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4 Thales Avionics, 105 av du Général Eisenhower, F-31100 Toulouse, France

Abstract. We propose a method to exploit the symmetries of a realtime
system represented by a Time Petri net for its verification by model-
checking. The method handles both markings and timing constraints; it
can be used in conjunction with the widely used state classes abstraction.
The approach has been implemented and experiments are reported.

1 Introduction

Symmetry reduction aims at exploiting the symmetries of a system in order to
explore its state space more efficiently. Instead of enumerating all the reachable
states, one enumerates equivalence classes of states w.r.t. the symmetry rela-
tion. When applications have some symmetric structure—and large applications
typically have—this provides an effective way to fight combinatorial explosion.

The idea of exploiting symmetries can be traced back to the study of program
verification and high-level Petri nets. Symmetry reduction has been used since in
a variety of contexts and a number of tools support symmetries, whether inferred
or structural, including e.g. [13,7,21,20]. Symmetry reduction can be further
combined with other reduction techniques, such as stubborn sets or covering
steps. Combining symmetries with symbolic analysis has been investigated for
some models [9] but, in spite of some results, they seem harder to accommodate
with symbolic methods than with enumerative methods.

In this paper, we propose a symmetry reduction method for a state space
abstraction technique for a dense time real-time model, the State Class Graph
(SCG) construction for Time Petri nets [2,1]. While symmetry reduction of dis-
crete Time Petri nets can be seen as a straightforward extension of symmetry
reduction of (untimed) Petri nets (it has been implemented in INA [23]), sym-
metry reduction for dense time Time Petri nets is more challenging. In dense
time, state spaces are typically infinite and finite representations are obtained
through some abstraction of time. The time information is represented by sys-
tems of difference constraints with their variables associated with the transitions
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of the net. Some results on similar models are available in the context of Timed
Automata [12] [24], but none are available yet for dense time Time Petri nets.

Our contributions. We have developed and implemented a symmetry reduction
technique for the most commonly used state space abstraction for Time Petri
nets, the state classes construction. First, we make some technical contributions,
with the definition of a total order relation between symmetry equivalent transi-
tions (Sect. 4) that relies on an invariant on the systems of difference constraints
used to abstract time. A second, more practical, contribution is a high-level
structural approach for declaring the symmetries of a net (see Sect. 5) in a way
enabling efficient (polynomial) computation of canonical forms for state classes,
using the previous ordering.

Outline of the paper. We start with some information on Time Petri nets and
their related analysis techniques. In Sect. 3, we extend the symmetry reduction
approach for Petri nets to dense-time Time Petri nets. The main technical result
of the paper is found in Sect. 4, a total order between symmetry equivalent
state classes. Before concluding, we present an implementation of this method
integrated into the Tina toolbox [3] and discuss some experimental results.

2 Time Petri nets

A Time Petri net [15] (or TPN) is a Petri net in which transitions are decorated
with time intervals that constrain the time a transition can fire.

Let II be the set of non-empty real intervals with non-negative rational end-
points. A TPN is a tuple 〈P, T,Pre, Post, m0, Is〉 in which:

– 〈P, T,Pre,Post,m0〉 is a Petri net, with P the set of places, T the set of
transitions, m0 : P → IN the initial marking, and Pre, Post : T → P → IN
the precondition and postcondition functions.

– Is : T → II is a function called the static interval function.

For additional modeling expressiveness, Time Petri nets can be enriched with
inhibitor arcs and read arcs (testing absence or presence of tokens in a place,
respectively), preemption, priorities or external synchronized data processing.

2.1 Semantics

A marking is a function m : P → IN. A transition t ∈ T is enabled at m iff
m ≥ Pre(t) (we use the pointwise comparison between functions). We denote
EN (m), or simply E(m) when N is clear from context, the set of transitions
enabled at m in net N .

A state of a TPN is a pair s = (m, I) in which m is a marking and I : T → II
is a partial function, called the (dynamic) interval function, that associates a
temporal interval with every transition enabled at m. For i ∈ II, ↓i denotes its
left end-point, and ↑i its right end-point or∞ if i is unbounded. For any θ ∈ IR≥,
let i .− θ = {x− θ|x ∈ i ∧ x ≥ θ}.



Definition 1. The semantics of a TPN 〈P, T,Pre,Post, m0, Is〉 is the timed
transition system SG = 〈S, s0,→〉 where:

– S is the set of states of the TPN ;
– s0 = (m0, I0) is the initial state, where m0 is the initial marking and I0 is

the static interval function restricted to the transitions enabled at m0;
– → ⊆ S×(T ∪ IR≥)×S is the state transition relation; (s, a, s′) ∈ → is written

s
a−→ s′. For any t ∈ T and θ ∈ IR≥, we have:

(i) (m, I)
t−→ (m′, I ′) iff:

1) t ∈ E(m)
2) m′ = m−Pre(t) + Post(t)
3) 0 ∈ I(t)
4) (∀k ∈ E(m′))((A(k) ∧ I ′(k) = I(k)) ∨ (¬A(k) ∧ I ′(k) = Is(k)))
where A(k)⇔ k 6= t ∧ k ∈ E(m−Pre(t))

(ii) (m, I)
θ−→ (m, I ′) iff:

5) (∀k)(m ≥ Pre(k)⇒ θ ≤ ↑I(k) ∧ I ′(k)=I(k) .− θ)

The state transitions labelled over T (case (i) above) are the discrete tran-
sitions, those labelled over IR≥ (case (ii)) are the continuous, or time elapsing,
transitions. A net transition t may fire from (m, I) if t is enabled at m and firable
instantly. In the target state, the transitions k that remained enabled while t
fired (t excluded) retain their intervals. Such transitions k are said to be persis-
tent (w.r.t. t,m, if not clear from context). The remaining transitions, among
those enabled at m′, are associated with their static intervals, they are said to
be newly enabled (w.r.t. t,m).

A continuous transition by θ is possible from (m, I) if and only if θ is not
larger than ↑I(k) for any transition k ∈ E(m). Because there may be an infinite
number of continuous transitions, the state spaces of TPN are generally infinite,
even when the net is bounded (its set of reachable markings is finite). To model
check them, one needs finite abstractions of the state graphs.

Definition 1 states the dense time semantics of Time Petri nets. TPNcan
also be given a discrete time semantics, by enforcing θ ∈ IN in time-elapsing
transitions.

Finally, TPN states (whether in dense or discrete time) can be defined
in terms of clock functions instead of firing interval functions, the clock of a
transition being the time elapsed since it was last newly-enabled. Clock func-
tions γ may be used to denote interval functions, since we have at any state
I(t) = Is(t)

.−γ(t), but the mapping is only surjective: when Is(t) is unbounded,
several γ(t) may obey that equation.

2.2 The State Class Abstraction

The State Class Graph (SCG for short) is a finite abstraction of SG that pre-
serves its markings and traces.



The temporal information in states can be conveniently seen as firing domains
rather than interval functions: the firing domain associated with interval function
I is the set of real vectors {φ|(∀i)(φi ∈ I(i))} (φi is the coordinate of φ associated
with transition i).

The State Class Graph construction of [2,1] defines inductively a set of classes
Cσ, where σ ∈ T ∗ is a sequence of discrete transitions firable from the initial
state. Intuitively, the class Cσ collects the states reachable after firing the se-
quence σ, abstracting delays. State classes are represented by pairs (m,D), where
m is a marking and the firing domain D is described by a finite system of linear
inequalities. We say that two state classes C = (m,D) and C ′ = (m′, D′) are
equal, denoted C ∼= C ′, if m = m′ and D ⇔ D′ (i.e. D and D′ have equal
solution sets).

Algorithm 1 (Construction of the SCG [2])
The SCG is the set of classes (Cσ)σ∈T∗ obtained as follows:

– The initial class Cε is (m0, D0), where D0 is the domain defined by the set
of inequalities
{↓Is(t) ≤ φt ≤ ↑Is(t) | t ∈ E(m0)}.

– If σ is firable and Cσ = (m,D), then:
- σ.t is firable iff:

1. m ≥ Pre(t) (t is enabled at m)
2. system D ∧ F is satisfiable,

where F = {φt ≤ φi | i 6= t ∧ i ∈ E(m)}
- Cσ.t = (m′, D′) where:
m′ = m−Pre(t) + Post(t)
D′ is obtained from D in three steps:

1. The above conditions F are added to D;
2. For each k enabled at m′ a new variable φ′k is introduced, obeying:

φ′k = φk − φt if k persistent w.r.t. t,m
↓Is(k) ≤ φ′k ≤ ↑Is(k) otherwise

3. Variables φi are eliminated (using e.g. Fourier-Motzkin elimination).

With the construction given in Algorithm 1, it is clear that firing domains
can be represented by systems of difference constraints, or difference systems for
short, that is sets of inequalities of the form αi ≤ xi, xi ≤ βi or xi − xj ≤ γi,j .
If all finite endoints of static intervals are closed, then the αi, βi and γi,j can be
taken as rational constants. Otherwise, classically, they must be read as bounds
associating a rational constant with a comparison operator in {≤, <,≥, >}. Such
systems occur in many applications, such as temporal reasoning; they admit
canonical forms that can be computed in polynomial time [17].

The SCG is certainly the best known and most widely used state space
abstraction for Time Petri nets. It is finite if and only if the TPN admits a
finite number of reachable markings, and it preserves both the markings and
traces of the net [2,1] and so is suitable for LTL model checking.

If only marking reachability properties are of concern, one may use instead
of the SCG a typically coarser abstraction referred to here as SCG⊆ [5]. Let us



say that class (m,D) is included in class (m′, D′) when m = m′ and the solution
set of D is included in that of D′. The SCG⊆ is built like the SCG, except
that classes related by inclusion are merged; this coarser construction preserves
markings but over-approximates traces.

In the remainder of the text, we simply use the name of the transition, say
t, as a shorthand for the firing domain variable φt associated with transition t.

3 Symmetry Reduction of TPN

3.1 Symmetries in state classes graphs

This section defines symmetries on Time Petri nets and state class graphs. The
terminology and theorem 1 are straightforwardly adapted from [22][18].

Definition 2. A symmetry of a TPN N is a permutation π of P ∪ T that
preserves node types, preconditions, postconditions and static intervals. That is:

1. (∀x)(x ∈ P ⇔ π(x) ∈ P )

2. (∀t, p)(Pre(t)(p) = Pre(π(t))(π(p)))

3. (∀t, p)(Post(t)(p) = Post(π(t))(π(p)))

4. (∀t)(Is(t) = Is(π(t)))

The set SN of all symmetries of N forms a group under function composition.
Recall that TPN states are pairs (m, I) where m is a marking and I is an interval
function. Given a symmetry π of a TPN , let us define:

– the action π(m) of π on m by (∀p ∈ P )(π(m)(p) = m(π−1(p)))

– the action π(I) of π on I by (∀t ∈ T )(π(I)(t) = I(π−1(t)))

– the action π(m, I) of π on a state (m, I) by π(m, I) = (π(m), π(I)).

The symmetries of a TPN induce symmetries of its state space:

Lemma 1. Let N be a TPN and SG = 〈S, s0,→〉 its state graph. Let π be
some symmetry of N . Then for all t, θ,m,m′, I, I ′:

1. (m, I)
t−→ (m′, I ′)⇔ π(m, I)

π(t)−→ π(m′, I ′)

2. (m, I)
θ−→ (m′, I ′)⇔ π(m, I)

θ−→ π(m′, I ′)

Proof. 1. We have to prove that conditions 1 to 4 in Def. 1 are preserved by
application of a net symmetry. For conditions (1) and (2), this is proved in
[22] (Lemma 1). For (3) and (4), similarly, this is straightforward from the
definitions of actions.

2. From [22] we have: (∀k)(m ≥ Pre(k)⇔ π(m) ≥ Pre(π(k))), and then from
the definition of actions, π(I)(π(k)) = I(k) for any I and k. Hence (2) holds.



Two states s and s′ are equivalent with respect to SN , written s ≈ s′, iff
there is a symmetry π ∈ SN such that π(s) = s′. Relation ≈ is an equivalence
relation; the equivalence class of any s by ≈ is finite and is called the orbit of s.
Orbits of places and orbits of transitions are defined similarly.

For model checking purposes, defining symmetry reduction on states would
be of little help however, since TPN typically have an infinite number of states.
Fortunately, Lemma 1 carries over to the state class abstraction of TPN .

If π is a TPN symmetry, we define π(D) as the set of solutions of D in
which each variable t is replaced by π(t). Likewise the action π(m,D) of π on
a class (m,D) is defined by π(m,D) = (π(m), π(D)) and state class equivalence
by (m,D) ≈ (m′, D′)⇔ (∃π ∈ SN )(π(m,D) = (m′, D′)).

Let SCG≈ denote the state class graph built like the SCG in Algorithm
1, but retaining only one state class per orbit. A marking m is symmetric iff
(∀π ∈ SN )(π(m) = m). The following theorem shows how symmetries help
reachability analysis of TPN by the state classes method:

Theorem 1. Assume π is a symmetry of a TPN . Then for all t,m,m′, D,D′:

1. (m,D)
t−→ (m′, D′)⇔ π(m,D)

π(t)−→ π(m′, D′)
2. if m0 is symmetric, then for any state class C:

C ∈ SCG⇔ (∃C∗ ∈ SCG≈)(C ≈ C∗)

Proof. (1) directly follows from the definition of actions on state classes. (2) is
proved by induction on the firing sequences of the SCG. ut

3.2 Applying Symmetry Reduction

There are two main issues to be solved when trying to put symmetry reduction
to work: identifying the symmetries of the reachability set and deciding when
two states (state classes here) are equivalent.
Detecting symmetries: detecting net symmetries amounts to compute all net au-
tomorphisms, a problem known to be at least as hard as the graph isomorphism
problem [18]. For this reason, many implementations of symmetry reduction rely
on some static symmetry information provided by the user. Murϕ [13], for in-
stance, makes use of a dedicated “scalarset” type, also used in [12]. In high level
Petri nets, symmetries are deduced from the syntax of inscriptions. On the other
hand, some tools [20] compute these automorphisms from nets, automatically,
with acceptable performances on average.

In our implementation, described in Section 5, nets will be described hier-
archically as compositions of smaller nets, the composition operators specifying
both the architecture of the net and a symmetry.
Checking state equivalence: There are basically two methods for checking equiv-
alence ≈ on states (or state classes here): comparing a new state for ≈ pairwise
with all computed states, or computing from the state a representative state and
storing only these.

In [18], [19], three implementations of equivalence checking are discussed.
All assume that the symmetry group is available, but no particular structure is



assumed for it; all symmetries are handled uniformly. The first method, referred
to as “iterating the symmetries”, amounts to applying all possible symmetries
to the new state and to check if the result state has been stored yet. The set
of symmetries to be applied is reduced thanks to particular representations of
symmetries and of the set of stored states. The second method, “iterating the
states”, amounts to find a symmetry such that, applying it to some stored state
yields a state equal to the new state. The method relies on so-called symmetry-
preserving hash functions. A third method relies on state representatives; it
takes advantage of the same representation of symmetries as the first method
to find a minimal form for the new state. The minimal states computed are
not necessarily canonical though; there may be several representatives per state
orbits. The work presented in [14] builds upon these algorithms and proposes
some improvements.

All three methods would be applicable to state classes. The first two only
require to be able to compare classes for equality and the last requires a total
ordering on classes. Assuming some total order on places and transitions, one
can find suitable representations of state classes.

About their efficiency, the experiments in [14] suggest that the third algo-
rithm typically yields the best results. Symmetry reduction in the LoLA tool
[20] relies on this method.

On the other hand, the methods relying on scalarsets [13][12] or similar struc-
tural techniques trade generality for efficiency. Scalarsets may only express par-
ticular groups of symmetries, typically full symmetries in systems of processes.
For full symmetries, one can compute minimal forms for states using a sorting
method: full symmetries between processes can be generated by transpositions
of the states of adjacent processes. By successively considering all such transpo-
sitions, retaining the smallest state at each step, one obtains a minimal state.
This is similar to sorting the process states by the bubble-sort method. If some
additional confluence conditions on the group are met [10], the method computes
canonical forms. The method has polynomial complexity.

While the methods discussed in [18] [19] could be applied to state class
graphs, they do not obviously lead to an efficient implementation; this is sub-
stantiated by our experimental data in Section 5. Though technically different,
our reduction technique bears strong relationships with scalarset techniques. We
restrict net symmetries to those admitting a polynomial time algorithm for com-
puting canonical states, following [11]. For full symmetries, we compute canonical
forms for state classes by sorting the states of processes. The ordering used, de-
veloped in the next section, does not require to apply permutations to the state
classes, which also contributes to efficiency.

4 Ordering State Classes

We define a total order relation �D between transitions that are equivalent by
symmetry (≈) and enabled in the state class (m,D). We use this relation to
define a total order between equivalent state classes.



Intuitively, we will have t �D t′ if the transition t stayed enabled longer
than t′ (since their last enabling date) in the execution that led to class (m,D).
However, the information on the last enabling date of a transition cannot be
reconstructed from the firing domain of a class, which mandates several technical
results to define the ordering relation. Ultimately, the definition of �D will be
based on an invariant on firing domains. This is the goal of Sect. 4.2.

A similar idea was used by Hendriks et al. [12] to compare clocks in Timed
Automata (TA) zones. In their work, a clock k is “before” another clock k′ (in
a given zone z) if the last reset date of k is older than that of k′. Nonetheless,
the handling of time in TA is quite different from TPN and the usual zone
constructions of TA significantly differ from the SCG construction of TPN .

4.1 Closure Form of Firing Domains

The firing domains computed during the SCG construction (see Algorithm 1)
can always be written in a standard form, as follows. For every pair of transitions
t, t′ that are enabled in a class (m,D), we have the following inequalities in D:

αt ≤ t ≤ βt and t− t′ ≤ γt,t′ (t 6= t′)

The bounds αt, βt and γt,t′ exactly define the domain D (a class with n enabled
transitions has n · (n+ 1) bounds). Also, by construction, when t is newly en-
abled in the class (m,D), we have αt = ↓Is(t) and βt = ↑Is(t). These are the
static timing constraints for t; we use the notation αst and βst for these values
afterward.

We can improve the standard form of D by choosing in the above represen-
tation the tightest possible bounds preserving the associated solutions set. In
this case we say that D is in closure form. The closure form provides a nor-
mal form for firing domains. Indeed, two domains are equal if and only if they
have the same closure form. Another advantage of using closure forms for rep-
resenting class domains is that they can be computed incrementally with O(n2)
complexity; Lemma 2 below is proved in [6].

Lemma 2 (Computing firing domains). Assume C = (m,D) is a class
with D in closure form. Then for every transition t in E(m) there is a unique
class C ′ = (m′, D′) obtained from C by firing t such that D′ is also in closure
form. Moreover D′ obeys the following constraints, for each distinct transitions
i, j ∈ E(m′):

β′i = βsi if i newly enabled,
β′i = γi,t otherwise
α′i = αsi if i newly enabled,
α′i = max(0,−mink∈E(m)(γk,i)) otherwise
γ′i,j = β′i − α′j if i or j newly en.,
γ′i,j = min(γi,j , β

′
i − α′j) otherwise

We can use this incremental construction to derive invariants on the coeffi-
cients of the firing domains when in closure form.



Lemma 3. For any class C = (m,D) with D in closure form, and for any
transitions i, j, k enabled at m, we have:

1. γi,j ≤ βi − αj 4. γi,j ≤ γi,k + γk,j
2. βi ≤ γi,j + βj 5. 0 ≤ αi ≤ αsi
3. αi ≤ γi,j + αj 6. 0 ≤ βi ≤ βsi
7. if C ′ = (m′, D′) is obtained from C by firing some

transition, then β′i ≤ βi

Proof. 1-4 follow from the fact that D is in closure form (bounds are tight). 5-7
are proved by induction on firing sequences using Lemma 2. ut

4.2 A Total Order on Equivalent Transitions

We prove a general invariant on firing domains in closure form, obtained during
the SCG construction. This property makes explicit a relation between transi-
tions that have the same static timing constraints (αs and βs), which is neces-
sarily the case for equivalent transitions.

We say that two transitions i and j are equivalent for D, denoted i =D j, if
and only if, when transposing the transitions i and j in the system of difference
constraints D, we obtain a system D′ that has the same solution set.

Lemma 4. If D is in closure form then i =D j if and only if αi = αj, βi = βj,
γi,j = γj,i and for all transitions k distinct from i, j, (γi,k = γj,k ∧ γk,i = γk,j).

Our next property states a similar result for an ordering relation instead of
an equivalence. Assuming i 6= j, we say that i is before j, written i �D j, as
follows:

i �D j =def γi,j ≤ γj,i ∧ (∀k 6= i, j)(γi,k ≤ γj,k) (�-DEF)

Lemma 5. Assume (m,D) is a class obtained in the SCG construction and
i, j are two transitions with the same static time interval ( Is(i) = Is(j)). Then
i �D j implies αi ≤ αj, βi ≤ βj and for all transitions k distinct from i, j,
γk,j ≤ γk,i.

Proof. By case analysis and induction on the firing sequence leading to (m,D),
using Lemmas 2 and 3. ut

A simple corollary of Lemma 5 is that the relation �D is antisymmetric for
every pair of equivalent transitions: we have that i �D j and j �D i implies
i =D j. Next, we show that the relation is also total. We can extend the �D
relation to the whole set of transitions (not only the enabled ones) by defining
that i �D j whenever i is not enabled.

Lemma 6. Assume (m,D) is a class obtained in the SCG construction and i, j
are two transitions enabled at m with the same static time interval ( Is(i) =
Is(j)). Then either i �D j or j �D i .



Proof. By case analysis. We have three cases to consider. The first is when
both transitions i and j are newly-enabled in (m,D) (they were introduced
simultaneously). It directly follows from Lemma 2. The second is when one is
persistent and the other is newly-enabled. It directly follows from Lemmas 3
and 2. The last case is when both are persistent. It is proved by induction by
showing that the ordering between i and j is preserved whatever the transition
introduced next as long as both i and j stay persistent. ut

4.3 A Total Order on Equivalent State Classes

Our results from Sect. 4.2 show that the relation �D totally orders equivalent
transitions; �D has a quadratic time complexity.

We take advantage of this relation to derive an order between equivalent
state classes. We say that a symmetry π is stable for a marking m (resp. for a
class (m,D)) if π(m) = m. Let C = (m,D) be some state class of the SCG. If
π is stable for C, then the class π(C) = (m,π(D)) is also a class of the net and
the firing domain π(D) has the same “variables” as D, but each transition i in
D is changed into π(i).

By definition of the relation �D (see equation �-DEF), it is easy to see that
i �D j if and only if π(i) �π(D) π(j). We use this property to define an order
relation �T between the firing domains obtained as the result of applying some
symmetry to domain D (such domains will be said to have the form π(D)).

We assume an arbitrary, total ordering ≤T over the transitions in T . For
any given permutation π stable for m we say that D �T π(D) if and only if
D = π(D) (that is t =D π(t) for all t in E(m)) or for the first transition t such
that t 6=D π(t), we have t �D π(t):

D �T π(D) =def (D = π(D))∨
(∃t) (t ≺D π(t) ∧ (∀k ≤T t)(k �D π(k)))

The relation �T is analog to the lexicographic order built from ≤T and �D,
but our definition has the advantage to work with any domains of the form π(D).
We can prove that �T defines a total order between equivalent firing domains.
This result derives from the observation that, by definition of �, if i �D π(i)
and π(i) �π(D) j then i �D j.

Next, assuming a total ordering ≤P over places P , we can easily build a total
order �P over markings.

From �T and �P we now define a total order � between equivalent classes.
Two classes C and C ′ are equivalent if there is a symmetry π of the net such that
C ′ = π(C). We say that (m,D) � π(m,D) if m �p π(m) or m = π(m) ∧D �T
π(D) (that is � is a lexicographic order). We can observe that comparing firing
domains is conceptually far more complex than comparing markings, because
relation�D is tied to a particular domain (and may change for different domains)
whereas for markings we can merely use the comparison between integer tuples.

Theorem 2. Let C = (Cσ)σ∈T∗ be the set of classes in the SCG construction
of a TPN . Then relation � is a total order between state classes equivalent for
≈ in C.



As such, the definition is not very helpful to compute the least representative
state class for � (that is a suitable canonical form when testing equivalence).
We address this issue in the next section.

5 An implementation

5.1 Describing symmetries

Our approach for expressing symmetries is structural. Nets are described hierar-
chically as compositions of smaller nets by synchronized products or free prod-
ucts. Symmetries are introduced by adhoc composition operators that build a net
from a number of identical components and simultaneously define a symmetry
relation among these components.

The two specialized composition operators currently provided are Pool and
Ring. Both take an arity n and a TPN C as parameters: Pool(n,C) stands for
the free product of n independent copies of net C with the symmetries resulting
from transposition of the pool components – Ring(n,C) stands for the synchro-
nized product of n copies of C after a renaming of transitions conventionally
denoting synchronization of a ring element with its neighbors. The symmetries
are those resulting from cyclic permutations of the ring components.

For example, the construction (Ring(8, P ) | Q | Pool(3, R)) describes the
TPN obtained by synchronizing a ring of 8 instances of P with Q and a pool
of 3 instances of R. Such expressions simultaneously describe a TPN and a
group of symmetries of the TPN , in terms of cyclic groups, symmetric groups,
disjoint products of groups and wreath products of groups, each attached with
its generators. Such group constructions are discussed notably in [8,10].

5.2 Computing canonical forms of classes

Our approach for checking state class equivalence relies on canonical forms, and
specifically in computing the lexicographically least elements of their orbits [8].
Computing canonical forms for the symmetries retained in Sect. 5.1 can be done
in polynomial time. Canonization of a state class C = (m,D) is performed
recursively from the group description derived for the net:

For symmetric groups, the components involved are the subnets of the TPN
with their elements appearing in the generators of the group. By construction,
these components are disjoint and isomorphic. Given total orders ≤P and ≤T
on the places and transitions of the net, two components i and j of a pool can
be ordered by relation ≤c, as follows:

i ≤c j =def m
i �m mj ∨ (mi = mj ∧ ei �e ej)

where mi is the tuple of markings of the places of i ordered by ≤P ; ei is
the tuple of transitions of component i, ordered by ≤T ; �m is the lexicographic
order on tuples of place markings (integers); �e is the lexicographic order on
tuples of transitions, themselves compared by the order �D defined in Sect. 4.2.



The canonical form of class (m,D) is obtained as follows: the components are
sorted by ≤c, what defines a permutation of components and a corresponding
symmetry π of the net. The canonical form of (m,D) is π(m,D).

The treatment of cyclic groups, disjoint and wreath products is standard and
follows [11].

We need two conditions on orders ≤P and ≤T to apply the above method:

- First, ordering ≤P must be such that the elements at same index in any
two tuples mi and mj (from components i and j) are associated with places
equivalent by ≈. Similarly, ≤T must be such that the transitions at same index
in ei and ej are equivalent. This is a soundness condition ensuring that, when
comparing component states, we only compare places or transitions that are
equivalent by ≈;

- Next, let us denote with pik the place associated with element k of tuple mi

(that is the place mi
k is the marking). Then, for any two component indices i and

j, and any k, we must have i ≤ j ⇒ pik ≤P p
j
k. Similarly for transitions, we must

have i ≤ j ⇒ tik ≤T tjk, where tik is the transition the element eik is associated
with. These conditions guarantee that canonical classes are the lexicographically
least in their orbits.

In our treatment, satisfaction of these constraints follows from the way places
and transitions of components are named when building the net. These con-
straints being satisfied, it is easy to show that we have i ≤c j in the above
treatment if and only if C � π(C) where � is the total order on equivalent
classes defined in Sect. 4.3 and π is the symmetry of the net corresponding with
the transposition of components i and j.

5.3 Computing experiments

The symmetry reduction method described above has been implemented in ex-
tension of Tina5, an existing toolbox for analysis of Time Petri nets and various
extensions [3]. We report here some experiments on a train-gate controller model,
in both timed and untimed versions.

The timed version of the train-gate controller model is taken verbatim from
[4]. The untimed version is a simplified version of a model found in [16]. In both
cases the net models a level crossing: a number of tracks cross a road, protected
by a gate; when approaching and leaving the road the trains trigger a signal sent
to a controller that raises or lowers the gate as necessary. The safety property to
be ensured is, of course, that the gate is closed whenever a train is crossing the
road. In the timed version, this is ensured by time constraints on the relevant
events, while the untimed versions makes use of signal acknowledgments and a
shared green flag. In each case, the model is obtained by synchronizing a gate
model (right), a controller (middle) and a pool of tracks. The timed model is
represented in Figure 2 and the untimed one in Figure 1.

5 Tina is available at http://www.laas.fr/tina, its experimental extension supporting
symmetries is available at http://www.laas.fr/tina/symmetries.
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The results on the untimed models are shown in Figure 1. Columns R holds
the sizes of reachability sets, omitting symmetries, and their computing times,
for the models with the number of tracks specified in the first column. Column
R≈ (our) shows the sizes and computing time of the symmetry reduced reach-
ability sets computed by our tool. As can be observed, we obtain the expected
gains in size, as well as considerable gains in computing times. The numbers in
grey font have been obtained “analytically” by summing the sizes of orbits of
the symmetry reduced markings; building spaces of such sizes are beyond the
capabilities of our tool, which is based on enumerative approaches.

The last column shows the results of computing the symmetry reduced reach-
ability sets by the latest available version of tool LoLA (V2.0), which relies upon
the techniques of [20]. As can be seen, LoLA typically computes several represen-
tatives per orbit. As a consequence, the gain on the number of states obtained
by symmetry reduction is much smaller than what we obtain with our treat-
ment. On the other hand, LoLA can extract more symmetries from nets than
we are currently able to express, and computes symmetries automatically from
bare nets. We were not able to compare our results with those of [14].

The results on the timed models are shown in the table of Figure 2, for two
state class graph constructions. As in the untimed case, the grey numbers have
been obtained by summing the sizes of orbits of the symmetry reduced classes.

For the same number of tracks, the number of state classes of the timed model
(columns SCG and SCG≈) is much larger than the number of markings in the
untimed models. The gain obtained by symmetry reduction of state classes is
however similar to that obtained for markings in the untimed version, both in
terms of size of state class graphs and computing times. It can also be observed
that the coarser construction of “state classes under inclusion” (columns SCG⊆

and SCG⊆≈), only preserving markings (cf. Sect. 2) benefits of similar gains.

These experiments, with many other conducted over the last months, confirm
that reduction by symmetry, when applicable, is an effective way of fighting
combinatorial explosion. They are even more important for real-time models
since alternative abstractions like partial order methods, unfolding methods or
symbolic methods appear more difficult to apply on timed systems than on
untimed ones. Symmetry reduction allows one to perform verification of TPN
faster and with much less computing resources (a laptop may suffice where a
large server was required).

6 Related work and Conclusion

In the context of Petri nets, symmetry reduction methods have been mostly
applied to Colored Petri Nets (and the problem of symmetries on data values).
The problem that we address in this paper is quite different. Concerning sym-
metries for real-time models, the only works we are aware of are on Uppaal [12]
and RED [24]. The latter combines symbolic exploration with symmetries and
rely on over-approximations of the state space; so it uses different methods than



those discussed here. The treatment of symmetries for Timed Automata [12] is
closer in spirit to our work.

We developed a symmetry reduction method for the State Class Graph con-
struction of Time Petri nets what, as far as we know, has never been attempted.
As appears from Sect. 4, the technical treatment differs significantly from that of
[12]. Actually the difference is not surprising since (going beyond the difference
between the models) the abstraction method for Timed Automata is based on
clock domains—that is on the time elapsed since a transition fired—rather that
on firing domains—that capture the time, in the future, when a transition can
fire. For TPN , the firing domain approach is more interesting in practice since
it yields smaller abstractions.

We have several opportunities for extending our work. The pragmatic way
of defining nets together with their symmetries in Section 5 is sufficient in many
cases. However the version presented forbids interactions between components of
a pool, which can be sometimes limiting. Relying on a form of symbolic transition
labels, we could relax that restriction but this may come at the cost of losing the
canonical property of orbit representatives, depending on the synchronization
pattern between pool components. These results will be reported in another
document. We would also like to add new forms of symmetries, such as the
dihedral or cube symmetries. Finally, combining our treatment with that of
LoLA (for the symmetries we cannot express) is also investigated.
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Proof of Lemma 5, Page 9

Assume C = (m,D) is a class obtained in the SCG construction and i, j are two
transitions with the same static time interval (Is(i) = Is(j)). We show that if
i �D j, then (i) αi ≤ αj , (ii) βi ≤ βj , and (iii) for all transition k distinct from
i, j, γk,j ≤ γk,i. (In the remainder of the proof, we use the name F to denote
the third part of this conjunction).

The proof is by case analysis on i, j.

If both i and j are newly-enabled:
αi = αj since αi = αsi , αj = αsj , and αsi = αsj by hypothesis
βi = βj since βi = βsi , βj = βsj , and βsi = βsj by hypothesis
γk,i = γk,j since

if k is persistent
γk,i = βk − αsi , γk,j = βk − αsj , and αsi = αsj by hypothesis

if k is newly-enabled
γk,i = βsk − αsi , γk,j = βsk − αsj , and αsi = αsj by hypothesis

hence i =D j and consequently F holds

If i persistent and j newly-enabled (or the converse, symmetrically):
αi ≤ αj

since j is newly-enabled, we have αj = αsj , so αi > αj ⇔ αi > αsj ,
which is impossible since αsj = αsi by hypothesis and 0 ≤ αi ≤ αsi
by Lemma 3.

βi ≤ βj
similarly, since j is newly-enabled, we have βj = βsj , so βi >
βj ⇔ βi > βsj ⇔ βi > βsi , which contradicts Lemma 3.

(∀k 6= i, j)(γk,j ≤ γk,i)
if k is persistent

We have:
γk,j = βk − αsj since j is newly-enabled,
αsj = αsi by hypothesis,
βk − αsi ≤ βk − αi since 0 ≤ αi ≤ αsi and 0 ≤ βk by Lem. 3,
Then, if γk,i = βk − αi:
γk,j = βk − αsj = βk − αsi ≤ βk − αi = γk,i
hence γk,j ≤ γk,i

Otherwise consider any sequence (Cx)0≤x≤p of classes from
the initial class ending at class C (i.e. Cp = C); we denote
αxi , β

x
i , γ

x
k,i the bounds in class Cx.

Let Cn be the last class in that sequence in which γnk,i =
βnk − αni . By Lemma 2, Cn necessarily exists and, for any
u ∈]n, p], i and k are persistent in class Cu and γuk,i = γu−1k,i .
Next, we have βk ≤ βnk , 0 ≤ αi ≤ αsi and 0 ≤ βk by Lemma
3, and thus βk − αsi ≤ βnk − αni
So γk,j = βk − αsj = βk − αsi ≤ βnk − αni = γnk,i = γpk,i
hence γk,j ≤ γk,i



if k is newly-enabled
γk,j > γk,i ⇔ βsk − αj > βsk − αi
which is impossible since αi ≤ αj (as seen above)

If both i and j are persistent:
by induction on firing sequences.

Assuming we have Is(i) = Is(j), i �D j, F , (m,D)
f−→ (m′, D′),

and both i and j are persistent in D′, we have
α′i ≤ α′j ∧ β′i ≤ β′j ∧ (∀k 6= i, j)(γ′k,j ≤ γ′k,i) (F ′)
α′i ≤ α′j

we have α′i = −mink γk,i and α′j = −mink γk,j by Lemma 2,
γi,j ≤ γj,i and (∀l 6= i, j)(γli ≥ γlj) by induction hypothesis,
so −mink γk,i ≤ −mink γk,j and thus α′i ≤ α′j

β′i ≤ β′j
we have β′i = γi,f and β′j = γj,f by Lemma 2, γi,f ≤ γj,f by
induction hypothesis, so β′i ≤ β′j

(∀k 6= i, j)(γ′k,j ≤ γ′k,i)
k is persistent

by Lemma 2,
γ′k,i = min(γk,i, β

′
k − α′i) and γ′k,j = min(γk,j , β

′
k − α′j)

we have four cases to consider:
1. γ′k,i = γk,i and γ′k,j = γk,j : then γ′k,j ≤ γ′k,i since
γk,j ≤ γk,i by ind. hyp.

2. γ′k,i = γk,i and γ′k,j = β′k−α′j : we have γ′k,j = β′k−α′j ≤
γk,j (by Lemma 2) and γk,j ≤ γk,i by ind. hypothesis
so γ′k,j ≤ γk,j ≤ γk,i ≤ γ′k,i, hence γ′k,j ≤ γ′k,i

3. γ′k,i = β′k − α′i and γ′k,j = γk,j : Since α′i ≤ α′j (shown
above) and βk, α′i and α′j are non-negative (Lemma
3), we have β′k − α′i ≥ β′k − α′j
then γ′k,j ≤ β′k−α′j ≤ β′k−α′i = γ′k,i, hence γ′k,j ≤ γ′k,i

4. γ′k,i = β′k − α′i and γ′k,j = β′k − α′j : then γ′k,i ≥ γ′k,j
since α′i ≤ α′j (by above)

k is newly-enabled
by Lemma 2 γ′k,i = βsk − α′i, γ′k,j = βsk − α′j
it was proved above that α′i ≤ α′j , and Lemma 3 says
that alpha’s and beta’s are non-negative
hence βsk − α′i ≥ βsk − α′j and consequently γ′k,i ≥ γ′k,j

ut

Proof of Lemma 6, Page 9

Assume (m,D) is a class obtained in the SCG construction and i, j are two
transitions enabled by m with the same static time interval (Is(i) = Is(j)).
Then either i �D j or j �D i.



We consider the following three possible cases. Informally, the first case is
when transitions i and j are introduced simultaneously in system D (they have
the same “age”), the second is when they are introduced at different times (one
is older than the other), and the last case asserts that the relationships between
i and j is preserved whatever the transition introduced next as long as i and j
stay persistent.

Both i and j are newly-enabled at (m,D):
Then γi,j = βsi −αsj , γj,i = βsj−αsi and thus γi,j = γj,i since Is(i) = Is(j).
for any k 6= i, j, γi,k = βsi − αk, γj,k = βsj − αk and thus γi,k = γj,k
since Is(i) = Is(j).
So i =D j; both i �D j and j �D i hold.

i is persistent and j is newly-enabled (or the converse, symmetrically):

γi,j ≤ γj,i
since j is newly-enabled, we have γi,j = βi−αsj and γj,i = βsj−αi
so γi,j ≤ γj,i ⇔ βi + αi ≤ βsj + αsj
but Is(i) = Is(j) by hypothesis,
so γi,j ≤ γj,i ⇔ βi + αi ≤ βsi + αsi
by Lemma 3 we have αi ≤ αsi and βi ≤ βsi
hence βi + αi ≤ βsi + αsi and γi,j ≤ γj,i

(∀k 6= i, j)(γi,k ≤ γj,k) :
since j is newly-enabled, we have γj,k = βsj − αk
so γi,k > γj,k ⇔ βsj − αk < γi,k
but γi,k ≤ βi − αk by lemma 3
so γi,k > γj,k ⇔ βsj − αk < βi − αk ⇔ βsj < βi,
which is impossible since βsj = βsi by hypothesis and βi ≤ βsi by
Lemma 3.

hence i ≺D j (or j ≺D i, symmetrically)

Both i and j are persistent and i �D j (or j �D i, symmetrically):
by induction using Lemma 2:
initially: if j is newly-enabled in D, in which i is persistent, then i �D j
holds (see the previous case)
induction step: assume i and j are persistent in (m,D) and (m′, D′),

i �D j and (m,D)
f−→ (m′, D′)

γ′i,j ≤ γ′j,i
Lemma 2 yields
γ′i,j = min(γi,j , β

′
i − α′j) = min(γi,j , γi,f − α′j)

γ′j,i = min(γj,i, β
′
j − α′i) = min(γj,i, γj,f − α′i)

we have four cases to consider:
1. γ′i,j = γi,j and γ′j,i = γj,i : γi,j ≤ γj,i by hyp., so γ′i,j ≤ γ′j,i
2. γ′i,j = γi,j and γ′j,i = γj,f − α′i : γi,f ≤ γj,f by ind. hyp. and
α′j ≥ α′i by Lemma 5 so γ′i,j ≤ γi,f − α′j ≤ γj,f − α′i = γ′j,i,
that is γ′i,j ≤ γ′j,i



3. γ′i,j = γi,f − α′j and γ′j,i = γj,i : then by ind. hyp.
γ′i,j ≤ γi,j ≤ γj,i = γ′j,i, hence γ′i,j ≤ γ′j,i

4. γ′i,j = γi,f − α′j and γ′j,i = γj,f − α′i : then by ind. hyp. and
Lemma 5: γ′i,j = γi,f −α′j ≤ γj,f −α′i = γ′j,i, hence γ′i,j ≤ γ′j,i

(∀k 6= i, j)(γ′i,k ≤ γ′j,k)

if k is persistent
γ′i,k = min(γi,k, β

′
i − α′k) = min(γi,k, γi,f − α′k)

γ′j,k = min(γj,k, β
′
j − α′k) = min(γj,k, γj,f − α′k)

we have four cases to consider:
1. γ′i,k = γi,k and γ′j,k = γj,k : γi,k ≤ γj,k by hyp. thus γ′i,k ≤
γ′j,k

2. γ′i,k = γi,k and γ′j,k = γj,f − α′k : γi,f ≤ γj,f by ind. hyp.
so
γ′i,k ≤ γi,f − α′k ≤ γj,f − α′k = γ′j,k, hence γ′i,k ≤ γ′j,k

3. γ′i,k = γi,f − α′k and γ′j,k = γj,k : then by ind. hyp. so
γ′i,k ≤ γi,k ≤ γj,k = γ′j,k, hence γ′i,k ≤ γ′j,k

4. γ′i,k = γi,f − α′k and γ′j,k = γj,f − α′k : then by ind. hyp.
γ′i,k = γi,f − α′k ≤ γj,f − α′k = γ′j,k, hence γ′i,k ≤ γ′j,k

if k is newly-enabled
γ′i,k = β′i − α′k = γi,f − α′k
γ′j,k = β′j − α′k = γj,f − α′k
so γ′i,k ≤ γ′j,k holds by induction hypothesis (γi,f ≤ γj,f )

and consequently i �D′ j :
ut


