n-1 , (R 2 Σ + λ 2 I + 2λΣ)(θ n-1 -η n-1 ) +2γ 2 R 2 η n-1 -θ * , Σ θ n-1 -η n-1 2 -2γ 1 -γ(R 2 + 2λ) θ n-1 -η n-1 , Σ(θ n-1 -η n-1 ) +2γ 2 R 2 η n-1 -θ * , Σ(η n-1 -θ * ) .
This leads by taking full expectations and moving terms to

E θ n-1 -η n-1 , Σ(θ n-1 -η n-1 ) 1 2γ 1 -γ(R 2 + 2λ) E θ n-1 -η n-1 2 -E θ n -η n 2 + γR 2 1 -γ(R 2 + 2λ) η n-1 -θ * , Σ(η n-1 -θ * ) . Thus, if γ(R 2 + 2λ) 1 2 E θ n-1 -η n-1 , Σ(θ n-1 -η n-1 ) 1 γ E θ n-1 -η n-1 2 -E θ n -η n 2 +2γR 2 E η n-1 -θ * , Σ(η n-1 -θ * ) .
This leads to, summing and using initial conditions θ 0 -η 0 = 0, then using convexity to upper bound θn -ηn , Σ( θn

-ηn ) ≤ 1 n+1 n k=0 θ n -η n , Σ(θ n -η n ) , E θn -ηn , Σ( θn -ηn ) 2γR 2 n + 1 n k=0 η k -θ * , Σ(η k -θ * ) .
Bounding Σ 1/2 (η n -θ * ) . Moreover we have:

η n -θ * = λ(Σ + λI) -1 (θ 0 -θ * ) -(I -γΣ -λγI) n λ(Σ + λI) -1 (θ 0 -θ * ) ηn -θ * = λ(Σ + λI) -1 (θ 0 -θ * ) - 1 n + 1 n k=0 (I -γΣ -λγI) k λ(Σ + λI) -1 (θ 0 -θ * ) = λ(Σ + λI) -1 (θ 0 -θ * ) - 1 n + 1 γ -1 (Σ + λI) -1 I -(I -γΣ -λγI) n+1 λ(Σ + λI) -1 (θ 0 -θ * ) .
This leads using Minkowski inequality to

E Σ 1/2 (η n -θ * ) 2 1/2 λΣ 1/2 (Σ + λI) -1 (θ 0 -θ * ) E Σ 1/2 (η n -θ * ) 2 1/2 λΣ 1/2 (Σ + λI) -1 (θ 0 -θ * ) .
Thus this part is such that

E Σ 1/2 ( θn -θ * ) 2 1/2 λΣ 1/2 (Σ + λI) -1 (θ 0 -θ * ) + 2γR 2 λΣ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 1/2 λΣ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 1 + 2γR 2 ,
that gives the first bound on the regularization-based bias

E Σ 1/2 ( θn -θ * ) 2 λΣ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 1 + 2γR 2 2 . ( 20 
)

B.3 Expansion without the regularization term

We will follow here the outline of the proof of [START_REF] Györfi | On the averaged stochastic approximation for linear regression[END_REF] which considers a full expansion of the function value Σ 1/2 ( θn -θ * ) 2 . This corresponds to

θ n -θ * = M (n, 1)(θ 0 -θ * ) -γ n k=1 M (n, k + 1)ε k x k .
We have

E n i=0 n j=0 θ i -θ * , Σ(θ j -θ * ) = E n i=0 θ i -θ * , Σ(θ i -θ * ) + 2E n-1 i=0 n j=i+1 θ i -θ * , Σ(θ j -θ * ) .
Moreover,

E n-1 i=0 n j=i+1 θ i -θ * , Σ(θ j -θ * ) = E n-1 i=0 n j=i+1 θ i -θ * , Σ M (j, i + 1)(θ i -θ * ) - j k=i+1 M (j, k + 1)γε k x k = E n-1 i=0 n j=i+1 θ i -θ * , ΣM (j, i + 1)(θ i -θ * ) because ε k x k and θ i are independent, = E n-1 i=0 n j=i+1 θ i -θ * , Σ(I -γΣ -γλI) j-i (θ i -θ * ) because M (j, i + 1) and θ i are independent, = E n-1 i=0 θ i -θ * , γ -1 Σ(Σ + λI) -1 (I -γΣ -γλI) -(I -γΣ -γλI) n-i+1 (θ i -θ * ) E n i=0 θ i -θ * , γ -1 Σ(Σ + λI) -1 (I -γΣ -γλI)(θ i -θ * ) using (Σ + λI) I, = γ -1 E n i=0 θ i -θ * , Σ(Σ + λI) -1 (θ i -θ * ) -E n i=0 θ i -θ * , Σ(θ i -θ * ) .
We thus simply need to bound γ

-1 E n i=0 θ i -θ * , Σ(Σ + λI) -1 (θ i -θ * ) , to get a bound on n 2 E Σ 1/2 ( θn -θ * ) 2 .
Recursion on operators. We have:

E M (i, k)Σ(Σ + λI) -1 M (i, k) * = E M (i, k + 1) I -γϕ(x k ) ⊗ ϕ(x k ) -γλI Σ(Σ + λI) -1 I -γϕ(x k ) ⊗ ϕ(x k ) -γλI M (i, k + 1) * = E M (i, k + 1) Σ(Σ + λI) -1 -2γΣ + γ 2 ϕ(x k ) ⊗ ϕ(x k ) +λI Σ(Σ + λI) -1 ϕ(x k ) ⊗ ϕ(x k ) + λI M (i, k + 1) * E M (i, k + 1) Σ(Σ + λI) -1 -2γΣ +γ 2 (R 2 + 2λ)Σ M (i, k + 1) * = E M (i, k + 1)Σ(Σ + λI) -1 M (i, k + 1) * -γ(2 -γ(R 2 + 2λ))E M (i, k + 1)ΣM (i, k + 1) * , which leads to E M (i, k + 1)ΣM (i, k + 1) * 1 γ(2 -γ(R 2 + 2λ)) E M (i, k + 1)Σ(Σ + λI) -1 M (i, k + 1) * -E M (i, k)Σ(Σ + λI) -1 M (i, k) * . ( 21 
)
Using the operator T on matrices defined below, this corresponds to showing (I -γT ) Σ(Σ + λI) Σ(Σ + λI) -γΣ.

Noise term. For θ 0 -θ * = 0, we have:

E θ i -θ * , Σ(Σ + λI) -1 (θ i -θ * ) = γ 2 E i k=1 i j=1 ε j x * j M (i, j + 1) * Σ(Σ + λI) -1 M (i, k + 1)ε k x k by expanding all terms, = γ 2 E i k=1 ε k x * k M (i, k + 1) * Σ(Σ + λI) -1 M (i, k + 1)ε k x k using independence, = γ 2 tr i k=1 Eε 2 k x k x * k EM (i, k + 1) * Σ(Σ + λI) -1 M (i, k + 1) γ 2 σ 2 tr i k=1
EM (i, k + 1)ΣM (i, k + 1) * Σ(Σ + λI) -1 using our assumption regarding the noise.

Using the recurrence between operators

E θ i -θ * , Σ(Σ + λI) -1 (θ i -θ * ) γσ 2 2 -γ(R 2 + 2λ) tr i k=1 E M (i, k + 1)Σ(Σ + λI) -1 M (i, k + 1) * Σ(Σ + λI) -1 -E M (i, k)Σ(Σ + λI) -1 M (i, k) * Σ(Σ + λI) -1 γσ 2 2 -γ(R 2 + 2λ) tr E M (i, i + 1)Σ(Σ + λI) -1 M (i, i + 1) * Σ(Σ + λI) -1 -E M (i, 1)Σ(Σ + λI) -1 M (i, 1) * Σ(Σ + λI) -1 by summing, γσ 2 2 -γ(R 2 + 2λ) tr Σ 2 (Σ + λI) -2 .
This implies that for the noise process

E Σ 1/2 ( θn -θ * ) 2 σ 2 n + 1 tr Σ 2 (Σ + λI) -2 1 1 -γ(R 2 /2 + λ) .
Note that when γ tends to zero, we recover the optimal variance term.

Noiseless term. Without noise, we then need to bound:

γ -1 E n i=0 θ i -θ * , Σ(Σ + λI) -1 (θ i -θ * ) , with θ i -θ * = M (i, 1)(θ 0 -θ * ), that is γ -1 E n i=0 tr M (i, 1) * Σ(Σ + λI) -1 M (i, 1)(θ 0 -θ * )(θ 0 -θ * ) * .
We follow here the proof of [START_REF] Défossez | Averaged least-mean-squares: bias-variance trade-offs and optimal sampling distributions[END_REF] and consider the operator T from symmetric matrices to symmetric matrices defined as

T A = (Σ + λI)A + A(Σ + λI) -γE (x n ⊗ x n + λI)A(x n ⊗ x n + λI) .
of the form T A = (Σ + λI)A + (Σ + λI)A -γSA.

The operator S is self-adjoint and positive. Moreover:

A, SA = E tr A(x n ⊗ x n + λI)A(x n ⊗ x n + λI) = tr 2A 2 λΣ + λ 2 A 2 + E tr x n , Ax n 2 tr 2A 2 λΣ + λ 2 A 2 + E tr x n 2 x n , A 2 using Cauchy-Schwarz inequality, tr 2A 2 λΣ + λ 2 A 2 + R 2 tr ΣA 2 (R 2 + 2λ) tr Σ + λI]A 2 .
We have for any symmetric matrix A:

EM (i, 1) * AM (i, 1) = (I -γT ) i A.
Thus,

γ -1 E n i=0 tr M (i, 1) * Σ(Σ + λI) -1 M (i, 1)(θ 0 -θ * )(θ 0 -θ * ) * = γ -1 E n i=0 (I -γT ) i A, E 0 with E 0 = (θ 0 -θ * )(θ 0 -θ * ) * and A = Σ(Σ + λI) -1 . This leads to γ -1 E γ -1 T -1 (I -(I -γT ) n+1 )A, E 0 ,
where •, • denote the dot-product between self-adjoint operators.

The sum is less than its limit for n → ∞, and thus, we can get rid of the term (I -γT ) n+1 , and we need to bound

γ -2 M, E 0 = γ -2 T -1 (Σ(Σ + λI) -1 ), E 0 , with M := T -1 Σ(Σ + λI) -1 , i.e., such that Σ(Σ + λI) -1 = (Σ + λI)M + M (Σ + λI) -γE(x n ⊗ x n + λI)M (x n ⊗ x n + λI) = (Σ + λI)M + M (Σ + λI) -γSM. ( 22 
)
So that :

M = (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 Σ(Σ + λI) -1 + γ (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 SM = 1 2 Σ(Σ + λI) -2 + γ (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 SM.
The operator (Σ + λI) ⊗ I + I ⊗ (Σ + λI) is self adjoint, and so is its inverse, thus:

γ -2 M, E 0 = γ -2 1 2 Σ(Σ + λI) -2 + γ (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 SM, E 0 = 1 2 γ -2 Σ(Σ + λI) -2 , E 0 + γ -1 SM, (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 E 0 = 1 2 γ -2 tr(Σ(Σ + λI) -2 E 0 ) + γ -1 SM, (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 E 0
Moreover,

E 0 = (θ 0 -θ * )(θ 0 -θ * ) * = (Σ + λI) 1/2 (Σ + λI) -1/2 (θ 0 -θ * )(θ 0 -θ * ) * (Σ + λI) -1/2 (Σ + λI) +1/2 [(θ 0 -θ * ) * (Σ + λI) -1 (θ 0 -θ * )] (Σ + λI), as (Σ + λI) -1/2 (θ 0 -θ * )(θ 0 -θ * ) * (Σ + λI) -1/2 (θ 0 -θ * ) * (Σ + λI) -1 (θ 0 -θ * )I.
Thus, as [(Σ + λI) ⊗ I + I ⊗ (Σ + λI)] -1 is an non-decreasing operator on (S n (R), ) (see technical Lemma 7 in Appendix E):

(Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 E 0 (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 [(θ 0 -θ * ) * (Σ + λI) -1 (θ 0 -θ * )](Σ + λI) = (θ 0 -θ * ) * (Σ + λI) -1 (θ 0 -θ * ) 2 I.
Thus as SM is positive :

γ -2 M, E 0 ≤ 1 2γ 2 tr(Σ(Σ + λI) -2 E 0 ) + (θ 0 -θ * ) * (Σ + λI) -1 (θ 0 -θ * ) 2γ tr(SM ).
Moreover we can upper bound tr(SM ) : using Equation ( 22) we have

tr(Σ(Σ + λI) -1 ) = 2 tr(Σ + λI)M -γ tr E(x n ⊗ x n + λI)M (x n ⊗ x n + λI)
then, using Assumption (A 1 ) :

tr E(x n ⊗x n +λI)M (x n ⊗x n +λI) R 2 tr M Σ+2 tr M Σλ+λ 2 tr M (R 2 +2λ) tr M (Σ+λI). This implies tr Σ(Σ + λI) -1 2 R 2 + 2λ -γ tr E(x n ⊗ x n + λI)M (x n ⊗ x n + λI), 1 R 2 + 2λ tr E(x n ⊗ x n + λI)M (x n ⊗ x n + λI) since γ(R 2 + 2λ) 1, 1 R 2 + 2λ tr SM.
Thus finally:

γ -2 M, E 0 ≤ 1 2γ 2 tr E 0 Σ(Σ + λI) -2 + (θ 0 -θ * ) * (Σ + λI) -1 (θ 0 -θ * ) 2γ (R 2 + 2λ) tr(Σ(Σ + λI) -1 ),
which leads to the desired error term.

B.4 Proof when only θ 0θ * is finite

When λ = 0, without noise, we then need to bound:

γ -1 E n i=0 θ i -θ * , (θ i -θ * ) , with θ i -θ * = M (i, 1)(θ 0 -θ * ), that is γ -1 E n i=0 tr M (i, 1) * M (i, 1)(θ 0 -θ * )(θ 0 -θ * ) * .
By definition of M (i, 1) we have that EM (i, 1) * M (i, 1) I leading to

γ -1 E n i=0 θ i -θ * , (θ i -θ * ) ≤ (n + 1) θ 0 -θ * 2 γ .
For the regularization-based bias we also have

λΣ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 ≤ λ Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2 .
B.5 Proof when the noise is not structured

For θ 0 -θ * = 0 we have θ n -θ * = γ n k=1 M (n, k + 1)ε k x k which leads to E Σ 1/2 (θ n -θ * ) 2 = γ 2 n k=1 tr EM (n, k + 1) * ΣM (n, k + 1)V, where V = Eε 2 k x k x * k .
And using the recursion on operators in Eq. ( 21) by changing order of elements we have

E M (n, k + 1) * ΣM (n, k + 1) 1 γ(2 -γ(R 2 + 2λ)) E M (n, k + 1) * Σ(Σ + λI) -1 M (n, k + 1) -E M (n, k) * Σ(Σ + λI) -1 M (n, k) .
And by adding the terms

E Σ 1/2 (θ n -θ * ) 2 = γ 2 γ(2 -γ(R 2 + 2λ)) tr Σ(Σ + λI) -1 V,
We conclude by convexity

E Σ 1/2 ( θn -θ * ) 2 = γ 2 γ(2 -γ(R 2 + 2λ)) tr Σ(Σ + λI) -1 V.

C Convergence of Accelerated Averaged Stochastic Gradient Descent

We now prove Theorem 2. We thus consider iterates satisfying Eq. ( 9), under Assumptions (A 4 ), (A 5 ). We consider a fixed step size γ such that γ(Σ + λI) I. Seing Eq. ( 9) as a linear second order for θ n , we will derive from exact calculations a decomposition of the errors a sum of three terms that will be studied independently. The proof is organized as follows: in Section C.1, we state the formulation as a second order linear system and derive the three main terms that have to be studied (see Lemma 2). Section C.2 studies asymptotic behaviors of the three terms, ignoring some exponentially decreasing terms, in order to give insight of how they behave. This section is not necessary for the proof, indeed a direct and exact calculation in the eigenbasis of Σ, following O'Donoghue and Candès (2013), is provided in Section C.3. Results are summed up in Section C.4.

C.1 General expansion

We study the regularized stochastic accelerated gradient descent recursion defined for n ≥ 1 by

θ n = ν n-1 -γf ′ (ν n-1 ) -γλ(ν n -θ 0 ) + γξ n ν n = θ n + δ(θ n -θ n-1 ),
starting from θ 0 = ν 0 ∈ H. We may rewrite it for a quadratic function f : θ → 1 2 θθ * , Σ(θ -θ * ) for n ≥ 2 as

θ n = I -γΣ -γλI θ n-1 + δ(θ n-1 -θ n-2 ) + γξ n + γλθ 0 + γΣθ * , with θ 0 ∈ H and θ 1 = I -γΣ -γλI θ 0 + γξ 1 + γλθ 0 + γΣθ * .
And by centering around the optimum, we get:

θ n -θ * = I -γΣ -γλI θ n-1 -θ * + δ(θ n-1 -θ * -θ n-2 + θ * ) + γξ n + λγ(θ 0 -θ * ).
Thus this is a second order iterative system which is standard to cast in a linear form

Θ n = F Θ n-1 + γΞ n + γλΘ λ , (23) 
with

T = I -γΣ -γλI, F = (1 + δ)T -δT I 0 , Θ n = θ n -θ * θ n-1 -θ * , Θ 0 = θ 0 -θ * θ 0 -θ * , Ξ n = ξ n 0 and Θ λ = θ 0 -θ * 0 .
We are interested in the behavior of the average Θn = 1 n+1 n k=0 Θ k for which we have the following general convergence result: Lemma 2. For all λ ∈ R + and γ such that γ(Σ + λI) I and any matrix C the average of the iterate Θ n defined by Eq. ( 23) satisfy for P k

(def ) = C 1/2 (I -F k )(I -F ) -1 , with Θ0 = Θ 0 -γλ(I -F ) -1 Θ λ , E Θn , C Θn ≤ 2 (γλ) 2 C 1/2 (I -F ) -1 Θ λ 2 + 2 (n + 1) 2 P n+1 Θ0 2 + γ 2 (n + 1) 2 n j=1 tr P j V P ⊤ j .
Error thus decomposes as the sum of three main terms:

• the two first ones are bias terms, one arising from the regularization (the first one), and one arising computation (the second one),

• a variance term. which is the last one.

We remark that as we have assumed that Σ is invertible, the matrix I -F can be shown to be invertible for all the considered δ.

The regularization-based term will be studied directly whereas the two others will be studied in two stages. First an heuristic will lead to an asymptotic bound then an exact computation will give a non-asymptotic bound. Then using C = H = Σ 0 0 0 would give a convergence result on the function value and C = I 0 0 0 a result on the iterate. The end of the section is devoted to the proof of this lemma.

Proof. The sequence Θ n satisfies a linear recursion, from which we get, for all n ≥ 1:

Θ n = F n Θ 0 + γ n k=1 F n-k Ξ k + γλ n k=1 F n-k Θ λ = F n Θ 0 + γ n k=1 F n-k Ξ k + γλ(I -F n )(I -F ) -1 Θ λ .
We study the averaged sequence:

Θn = 1 n+1 n k=0 Θ k . Using the identity n-1 k=0 F k = (I -F n )(I -F ) -1 , we get Θn = 1 n + 1 n k=0 F k Θ 0 + γ n + 1 n k=1 k j=1 F k-j Ξ j + γλ n + 1 n k=1 (I -F k )(I -F ) -1 Θ λ . With Θ0 = Θ 0 -γλ(I -F ) -1 Θ λ ,
and n k=1 (I -

F k ) = n k=0 (I -F k ) = [n + 1 -(I -F n+1 )(I -F ) -1 ].
Using summation formulas for geometric series, we derive:

Θn = 1 n + 1 (I -F n+1 )(I -F ) -1 Θ0 + γ n + 1 n k=1 k j=1 F k-j Ξ j + γλ(I -F ) -1 Θ λ = 1 n + 1 (I -F n+1 )(I -F ) -1 Θ0 + γ n + 1 n j=1 n k=j F k-j Ξ j + γλ(I -F ) -1 Θ λ (inverting sums) = 1 n + 1 (I -F n+1 )(I -F ) -1 Θ0 + γ n + 1 n j=1 n-j k=0 F k Ξ j + γλ(I -F ) -1 Θ λ = 1 n + 1 (I -F n+1 )(I -F ) -1 Θ0 + γ n + 1 n j=1 (I -F n+1-j )(I -F ) -1 Ξ j + γλ(I -F ) -1 Θ λ = 1 n + 1 (I -F n+1 )(I -F ) -1 Θ0 + γ n + 1 n j=1 (I -F j )(I -F ) -1 Ξ j + γλ(I -F ) -1 Θ λ .
Using martingale square moment inequalities which amount to consider Ξ i , i = 1, ..., n independent, so that the variance of the sum is the sum of variances, and denoting by

V = E[Ξ n ⊗ Ξ n ] we have for any positive semi-definite C, E Θn , C Θn = C 1/2 1 n + 1 (I -F n+1 )(I -F ) -1 Θ0 + γλ(I -F ) -1 Θ λ 2 + γ 2 (n + 1) 2 n j=1 tr(I -F j )(I -F ) -1 V (I -F ⊤ ) -1 (I -F j ) ⊤ C,
where C 1/2 denotes a symmetric square root of C. Define P k

(def ) = C 1/2 (I -F k )(I -F ) -1 , we have, Using Minkowski's inequality and inequality (a + b) 2 ≤ 2(a 2 + b 2 ) for any a, b ∈ R, E Θn , C Θn = 1 n + 1 P n+1 Θ0 + γλC 1/2 (I -F ) -1 Θ λ 2 + γ 2 (n + 1) 2 n j=1 tr P j V P ⊤ j ≤ 2 (γλ) 2 C 1/2 (I -F ) -1 Θ λ 2 + 2 P n+1 Θ0 2 (n + 1) 2 + γ 2 (n + 1) 2 n j=1 tr P j V P ⊤ j .
Which concludes proof of Lemma 2.

C.2 Asymptotic expansion

To give the main terms that we expect, we first provide an asymptotic analysis, which shall only be understood as an insight and is not necessary for the proof. Operator F will have only eigenvalues smaller than 1, thus F j will decrease exponentially to 0 as j → ∞ (even if |||F ||| 4 might be bigger than 1). The asymptotic analysis relies on ignoring all terms in which F j appears. We thus approximately have:

E Θn , C Θn ≤ 2 (γλ) 2 C 1/2 (I -F ) -1 Θ λ 2 + 2 C 1/2 1 n + 1 (I -F n+1 )(I -F ) -1 Θ0 2 + γ 2 (n + 1) 2 n j=1 tr(I -F j )(I -F ) -1 V (I -F ⊤ ) -1 (I -F j ) ⊤ C ≈ 2 (γλ) 2 C 1/2 (I -F ) -1 Θ λ 2 + 2 C 1/2 1 n + 1 (I -F ) -1 Θ0 2 + γ 2 (n + 1) 2 n j=1 tr(I -F ) -1 V (I -F ⊤ ) -1 C
where, as it has been explained ≈ stands for an equality up to terms that will decay exponentially. However, these terms have to be studied very carefully, what will be done in the Section C.3.

Using the matrix inversion lemma we have for C = c 0 0 0 ,

I -F = (1 + δ)(γΣ + γλI) -δI δ(I -(γΣ + γλI)) -I I (I -F ) -1 = (γΣ + γλI) -1 δ I -(γΣ + γλI) -1 (γΣ + γλI) -1 (1 + δ)I -δ(γΣ + γλI) -1 (24) C 1/2 (I -F ) -1 = c 1/2 (γΣ + γλI) -1 δc 1/2 I -(γΣ + γλI) -1 0 0 .
Regularization based term. This gives for the regularization based term

C 1/2 (I -F ) -1 Θ λ 2 = c 1/2 (γΣ + γλI) -1 δc 1/2 I -(γΣ + γλI) -1 0 0 θ 0 -θ * 0 2 = 1 γ 2 (c 1/2 (Σ + λI) -1 (θ 0 -θ * )) 2 . ( 25 
)
The computation of this term is exact (not asymptotic).

Bias term. For the bias term we have

Θ0 = Θ 0 -γλ(I -F ) -1 Θ λ = θ 0 -θ * θ 0 -θ * -γλ (γΣ + γλI) -1 δ I -(γΣ + γλI) -1 (γΣ + γλI) -1 (1 + δ)I -δ(γΣ + γλI) -1 θ 0 -θ * 0 = θ 0 -θ * θ 0 -θ * -γλ (γΣ + γλI) -1 (θ 0 -θ * ) (γΣ + γλI) -1 (θ 0 -θ * ) = [I -λ(Σ + λI) -1 ](θ 0 -θ * ) [I -λ(Σ + λI) -1 ](θ 0 -θ * ) .
Thus this gives for the dominant term

C 1/2 (I -F ) -1 Θ0 2 = c 1/2 (γΣ + γλI) -1 δc 1/2 I -(γΣ + γλI) -1 0 0 Θ0 2 = (c 1/2 [(1 -δ)(γΣ + γλI) -1 + δI][I -λ(Σ + λI) -1 ](θ 0 -θ * ) 2 .
And if c commutes with Σ we have the bound for δ ∈ [ 1-

√ γλ 1+ √ γλ , 1] C 1/2 (I -F ) -1 Θ0 2 ≤ ( (1 -δ) γλ + δ) (c 1/2 [I -λ(Σ + λI) -1 ](θ 0 -θ * ) 2 ≤ ( 2 √ γλ + 1) (c 1/2 [I -λ(Σ + λI) -1 ](θ 0 -θ * ) 2 .
Variance term. And for the variance term with V = v 0 0 0 , we have

C 1/2 (I-F ) -1 V 1/2 = c 1/2 (γΣ + γλI) -1 v 1/2 0 0 0 , and 
tr C 1/2 (I -F ) -1 V (I -F ⊤ ) -1 C 1/2 = tr c(γΣ + γλI) -1 v(γΣ + γλI) -1 .
This gives the three dominant terms. However in order to control the remainders we have to compute the eigenvalues more carefully, as done in the next section.

C.3 Direct computation without the regularization based term

The computation of the regularization based term being exact we derive now direct computation for the remainders. Following O'Donoghue and Candès (2013) we consider an eigen-decomposition of the matrix F , in order to study independently the recursion on eigenspaces. We assume Σ has eigenvalues (s i ) and we decompose vectors in an eigenvector basis of Σ with θ i n = p ⊤ i θ n and ξ i n = p ⊤ i ξ n and we have the reduced equation:

Θ i n+1 = F i Θ i n + γΞ i n+1 . with Θ i 0 = Θi 0 , F i = (1 + δ)T i -δT i 1 0 , with T i = 1 -γs i -γλ. Computing initial point Θi 0 . Θi 0 = Θ i 0 -γλ(I -F i ) -1 Θ i λ , with Θ i 0 = θ i 0 -θ i * θ i 0 -θ i * , Θ i λ = θ i 0 -θ i * 0 and (I -F i ) -1 given in Eq. (24). Thus Θi 0 = θ i 0 -θ i * θ i 0 -θ i * - γλ (γs i + γλ) 1 δ(1 -(γs i + γλ)) 1 -(1 + δ)(γs i + γλ) -δ θ i 0 -θ i * 0 = (1 -λ λ+s i )(θ i 0 -θ i * ) (1 -λ λ+s i )(θ i 0 -θ i * ) . ( 26 
)
Study of spectrum of F i . Depending on δ, F i may have two distinct complex eigenvalues of same modulus, only one (double) eigenvalue, or two real eigenvalues. We only consider the two former cases, which we detail bellow.

Indeed, the characteristic polynomial

χ F i (X) def = det(XI -F i ) = X 2 -(1 + δ)(1 -γ(s i + λ))X + δ(1 -γ(s i + λ)) has discriminant ∆ i = (1 -γ(s i + λ))((1 + δ) 2 (1 -γ(s i + λ)) -4δ) which is non positive as far as δ ∈ [δ -; δ + ], with δ -= 1- √ γ(s i +λ) 1+ √ γ(s i +λ) , δ + = 1+ √ γ(s i +λ) 1- √ γ(s i +λ)
.

C.3.1 Two distinct eigenvalues

We first assume that F i has two distinct complex eigenvalues r ± = (1+δ)(1-γ(s i +λ))± √ -1 √ -∆ i 2 which are conjugate. Thus the roots are of the form ρ i e ±iω i with ρ

i = δ(1 -γ(s i + λ)), cos(ω i ) = (1+δ)(1-γ(s i +λ)) 2ρ i , ω i ∈ [-π/2; π/2] and sin(ω i ) = √ -∆ i 2ρ i . Let Q i = r - i r + i 1 1 be the transfer matrix into an eigenbasis of F i , i.e., F i = Q i D i Q -1 i with D i = r - i 0 0 r + i and Q -1 i = 1 r - i -r + i 1 -r + i -1 r - i .
Computing P i,k . We first compute the matrix P i,k : With

C 1/2 i = √ c i 0 0 0 , C 1/2 i Q i = r - i √ c i r + i √ c i 0 0 we have C 1/2 i Q i (I -D k i )(I -D i ) -1 = √ c i 1-(r - i ) k 1-r - i r - i 1-(r + i ) k 1-r + i r + i 0 0 ,
and, when developing and regrouping terms which depend on k, we get :

P i,k = C 1/2 i Q i (I -D k i )(I -D i ) -1 Q -1 i = √ c i r - i -r + i 1-(r - i ) k 1-r - i r - i - 1-(r + i ) k 1-r + i r + i 1-(r + i ) k 1-r + i r - i r + i - 1-(r - i ) k 1-r - i r + i r - i 0 0 = √ c i 1 (1-r - i )(1-r + i ) -r + i r - i (1-r - i )(1-r + i ) 0 0 - √ c i r - i -r + i (r - i ) k+1 1-r - i - (r + i ) k+1 1-r + i (r + i ) k+1 1-r + i r - i - (r - i ) k+1 1-r - i r + i 0 0 .
We also have

P i,k = C 1/2 i Q i (I -D k i )(I -D i ) -1 Q -1 i = k-1 j=0 R i,j with R i,j = C 1/2 i Q i D j i Q -1 i = √ c i (r - i ) j+1 (r + i ) j+1 0 0 Q -1 i = √ s i r - i -r + i (r - i ) j+1 -(r + i ) j+1 -r + i (r - i ) j+1 + r - i (r + i ) j+1 0 0 ,
but computing error terms based in R i,j before summing these errors gives a looser error bound than a tight calculation using P i,k . More precisely, if we use

P i,k Θ i 0 = k-1 j=0 R i,j Θ i 0 to upper bound P i,k Θ i 0 ≤ k-1 j=0 R i,j Θ i 0 ,
we end up with a worse bound.

Bias term. Thus, for the bias term:

P i,k Θ i 0 = √ c i θ i 0 1 -r + i r - i (1 -r - i )(1 -r + i ) - √ c i θ i 0 r - i -r + i (r - i ) k+1 1-r + i 1-r - i -(r + i ) k+1 1-r - i 1-r + i 0 = √ c i θ i 0 (1 -r - i )(1 -r + i )   (1-r + i r - i )-ρ k i A 1 √ (1-r - i )(1-r + i ) 0   ,
where

ρ k i A 1 = (r - i ) k+1 (1 -r + i ) 2 -(r + i ) k+1 (1 -r - i ) 2 r - i -r + i .
This can be bound with the following lemma Lemma 3. For all ρ ∈ (0, 1) and ω ∈ [-π/2; π/2] and r ± = ρ(cos(ω) ± √ -1 sin(ω)) we have:

1

-r + r --ρ k |A 1 | |1 -r + | ≤ 3 + 3ρ k ≤ 6 (27) 
We note that the exact constant seems empirically to be 2. This lemma is proved as Lemma 8 in Appendix E. This gives for the bias term

P i,k Θ i 0 = √ c i (θ i 0 ) (1 -r - i )(1 -r + i ) 1 (1 -r - i )(1 -r + i ) (1 -r + i r - i ) -ρ k i A 1 ≤ 6 √ c i (θ i 0 ) γ(s i + λ) , since: (1 -r - i )(1 -r + i ) = 1 -2 Re (r + i ) + |r + i | 2 = 1 -(1 + δ)(1 -γ(s i + λ)) + δ(1 -γ(s i + λ)) = γ(s i + λ).
We also have a looser bound using P

i,k Θ i 0 = k-1 j=0 R i,j Θ i 0 . R i,j Θ i 0 = √ c i θ i 0 r - i -r + i (1 -r + i )(r - i ) j+1 -(1 -r - i )(r + i ) j+1 = √ c i θ i 0 (r - i ) j+1 -(r + i ) j+1 r - i -r + i - r + i (r - i ) j+1 -r - i (r + i ) j+1 r - i -r + i using De Moivre's formula, = √ c i θ i 0 ρ j+1 i sin(ω i (j + 1)) ρ i sin(ω i ) - ρ i e iω i ρ j+1 i e -iω i (j+1) -ρ i e -iω i ρ j+1 i e +iω i (j+1) ρ i e -iω i -ρ i e iω i = √ c i θ i 0 ρ j+1 i sin(ω i (j + 1)) ρ i sin(ω i ) -ρ j+1 i e -iω i j -e +iω i j e -iω i -e iω i = √ c i θ i 0 ρ j i sin(ω i (j + 1)) sin(ω i ) -ρ j+1 i sin(ω i j) sin(ω i ) ≤ (1 + e -1 ) √ c i θ i 0 using Lemma 9 (see proof in Appendix E),
which also gives for the bias term

P i,k Θ i 0 ≤ (1 + e -1 ) √ c i θ i 0 k.
Thus we have the final bound:

P i,k Θ i 0 2 ≤ min 36 c i (θ i 0 ) 2 γ(s i + λ) , 6n(1 + e -1 ) c i (θ i 0 ) 2 γ(s i + λ) , n 2 (1 + e -1 ) 2 c i (θ i 0 ) 2 . ( 28 
)
Variance term. As for the variance term, with V i = v i 0 0 0 , we have tr

P i,k V i P i,k = P i,k √ v i 0 2 . P i,k √ v i 0 = √ v i c i (1 -r - i )(1 -r + i ) 1 + (r - i ) k+1 (1 -r + i ) -(r + i ) k+1 (1 -r - i ) r + i -r - i = √ v i c i γ(s i + λ) 1 -ρ k i B i,k , where 
ρ k i B i,k = - (r - i ) k+1 (1 -r + i ) -(r + i ) k+1 (1 -r - i ) r + i -r - i ,
which we can bound using the following Lemma:

Lemma 4. For all ρ ∈ (0, 1) and ω ∈ [-π/2; π/2] and r ± = ρ(cos(ω) ± √ -1 sin(ω)) we have:

ρ k B k ≤ 1.75.
Where we note that the exact majoration seems to be 1.3. This Lemma is proved as Lemma 10 in Appendix E.

We can also have a looser bound using P

i,k v 1/2 i 0 = k-1 j=0 R i,j v 1/2 i 0 and R i,j v 1/2 i 0 = √ c i v i r - i -r + i (r - i ) j+1 -(r + i ) j+1 = √ c i v i ρ j+1 i sin(ω i (j + 1)) ρ i sin(ω i ) ≤ (j + 1) √ c i v i , using the inequality | sin(kω i )| ≤ k| sin(ω i )| and P i,k v 1/2 i 0 ≤ √ c i v i (k+1)k 2 .
And this gives for the Variance term

n k=1 tr P i,k V i P i,k ≤ v i c i n k=1 min 1 -ρ k i B 1,k 2 γ 2 (s i + λ) 2 , 1 -ρ k i B 1,k k(k + 1) 2γ(s i + λ) , k 2 (k + 1) 2 4 ≤ v i c i min 8n γ 2 (s i + λ) 2 , (n + 1) 3 2γ(s i + λ) , (n + 1) 5 20 . (29) 

C.3.2 One coalescent eigenvalue

We now turn to the case where F has two coalescent eigenvalues, which happens when the discriminant ∆ = 0. We assume that F i has one coalescent eigenvalue r i = (1+δ)(1-γ(s i +λ))

2

.

Then, with δ =

1- √ γ(s i +λ) 1+ √ γ(s i +λ) , r i = (1+δ)(1-γ(s i +λ)) 2 = 1 -γ(s i + λ). Then F i can be trigonalized as F i = Q i D i Q -1 i with Q i = r i 1 1 0 , D i = r i 1 0 r i and Q -1 i = 0 1 1 -r i .
We note that for all k ≥ 0, then

D k i = r k-1 i r i k 0 r i .
Computing P i,k . We first compute P i,k :

(I 2 -D i ) -1 = 1 1-r i 1 (1-r i ) 2 0 1 1-r i and (I 2 -D k i )(I 2 -D i ) -1 =   1-r k i 1-r i 1-r k i (1-r i ) 2 - kr k-1 i 1-r i 0 1-r k i 1-r i   . Thus with C 1/2 i Q i = √ c i r i √ c i 0 0 we have C 1/2 i Q i (I 2 -D k i )(I 2 -D i ) -1 = √ c i 1-r k i 1-r i r i 1-r k i (1-r i ) 2 - kr k i 1-r i 0 0 .
And, computing as previously the matrices products, we derive:

P i,k = C 1/2 i Q i (I 2 -D k i )(I 2 -D i ) -1 Q -1 i = √ c i 1-r k i (1-r i ) 2 - kr k i 1-r i 1-r k i 1-r i r i -( 1-r k i (1-r i ) 2 - kr k i 1-r i )r i 0 0 = √ c i 1-r k i (1-r i ) 2 - kr k i 1-r i 1-r k i (1-r i ) 2 (r i ) 2 + kr k+1 i 1-r i 0 0 = √ c i 1 -r i 1-r k i 1-r i -kr k i - 1-r k i 1-r i (r i ) 2 + kr k+1 i 0 0 .
Bias term. We thus have:

P i,k Θ i 0 = √ c i 1 -r i 1-r k i 1-r i -kr k i - 1-r k i 1-r i (r i ) 2 + kr k+1 i 0 0 θ i 0 θ i 0 = θ i 0 √ c i (1 -r k i ) 1+r i 1-r i -kr k i 0 .
and this gives for the bias term:

P i,k Θ i 0 2 = (θ i 0 ) 2 c i (1 -r k i ) 1 + r i 1 -r i -kr k i 2 = (θ i 0 ) 2 c i 1 + r i 1 -r i -k + 1 + r i 1 -r i r k i 2
developing the product, then using formulas for r

i = (θ i 0 ) 2 c i 2 -γ(s i + λ) γ(s i + λ) -k + 2 -γ(s i + λ) γ(c i + λ) (1 -γ(s i + λ)) k 2 = (θ i 0 ) 2 c i γ(s i + λ) 2 -γ(s i + λ) -k γ(s i + λ) + 2 -γ(s i + λ) (1 -γ(s i + λ)) k 2 = (θ i 0 ) 2 c i γ(s i + λ) 2 -γ(s i + λ) -2 + (k -1) γ(s i + λ) (1 -γ(s i + λ)) k 2 ≤ 4 (θ i 0 ) 2 c i γ(s i + λ) , using Lemma 11 in Appendix E. ( 30 
) Variance term. With V = v i 0 0 0 , tr P i,k V P i,k = s i (1 -r i ) 2 1-r k i 1-r i -kr k i - 1-r k i 1-r i (r i ) 2 + kr k+1 i 0 0 v i 0 0 0 1-r k i 1-r i -kr k i - 1-r k i 1-r i (r i ) 2 + kr k+1 i 0 0 ⊤ = s i v i (1 -r i ) 2 1 -r k i 1 -r i -kr k i 2 = v i h i γ(s i + λ) 1 -r k i 1 -r i -kr k i 2 = v i h i γ(s i + λ)(1 -r i ) 2 1 -r k i -(1 -r i )kr k i 2 = v i h i γ 2 (s i + λ) 2 1 -(1 + k γ(s i + λ))(1 -γ(s i + λ)) k 2 And n k=1 tr P i,k V P i,k = v i s i γ 2 (s i + λ) 2 n k=1 1 -(1 + k γ(s i + λ))(1 -γ(s i + λ)) k 2 ≤ n v i s i γ 2 (s i + λ) 2 using Lemma 11 in Appendix E. (31) 
Alternative bounds for the bias and the variance term, as in Equations( 25), (28) may be derived as well. Combining all these results, we are now able to state Theorem 2.

C.4 Conclusion

Combining results from Lemma 2, and Equations ( 25), ( 28), ( 29), with c = Σ, and using the following simple facts:

• For the least squares regression function, with c = Σ, E Θn , C Θn = Ef ( θn ) -f (θ * ).

• Under assumption A 4 , A 5 , we have V τ 2 Σ.

• The squared norm of a vector is the sum of its squared components on the orthonormal eigenbasis. For example

P n+1 Θ 0 2 = d i=1 P i,n+1 Θ i 0 2 .
• For any regularization parameter λ ∈ R + and for any constant step-size γ(Σ+λI) I, for any δ ∈ 1- Proposition 1. Under (A 4,5 ), for any regularization parameter λ ∈ R + and for any constant step-size γ(Σ + λI) I we have for any δ ∈ 1- √ γλ 1+ √ γλ , 1 , for the recursion in Eq. ( 9):

Ef ( θn ) -f (θ * ) ≤ 2λ λ 1/2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 + d i=1 2 (n + 1) 2 min 36 c i ( θi 0 ) 2 γ(s i + λ) , 6n(1 + e -1 ) c i ( θi 0 ) 2 γ(s i + λ) , n 2 (1 + e -1 ) 2 c i ( θi 0 ) 2 + d i=1 γ 2 (n + 1) 2 v i c i min 8n γ 2 (s i + λ) 2 , (n + 1) 3 2γ(s i + λ) , (n + 1) 5 20 .
This implies, using the Equation (26) for the initial point, using c i = σ i and regrouping sums as traces or norms:

Ef ( θn ) -f (θ * ) ≤ 2λ λ 1/2 Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 + 2 min 36 Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2 γ(n + 1) 2 , (1 + e -1 ) 2 Σ 1/2 (θ 0 -θ * ) 2
+ min 8 tr(V Σ(Σ + λI) -2 ) n + 1 , nγ tr(V Σ(Σ + λI) -1 ) , which gives exactly Theorem 2 using V τ 2 Σ in the Variance term, and λ 1/2 (Σ+λI) -1/2 I in the first term.

D Tighter bounds D.1 Simple upper-bounds

In this section, we chow how tighter bounds naturally appear from the regularized quantities appearing in Theorems. It only relies on simple algebraic majorations, even if one has to be careful with the allowed intervals for r, b. Proof. As all operators can be diagonalized in a same eigenbasis with positive eigenvalues, we have, tr(Σ(Σ + λI) -1 ) ≤ Σ 1-b (Σ + λI) -1 tr(Σ b )

|||Σ 1-b (Σ + λI) -1 ||| ≤ sup 0≤x x 1-b (x + λ) ≤ sup 0≤x x 1-b 1 λ ∧ 1 x ≤ sup 0≤x x 1-b 1 λ b 1 x 1-b = λ -b
And the calculations are exactly the same for tr(Σ -2 (Σ + λI) -2 ) ≤ tr(Σ b ) λ b .

As for the bias term, we need to bound the following quantities :

Lemma 6. For any λ ≥ 0, for any r ∈ [-1; 1], we have :

Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) 2 ≤ λ -(1+r) Σ r/2 (θ 0 -θ * ) 2
For any λ ≥ 0, for any r ∈ [-1; 0], we have :

(Σ + λI) -1/2 (θ 0 -θ * ) 2 ≤ λ -(1+r) Σ r/2 (θ 0 -θ * )

2

For any λ ≥ 0, for any r ∈ [0; 1], we have :

Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) 2 ≤ λ -r Σ r/2 (θ 0 -θ * )

2

(No result when r ≤ 0 because of saturation effect)

Proof. Proof relies of simple following calculations:

Σ 1/2 (Σ + λI) -1 (θ 0 -θ * ) ≤ Σ 1/2-r/2 (Σ + λI) -1 Σ r/2 (θ 0 -θ * )

≤ 1 λ 1-(1/2-r/2) Σ r/2 (θ 0 -θ * ) ≤ λ -1+r 2 Σ r/2 (θ 0 -θ * ) (Σ + λI) -1/2 (θ 0 -θ * ) ≤ Σ -r/2 (Σ + λI) -1/2 Σ r/2 (θ 0 -θ * ) ≤ 1 λ 1+r 2 Σ r/2 (θ 0 -θ * ) ≤ λ -1+r 2 Σ r/2 (θ 0 -θ * )
Σ 1/2 (Σ + λI) -1/2 (θ 0 -θ * ) ≤ Σ 1/2-r/2 (Σ + λI) -1/2 Σ r/2 (θ 0 -θ * )

≤ 1 λ 1-(1-r) 2 Σ r/2 (θ 0 -θ * ) ≤ λ -r 2 Σ r/2 (θ 0 -θ * )
D.2 Theorem 3 and Equation (12)

Theorem 3 and Equation ( 12) are directly derived from Theorem 1 and Theorem 2, using Lemmas 5 and 6.

To derive corollaries for the optimal γ, one has to find the γ that balances the bias and variance term and to compute the products for such a step size.

D.2.1 Equation (12)

We derive from Theorem 1, when choosing γ = (λn) -1 , and using Lemmas 5 and 6, the following bound, under assumptions of Theorem 1 : When choosing the optimal γ ∝ n -b+r b+1-r , we have that γ 1+b n b = n -1+ 1+b 1+b-r = n χ , with χ = -r 1+b-r ≥ 0 if r ≤ 0. Thus the residual term is always vanishing for r ≤ 0 and does not exist for r ≥ 0.

D.2.2 Theorem 3

Theorem 3 directly follows from Lemmas 5 and 6 and the choice of γ ∝ n -2b+2r-1 b+1-r .

E Technical Lemmas

The following sequence of Lemmas appear in the proof. They are mostly independent and rely on simple calculations. We consider a matrix A ∈ S + n (R). A can be decomposed as a sum of (at most) n rank one matrices A = n i=1 ω i ω ⊤ i , with ω i ∈ R n . We thus just have to prove that for some ω ∈ R n , (Σ + λI) ⊗ I + I ⊗ (Σ + λI)

-1 ωω ⊤ ∈ S + n (R). Let Σ = i 0 µ i e i ⊗ e i is the eigenvalue decomposition of Σ, then (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 ωω ⊤ = i,j 0

ω, e i ω, e j µ i + µ j + 2λ e i ⊗ e j .

Thus, in the orthonormal basis of eigenvectors, this is thus Hadamard product between i,j 0

ω, e i ω, e j e i ⊗ e j = ωω ⊤ and the matrix C = 1 µ i +µ j +2λ i,j 0 . Matrix C is a Cauchy matrix and is thus positive. Moreover the Hadamard product of two positive matrices is positive, which concludes the proof.

Remark: surprisingly, the inverse operator (Σ + λI) ⊗ I + I ⊗ (Σ + λI) is not non-decreasing. Indeed, is not a total order on S n so we may have that an operator is non-decreasing and its inverse is not.

Lemma 8. For all ρ ∈ (0, 1) and ω ∈ [-π/2; π/2] and r ± = ρ(cos(ω) ± √ -1 sin(ω)) we have:

1 -r + r --ρ k |A 1 | |1 -r + | ≤ min{1 + ρ + e -1 + 4ρ k , 2 + ρ + √ 5ρ k+1 } ≤ 6 (32)
Proof. We note that ρ k i A 1 is a real number as is is a quotient of pure complex numbers, which come from the difference between a complex and its conjugate. We first write A 1 as a combination of sine and cosine functions: sin ω i writing cos(ω) -1 = 2 sin 2 (ω/2),

ρ k i A 1 = (r - i ) k+1 (1 -r + i ) 2 -(r + i ) k+1 (1 -r - i ) 2 r - i -r + i = - (r - i ) k+1 -(r + i ) k+1 -2r - i r + i ((r - i ) k -(r + i ) k ) + (r - i r + i )(r - i ) k-1 -(r + i ) k-1 ) ρ i sin ω i = -
≤ ρ k (1 + (1 -ρ)) k -ρ k -(1 -ρ)ρ k + ρ k 2 sin 2 (ω/2) sin ω i using 1 + (1 -ρ)k ≤ (1 + (1 -ρ)) k , ≤ ρ k (1 + (1 -ρ)) k -ρ k -(1 -ρ)ρ k + ρ k tan(ω/2)
and as tan(ω/2) ≤ 1 for |ω| ≤ π/2,

≤ 1 -(1 -ρ)ρ k using ρ k (1 + (1 -ρ)) k = (1 -(1 -ρ) 2 ) k ≤ 1,
And for the second and third term: 2 ρ k (cos(ω) -ρ) cos((k -1)ω)

(1 -ρ cos ω) 2 + ρ 2 sin 2 (ω) ≤ 2ρ k , ρ k + sin(ω) sin((k -1)ω)

(1 -ρ cos ω) 2 + ρ 2 sin 2 (ω) ≤ ρ k .

Thus:

1 -r + i r - i -ρ k i |A 1 | |1 -r + i | ≤ 1 + ρ + 1 + 3ρ k 48 
We also have 

x k (1 -x) = k 1 k + 1 (1 - 1 k + 1 ) k = (1 - 1 k + 1
) k+1 = exp((k + 1) ln((1 -

1 k + 1
)) ≤ e -1 (34) leading to

1 -r + i r - i -ρ k i |A 1 | |1 -r + i | ≤ 1 + ρ + e -1 + 4ρ k
We can also change 3ρ k into √ 5ρ k We have used that |(ρ -cos(ω))| ≤ (1 -ρ cos(ω)).

Lemma 9. For any ρ i ∈ (0; 1), for any ω i ∈ [-π/2; π/2] ρ j i sin(ω i (j + 1)) sin(ω i ) -ρ j+1 i sin(ω i j) sin(ω i ) ≤ 1 + e -1

Proof.

ρ j i sin(ω i (j + 1)) sin(ω i ) -ρ j+1 i sin(ω i j) sin(ω i ) = ρ j i sin(ω i (j + 1)) -ρ i sin(ω i j) sin(ω i ) = ρ j i (cos(ω i ) -ρ i ) sin(ω i j) sin(ω i ) + cos(jω i ) ≤ ρ j i ((1 -ρ i )j + 1) ≤ 1 + e -1 using (34) Lemma 10. For all ρ ∈ (0, 1) and ω ∈ [-π/2; π/2] and r ± = ρ(cos(ω) ± √ -1 sin(ω)) we have: 75 (35) 

ρ k i B 1,k ≤ 1.

Figure 1 :

 1 Figure 1: Synthetic problem (d = 25) and γ = 1/R 2 . Left: Bias. Right: Variance.
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 5 For any λ ≥ 0, for any b ∈ [0; 1], if tr(Σ b ) exists, we have :tr(Σ(Σ + λI) -1 ) ≤ tr(Σ b ) λ b tr(Σ -2 (Σ + λI) -2 ) ≤ tr(Σ b ) λ b

Ef

  ( θn ) -f (θ * ) ≤ (18 + Res(n, b, r, γ)) Σ r/2 (θ 0 -θ * ) 2 n, b, r, γ) := 3γ 1+b n b tr(Σ b ) if -1 ≤ r ≤ 0 and Res(n, b, r, γ) := 0 if 0 ≤ r ≤ 1.

Lemma 7 .

 7 The operator (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 is a non-decreasing operator on (S n , )Proof. Lemma means that for two matrices M, N ∈ S n (R) such that M N , then(Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 M (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 N.It is equivalent to show that for any symmetric positive matrix A ∈ S + n , (Σ + λI) ⊗ I + I ⊗ (Σ + λI) -1 A ∈ S + n (R)

  ρ k+1 i sin((k + 1)ω i ) -2ρ k+2 i sin(kω i ) + ρ k+3 i sin((k -1)ω i ) ρ i sin ω i .And considering separately the three terms in the numerator, using numerous times that for any a, b∈ [0; 1], |a -b| ≤ 1 -ab: ρ k (cos(ω)-ρ) 2 sin((k-1)ω) sin ω i (1 -ρ cos ω) 2 + ρ 2 sin 2 (ω) ≤ ρ k (cos(ω) -ρ) sin((k -1)ω) sin ω i as |(cos(ω) -ρ)| ≤ 1 -ρ cos(ω), ≤ ρ k (cos(ω) -1) sin((k -1)ω) sin ω i + ρ k (1 -ρ) sin((k -1)ω) sin ω i writing cos(ω) -ρ = cos(ω) -1 + 1 -ρ ≤ ρ k (1 -ρ)(k -1) + ρ k (cos(ω) -1) sin((k -1)ω) sin ω i as | sin((k -1)ω)| ≤ |(k -1) sin(ω)|, ≤ ρ k (1 -ρ)k -(1 -ρ)ρ k + ρ k (cos(ω) -1) sin((k -1)ω)

  ρ cos ω) 2 + ρ 2 sin 2 (ω) | ≤ ρ k (cos(ω) -ρ) sin((k -1)ω) sin ω i ≤ ρ k (1 -ρ)(k -1) + ρ k (cos(ω) -1) sin((k -1)ω) sin ω i ≤ (1 -1 k + 1 ) k+1 -(1 -ρ)ρ k + ρ k (cos(ω) -1) sin((k -1)ω) sin ω i ≤ e -1 -(1 -ρ)ρ k + ρ k sin 2 (ω

It states that for any function g ∈ H, g, Kx H = g(x), where •, • H denotes the scalar product in the Hilbert space.

|||F ||| denotes the operator norm of F , i.e., sup x ≤1 F x .

√ γλ 1+ √γλ , 1 , matrix F will have only two distinct complex eigenvalues or two coalescent eigenvalues.
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This quantity can be simplified when ρ → 1 or ω → 0. We thus modify the expression of A 1 to make these dependencies clearer:

-A 1 = sin((k + 1)ω i ) -2ρ i sin(kω i ) + ρ 2 i sin((k -1)ω i ) sin ω i = (cos(ω) -ρ)(sin(kω) -ρ sin((k -1)ω)) + cos(kω) sin(ω) -ρ cos((k -1)ω) sin(ω) sin ω i developing sin(a + b) = sin(a) cos(b) + cos(a) sin(b) and regrouping terms,

simplifying expression, then developing the cosine,

So that in that final expression all the terms behave relatively simply when ρ → 1 or ω → 0. We want to upper bound:

We thus consider separately the first and second term.

Then, using Equation (33):

Proof. Once again, as the considered quantity is real, we first express it as a combination of sine and cosine functions. We then use some simple trigonometric trics to upper bound the quantity.

as it is the difference between a complex and its conjugate,

sin((k + 1)ω i ) sin ω i and simplifying.

Let's turn our interest to the second part of the quantity:

Lemma 11. For any s i , γ, λ ∈ R 3 + such that γ(s i + λ) ≤ 1, for any k ∈ N, we have the two following highly related identities:

Proof. Proof relies on the trick, for any α ∈ R, n ∈ N: 1 + nα ≤ (1 + α) n . For the first one:

For the second one: