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Abstract: In this paper, a control scheme is elaborated to perform the station keeping of a
geostationary satellite equipped with electric propulsion. The use of electric thrusters imposes
to take into account some additional non linear constraints that make the overall station keeping
optimal control problem difficult to solve directly. That is why we choose here to decompose
the station keeping problem in two control problems. The first one consists in solving a classical
optimal control problem with an indirect method initialized by a direct method without using
the thrusters operational constraints. The second problem deals with the thrusters operating
constraints, that are taken into account by two different ways. Simulation results validate the
effect of the optimal control thrusts obtained with these methods.
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1. INTRODUCTION

Due to orbital disturbing forces, any satellite in Geo-
stationary Earth Orbit (GEO) drifts outside its station
keeping (SK) window (a rectangular box of a given ge-
ographical longitude and latitude range). Performing an
accurate SK strategy is therefore necessary to compensate
for the induced environmental secular and periodic dis-
turbances and GEO satellites are equipped with electric
and/or chemical thrusters.

Chemical propulsion systems have been and are widely
used. For these propulsion systems with high thrust ca-
pabilities, SK control laws are usually designed assum-
ing an impulsive idealisation of the thrust, as described
for example in Soop (1994). The idea of using electric
propulsion for station keeping dates back to the sixties
(see, e.g. Barrett (1967) and Hunziker (1970) ) and some
theoretical developments have been presented in the eight-
ies by Anzel (1988) and Eckstein (1980). Nowadays the
electric propulsion is a viable alternative to the chemical
one, in particular in the case of SK of GEO satellite, to
take thrust operations constraints into account: large on-
board power needs, mission requirements restricting the
duration of use of the electric power system, impossibility
to perform SK maneuvers at eclipse epochs. Moreover, its
bigger specific impulsion and the consequent savings in
fuel consumption, leads to a reduction of the satellite mass

and enables increased payload capacity and/or improved
satellite longevity.

Considering these technological and operational features,
optimal control strategies for electric SK, taking various
constraints into account (minimum elapsed time between
two consecutive firings, on-off profile of the thrusters,
thrust allocation) have to be carefully designed. The prob-
lem of station keeping is in general expressed as an optimal
control problem even if the above mentioned constraints,
inherent to the use of electric thrusters, prevent us to solve
it with classical methods.

Several types of methods may be used to solve optimal SK
control problems. When simple models are used to describe
the disturbing forces, analytical models provide sufficient
control laws, as in Sukhanov and Prado (2012). Otherwise,
it is necessary to resort to numerical methods, such as
direct collocation based methods as described in Hull
(1997) and Betts (1998). For this family of approaches, the
state and the control variables are discretized to produce
a non linear programming problem and get an optimal
open loop control. To deal with on-off models of thrusts,
the Pulse Width Modulation technique may be used to
generate rectangular profiles from a continuous one (see
Vazquez et al. (2015) and the references therein). Losa
et al. (2005) has formulated a method based on differential



inclusion, and a first avenue for the use of decomposition
methods to solve the problem is given in Losa et al. (2006).

In this paper, the idea is to decompose the overall SK
optimal control problem into two sub-problems for which
appropriate solution methods are designed. In a first step,
an indirect method based on the application of Pron-
tryagin Maximum Principle (PMP) with mixed control-
state constraints is applied to solve a simplified optimal
SK control problem, i.e. without considering some hard
constraints on the control law (thrust constraints such as
latency between two bursts of the same thruster and no
simultaneous thrusting for instance). The solution of the
Two Point Boundary Value Problem (TPBVP) derived
from the optimal necessary conditions is initialized by an
approximate solution given by a collocation based direct
method. In a second step, a numerical approach is used to
enforce all the thrust constraints left apart at the first step.
A realistic numerical example illustrates the efficiency of
the proposed approach.

2. PROBLEM STATEMENT

2.1 Minimum-Fuel Station Keeping Problem

Let consider a satellite equipped with 4 electric thrusters
mounted on the anti-nadir face. The position of the satel-
lite on its orbit is described with the equinoctial orbital
elements as defined in Battin (1999):

xeoe = [a ex ey ix iy `MΘ]t ∈ R6, (1)
where a is the semi-major axis, (ex, ey) the eccentricity
vector components, (ix, iy) the inclination vector compo-
nents, `MΘ = ω+ Ω +M −Θ is the mean longitude where
Ω is the right ascension of the ascending node, ω is the
perigee’s argument,M is the mean anomaly and Θ(t) is the
right ascension of the Greenwich meridian. The dynamics
of the satellite may be represented by the following non
linear state-space model:

dxeoe

dt
= fL(xeoe, t) + fG(xeoe, t)u, (2)

where fL ∈ R6 is the Lagrange contribution part of the
external force model described by the CNES ORANGE
model (cf. Campan and Brousse (1994)) and fG ∈ R6×3

is the Gauss contribution part.

u = [uR uT uN ]t ∈ R3 is the control vector expressed in
the local orbital RTN frame (also written RSW ) defined
in Soop (1994) by:

• N is the unit vector along the kinetic momentum;
• R is the unit vector along the direction Earth’s center

- satellite;
• T makes orthogonal direct basis.

In order to deal with the station keeping problem, the
relative state of the satellite with respect to the station
keeping state is rather used. The station keeping state is
defined as follows:

xsk = [ask 0 0 0 0 `MΘsk
]t, (3)

where ask is the synchronous semi-major axis and `MΘsk

is the station mean longitude.

The relative dynamics equations are developed by lin-
earization of equation (2) about the station keeping point
(3). By denoting x = xeoe − xsk the relative state model
for the SK problem reads:

dx

dt
= A(t)x+D(t) +B(t)u, (4)

where matrices A ∈ R6×6, B ∈ R6×3, C ∈ R3×6 and
D ∈ R6 are obtained from the linearization of functions
fL and u 7→ fGu.

Remembering that 4 thrusters are available to realize the
control, the transcription of the station keeping problem
can be expressed considering the 4 thrusts provided by
the 4 engines in the satellite dynamics. The control u(t)
is a linear combination of the 4 thrusts such that u =
ΓF , where Γ = [Γ1 | Γ2 | Γ3 | Γ4] ∈ R3×4 and F =
[F1 F2 F3 F4]t ∈ [0, Fmax]4. The thrust direction matrices
Γj ∈ R3 are defined such that:

Γj =
1
m

[
− sin θj cosαj − sin θj sinαj − cos θj

]t
, (5)

where the angles θj and αj are defined exactly as in Anzel
(1988).

Two other transformations are proposed. Firstly, for the
sake of simplicity, we will normalize the thrust vector:
F = Fmax F̃ with F̃ ∈ [0, 1]4. Secondly, as the thrusts
are on-off, the thrust profile is modeled as a rectangular
signal that is parametrized by the date ti,j corresponding
to the middle instant of the thrust and by its half width
duration denoted ∆ti,j as shown on Figure 1:

Fi(t) = Fmax

Pi∑
j=1

RectangleFunction(t, ti,j ,∆ti,j). (6)

where Pi is the number of thrusts of thruster i.

∆ti,j
ti,j

t

F̃i

1

Fig. 1. Parametrization of the jth thrust.

The main goal of the station keeping problem is to main-
tain the longitude and the latitude of the satellite in a box
defined by its size δ by acting on the orbital parameter via
the 4 thrusters. The associated optimal control problem is
in general defined over a fixed horizon for the computation
of optimal open loop control laws. In this context, optimal-
ity means that a minimum fuel-solution is looked for to
extend the operational life time of the satellite. Therefore,
performing minimum-fuel station keeping is minimizing
the performance index:



J =
∫ T

0

4∑
thruster i=1

Pi∑
j=1

(
|uRij

(t)|+ |uTij
(t)|+ |uNij

(t)|
)
dt (7)

= 2Fmax

4∑
thruster i=1

||Γi||1
Pi∑

j=1

∆ti,j , (8)

Constraints have to be imposed so that the satellite stay in
the station keeping geographical box. This box is defined
in the plane (latitude,longitude) of width 2δ× 2δ centered
on the station keeping geographical position ysk. These
constraints on the output variables are transformed into
constraints on the state variables:
|[0 1 0]C(t)x(t)| 6 δ and |[0 0 1]C(t)x(t)| ∀t ∈ [0, T ] (9)

The initial position is chosen to be at the center of the
station keeping box, i.e. x(0) = 0. The station keeping
has to be performed on the time interval [0, T ]. In order
to use the same control law on the intervals [kT, (k +
1)T ], k ∈ N∗, it is convenient to add the terminal condition
: x(T ) = 0.

2.2 Operational Constraints on Actuation

Beside the station keeping geographical constraints and
the usual bounds on the maximum thrust, some addi-
tional technological operational constraints on the actu-
ation have to be taken into account:

(i) thrusters cannot have simultaneous thrusts;
(ii) a thrust must last at least Tl : 2∆ti,j > Tl;
(iii) two successive thrusts of a given thruster must be

separated of an interval of latency equal to Ts;
(iv) two thrusts of two different thrusters must be sepa-

rated by an interval of latency equal to Td.

In order to give a tractable mathematical expression for
constraints (iii) and (iv), let us define for the thruster i the
ordered sequence of firing times (ti,k)k=1...Pi

in increasing
order. The constraint for the time latency between the
thrust k of thruster i and the thrust l of thruster j is thus
mathematically expressed as:

|ti,k − tj,l| − (∆ti,k + ∆tj,l) > Ki,j , (10)
for k = 1 . . . Pi and l = 1 . . . Pj , where Ki,j = Ts if i = j
(constraint (iii)) and Ki,j = Td otherwise (constraint (iv)).

The operational constraint (10) raises some difficult math-
ematical issues. Firstly, due to the parametrization of the
rectangular functions by ti,j and ∆ti,j , the firing times
and durations are both optimization variables and intrinsic
variables of the problem to solve. Secondly, this constraint
is non convex and logical, and is therefore difficult to be
tackled within an optimal control problem.

In addition, some other convenient constraints are enforced
in order to make sure that the thrusts will not begin before
0 and end after T :

ti,j −∆ti,j > 0 and ti,j + ∆ti,j 6 T. (11)

2.3 Decomposition of the Overall Problem

Considering all the operational constraints described
above, the minimum-fuel SK problem to solve may be
summarized as the following optimal control problem:
Problem 1. Find the sequence of dates {ti,j} and durations
{∆ti,j}, for i = 1 . . . 4, j = 1 . . . Pi (with Pi fixed) solutions
of the minimization problem:

min
ti,j ,∆ti,j

J =
4∑

i=1

Pi∑
j=1

∆ti,j ,

s.t.



ẋ(t) = A(t) x(t) +D(t) + B̄(t) F̃ (t),
x(0) = 0, x(T ) = 0,
|[0 1 0]C(t)x(t)| 6 δ, |[0 0 1]C(t)x(t)| 6 δ,

2∆ti,j > Tl, ti,j −∆ti,j > 0, ti,j + ∆ti,j 6 T,

|ti,k − tj,l| − (∆ti,k + ∆tj,l) > Ki,j ,

(12)
◦

It is possible to solve the whole problem with direct
methods such as collocation methods as described in Hull
(1997) and Betts (1998). However, to obtain a solution
with this method, the number of bursts per thruster has
to be known beforehand. To solve this problem in its
whole generality, it is necessary to solve a non linear mixed
integer optimization problem with respect to the thrusts
number for each thruster. Moreover, the solution is very
sensitive to the number of collocation points and the initial
guess of the optimization variables.

An alternative strategy for solving the Station Keeping
Problem 1 consists in splitting it into two different steps:

(A) The thrusters constraints (10) and (11) are removed
so that only an optimal control problem (OCP) with
state and control constraints remains. This particular
OCP is tackled via a hybrid approach relying on
an indirect method initialised by a direct method
solution dedicated to the search of adjoint variables
as described in Grimm and Markl (1997) and von
Stryk and Bulirsch (1992). The Pontryagin Maximum
Principle (PMP) is applied to derive necessary con-
ditions of optimality and the associated Two Points
Boundary Value Problem (TPBVP). The TPBVP is
then solved via a collocation method for which the
results of the direct collocation step serves as first
guess.

(B) As the result of the first step produces a control
law that does not necessarily respect the thruster
operational constraints, a second part is needed in
order to obtain modified results of the first part fitting
the thrusters constraints.

To sum up, instead of solving the overall problem at once,
this problem is split into two smaller and simpler problems
that are more easily solved in general as in Losa et al.
(2006).



3. SOLUTION OF THE SIMPLIFIED OCP (STEP (A))

Removing the operational actuation constraints (10) and
(11) allows to redefine the optimal control problem. In
particular, the thrust functions F̃i are not a priori modeled
as rectangular functions parametrized by ti,j and ∆ti,j and
the simplified OCP to be solved reads as :
Problem 2. The simplified OCP to be solved is finding:

min
F̃ (t)∈[0;1]4

J =
∫ T

0

4∑
i=1

F̃i(t)dt,

s.t.


ẋ(t) = A(t) x(t) +D(t) + B̄(t) F̃ (t),
|[0 1 0]C(t)x(t)| 6 δ, |[0 0 1]C(t)x(t)| 6 δ,

x(0) = 0,x(T ) = 0.
(13)
◦

Problem 2 is a minimum-fuel linear OCP with constraints
both on the state and the control vectors and defined on
a fixed horizon. To solve this problem, a direct collocation
method finds a first approximation of the optimal solution.
This approximated solution is then used to initialize the
solution of the TPBV problem obtained by the applica-
tion of Pontryagin Maximum Principle (PMP) and the
derivation of the necessary optimality conditions. Using an
indirect method to solve an OCP leads to a very precise
solution which is very sensitive to the initial conditions. A
good guess for this initial condition is therefore needed. It
is provided by the direct collocation method.

3.1 Finding an Initial Guess via a Direct Method

Suboptimal solution of the Problem 2 is found by applying
a classical collocation method. The time interval [0, T ] is
divided into N equidistant points:

0 = τ1 < τ2 < · · · < τk < · · · < τN−1 < τN = T, (14)
with τk+1 − τk = ∆τ so that a grid of N points defines
the discretization of Problem 2, with xk = x(τk) and
F̃ k = F̃ (τk). The collocation method aims at finding the
value of the control at the points τk of the grid. The
continuous control is then obtained by interpolation.

The collocation problem is mathematically formulated as
follows:
Problem 3. The collocation problem to be solved to ini-
tialize the optimal control Problem 2 is finding:

min
F̃k,i,xk

J =
4∑

i=1

N∑
k=1

F̃k,i + F̃k+1,i

2 ∆τ

s.t.
{
Rk(xk,xk+1, F̃ k, F̃ k+1) = 0,
|[0 1 0]C(τk)xk| 6 δ, |[0 0 1]C(τk)xk| 6 δ,

(15)
where the defects Rk are obtained by discretizing the
differential constraint of Problem 2 using the 4th order
Simpson algorithm described in Hull (1997). ◦

The trajectory {xk, k = 1 . . . N} verifying the geographical
constraints and the set of the Lagrange multipliers of the

defect constraints {λk, k = 1 . . . N} are thus obtained.
The reference Grimm and Markl (1997) shows that these
Lagrange parameters are an approximation of the adjoint
vector for the OC Problem 2. Therefore, (x1,λ1) can
be used as an initial condition for the TPBV problem
obtained from the PMP and from the derivation of the
necessary optimality conditions.

3.2 Solving the Simplified OCP via an Indirect Method

The idea is now to tackle the usual issues of the direct
methods (sensitivity of the solution to the initial guess)
by combining it with an indirect approach based on the
PMP. To handle the state geographical constraints, the
technique is based on a penalty function as described in
Naidu (2002). The following penalty function is added to
the cost function of Problem 2 (see Equation (18)) and is
chosen such that:

g(x(t)) =
4∑

i=1

1
2 [gi(x(t))]2 (sign(gi(x(t))) + 1) . (16)

The Hamiltonian of the system becomes:

H(x(t), F̃ (t),λ(t)) =
4∑

i=1

F̃i(t)

+ λ(t)t
[
A(t) x(t) +D(t) + B̄(t) F̃ (t)

]
+ µ g(x(t)), (17)

where λ(t) ∈ R6 is the adjoint vector, and µ is a constant
parameter that can be chosen as large as needed.

Applying the PMP described in Naidu (2002), the mini-
mization condition:
H
(
x(t), F̃ (t),λ(t)

)
= min

u∈[0,1]4
H (x(t),u(t),λ(t)) (18)

leads to the following switching conditions:

F̃ (t) = 1
2
[
1− sign

(
1 + λt(t)B̄(t)

)]
. (19)

It is assumed that singular arcs are not possible optimal
solutions for this problem. Another way to take the state
constraint into account in the derivation of the optimality
conditions with the PMP is presented in Hartl et al.
(1995).

By applying the first order necessary conditions:

ẋ(t) = ∂H
∂λ

and λ̇(t) = −∂H
∂x

, (20)

and the transversality conditions as boundary conditions,
a two points boundary value problem is obtained and
formulated as Problem 4.
Problem 4. The TPBV problem to be solved is defined as:

ẋ(t) = A(t)x(t) +D(t)

+ B̄(t)1
2
[
1− sign

(
1 + λt(t)B̄(t)

)]
,

λ̇(t) = −A(t)tλ(t)− µdg
dx

(x(t)),

x(0) = 0, x(T ) = 0, λ(0) and λ(T ) free.

(21)

◦



To solve this problem, the initial guess used is the one
obtained as a solution of Problem 3.

The initial conditions for the state and adjoint vectors
being well chosen thanks to the solution of Problem 3,
Problem 4 is easily solvable. However, this solution does
not satisfy in general the operational actuation constraints
described in Section 2.2. The next section proposes an
additional complementary step for which a direct method
is applied on an auxiliary problem enforcing the actuation
constraints on a new and equivalent control law, while
preserving the structure and overall effect of the thrust.

4. ENFORCING THE OPERATIONAL THRUSTERS
CONSTRAINTS (STEP (B))

The solution of the TPBV Problem 2 consists in a series
of rectangle signals naturally exhibited as a result from
application of the PMP. However, this control law does
not respect the actuation constraints left apart in the first
part. For instance, simultaneous activation of two different
thrusters may occur. The aim of this second part is to
find an equivalent control law satisfying the required non
linear operational constraints. To do so, it is first necessary
to clearly define the meaning of equivalent control laws in
the sequel. Two different notions of equivalent control laws
will be used hereafter.

The first notion of equivalence between two control laws re-
lies on the fuel consumption argument: the goal is to com-
pute a raw control profile that has the same fuel consump-
tion as the profile obtained by solving the TPBV problem.
Let F̃BV P be the control obtained by solving Problem 4.
Finding a consumption based equivalent (CBE) control for
the satellite is then equivalent to solve Problem 5 defined
as follows:
Problem 5. Find:

min
ti,j ,∆ti,j

4∑
i=1

‖F̃BVP,i(t)‖1 −
Pi∑

j=1
∆ti,j

 , (22)

s.t. 2∆ti,j > Tl, (10) and (11) (23)
◦

This problem is a non linear optimization problem where
‖F̃BVP,i(t)‖1 is the L1 norm of the ith component of the
the solution of Problem 4.

The second way to obtain an equivalent control respecting
the actuation constraints is to define an ”effect-based”
equivalent (EBE) control. To get a control profile that has
the same effect at time T as the solution of Problems 4
and respecting the actuation constraints, Problem 6 has
to be solved and is defined as follows:
Problem 6.

min
ti,j ,∆ti,j

∣∣∣∣∣
4∑

i=1

(∫ T

0

[
Φ(T, τ)B̄(τ)F̃BVP(τ)

]
i
dτ

−
Pi∑

j=1

∆ti,j

∫ ti,j+∆ti,j

ti,j −∆ti,j

[Φ(T, τ)B̄(τ)]idτ

)∣∣∣∣∣ , (24)

such that the constraints (23) are satisfied, ◦

where [h]i stands for the ith component of any vector h
and Φ(t, t0) is the transition matrix at time t of the state
equation (4) as defined in Antsaklis (2003). This problem
is a non linear optimization problem. Both Problem 5 and
6 can be solved by classical non linear optimization solvers.

5. NUMERICAL RESULTS

In this section, simulation results obtained with the pro-
posed methodology are presented. Let consider a satellite
of mass 4850 kg equipped with 4 electric thrusters oriented
in the directions North-East, North-West, South-East and
South-West. This satellite has to be controlled in order
to remain close to its geostationary position at a fixed
longitude λ̄. The decomposition presented in Sections 3
and 4 is now illustrated numerically. For the second part,
parameter µ has to be chosen. µ = 1.104 for the CBE and
µ = 1.1012 for the EBE.

On Figure 2, the geographical parameters obtained by
solving Problem 3, and the geographical parameters ob-
tained by solving the TPBV Problem 4 are drawn. Fur-
thermore, Figure 2 shows the latitude and longitude ob-
tained often the CBE and the EBE optimization. It is
recalled that the solution of Problem 3 is used as an initial
guess for solving Problem 4. Both equivalence schemes of
step (B) do not lead to identical results. The effect-based
one leads to a trajectory that remains close to the center
of the station keeping window whereas the consumption
based one leads to a trajectory that goes close to the border
of the window.

Figure 3 shows a detailed view of the the control profile
obtained after solving Problem 4 and the firing sequence
for both equivalence scheme. As explained above, the
thrusters constraints are not satisfied after step (A), as
thrusters NE and SE are simultaneously active, as well
as thrusters NW and SW. This issue requires to perform
the second step to make the control profile feasible with
respect to the thrusters operational constraints. The con-
sumption is very different for both equivalence schemes:
the control profile computed with the CBE requires more
fuel than the control profile computed with the EBE. The
relative difference is of 81, 6%. Despite these differences,
the two control profiles solve the station keeping problem,
as can be seen in Figure 4.

6. CONCLUSION

In this paper, a decomposition of the overall station keep-
ing optimal control problem under many operational con-
straints is used to take into account some difficult con-
straints inherent to the use of electric propulsion. Firstly,
a classical optimal control problem is solved with state
constraints using a precise indirect method initialized by
a collocation based direct method. Secondly, two ways
of dealing with the thrusters operational constraints are
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Fig. 4. Geographical latitude vs. longitude. – : CBE
scheme (µ = 1.104). - - : EBE scheme (µ = 1.1012).

proposed resulting in two different fuel consumption re-
sults. Despite the positive results presented in this paper,
different issues remain open: the optimality of possible
singular arcs has to be studied and alternative formulation
of the PMP for state constraints optimal control problems
(as in Hartl et al. (1995)) should be considered.
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