
HAL Id: hal-01275304
https://hal.science/hal-01275304v1

Submitted on 18 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

COMMUNICATION INTEGRITY FOR FUTURE
HELICOPTERS FLIGHT CONTROL SYSTEMS

Amira Zammali, Agnan de Bonneval, Yves Crouzet, Pascal Izzo, Jean-Maxime
Massimi

To cite this version:
Amira Zammali, Agnan de Bonneval, Yves Crouzet, Pascal Izzo, Jean-Maxime Massimi. COMMU-
NICATION INTEGRITY FOR FUTURE HELICOPTERS FLIGHT CONTROL SYSTEMS. 34th
Digital Avionics Systems Conference (DASC), 2015, Sep 2015, PRAGUE, Czech Republic. pp.6D2-1
- 6D2-14, �10.1109/DASC.2015.7311453�. �hal-01275304�

https://hal.science/hal-01275304v1
https://hal.archives-ouvertes.fr

COMMUNICATION INTEGRITY

FOR FUTURE HELICOPTERS FLIGHT CONTROL SYSTEMS

Amira Zammali, Agnan de Bonneval

and Yves Crouzet, LAAS-CNRS, Université de Toulouse,

 UPS, F-31400 Toulouse, France

Pascal Izzo and Jean-Maxime Massimi, Airbus Helicopters, Aéroport Marseille-Provence,

13725, Marignane, France

Abstract

The evolution from mechanical to Fly-By-Wire

(FBW) designs of Flight Control Systems (FCS, the

system that controls the aircraft trajectory) in both

airplanes and helicopters has been a crucial step

offering a variety of benefits such as easing the pilot

mission and reducing the mechanical complexity of

the aircraft. Yet, all these advantages have limited

improvement unless the required safety level is met.

In fact, for such systems, a very high safety level is

imposed by both the safety-critical property of the

system and certification standards (e.g., ARP4754A

and ARP4761 standard). Now, industrials such as

Airbus Helicopters aim at installing fully digital

FBW architectures on future helicopters. This step

raises new challenges particularly to comply with

certification standards requirements. We present, in

this paper, the architecture of future fully digital

Airbus Helicopters FCS considered at the end of

feasibility study. We focus particularly on the

communication integrity issue of future digital

architectures. In such systems, the non-detection of

corrupted messages could lead to catastrophic

consequences. To enhance communication integrity,

we propose an end-to-end communication integrity

approach based on the black channel concept, it is to

be implemented in the application layer. This

approach uses error detection codes. Given the

constraints of targeted systems namely “embedded”

and “safety-critical” features, the selection strategy of

error detection codes consists in a trade-off between

the computational cost and the error detection

capability.

Problematic

The FBW evolution and the required high safety

level imposed by certification standards such as

ARP4754A [1] and ARP4761 [2] are the main

drivers to design a safety-sensitive architecture for

future Helicopters FCS. In such systems, the

catastrophic failure (leading to casualties) rate should

be extremely low; it must be lower than 10
-9

failures

per hour

in FCS [3]. To meet this strict requirement,

added fault prevention, fault removal and fault

forecasting, one commonly used concept is the fault

tolerance. Fault tolerance is carried out via error

detection and system recovery. Fault tolerance

consists in using redundancy in order to make the

system works correctly despite the presence of

failures. For example, to ensure system availability,

some components are duplicated such that a backup

component could replace a primary component in the

case of failure. Adopting the fault tolerance concept

raises two challenges. The first challenge is the fact

that for the sake of reducing the system cost and

weight, over-redundancy is to be avoided. The

second challenge is the fact that symmetric

redundancy does not cope with the problem of

common mode failures. In fact, symmetric

redundancy consists in duplicating some system

components such that the copies of these components

have exactly the same properties as those of primary

components; they have therefore the same pitfalls.

So, different diversification strategies (software,

hardware, etc.) should be cooperatively adopted in

order to reduce the risk of common mode failures.

One of the goals of this paper is to describe a

fully digital architecture meeting stringent safety

requirements while taking into account different

system design constraints. The case study is based on

future Airbus Helicopters FCS architecture. Since

this future FCS is a distributed system based on

digital networks, a second goal is to describe how to

enhance communication integrity. We aim at coping

with the problem of non-detection of erroneous

messages.

Data corruption is caused by several factors such

as thermal noise, electromagnetic interferences,

radiation, memories failures, etc. A Helicopter FCS is

a system with a very severe environment (e.g.,

vibration, temperature) which increases the

likelihood of components failures and data

corruption. To enhance communication integrity, we

propose in this paper an end-to-end integrity

approach based on error detection codes. The

challenge we seek to address is the selection of

efficient codes with good error detection capabilities

and lightweight computational costs given the system

constraints, particularly the fact that targeted systems

are time-critical and limited in terms of processing

and memory resources.

In this paper, we first present Helicopters FCS

with a focus on the FBW evolution and future

challenges. We present then the architectures of

future Airbus Helicopters with a focus on the

communication integrity approach to deal with the

problem of data corruption, we assess the

performances of different error detection codes and

we give some guidelines and best practices to better

use error detection codes in safety-critical embedded

systems.

Helicopters Flight Control Systems:

description, FBW history and future

challenges

We describe in this section the targeted systems

which are Helicopters FCS with a focus on key

properties, the FBW evolution and future challenges.

Helicopters FCS description

The Flight Control System is the system that

controls the trajectory of the aircraft (airplane,

helicopter or other). It enables the control of the

aircraft flight path all along take-off, flight and

landing. Commands are sent to actuators of control

devices either manually by the pilot or automatically

by the autopilot. These commands are calculated

using both the pilot orders and information provided

by the sensors. To fly a helicopter, the pilot should

use different flight controls in order to tune the

controllable forces. In fact, a Helicopter is subjected

to four forces (Figure 1):

Figure 1. The Four Forces Applied to a Helicopter

 Lift: it is a force that opposes the weight of

the aircraft permitting it to fly.

 Drag: it is the force that opposes the

movement of the aircraft.

 Weight: the gravitational force acting on

the total mass of the aircraft

 Thrust: it is the force generated to oppose

the drag.

The three main flight controls to be used by the

pilot are as following [4]:

 The collective stick, which controls of the

pitch of the main rotor, source of

helicopter’s lift and thrust.

 The cyclic stick, which controls the tilt of

the main rotor, in pitch and roll.

 The rudder pedals, which perform the yaw

control and control of the anti-torque

control.

Key properties and constraints of Helicopters

FCS

Aircraft FCS have particular properties resulting

in strict requirements and constraints to be taken into

account in order to design a relevant architecture.

These key properties are:

 Safety-critical property: this means strict

safety requirements given the hazardous

consequences that could be caused by

potential failures. Failures in a FCS could

lead to fatalities and material damages.

Thus, the catastrophic failures rate must be

extremely low (<10
-9

/h for FCS of civil

aircrafts [3]). To meet imposed strict

safety requirements, FCS designs are

usually based on fault tolerant

architectures with different types of

redundancy: temporal, spatial, software,

hardware, etc.

 Embedded property: this means limited

resources (memories, processing, and

power supply) which generally induce

short communication messages. In such

systems, architectures should not be over-

redundant in order to reduce the weight

and the volume of the system.

 Real-time property: this means that the

system is time-critical. Thus, the output is

not judged to be correct unless it is correct

in both result and time. And the outputs

(the commands) must be regularly

refreshed (short refresh cycles) despite the

fact that processing resources are limited.

 Severe environment property: this means

that the system is subjected to different

causes of failures such as radiation,

vibration, etc.

 Communication system complexity:

communications in fully digital FBW FCS

are based on complex networks including a

large number of nodes (e.g., calculators,

actuators and sensors). This characteristic

increases the occurrence likelihood of

erroneous messages. Therefore, enhancing

communication is crucial.

The selected Helicopter FBW FCS case study is

only stressing more the design constraints due to

rotorcraft application (weight issue, space issue,

commercial competition, vibrations…).

Helicopters FCS FBW history

Unlike the helicopter industry, the airplane

industry has adopted the FBW designs since many

years [5]. Restricted initially to military airplanes,

FBW technology appeared later in commercial

airplanes. The first FBW-based FCS was designed by

Aerospatiale and installed on Concorde [6].

Before the evolution to FBW designs,

mechanical designs of FCS were conventionally

deployed in aircrafts. It consists in transmitting the

pilot orders to the actuators via mechanical

components (rods, cables, etc.). With the increasing

size of aircraft, mechanical designs of FCS have

presented many pitfalls namely the deployment

complexity and the high pilot workload. These

drawbacks were the main drivers to the evolution to

FBW designs. In FBW-based FCS, the conventional

manual controls through mechanical linkages

between the pilot and rotor control actuators are

replaced by “electronics”. FBW architectures are

based on computers (hardware and software layers)

and electrical sensors, actuators and links.

Compared to mechanical FCS designs, the FBW

technology offers a variety of benefits. It makes it

possible to introduce advanced flight control laws

which increase and improve the aircraft

manoeuvrability (especially for helicopters) and

provide envelope protections. So, it eases the pilot

mission and reduces its workload. It decreases the

mechanical complexity and cost and helps to reduce

the whole system weight too [7].

Following in the footsteps of airplanes

development, Helicopters have moved to FBW

designs of FCS some years later. This slow evolution

is due to the fact that flight mechanics of a helicopter

is more complex than the airplane one. In fact, a

helicopter is a highly coupled aircraft, with several

interactions and its system operates in a severe

environment. The FBW technology was firstly

deployed on military helicopters. The military

helicopter NH 90 [8] of Airbus Helicopters, whose

first electrical mode flight was on March 1997,

belongs to the first FBW-based helicopters

generation in service. In FBW-based Helicopters

FCS, instead of moving the rotor actuators by the

pilot through conventional mechanical controls

(sticks and pedals), the pilot has just to move

electrical sticks or side sticks (Figure 2) which

generate electrical signals to be transmitted by wires

to Flight Control Computers (FCC). FCCs generate

electrical signals to be transmitted by wires in order

to control the helicopter actuators.

Figure 2. Conventional VS FBW Helicopters

Flight Controls

A second great step in FCS designs was the

evolution from analog FBW designs to digital FBW.

In the start of the 1980’s, several airplanes

manufacturers launched their first airplanes with

digital FBW-based FCS elements such as the Airbus

A310 (spoilers system). A crucial step has been

crossed when the Airbus A320, implementing a

digital FBW-based FCS, was certified and entered

into service in 1988 [6].

Helicopters FCS future challenges

Now, the next step, as was the case of airplanes,

is to extend FBW, particularly digital FBW

architectures, to civilian helicopters. The future

Helicopters FCS and particularly the inter-

communication architecture should take into account

several safety and security (e.g., confidentiality)

requirements, we consider particularly the following

ones:

 Availability: it means the ability to deliver

a service continuously. Particularly, in the

context of communications, the

availability means that the data exchange

is ensured despite the presence of failures

(e.g., links that are down or data

corruption).

 Integrity: this means the non-occurrence of

unauthorized data modification. In the

context of communications, it is the ability

of the system to detect and/or recover

corrupted exchanged data.

To ensure these two major safety requirements

in communications, a redundant architecture with an

integrity approach is needed. In the following section,

we present the architecture of future fully digital

Airbus Helicopters FCS with a focus on the inter-

communication architecture.

The architecture of future fully digital

Airbus Helicopters FCS

Airbus Helicopters FCS: From current to

future architecture

Two different FCS architecture philosophies are

adopted by the two major avionics industrials Airbus

and Boeing. For Boeing, the FCS architecture is

based on the Triplex concept also called Triple

Modular Redundancy (TMR) with an active/active

controlled simplex [9] [10]. US helicopters

manufacturers follow quite the same architectural

approach without providing a Minimum Equipment

List (MEL) (capability to dispatch helicopter despite

a first failure). Airbus Group architectures are based

rather on Quadruplex or Sextuplex Active/Standby

architecture with a MEL for both Airplanes and

Helicopters. The advantage of Quadruplex

architectures for helicopters is the fact that even in

the case of a first failure, the requirement of 10
-9

/h

failures is ensured, the pilot is not alerted and the

aircraft is able to continue safely its flight. For Airbus

Group, every secondary digital FCC (Flight Control

Computer) is an asymmetric backup with a different

design and running simpler flight control laws. To

avoid common mode failures, every two FCC

implement different software [5]. Communications

are based mainly on ARINC 429. In Boeing

architectures, redundancy consists in having three

instantiations of every component including

computers, communication buses and other hardware

components. The Boeing FCS includes three digital

computers PFC (Primary Flight Computer and three

analog computers ACE (Actuator Control

Electronics). Communications are based on ARINC

629

Adopting the same FCS architecture philosophy

of Airbus airplanes, Airbus Helicopters particularly

the NH 90 [11] is functionally composed (Figure 3)

of:

Position

Sensors

Position

Sensors

Position

Sensors

Position

Sensors

TRIM

Position

Sensors

Position

Sensors

Position

Sensors

Position

Sensors

PFCAC

PFCAC

FCDC

FCDC

FCC1

PFCAC

PFCAC

FCDC

FCDC

FCC2

ACC1

ACC2

Figure 3. NH 90 FCS Architecture

 Two Flight Control Computer (FCC)

boxes including two computers: one Flight

Control Digital Computer dual channel

(FCDC) and one Primary Flight Control

Analog Computer dual channel (PFCAC).

 Two Actuators Control Computer (ACC)

boxes including two analog dual channels.

 Conventional Pilots Controls.

The communication between FCC and

FCC/ACC is based on ARINC 429 links, which

provide digital duplex transmission. By against, the

communication link between ACC is based on analog

link..

We describe now the architecture proposed by

Airbus Helicopters for future FCS. This future

architecture aims at overcoming the limitations of

existing FCS. These limitations are mainly

concentrated on: i) the weight of wiring, ii) system

packaging (integration of one Flight Control

redundancy and one Actuator Control redundancy in

a same box, as shown in Figure 3), and iii) the “cliff

effect” resulting from the difference between the

levels of Handling Qualities (HQ) of FCDC (HQ=1)

and PFCAC (HQ=3) (HQ means great ease of

piloting on FCDC operation and return to basic

helicopter control on PFCAC). The Flight Control

System for future programs enables the pilots to

always control the helicopter with a great ease, on its

four axes, either by hands-on control or by hands-off

control. The FCS can be broken down into three main

blocks:

 The Pilot interface includes pilot inceptors

(cyclic active sidearm controller),

collective stick with active force feel, yaw

control device, pilot grips controls,

displays and mode selection devices as

well as mode reference datum tuning

device.

 The Flight Control Processing (FCP)

provides actuator positions requests,

reflecting the pilot intended trajectory

control. Processing of the required flight

parameters is also addressed under this

item.

 The servo actuation is ensuring that the

FCP processed actuators position demands

are actually achieved by the actuators. The

servo actuation consists in two items, the

Actuator Control Processing (ACP) and

the actuators. The ACP is housed in the

FCC for the Primary Actuation and in the

actuator itself for secondary actuation.

The FCS implements also two main sub-

systems, which provide helicopter control to the pilot

on the four axes (pitch, roll, yaw, collective):

 The Primary Flight Control System

(PFCS) which provides helicopter control

to the pilot mainly in hands-on mode.

 The Automatic Flight Control System

(AFCS) which provides helicopter control

to the pilot mainly in hands-off mode,

thanks to autopilot upper modes.

We detail now, the Flight Control Processing,

which enables the basic control of the helicopter on

its four axes and performs:

 The Primary Flight Control Piloting laws

(PFCP), which provides the basic control

of the four axis in terms of actuator

position requests (primary and when

relevant secondary actuation). The PFCP is

achieved thanks to a dedicated APSW.

 The Automatic Flight Control Processing

(AFCP) enables the automatic control of

the helicopter on its four axes, by

providing the upper modes required for the

helicopter missions. The AFCP is activated

through the PFCP, interfaced at relevant

PFCP Control law level. The AFCP is

achieved thanks to a dedicated APSW, in

order to take benefit of upper modes

experience and to permit an easier upper

mode upgrade.

The Flight Control Processing is organized

along the primary control function contributing to

helicopter basic control, and gathering the

contribution of the automatic control function

implementing upper modes, and possible limitation

processing. This functional block is relying on flight

data parameters in order to elaborate the actuator

position demands.

The Actuator Control Processing of the primary

actuators implemented inside the FCCs achieves

MRAs and TRA loop closure.

The Flight Control processing operation is

driven by ground/flight logic mainly based on load

on wheel sensors parameters and engine & rotor data.

The limitations of theses current architectures

are basically part of primary Flight Control, but can

also intervene in upper modes operation (Figure 4).

Coll

TRIM

ITU
ITU

AVRS

ADU

GNSS

R-Alti

AVRS

ADC

GNSS

R-Alti

Yaw

TRIM

ITU
ITU

EECU

AMC1

APCP

EECU
EECU

AMC1

FCC PRIM 1 FCC SEC 1 FCC SEC 2FCC PRIM 2

ISI

AHRS_1

Magneto

AHRS

Magneto

CySSUCySSU

OHCP
Elec Gene

Elec GeneHyd Gene Elec GeneHyd Gene Elec Gene Environment

MRA 1
MRA 2

MRA 3
TRA

Load on wheels
Load on wheelsLoad on wheels

AHSA
VSA

FMS1
Radio Nav1

Winchman
trim

Sonar cable
sensors

Options

DTS

FTI

Option

GNSS

Figure 4. FCS Architecture Overview

The Flight Control System reference architecture

considered at the end of feasibility study is the

following.

The Quadruplex architecture is composed of:

 2 Passive Cyclic Side Stick Units (CySSU)

 1 Collective stick, with Collective Trim

Unit and position sensors (ITU)

 Rudder pedals with effort Unit and

position sensors (ITU)

 2 Air Data Computers (ADC)

 2 Attitude and Heading Reference Systems

(AHRS)

 2 Attitude and Velocity Reference Systems

(AVRS)

 3 GNSS

 1 Backup Instrument

 4 Flight Control Computers (FCC)

 Primary actuators: 3 Main Rotor Actuators

and 1 Tail Rotor Actuator

 Secondary Actuation: 1 Vertical

Stabilization Actuator, 1 Active Horizontal

Stabilization Actuator

This FCS reference architecture is interfaced

with external: 4 Display systems, 2 Avionic

Management Computers, 2 Radio altimeters, 2 Radio

Navigation chipsets, 3 Electronic Engine Control

Units (EECU), 2 Hydraulic generation channels, 4

Electrical bus bares, 3 landing gears and one sonar

sensor.

FBW computers architecture overview

The Fly-by-Wire Flight Control System

architecture uses two types of digital computers:

 the primary computer also called PRIM

computer.

 the secondary computer also called SEC

computer.

For both FCC (Flight Control Computers) types,

the computer architecture is based on dual lane

architecture (denoted COM/MON), one lane acting as

a COMMAND lane and the opposite lane acting as a

MONITOR lane; for the sake of optimization (e.g. in

order to balance the amount of IO between both

lanes) it could be that COMMAND and MONITOR

features are mixed within the lanes (e.g. one

dedicated lane embodies fore and left main actuator

command features and right main rotor actuator and

tail rotor actuator monitor features whereas the

opposite lane embodies fore and left main actuator

monitor features and right main rotor actuator and tail

rotor actuator command features). Therefore lane

identification will refer to Lane A (denoted #a) and

Lane B (denoted #b) to avoid confusion. Suitable

mitigations with respect to common mode failures are

also implemented.

The FCS operation principles are based on two

functional items of Flight Control Computers (FCC):

a Flight Control Processing Function (FCPF)

providing actuator positions requests to Actuator

Control Processing Function (ACPF), which

positions the actuators.

The Flight Control Processing (FCP) operation

principle is based on active/standby concept,

COM/MON FCP processing flight data and pilot

inputs as independently as feasible, and are either

active alone, or in standby.

The Actuator Control Processing (ACP)

operation principle is based on active/active concept,

every dual COM/MON ACP redundancy controlling

one actuator torque motor. The ACPF performs the

selection of the active FCP on the basis of a selector

function which will ensure that all redundant FCP

select the same correspondent FCP.

FBW intercommunication architecture

overview

The FBW system intercommunication principle

adapted on the Flight Control System is based on a

simplex communication links topology. Each link

assumes a safe and secure, one way, 1-to-N

transmission. The hardware interfaces are issued

from the EIA-485 standard. The protocol used is

issued from the HDLC standard. The interconnection

basis is shown on Figure 5 and on Figure 6.

The Figure 5 illustrates the communication links

issued from the FCP functions, to the others FCP

functions and all ACP functions.

SEC 1

PRIM 2

PRIM 1

#a

#b

#a

#b

#a

#b

#a

#b

#a

#b

#a

#b

SEC 2

#a

#b

#a

#b

FCP ACP

Figure 5. FCC Communication Links FCP-FCP

and FCP-ACP

Figure 6 illustrates the communication links

issued from the ACP functions, to the others ACP

functions and all FCP functions.

 Each FCP or ACP is able to transmit to all other

FCP/ACP. For this reason, the global communication

is based on a full-mesh topology. Moreover, this

choice of topology is reinforced by a need of system

availability increase. Thus, when any FCP or ACP

transmitter or receiver fails, it does not impact the

communication capability between all other valid

FCP and ACP. It can be possible to distinguish two

categories of data links: intra-lane data links and

inter-channel data links.

SEC 1

PRIM 2

PRIM 1

#a

#b

#a

#b

#a

#b

#a

#b

#a

#b

#a

#b

SEC 2

#a

#b

#a

#b

FCP ACP

Figure 6. Communication Links ACP-ACP

and ACP-FCP

The choice of the particular EIA-485 link is the result

of a trade-off concerning simplicity of

implementation, highest data-rate, shortest lag time

and ease of certification. The bit rate of the links is

fixed for all communication at a unique value

comprised between 15 and 20 Mbps. The total frame

size is 36 bytes. The frame format is presented in

Figure 7:

Figure 7. EIA-485 Frame Format

 FLAG: It defines the start or end frame

delimiter, and is always equal to 0x7E for

HDLC standard.

 Address: The addressing field is used as a

message identifier on 2 bytes (with

similitude to the ARINC-429 label), and is

conforming to the HDLC standard. The

message identifier is composed of a Frame

ID and a Transmitter ID.

 Control: The control field is not used in

our application, but is present to conform

to the HDLC standard. It is sized on 1

byte.

 Payload+ Check field (For illustration, we

take the example of CRC): The data field

contains the message to transmit. It is

based on a fixed number of bytes.

 FCS: The frame check sequence field is a

CRC of 4 bytes (CRC-32-IEEE). It will be

denoted FCRC.

It is noteworthy that communication links

described above are redundant which enhance data

availability. To enhance data integrity,

communications of future Airbus Helicopters FCS

will be protected by two error detection codes

(Figure. 7); a data-link CRC (4 byte) which is the

HDLC CRC (such that G(x) = x
0
 + x

1
 + x

2
 + x

4
 + x

5
+

x
7 + x8 + x10 + x11 + x12 + x16+ x22 + x23 + x26 +

x32) and an end-to-end error detection code (4 bytes

whose selection is one of the main objectives of this

paper). We describe in the next section the error

detection process in internal and external

communications and the end-to-end integrity

approach, and the selection strategy of the end-to end

error detection code.

Internal Communication mechanisms

Internal communications correspond to

communications within an FCC channel

At the step 1, data computed by the processing

core of each lane are ready. The processing cores

build corresponding payload and calculate the

associated payload CRC. This step is shown on

Figure 8, where the P1 blue & P1 red boxes represent

the payload respectively of the lane #a and of the

lane #b and E1 blue & E1 red boxes represent the

CRC payload respectively of the lane #a and of the

lane #b.

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

Others FCC

P1

P1 E1

E1

P1 E1

P1 E1

Figure 8. Step 1 of CRC Check in Internal

Communication

At the step 2 (Figure 9), each frame containing

the payload and associated CRC (Pi and Ei) is

encapsulated by both IO handler in a frame with a

frame check (FCRC), and then is sent on dedicated

cross-lane links.

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

Others FCC

P1

P1 E1

E1

P1 E1

P1 E1
P1 E1 C1

P1 E1 C1

Figure 9. Step 2 of CRC Check in Internal

Communication

In step 3 (Figure 10), the frame of the lane #a is

received on the opposite lane, which can then unpack

part by checking the FCRC.

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

Others FCC

P1

P1 E1

E1

P1 E1

P1 E1 C1

P1 E1 C1

P1 E1 C1

P1 E1 C1

Figure 10. Step 3 of CRC Check in Internal

Communication

In step 4 (Figure 11), the IO handler lane #b

transmit unpacked payload and CRC associated (sent

by the lane #a), after having compared the FCRC C1

blue and red to verify the integrity of the frame.

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

Others FCC

P1

P1 E1

E1

P1 E1

P1 E1 C1

P1 E1 C1

P1 E1 C1

C1 C1~

P1 E1 C1

Figure 11. Step 4 of CRC Check in Internal

Communication

At the step 5 (Figure 12), the processing core on

lane #b receives the payload and associated CRC of

the opposite lane, which can then unpack the frame

by checking the payload CRC and discarding it.

The mechanism detailed above is the necessary

and sufficient mean to assure a safe transmission of

the calculated data from a lane to the other, and then

to assure the integrity of calculation function by a

dual comparison.

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

Others FCC

P1

P1 E1

E1

P1 E1

P1 E1 C1

P1 E1 C1

P1 E1

~

P1 E1

E1E1

Figure 12. Step 5 of CRC Check in Internal

Communication

External Communication mechanisms

External communications correspond to

communication between one FCC channel and FCC

other communications channels (Figure 13).

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

P1

P1 E1

E1

P1 E1

P1 E1 C1

P1 E1 C1

P1 E1

~

P1 E1

E1E1

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

P
R

IM
 o

r
 S

E
C

P1E1
P1E1P1E1C1

P1E1

~

P1E1

E1

P1 E1 C1

P1 E1 C1

P1 E1 C1
P1 E1 C1

C1 C1~

C1 ~ C1

C1 ~ C1 E1

~ E1E1

P1 E1 C1

Figure 13. CRC Check in External

Communication: The FCP Point of View

From the FCP point of view, the principle for

transmitting chain channels remains the same as

previously (Figure 13). For the receiver channel point

of view, each channel receives the frame and

compares to a first level (IO handler) FCRC C1

between lanes and a second level (Processor Core)

CRC E1between lanes to check the consistency of the

message that was sent (Figure 14).

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

P1

P1 E1

E1

P1 E1

P1 E1 C1

P1 E1 C1

P1 E1

~

P1 E1

E1E1

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

P
R

IM
 o

r
 S

E
C

P1E1
P1E1P1E1C1

P1E1

~

P1E1

E1

P1 E1 C1

P1 E1 C1

P1 E1 C1
P1 E1 C1

C1 C1~

C1 ~ C1

C1 ~ C1 E1

~ E1E1

P1 E1 C1

Val
Val

Val

Val Val~

Figure 14. CRC Check in External

Communication: the Receiver Channel Point of

View

From the ACP point of view (Figure 15), the

principle for the transmitting chain remains the same

one as previously. On the other hand in the opposite

direction (of the right-hand side towards the left), a

simple validity (denoted Val) will be transmitted in

return. A comparison will be made between ways in

order to check the integrity of the transmission.

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

PRIM or SEC

P1

P1 E1

E1

P1 E1

P1 E1 C1

P1 E1 C1

P1 E1

~

P1 E1

E1E1

#b

#a

Processor

Core

Processor

Core

IO

Handler

IO

Handler

P
R

IM
 o

r
 S

E
C

P1E1
P1E1P1E1C1

P1E1

~

P1E1

E1

P1 E1 C1

P1 E1 C1

P1 E1 C1
P1 E1 C1

C1 C1~

C1 ~ C1

C1 ~ C1 E1

~ E1E1

P1 E1 C1

Val
Val

Val

Val Val~

Figure 15. CRC Check in External

Communication: the ACP Point of View

Up to now, we have described the architecture of

future fully digital helicopters FCS and presented the

use of check field (generated by error detection code

like CRC) to enhance communication safety. As

listed above, the frame includes two checks, the first

one is to protect the whole frame (it is the CRC

imposed by EIA-485) and the other check field is to

protect exclusively the payload. In this section, we

describe our communication integrity approach

considering the payload protection check, the

selection strategy of relevant codes we estimate to be

relevant to our targeted system and some experiments

to assess the performances of these codes.

End to end integrity approach

The conventional communication integrity

approach is to deploy a redundant architecture by

over-multiplying links or/and by eventually using

oversized error detection codes. Yet, such

architectures are prohibitively expensive in terms of

computational cost and not amendable to embedded

systems. Instead, we propose a lightweight approach

using relevant error detection codes to be

implemented in the application layer (end-to-end-

integrity). We call this way to ensure safety “black

channel safety” where the safety is ensured in the

application layer (Figure 16) and is independent of

the lower layers. This concept has several advantages

as revealed in the cyber protection literature. In fact,

for a such safety concept, certification is easier.

Finally, end-to-end integrity permits to cover residual

errors of under-layers.

Figure 16. End-to-End Integrity

Our integrity approach is based on a single error

detection code. This single code is used in all

transmissions to generate the check bits to be added

to the message to be sent. Thus, the effectiveness of

our integrity approach in terms of error detection

capability depends exclusively on this error detection

code. So, the code selection is extremely important.

For targeted system, the selection strategy of

codes is a trade-off between its error detection

capability (which must be good enough to comply

with certification requirements) and its computational

cost (which must be as low as possible to comply

with embedded and real-time constraints).

The approach consisting in using a single error

detection code is commonly used in standards and

protocols (e.g., CRC-CAN used in the CAN bus).

According to [12], many of used codes in protocols

and standards are sub-optimal. If not well selected, an

error detection code could provide insufficient

performances in terms of error detection capability

and computational cost.

Unlike conventional use of error detection

codes, our alternative communication integrity

approach consists in using lightweight codes in terms

of computational cost. Therefore, we consider

arithmetic checksums. For cyclic redundancy check

(CRC), we target implementations that fasten the

computational time using for example lookup tables.

Relevant errors detection codes

According to related work on communication

integrity in safety-critical systems [12] [13], CRC,

Adler and Fletcher codes are relevant to enhance

communication integrity which are common in

digital networks. We focus on these codes in order to

assess their performances. It is noteworthy that for an

error detection code with a size of n check bits, the

upper bound of the non-detection rate is equal to 2
-n

for random errors [14]. Since for our targeted system,

the non-detection rate should be lower than 10
-9

, we

consider error detection codes with 32 check bits

whose the upper bound of non-detection rate is equal

to 2.32 10
-10

. A 32 check bits error detection code is

able to meet the required integrity level for our

targeted systems.

Related work [13] assessing the performances of

Adler, Fletcher and CRC codes proves via

simulations that Adler and Fletcher codes have

roughly the same computational cost and CRC has

the highest computational cost compared to Adler

and Fletcher. Given the fact that CRC has a better

error detection capability for particular error patterns

(e.g., burst errors), we run experiments to assess the

computational cost of different implementations of

Adler, Fletcher and CRC in order to select relevant

ones.

Experiments methodology, environment and

scenarios

In order to assess the performances of codes we

estimate to be “good candidates” to our targeted

systems, we carried out experiments in order to

evaluate the computational costs of these codes. We

evaluate the WCET (Worst Case Execution Time) of

different codes and different implementations. We

consider these following codes: i) Fletcher-32; ii)

Adler-32 and iii) CRC-32, 32 is the size of check

bits.

We consider different implementations, for

example, for Fletcher and Adler we consider two

different implementations, one is an optimized

implementation proposed by [15] for Fletcher that we

adopted for Adler too since these two codes are

closely similar.

For CRC, there are two implementation

philosophies; i) either following a bit by bit

computation; ii) or following a byte by byte

computation using logical operations or lookup

tables. We are based on two reference platforms:

PyCRC [16] and Universal CRC [17].

PyCRC proposes 4 implementations:

 Bit-by-bit (CRC32_bbb): it is the

straightforward implementation of the

basic polynomial division.

 Bit-by-bit-fast (CRC32_bbf): like the bit-

by-bit algorithm, this algorithm still

iterates over every bit of the message.

 Table-driven (CRC32_tbl): unlike bit by

bit implementation, this algorithm operates

on one byte at a time using a look-up table

(usually of 256 elements).

 Bitwise-expression (CRC32_bwe): This

algorithm uses the same approach as the

table-driven variant, but uses logical

operations instead of a look-up table.

Universal CRC proposes 7 implementations:

 Bit (CRC32_bit): the basic bit-by-bit

algorithm.

 Tab16 (CRC32_tab16): table-driven

algorithm with 16 table entries.

 Tab16i (CRC32_tab16i): table-driven

using two independent lookups tables with

32 table entries.

 Tab (CRC32_tab): standard table-driven

algorithm with 256 table entries.

 Tabw (CRC32_tabw): standard table-

driven algorithm, word-at-a-time same as

CRC32_tab but reads 32 bits at a time

from memory.

 Tabi (CRC32_tabi): table-driven

algorithm, four independent lookups (1024

entries) inspired by crc32 algorithm in

zlib.

 Tabiw (CRC32_tabiw): table-driven

algorithm, four independent lookups,

word-at-a-time same as CRC32_tabi but

reads 32 bits at a time from memory.

To run experiments, we consider two different

evaluation platforms that are commonly used in

embedded systems which are:

 P2020 [18]: it has dual high-performance

CPU cores, up to 1.33 GHZ with 32 KB

L1 and 512KB L2 caches.

 TMS320C6657 [19]: it has a 32 KB L1P

cache, a 32 KB L1D data cache, a 1 MB

L2SRAM which could serve as a cache

and a 1 MB L3SRAM shared memory

We consider two different data generation

strategies: the first strategy is random where the

error detection code is applied to different data

sequences that are generated randomly; the

second strategy is rather static, it consists in

generating a fixed data sequence, the error

detection code is applied only to this data

sequence. The objective of considering both

random and static generations is to assess the

cache phenomenon when using a fixed data

sequence. It consists in the hypothesis that

lookup tables based algorithms have better

performances when the data generation is static.

Results and discussion

As descried in Figure 17, for a static data

generation, Adler and Fletcher have lower

computational costs than all CRC implementations;

this result validates what is said in related work. The

optimized implementation of both Adler and Fletcher

reduce slightly the computational cost compared to

the basic implementations which is a predictable

result that validates our implementations. CRC

implementations using look-up tables (e.g.,

CRC32_tab16) have lower computational costs than

basic bit-by-bit implementations (e.g., CRC32_bbb),

this confirms the fact that lookup tables fasten the

computational time of CRC.

Figure 17. WCET of Different Algorithms in a

P2020 Platform with a Static Data Generation

For a random data generation (Figure 18), we

notice some results variations compared to the

scenario of random data generation (e.g., CRC32_tbl

has a lower computational cost) but the main results

remain the same. For example, optimized versions of

arithmetic checksums have the best performances and

bit-by-bit implementations (e.g., CRC32_bbf and

CRC32_bbb) have the worst performances.

Figure 18. WCET of Different Algorithms in a

P2020 Platform with a Random Data Generation

As described in Figure 19, for the TMS

evaluation platform and in the context of static data

generation, only bit-by-bit implementations of CRC

provide higher computational costs compared to

Adler and Fletcher. All other CRC implementations

provide lower computational costs.

The optimized implementation of both Adler

and Fletcher reduce slightly the computational cost

compared to the basic implementations as in the two

previous scenarios.

Figure 19. WCET of Different Algorithms in a

TMS320C6657 Platform with a Static Data

Generation

As described in Figure 20, we notice slight

results variations in the context of random data

generation. However, main results remain the same.

For example, bit-by-bit implementations provide the

worst performances as noticed in previous scenarios

and both lookup table based CRC algorithms and

arithmetic checksums provide interesting

performances.

Figure 20. WCET of Different Algorithms in a

TMS320C6657 Platform with a Random Data

Generation

Conclusive remarks and guidelines

We present here some conclusive remarks and

guidelines we propose in order to use efficiently error

detection codes in safety-critical embedded systems:

 The computational cost depends on the

considered platform

 The bit-by-bit CRC algorithms is not

relevant to time-critical systems since they

are heavy in terms of computational costs

 Using look-up tables reduce the

computational cost of CRC and make it

relevant to embedded systems

 Some look-up tables based CRC

algorithmes provide more interesting

computational costs compared to Adler or

Fletcher codes

 For systems with high constraints that do

not permit to use look-up tables, using

Fletcher or Adler is a good trade-off

 As described in [20], different

diversification strategies could be used in

order to avoid some particular errors

particularly premanent errors. To deal with

such errors, we can either use a set of

complementary error detection codes (in

the same frame or one code per a frame) in

order to increase the overall error detection

capability or diversify the data to be sent

using re-expression functions.

Conclusion

The FBW evolution and particularly the goal to

move to fully digital FBW for future helicopters FCS

raise new challenges. Future designs should take into

account different safety requirements imposed by

certification standards. Being a distributed system

relying on digital networks, communication integrity

in FCS is a main issue. Therefore, this paper

describes the safety-sensitive architecture of future

fully digital Airbus Helicopters FCS considered at the

end of feasibility study. It proposes an end-to-end

integrity approach based on error detection codes

assessing the performances of CRC, Adler and

Fletcher codes in realistic environment using two

evaluation platforms. Moreover, this paper proposes

some guidelines for better using error detection codes

in safety-critical embedded systems.

References

[1] ARP4754A, 2010, Guidelines for Development

of Civil Aircraft and Systems, Aerospace Recom-

mended Practice published by SAE International.
[2] ARP4761, 1996, Guidelines and Methods for

Conducting the Safety Assessment Process on Civil

Airborne Systems and Equipment, Aerospace Re-

commended Practice published by SAE International.

[3] Federal Aviation Administration, System Safety

Handbook – chapter 3: Principles of System Safety,

19 pages, Dec. 2000. Available at:

http://www.faa.gov/regulations_policies/handbooks_

manuals/aviation/risk_management/ss_handbook/me

dia/Chap3_1200.pdf.

[4] Federal Aviation Administration, Helicopter

Flying Handbook – chapter 3: Helicopter Flight

Controls, 10 pages. Available at:

https://www.faa.gov/regulations_policies/handbooks

_manuals/aviation/helicopter_flying_handbook/medi

a/hfh_ch03.pdf.

[5] Traverse P., I. Lacaze and J. Souyris, 2004,

Airbus Fly-By-Wire: A Total Approach to

Dependability, Proceedings of the 18
th
 IFIP World

Computer Congress (WCC 2004), Building the

Information Society, Toulouse, France, pp. 191-212.

[6] Traverse P., I. Lacaze and J. Souyris, 2006,

Airbus Fly-By-Wire: A Process Toward Total

Dependability, Proceedings of the 25
th
 International

Congress of the Aeronautical Sciences (ICAS 2006),

Hamburg, Germany.

[7] Boczar, B. and B. J. Hull, 2004, S-92 Fly-by-

Wire Advanced Flight Control System, Proceedings

of the 60
th
 American Helicopter Society Annual

Forum, Baltimore, Maryland, USA, pp. 404-424.

[8] Vidal, P-A., E.G.J. Woirin, J-M. Massimi,

P.L. Ressent, 2000, Flight Control Device for an

Aircraft, in particular a Helicopter, U.S. Patent

6 059 225.

[9] Yeh, Y. C., 1998, Design Considerations in

Boeing 777 Fly-By-Wire Computers, Proceedings of

the 3
rd

 IEEE International High-Assurance Systems

Engineering Symposium (HASE’98), Washington,

D.C, USA, pp. 64-72.

[10] Yeh, Y.C., 2001, Safety Critical Avionics for

the 777 Primary Flight Control System, Proceedings

of the 20
th
 IEEE Conference on Digital Avionics

Systems (DASC 2001), Daytona Beach, Florida,

USA, pp. 1.C.2.1-1.C.2.11.

[11] Vidal, P. A., 1997, NH90 Helicopter Fly-By-

Wire Flight Control System, Proceedings of the 53
th

American Helicopter Society Annual Forum,Virginia

Beach, Virgiana, USA, pp. 915–923.

[12] Koopman, P. and T. Chakravarty, 2004, Cyclic

Redundancy Code (CRC) Polynomial Selection For

Embedded Networks, Proceedings of the

International Conference on Dependable Systems and

Networks (DSN 2004), Florence, Italy, pp. 145-154.

[13] Maxino, T., and P. Koopman, 2009, The

Effectiveness of Checksums for Embedded Control

Networks, IEEE Transactions on Dependable and

Secure Computing, vol. 6, no. 1, pp. 59-72.

[14] Paulitsch, M., J. Morris, B. Hall, K. Driscoll,

E. Latronico and P. Koopman, 2005, Coverage and

the use of Cyclic Redundancy Codes in Ultra-

Dependable Systems, Proceedings of the

International Conference on Dependable Systems and

Networks (DSN 2005), Yokohama, Japan, pp. 346-

355.

[15] Kodis, J., 1992, Fletcher’s Checksum,

Dr. Dobb’s Journal, Volume 17, Issue 5, pp. 32-38.

Available at:

http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap3_1200.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap3_1200.pdf
http://www.faa.gov/regulations_policies/handbooks_manuals/aviation/risk_management/ss_handbook/media/Chap3_1200.pdf
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/media/hfh_ch03.pdf
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/media/hfh_ch03.pdf
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/helicopter_flying_handbook/media/hfh_ch03.pdf

http://www.drdobbs.com/database/fletchers-

checksum/184408761.

[16] Pircher, T., 2014, pycrc Enviroment, version

0.84. Available under MIT licence at:

http://www.tty1.net/pycrc/index_en.html

[17] McGougan, D., 2011, Universal CRC

Environment, version 1.3a. Available under GPL

licence at: http://www.mcgougan.se/universal_crc/

[18] Freescale, 2009, P2020 Communication

Processor, description available at:

http://www.freescale.com/webapp/sps/site/prod_sum

mary.jsp?code=P2020

[19] Texas Instruments, 2012, Digital Signal

Processor, description available at:

http://www.ti.com/product/TMS320C6657/description

[20] Zammali, A., A. de Bonneval and Y. Crouzet,

2015, A Diversity-Based Approach for Com-

munication Integrity in Critical Embedded Systems,

Proceedings of the 16
th
 IEEE International High-

Assurance Systems Engineering Symposium

(HASE 2015), Daytona Beach, Florida, USA,

pp. 215-222.

34th Digital Avionics Systems Conference

September 13-17, 2015

http://www.drdobbs.com/database/fletchers-checksum/184408761
http://www.drdobbs.com/database/fletchers-checksum/184408761
http://www.tty1.net/pycrc/index_en.html
http://www.mcgougan.se/universal_crc/
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P2020
http://www.freescale.com/webapp/sps/site/prod_summary.jsp?code=P2020
http://www.ti.com/product/TMS320C6657/description

