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Abstract  

The evolution from mechanical to Fly-By-Wire 

(FBW) designs of Flight Control Systems (FCS, the 

system that controls the aircraft trajectory) in both 

airplanes and helicopters has been a crucial step 

offering a variety of benefits such as easing the pilot 

mission and reducing the mechanical complexity of 

the aircraft. Yet, all these advantages have limited 

improvement unless the required safety level is met. 

In fact, for such systems, a very high safety level is 

imposed by both the safety-critical property of the 

system and certification standards (e.g., ARP4754A 

and ARP4761 standard). Now, industrials such as 

Airbus Helicopters aim at installing fully digital 

FBW architectures on future helicopters. This step 

raises new challenges particularly to comply with 

certification standards requirements. We present, in 

this paper, the architecture of future fully digital 

Airbus Helicopters FCS considered at the end of 

feasibility study. We focus particularly on the 

communication integrity issue of future digital 

architectures. In such systems, the non-detection of 

corrupted messages could lead to catastrophic 

consequences. To enhance communication integrity, 

we propose an end-to-end communication integrity 

approach based on the black channel concept, it is to 

be implemented in the application layer. This 

approach uses error detection codes. Given the 

constraints of targeted systems namely “embedded” 

and “safety-critical” features, the selection strategy of 

error detection codes consists in a trade-off between 

the computational cost and the error detection 

capability. 

Problematic  

The FBW evolution and the required high safety 

level imposed by certification standards such as 

ARP4754A [1] and ARP4761 [2] are the main 

drivers to design a safety-sensitive architecture for 

future Helicopters FCS. In such systems, the 

catastrophic failure (leading to casualties) rate should 

be extremely low; it must be lower than 10
-9 

failures 

per hour
 
in FCS [3]. To meet this strict requirement, 

added fault prevention, fault removal and fault 

forecasting, one commonly used concept is the fault 

tolerance. Fault tolerance is carried out via error 

detection and system recovery. Fault tolerance 

consists in using redundancy in order to make the 

system works correctly despite the presence of 

failures. For example, to ensure system availability, 

some components are duplicated such that a backup 

component could replace a primary component in the 

case of failure. Adopting the fault tolerance concept 

raises two challenges. The first challenge is the fact 

that for the sake of reducing the system cost and 

weight, over-redundancy is to be avoided. The 

second challenge is the fact that symmetric 

redundancy does not cope with the problem of 

common mode failures. In fact, symmetric 

redundancy consists in duplicating some system 

components such that the copies of these components 

have exactly the same properties as those of primary 

components; they have therefore the same pitfalls. 

So, different diversification strategies (software, 

hardware, etc.) should be cooperatively adopted in 

order to reduce the risk of common mode failures.  

One of the goals of this paper is to describe a 

fully digital architecture meeting stringent safety 

requirements while taking into account different 

system design constraints. The case study is based on 

future Airbus Helicopters FCS architecture. Since 

this future FCS is a distributed system based on 

digital networks, a second goal is to describe how to 

enhance communication integrity. We aim at coping 

with the problem of non-detection of erroneous 

messages.  

Data corruption is caused by several factors such 

as thermal noise, electromagnetic interferences, 

radiation, memories failures, etc. A Helicopter FCS is 

a system with a very severe environment (e.g., 



vibration, temperature) which increases the 

likelihood of components failures and data 

corruption. To enhance communication integrity, we 

propose in this paper an end-to-end integrity 

approach based on error detection codes. The 

challenge we seek to address is the selection of 

efficient codes with good error detection capabilities 

and lightweight computational costs given the system 

constraints, particularly the fact that targeted systems 

are time-critical and limited in terms of processing 

and memory resources.  

In this paper, we first present Helicopters FCS 

with a focus on the FBW evolution and future 

challenges. We present then the architectures of 

future Airbus Helicopters with a focus on the 

communication integrity approach to deal with the 

problem of data corruption, we assess the 

performances of different error detection codes and 

we give some guidelines and best practices to better 

use error detection codes in safety-critical embedded 

systems. 

Helicopters Flight Control Systems: 

description, FBW history and future 

challenges 

We describe in this section the targeted systems 

which are Helicopters FCS with a focus on key 

properties, the FBW evolution and future challenges. 

Helicopters FCS description 

The Flight Control System is the system that 

controls the trajectory of the aircraft (airplane, 

helicopter or other). It enables the control of the 

aircraft flight path all along take-off, flight and 

landing. Commands are sent to actuators of control 

devices either manually by the pilot or automatically 

by the autopilot. These commands are calculated 

using both the pilot orders and information provided 

by the sensors. To fly a helicopter, the pilot should 

use different flight controls in order to tune the 

controllable forces. In fact, a Helicopter is subjected 

to four forces (Figure 1): 

 

Figure 1. The Four Forces Applied to a Helicopter 

 Lift: it is a force that opposes the weight of 

the aircraft permitting it to fly. 

 Drag: it is the force that opposes the 

movement of the aircraft.  

 Weight: the gravitational force acting on 

the total mass of the aircraft 

 Thrust: it is the force generated to oppose 

the drag. 

The three main flight controls to be used by the 

pilot are as following [4]: 

 The collective stick, which controls of the 

pitch of the main rotor, source of 

helicopter’s lift and thrust. 

 The cyclic stick, which controls the tilt of 

the main rotor, in pitch and roll.  

 The rudder pedals, which perform the yaw 

control and control of the anti-torque 

control.  

Key properties and constraints of Helicopters 

FCS 

Aircraft FCS have particular properties resulting 

in strict requirements and constraints to be taken into 

account in order to design a relevant architecture. 

These key properties are: 

 Safety-critical property: this means strict 

safety requirements given the hazardous 

consequences that could be caused by 

potential failures. Failures in a FCS could 

lead to fatalities and material damages. 

Thus, the catastrophic failures rate must be 

extremely low (<10
-9

/h for FCS of civil 

aircrafts [3]). To meet imposed strict 

safety requirements, FCS designs are 

usually based on fault tolerant 

architectures with different types of 



redundancy: temporal, spatial, software, 

hardware, etc. 

 Embedded property: this means limited 

resources (memories, processing, and 

power supply) which generally induce 

short communication messages. In such 

systems, architectures should not be over-

redundant in order to reduce the weight 

and the volume of the system. 

 Real-time property: this means that the 

system is time-critical. Thus, the output is 

not judged to be correct unless it is correct 

in both result and time. And the outputs 

(the commands) must be regularly 

refreshed (short refresh cycles) despite the 

fact that processing resources are limited. 

 Severe environment property: this means 

that the system is subjected to different 

causes of failures such as radiation, 

vibration, etc. 

 Communication system complexity: 

communications in fully digital FBW FCS 

are based on complex networks including a 

large number of nodes (e.g., calculators, 

actuators and sensors). This characteristic 

increases the occurrence likelihood of 

erroneous messages. Therefore, enhancing 

communication is crucial. 

The selected Helicopter FBW FCS case study is 

only stressing more the design constraints due to 

rotorcraft application (weight issue, space issue, 

commercial competition, vibrations…). 

Helicopters FCS FBW history 

Unlike the helicopter industry, the airplane 

industry has adopted the FBW designs since many 

years [5]. Restricted initially to military airplanes, 

FBW technology appeared later in commercial 

airplanes. The first FBW-based FCS was designed by 

Aerospatiale and installed on Concorde [6].  

Before the evolution to FBW designs, 

mechanical designs of FCS were conventionally 

deployed in aircrafts. It consists in transmitting the 

pilot orders to the actuators via mechanical 

components (rods, cables, etc.). With the increasing 

size of aircraft, mechanical designs of FCS have 

presented many pitfalls namely the deployment 

complexity and the high pilot workload. These 

drawbacks were the main drivers to the evolution to 

FBW designs. In FBW-based FCS, the conventional 

manual controls through mechanical linkages 

between the pilot and rotor control actuators are 

replaced by “electronics”. FBW architectures are 

based on computers (hardware and software layers) 

and electrical sensors, actuators and links. 

Compared to mechanical FCS designs, the FBW 

technology offers a variety of benefits. It makes it 

possible to introduce advanced flight control laws 

which increase and improve the aircraft 

manoeuvrability (especially for helicopters) and 

provide envelope protections. So, it eases the pilot 

mission and reduces its workload. It decreases the 

mechanical complexity and cost and helps to reduce 

the whole system weight too [7].  

Following in the footsteps of airplanes 

development, Helicopters have moved to FBW 

designs of FCS some years later. This slow evolution 

is due to the fact that flight mechanics of a helicopter 

is more complex than the airplane one. In fact, a 

helicopter is a highly coupled aircraft, with several 

interactions and its system operates in a severe 

environment. The FBW technology was firstly 

deployed on military helicopters. The military 

helicopter NH 90 [8] of Airbus Helicopters, whose 

first electrical mode flight was on March 1997, 

belongs to the first FBW-based helicopters 

generation in service. In FBW-based Helicopters 

FCS, instead of moving the rotor actuators by the 

pilot through conventional mechanical controls 

(sticks and pedals), the pilot has just to move 

electrical sticks or side sticks (Figure 2) which 

generate electrical signals to be transmitted by wires 

to Flight Control Computers (FCC). FCCs generate 

electrical signals to be transmitted by wires in order 

to control the helicopter actuators. 



 
Figure 2. Conventional VS FBW Helicopters 

Flight Controls 

A second great step in FCS designs was the 

evolution from analog FBW designs to digital FBW. 

In the start of the 1980’s, several airplanes 

manufacturers launched their first airplanes with 

digital FBW-based FCS elements such as the Airbus 

A310 (spoilers system). A crucial step has been 

crossed when the Airbus A320, implementing a 

digital FBW-based FCS, was certified and entered 

into service in 1988 [6].  

Helicopters FCS future challenges 

Now, the next step, as was the case of airplanes, 

is to extend FBW, particularly digital FBW 

architectures, to civilian helicopters. The future 

Helicopters FCS and particularly the inter-

communication architecture should take into account 

several safety and security (e.g., confidentiality) 

requirements, we consider particularly the following 

ones: 

 Availability: it means the ability to deliver 

a service continuously. Particularly, in the 

context of communications, the 

availability means that the data exchange 

is ensured despite the presence of failures 

(e.g., links that are down or data 

corruption). 

 Integrity: this means the non-occurrence of 

unauthorized data modification. In the 

context of communications, it is the ability 

of the system to detect and/or recover 

corrupted exchanged data. 

 

To ensure these two major safety requirements 

in communications, a redundant architecture with an 

integrity approach is needed. In the following section, 

we present the architecture of future fully digital 

Airbus Helicopters FCS with a focus on the inter-

communication architecture. 

The architecture of future fully digital 

Airbus Helicopters FCS  

Airbus Helicopters FCS: From current to 

future architecture 

Two different FCS architecture philosophies are 

adopted by the two major avionics industrials Airbus 

and Boeing. For Boeing, the FCS architecture is 

based on the Triplex concept also called Triple 

Modular Redundancy (TMR) with an active/active 

controlled simplex [9] [10]. US helicopters 

manufacturers follow quite the same architectural 

approach without providing a Minimum Equipment 

List (MEL) (capability to dispatch helicopter despite 

a first failure). Airbus Group architectures are based 

rather on Quadruplex or Sextuplex Active/Standby 

architecture with a MEL for both Airplanes and 

Helicopters. The advantage of Quadruplex 

architectures for helicopters is the fact that even in 

the case of a first failure, the requirement of 10
-9

/h 

failures is ensured, the pilot is not alerted and the 

aircraft is able to continue safely its flight. For Airbus 

Group, every secondary digital FCC (Flight Control 

Computer) is an asymmetric backup with a different 

design and running simpler flight control laws. To 

avoid common mode failures, every two FCC 

implement different software [5]. Communications 

are based mainly on ARINC 429. In Boeing 

architectures, redundancy consists in having three 

instantiations of every component including 

computers, communication buses and other hardware 

components. The Boeing FCS includes three digital 

computers PFC (Primary Flight Computer and three 

analog computers ACE (Actuator Control 

Electronics). Communications are based on ARINC 

629  



Adopting the same FCS architecture philosophy 

of Airbus airplanes, Airbus Helicopters particularly 

the NH 90 [11] is functionally composed (Figure 3) 

of: 
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Figure 3. NH 90 FCS Architecture 

 Two Flight Control Computer (FCC) 

boxes including two computers: one Flight 

Control Digital Computer dual channel 

(FCDC) and one Primary Flight Control 

Analog Computer dual channel (PFCAC). 

 Two Actuators Control Computer (ACC) 

boxes including two analog dual channels. 

 Conventional Pilots Controls. 

The communication between FCC and 

FCC/ACC is based on ARINC 429 links, which 

provide digital duplex transmission. By against, the 

communication link between ACC is based on analog 

link.. 

We describe now the architecture proposed by 

Airbus Helicopters for future FCS. This future 

architecture aims at overcoming the limitations of 

existing FCS. These limitations are mainly 

concentrated on: i) the weight of wiring, ii) system 

packaging (integration of one Flight Control 

redundancy and one Actuator Control redundancy in 

a same box, as shown in Figure 3), and iii) the “cliff 

effect” resulting from the difference between the 

levels of Handling Qualities (HQ) of FCDC (HQ=1) 

and PFCAC (HQ=3) (HQ means great ease of 

piloting on FCDC operation and return to basic 

helicopter control on PFCAC). The Flight Control 

System for future programs enables the pilots to 

always control the helicopter with a great ease, on its 

four axes, either by hands-on control or by hands-off 

control. The FCS can be broken down into three main 

blocks:  

 The Pilot interface includes pilot inceptors 

(cyclic active sidearm controller), 

collective stick with active force feel, yaw 

control device, pilot grips controls, 

displays and mode selection devices as 

well as mode reference datum tuning 

device.  

 The Flight Control Processing (FCP) 

provides actuator positions requests, 

reflecting the pilot intended trajectory 

control. Processing of the required flight 

parameters is also addressed under this 

item.  

 The servo actuation is ensuring that the 

FCP processed actuators position demands 

are actually achieved by the actuators. The 

servo actuation consists in two items, the 

Actuator Control Processing (ACP) and 

the actuators. The ACP is housed in the 

FCC for the Primary Actuation and in the 

actuator itself for secondary actuation. 

The FCS implements also two main sub-

systems, which provide helicopter control to the pilot 

on the four axes (pitch, roll, yaw, collective): 

 The Primary Flight Control System 

(PFCS) which provides helicopter control 

to the pilot mainly in hands-on mode. 

 The Automatic Flight Control System 

(AFCS) which provides helicopter control 

to the pilot mainly in hands-off mode, 

thanks to autopilot upper modes. 

We detail now, the Flight Control Processing, 

which enables the basic control of the helicopter on 

its four axes and performs: 

 The Primary Flight Control Piloting laws 

(PFCP), which provides the basic control 

of the four axis in terms of actuator 



position requests (primary and when 

relevant secondary actuation). The PFCP is 

achieved thanks to a dedicated APSW. 

 The Automatic Flight Control Processing 

(AFCP) enables the automatic control of 

the helicopter on its four axes, by 

providing the upper modes required for the 

helicopter missions. The AFCP is activated 

through the PFCP, interfaced at relevant 

PFCP Control law level. The AFCP is 

achieved thanks to a dedicated APSW, in 

order to take benefit of upper modes 

experience and to permit an easier upper 

mode upgrade.  

The Flight Control Processing is organized 

along the primary control function contributing to 

helicopter basic control, and gathering the 

contribution of the automatic control function 

implementing upper modes, and possible limitation 

processing. This functional block is relying on flight 

data parameters in order to elaborate the actuator 

position demands.  

The Actuator Control Processing of the primary 

actuators implemented inside the FCCs achieves 

MRAs and TRA loop closure.  

The Flight Control processing operation is 

driven by ground/flight logic mainly based on load 

on wheel sensors parameters and engine & rotor data.  

The limitations of theses current architectures 

are basically part of primary Flight Control, but can 

also intervene in upper modes operation (Figure 4). 
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Figure 4. FCS Architecture Overview 

The Flight Control System reference architecture 

considered at the end of feasibility study is the 

following. 

The Quadruplex architecture is composed of: 

 2 Passive Cyclic Side Stick Units (CySSU) 

 1 Collective stick, with Collective Trim 

Unit and position sensors (ITU) 

 Rudder pedals with effort Unit and 

position sensors (ITU) 

 2 Air Data Computers (ADC) 

 2 Attitude and Heading Reference Systems 

(AHRS) 

 2 Attitude and Velocity Reference Systems 

(AVRS) 

 3 GNSS 

 1 Backup Instrument 

 4 Flight Control Computers (FCC) 

 Primary actuators: 3 Main Rotor Actuators 

and 1 Tail Rotor Actuator 

 Secondary Actuation: 1 Vertical 

Stabilization Actuator, 1 Active Horizontal 

Stabilization Actuator 



This FCS reference architecture is interfaced 

with external: 4 Display systems, 2 Avionic 

Management Computers, 2 Radio altimeters, 2 Radio 

Navigation chipsets, 3 Electronic Engine Control 

Units (EECU), 2 Hydraulic generation channels, 4 

Electrical bus bares, 3 landing gears and one sonar 

sensor. 

FBW computers architecture overview 

The Fly-by-Wire Flight Control System 

architecture uses two types of digital computers: 

 the primary computer also called PRIM 

computer. 

  the secondary computer also called SEC 

computer.  

For both FCC (Flight Control Computers) types, 

the computer architecture is based on dual lane 

architecture (denoted COM/MON), one lane acting as 

a COMMAND lane and the opposite lane acting as a 

MONITOR lane; for the sake of optimization (e.g. in 

order to balance the amount of IO between both 

lanes) it could be that COMMAND and MONITOR 

features are mixed within the lanes (e.g. one 

dedicated lane embodies fore and left main actuator 

command features and right main rotor actuator and 

tail rotor actuator monitor features whereas the 

opposite lane embodies fore and left main actuator 

monitor features and right main rotor actuator and tail 

rotor actuator command features). Therefore lane 

identification will refer to Lane A (denoted #a) and 

Lane B (denoted #b) to avoid confusion. Suitable 

mitigations with respect to common mode failures are 

also implemented.  

The FCS operation principles are based on two 

functional items of Flight Control Computers (FCC): 

a Flight Control Processing Function (FCPF) 

providing actuator positions requests to Actuator 

Control Processing Function (ACPF), which 

positions the actuators. 

The Flight Control Processing (FCP) operation 

principle is based on active/standby concept, 

COM/MON FCP processing flight data and pilot 

inputs as independently as feasible, and are either 

active alone, or in standby. 

The Actuator Control Processing (ACP) 

operation principle is based on active/active concept, 

every dual COM/MON ACP redundancy controlling 

one actuator torque motor. The ACPF performs the 

selection of the active FCP on the basis of a selector 

function which will ensure that all redundant FCP 

select the same correspondent FCP. 

FBW intercommunication architecture 

overview 

The FBW system intercommunication principle 

adapted on the Flight Control System is based on a 

simplex communication links topology. Each link 

assumes a safe and secure, one way, 1-to-N 

transmission. The hardware interfaces are issued 

from the EIA-485 standard. The protocol used is 

issued from the HDLC standard. The interconnection 

basis is shown on Figure 5 and on Figure 6.  

The Figure 5 illustrates the communication links 

issued from the FCP functions, to the others FCP 

functions and all ACP functions.  
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Figure 5. FCC Communication Links FCP-FCP 

and FCP-ACP 

Figure 6 illustrates the communication links 

issued from the ACP functions, to the others ACP 

functions and all FCP functions. 

 Each FCP or ACP is able to transmit to all other 

FCP/ACP. For this reason, the global communication 

is based on a full-mesh topology. Moreover, this 

choice of topology is reinforced by a need of system 

availability increase. Thus, when any FCP or ACP 

transmitter or receiver fails, it does not impact the 

communication capability between all other valid 



FCP and ACP. It can be possible to distinguish two 

categories of data links: intra-lane data links and 

inter-channel data links. 
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Figure 6. Communication Links ACP-ACP 

and ACP-FCP 

The choice of the particular EIA-485 link is the result 

of a trade-off concerning simplicity of 

implementation, highest data-rate, shortest lag time 

and ease of certification. The bit rate of the links is 

fixed for all communication at a unique value 

comprised between 15 and 20 Mbps. The total frame 

size is 36 bytes. The frame format is presented in 

Figure 7: 

 

Figure 7. EIA-485 Frame Format 

 FLAG: It defines the start or end frame 

delimiter, and is always equal to 0x7E for 

HDLC standard. 

 Address: The addressing field is used as a 

message identifier on 2 bytes (with 

similitude to the ARINC-429 label), and is 

conforming to the HDLC standard. The 

message identifier is composed of a Frame 

ID and a Transmitter ID. 

 Control: The control field is not used in 

our application, but is present to conform 

to the HDLC standard. It is sized on 1 

byte. 

 Payload+ Check field (For illustration, we 

take the example of CRC): The data field 

contains the message to transmit. It is 

based on a fixed number of bytes. 

 FCS: The frame check sequence field is a 

CRC of 4 bytes (CRC-32-IEEE). It will be 

denoted FCRC. 

It is noteworthy that communication links 

described above are redundant which enhance data 

availability. To enhance data integrity, 

communications of future Airbus Helicopters FCS 

will be protected by two error detection codes 

(Figure. 7); a data-link CRC (4 byte) which is the 

HDLC CRC (such that G(x) = x
0
 + x

1
 + x

2
 + x

4
 + x

5 
+ 

x
7 + x8 + x10 + x11 + x12 + x16+ x22 + x23 + x26 + 

x32) and an end-to-end error detection code (4 bytes 

whose  selection is one of the main objectives of this 

paper). We describe in the next section the error 

detection process in internal and external 

communications and the end-to-end integrity 

approach, and the selection strategy of the end-to end 

error detection code. 

Internal Communication mechanisms 

Internal communications correspond to 

communications within an FCC channel 

At the step 1, data computed by the processing 

core of each lane are ready. The processing cores 

build corresponding payload and calculate the 

associated payload CRC. This step is shown on 

Figure 8, where the P1 blue & P1 red boxes represent 

the payload respectively of the lane #a and of the 

lane #b and E1 blue & E1 red boxes represent the 

CRC payload respectively of the lane #a and of the 

lane #b. 
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Figure 8. Step 1 of CRC Check in Internal 

Communication 

At the step 2 (Figure 9), each frame containing 

the payload and associated CRC (Pi and Ei) is 

encapsulated by both IO handler in a frame with a 

frame check (FCRC), and then is sent on dedicated 

cross-lane links. 
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Figure 9. Step 2 of CRC Check in Internal 

Communication 

In step 3 (Figure 10), the frame of the lane #a is 

received on the opposite lane, which can then unpack 

part by checking the FCRC.  
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Figure 10. Step 3 of CRC Check in Internal 

Communication 

In step 4 (Figure 11), the IO handler lane #b 

transmit unpacked payload and CRC associated (sent 

by the lane #a), after having compared the FCRC C1 

blue and red to verify the integrity of the frame. 
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Figure 11. Step 4 of CRC Check in Internal 

Communication 

At the step 5 (Figure 12), the processing core on 

lane #b receives the payload and associated CRC of 

the opposite lane, which can then unpack the frame 

by checking the payload CRC and discarding it. 

The mechanism detailed above is the necessary 

and sufficient mean to assure a safe transmission of 

the calculated data from a lane to the other, and then 

to assure the integrity of calculation function by a 

dual comparison. 
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Figure 12. Step 5 of CRC Check in Internal 

Communication 

External Communication mechanisms 

External communications correspond to 

communication between one FCC channel and FCC 

other communications channels (Figure 13). 
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Figure 13. CRC Check in External 

Communication: The FCP Point of View 

From the FCP point of view, the principle for 

transmitting chain channels remains the same as 

previously (Figure 13). For the receiver channel point 

of view, each channel receives the frame and 

compares to a first level (IO handler) FCRC C1 

between lanes and a second level (Processor Core) 

CRC E1between lanes to check the consistency of the 

message that was sent (Figure 14). 
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Figure 14. CRC Check in External 

Communication: the Receiver Channel Point of 

View 

From the ACP point of view (Figure 15), the 

principle for the transmitting chain remains the same 

one as previously. On the other hand in the opposite 

direction (of the right-hand side towards the left), a 

simple validity (denoted Val) will be transmitted in 

return. A comparison will be made between ways in 

order to check the integrity of the transmission. 
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Figure 15. CRC Check in External 

Communication: the ACP Point of View 

Up to now, we have described the architecture of 

future fully digital helicopters FCS and presented the 

use of check field (generated by error detection code 

like CRC) to enhance communication safety. As 

listed above, the frame includes two checks, the first 

one is to protect the whole frame (it is the CRC 

imposed by EIA-485) and the other check field is to 

protect exclusively the payload. In this section, we 

describe our communication integrity approach 

considering the payload protection check, the 

selection strategy of relevant codes we estimate to be 

relevant to our targeted system and some experiments 

to assess the performances of these codes.  

End to end integrity approach 

The conventional communication integrity 

approach is to deploy a redundant architecture by 

over-multiplying links or/and by eventually using 

oversized error detection codes. Yet, such 

architectures are prohibitively expensive in terms of 

computational cost and not amendable to embedded 

systems. Instead, we propose a lightweight approach 

using relevant error detection codes to be 

implemented in the application layer (end-to-end-

integrity). We call this way to ensure safety “black 

channel safety” where the safety is ensured in the 

application layer (Figure 16) and is independent of 

the lower layers. This concept has several advantages 

as revealed in the cyber protection literature. In fact, 

for a such safety concept, certification is easier. 

Finally, end-to-end integrity permits to cover residual 

errors of under-layers. 



 

Figure 16. End-to-End Integrity 

Our integrity approach is based on a single error 

detection code. This single code is used in all 

transmissions to generate the check bits to be added 

to the message to be sent. Thus, the effectiveness of 

our integrity approach in terms of error detection 

capability depends exclusively on this error detection 

code. So, the code selection is extremely important.  

For targeted system, the selection strategy of 

codes is a trade-off between its error detection 

capability (which must be good enough to comply 

with certification requirements) and its computational 

cost (which must be as low as possible to comply 

with embedded and real-time constraints).  

The approach consisting in using a single error 

detection code is commonly used in standards and 

protocols (e.g., CRC-CAN used in the CAN bus). 

According to [12], many of used codes in protocols 

and standards are sub-optimal. If not well selected, an 

error detection code could provide insufficient 

performances in terms of error detection capability 

and computational cost.  

Unlike conventional use of error detection 

codes, our alternative communication integrity 

approach consists in using lightweight codes in terms 

of computational cost. Therefore, we consider 

arithmetic checksums. For cyclic redundancy check 

(CRC), we target implementations that fasten the 

computational time using for example lookup tables.  

Relevant errors detection codes 

According to related work on communication 

integrity in safety-critical systems [12] [13], CRC, 

Adler and Fletcher codes are relevant to enhance 

communication integrity which are common in 

digital networks. We focus on these codes in order to 

assess their performances. It is noteworthy that for an 

error detection code with a size of n check bits, the 

upper bound of the non-detection rate is equal to 2
-n 

for random errors [14]. Since for our targeted system, 

the non-detection rate should be lower than 10
-9

, we 

consider error detection codes with 32 check bits 

whose the upper bound of non-detection rate is equal 

to 2.32 10
-10

. A 32 check bits error detection code is 

able to meet the required integrity level for our 

targeted systems. 

Related work [13] assessing the performances of 

Adler, Fletcher and CRC codes proves via 

simulations that Adler and Fletcher codes have 

roughly the same computational cost and CRC has 

the highest computational cost compared to Adler 

and Fletcher. Given the fact that CRC has a better 

error detection capability for particular error patterns 

(e.g., burst errors), we run experiments to assess the 

computational cost of different implementations of 

Adler, Fletcher and CRC in order to select relevant 

ones. 

Experiments methodology, environment and 

scenarios 

In order to assess the performances of codes we 

estimate to be “good candidates” to our targeted 

systems, we carried out experiments in order to 

evaluate the computational costs of these codes. We 

evaluate the WCET (Worst Case Execution Time) of 

different codes and different implementations. We 

consider these following codes: i) Fletcher-32; ii) 

Adler-32 and iii) CRC-32, 32 is the size of check 

bits. 

We consider different implementations, for 

example, for Fletcher and Adler we consider two 

different implementations, one is an optimized 

implementation proposed by [15] for Fletcher that we 

adopted for Adler too since these two codes are 

closely similar. 

For CRC, there are two implementation 

philosophies; i) either following a bit by bit 

computation; ii) or following a byte by byte 

computation using logical operations or lookup 



tables. We are based on two reference platforms: 

PyCRC [16] and Universal CRC [17]. 

PyCRC proposes 4 implementations: 

 Bit-by-bit (CRC32_bbb): it is the 

straightforward implementation of the 

basic polynomial division. 

 Bit-by-bit-fast (CRC32_bbf): like the bit-

by-bit algorithm, this algorithm still 

iterates over every bit of the message.  

 Table-driven (CRC32_tbl): unlike bit by 

bit implementation, this algorithm operates 

on one byte at a time using a look-up table 

(usually of 256 elements). 

 Bitwise-expression (CRC32_bwe): This 

algorithm uses the same approach as the 

table-driven variant, but uses logical 

operations instead of a look-up table.  

Universal CRC proposes 7 implementations: 

 Bit (CRC32_bit): the basic bit-by-bit 

algorithm. 

 Tab16 (CRC32_tab16): table-driven 

algorithm with 16 table entries. 

 Tab16i (CRC32_tab16i): table-driven 

using two independent lookups tables with 

32 table entries. 

 Tab (CRC32_tab): standard table-driven 

algorithm with 256 table entries. 

 Tabw (CRC32_tabw): standard table-

driven algorithm, word-at-a-time same as 

CRC32_tab but reads 32 bits at a time 

from memory. 

 Tabi (CRC32_tabi): table-driven 

algorithm, four independent lookups (1024 

entries) inspired by crc32 algorithm in 

zlib. 

 Tabiw (CRC32_tabiw): table-driven 

algorithm, four independent lookups, 

word-at-a-time same as CRC32_tabi but 

reads 32 bits at a time from memory. 

To run experiments, we consider two different 

evaluation platforms that are commonly used in 

embedded systems which are: 

 P2020 [18]: it has dual high-performance 

CPU cores, up to 1.33 GHZ with 32 KB 

L1 and 512KB L2 caches.  

 TMS320C6657 [19]: it has a 32 KB L1P 

cache, a 32 KB L1D data cache, a 1 MB 

L2SRAM which could serve as a cache 

and a 1 MB L3SRAM shared memory 

We consider two different data generation 

strategies: the first strategy is random where the 

error detection code is applied to different data 

sequences that are generated randomly; the 

second strategy is rather static, it consists in 

generating a fixed data sequence, the error 

detection code is applied only to this data 

sequence. The objective of considering both 

random and static generations is to assess the 

cache phenomenon when using a fixed data 

sequence. It consists in the hypothesis that 

lookup tables based algorithms have better 

performances when the data generation is static. 

 

Results and discussion 

As descried in Figure 17, for a static data 

generation, Adler and Fletcher have lower 

computational costs than all CRC implementations; 

this result validates what is said in related work. The 

optimized implementation of both Adler and Fletcher 

reduce slightly the computational cost compared to 

the basic implementations which is a predictable 

result that validates our implementations. CRC 

implementations using look-up tables (e.g., 

CRC32_tab16) have lower computational costs than 

basic bit-by-bit implementations (e.g., CRC32_bbb), 

this confirms the fact that lookup tables fasten the 

computational time of CRC. 

 

Figure 17. WCET of Different Algorithms in a 

P2020 Platform with a Static Data Generation 



For a random data generation (Figure 18), we 

notice some results variations compared to the 

scenario of random data generation (e.g., CRC32_tbl 

has a lower computational cost) but the main results 

remain the same. For example, optimized versions of 

arithmetic checksums have the best performances and 

bit-by-bit implementations (e.g., CRC32_bbf and 

CRC32_bbb) have the worst performances.  

 

Figure 18. WCET of Different Algorithms in a 

P2020 Platform with a Random Data Generation 

As described in Figure 19, for the TMS 

evaluation platform and in the context of static data 

generation, only bit-by-bit implementations of CRC 

provide higher computational costs compared to 

Adler and Fletcher. All other CRC implementations 

provide lower computational costs.  

The optimized implementation of both Adler 

and Fletcher reduce slightly the computational cost 

compared to the basic implementations as in the two 

previous scenarios. 

 

Figure 19. WCET of Different Algorithms in a 

TMS320C6657 Platform with a Static Data 

Generation 

As described in Figure 20, we notice slight 

results variations in the context of random data 

generation. However, main results remain the same. 

For example, bit-by-bit implementations provide the 

worst performances as noticed in previous scenarios 

and both lookup table based CRC algorithms and 

arithmetic checksums provide interesting 

performances. 

 

Figure 20. WCET of Different Algorithms in a 

TMS320C6657 Platform with a Random Data 

Generation 

Conclusive remarks and guidelines 

We present here some conclusive remarks and 

guidelines we propose in order to use efficiently error 

detection codes in safety-critical embedded systems: 

 The computational cost depends on the 

considered platform  

 The bit-by-bit CRC algorithms is not 

relevant to time-critical systems since they 

are heavy in terms of computational costs 

 Using look-up tables reduce the 

computational cost of CRC and make it 

relevant to embedded systems 

 Some look-up tables based CRC 

algorithmes provide more interesting 

computational costs compared to Adler or 

Fletcher codes 

 For systems with high constraints that do 

not permit to use look-up tables, using 

Fletcher or Adler is a good trade-off 

 As described in [20], different 

diversification strategies could be used in 

order to avoid some particular errors 



particularly premanent errors. To deal with 

such errors, we can either use a set of 

complementary error detection codes (in 

the same frame or one code per a frame) in 

order to increase the overall error detection 

capability or diversify the data to be sent 

using re-expression functions. 

Conclusion 

The FBW evolution and particularly the goal to 

move to fully digital FBW for future helicopters FCS 

raise new challenges. Future designs should take into 

account different safety requirements imposed by 

certification standards. Being a distributed system 

relying on digital networks, communication integrity 

in FCS is a main issue. Therefore, this paper 

describes the safety-sensitive architecture of future 

fully digital Airbus Helicopters FCS considered at the 

end of feasibility study. It proposes an end-to-end 

integrity approach based on error detection codes 

assessing the performances of CRC, Adler and 

Fletcher codes in realistic environment using two 

evaluation platforms. Moreover, this paper proposes 

some guidelines for better using error detection codes 

in safety-critical embedded systems. 
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