Amina Doumane
email: doumane@pps.univ-paris-diderot.fr

David Baelde
email: baelde@lsv.ens-cachan.fr

Lucca Hirschi
email: hirschi@lsv.ens-cachan.fr

Alexis Saurin
email: saurin@pps.univ-paris-diderot.fr

IRIF Amina Doumane Pps

Towards Completeness via Proof Search in the Linear Time mu-Calculus

de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Introduction

Modal µ-calculus, i.e., modal logic with least and greatest fixed point operators, is a central logic in verification, from both theoretical and practical perspectives. Developing a better understanding of its models and deductions has since long been the focus of numerous works considering their importance to understand and put this logic in practice.

The linear time µ-calculus has infinite words as models, and may be used to express trace properties of reactive systems seen as sets of models. The branching time µ-calculus has infinite trees as models, and allows higher expressiveness since its formulas directly express properties of a system's execution tree. Both logics enjoy close relationships with automata theory. Any formula F can be compiled into an automaton AF which accepts exactly the models of the formula. If the reactive system S to be verified [Copyright notice will appear here once 'preprint' option is removed.] can itself be described by means of an automaton AS, the logical model-checking problem can be expressed purely in automatatheoretic terms: is the automaton of the system included in that of the formula, i.e., L(AS) ⊆ L(AF)? In fact, this approach to model-checking also gives a way to decide logical entailment in modal µ-calculi.

Even when decidability of the logic is known, designing a complete proof system is still of interest. For instance, it provides compositionality and permits to use an interactive prover and not only a model-checker for verifying properties of the system. Another perspective is given through the problematic of proof certificates. The goal here is to provide independently checkable artifacts justifying the answer of verification tools, in the form of proofs of a standard, well-established proof-theoretical langage. This puts an emphasis and interest in the question of designing complete proof systems, with a specific focus on constructivity.

Since Kozen's seminal paper [START_REF] Kozen | Results on the propositional mu-calculus[END_REF], several works focused on designing finitary and complete proof systems for the modal µ-calculus [START_REF] Walukiewicz | On completeness of the mu-calculus[END_REF][START_REF] Walukiewicz | Completeness of kozen's axiomatisation of the propositional mu-calculus[END_REF][START_REF] Kaivola | Axiomatising linear time mu-calculus[END_REF][START_REF] Walukiewicz | Completeness of kozen's axiomatisation of the propositional mu-calculus[END_REF]. While completeness for the µ-calculus is a notoriously difficult problem, we argue that when considering completeness and its potential applications, the way the result is established is almost as important as the result itself. Indeed, completeness only provides a theoretical way to obtain proofs from validity. The proof of completeness may indeed involve complex, non-constructive arguments yielding no reasonable method for actually constructing a proof. On the contrary, a constructive proof of completeness (for instance, specifying a proof search method) readily provides a realistic algorithm. In the following, we will refer to those completeness results proved constructively as constructive completeness results.

When considering the history of completeness proofs for the µ-calculus, there seems to be a tension between two requirements: having a completeness result for the full logic and obtaining constructive completeness. In his seminal paper, Kozen could not establish completeness for the full logic: he targeted a fragment, aconjunctive formulas, providing a constructive completeness proof for this fragment. Later developments either kept the constructivity property but fell out of Kozen's axiomatization (Walukiewicz' first result of completeness [START_REF] Walukiewicz | On completeness of the mu-calculus[END_REF], is constructive but for a deductive system which is stronger than Kozen's axiomatization) or stepped back on constructive completeness: Walukiewicz' result for branching time [START_REF] Walukiewicz | Completeness of kozen's axiomatisation of the propositional mu-calculus[END_REF][START_REF] Walukiewicz | Completeness of kozen's axiomatisation of the propositional mu-calculus[END_REF] and Kaivola's result for linear time µ-calculus [START_REF] Kaivola | Axiomatising linear time mu-calculus[END_REF] are not constructive.

Constructive completeness results for the µ-calculus have been given for various infinitary systems. Various tableaux systems have been devised for satisfiability [START_REF] Kozen | Results on the propositional mu-calculus[END_REF][START_REF] Streett | An automata theoretic decision procedure for the propositional mu-calculus[END_REF][START_REF] Janin | Automata for the modal mu-calculus and related results[END_REF][START_REF] Kaivola | Axiomatising linear time mu-calculus[END_REF] and modelchecking [START_REF] Stirling | Local model checking in the modal mucalculus[END_REF][START_REF] Bradfield | An effective tableau system for the linear time µ-calculus[END_REF]. All these systems are essentially infinite derivation trees, with validity criteria over infinite branches. These criteria are the main difference between all these systems, and resemble more or less closely acceptance conditions of automata over infinite structures. More recently, and considering validity rather than satisfiability, [START_REF] Dax | A proof system for the linear time µ-calculus[END_REF]) have proposed a system of infinite sequent calculus proofs for linear time µ-calculus, and used it as a basis for validity checking algorithms. The above works provide sound and complete derivation systems, sometimes highly amenable to efficient satisfiability checking. However, from a proof-theoretical viewpoint, these inference systems are not as simple as one might hope1 and are often not structured enough to stand as proof objects.

Our problem. In the present paper, we aim at developing constructive completeness results for fragments of the linear µ-calculus. More precisely, we consider fragments corresponding to inclusions of ω-automata, motivated by the question of producing prooftheoretical certificates for this important model-checking problem. To this end, we consider both finitary and infinitary proof systems for which we establish several constructive completeness results.

Proof certificates as advocated by Miller et al [START_REF] Miller | A proposal for broad spectrum proof certificates[END_REF][START_REF] Chihani | Foundational proof certificates in first-order logic[END_REF]) aim at formulating verification certificates in a common language of proof theory bringing new benefits, such as the ability to run certificates (e.g., to extract examples or algorithms from them) which is naturally supported by the computational interpretation of cut elimination. Targeting proof certificates, we impose special requirements on our proof objects. For instance, we need our proof system to be structured enough to support properties such as cut elimination or focalizationn and their computational interpretation. For instance, we will require sequents to be sets of occurrences of formulas which is necessary to provide proofs with a Curry-Howard interpretation. Indeed, the following proofs

(Ax) A x A (W l) A x , A y A (Ax) A y A (W l) A x , A y A
have different computational interpretations, exactly as λx.λy.x and λx.λy.y do. To make this explicit, we have distinguished the two occurrences of the left formulas by labelling them with variables x and y. When sequents are modelled as sets or multisets of formulas, as usual in the studies on µ-calculus, those two proofs are equated. We will work with sequents containing occurrences of formulas in the rest of the paper but we will not be so pedantic: we will keep the labelling of occurrences implicit.

Until now, infinitary derivation systems have mostly been used as an intermediate step in a series of transformations to obtain completeness for a finitary proof systems. We wish to go further, and focus on these infinitary systems as proof-theoretical systems in their own right. This desire to study infinitary proof systems more thoroughly is notably motivated by the simplicity of their formulation of (co)induction rules. Among other reasons, this explains a sustained interest in infinitary proof systems: Santocanale recently made new progress on cut-elimination in his framework [START_REF] Santocanale | A calculus of circular proofs and its categorical semantics[END_REF][START_REF] Fortier | Cuts for circular proofs: semantics and cutelimination[END_REF]; circular proofs are being used in richer logics than µ-calculus, for instance, Brotherston designed a complete infinitary proof system for Peano arithmetic [START_REF] Brotherston | Sequent calculi for induction and infinite descent[END_REF], or to infer program invariants in separation logic [START_REF] Brotherston | Cyclic abduction of inductively defined safety and termination preconditions[END_REF]; etc.

Contributions and organization of the paper. We consider linear time µ-calculus and two proof systems for it: the infinitary system µLK ∞ , its regular fragment µLK ω and the finitary sequent calculus µLK featuring (co)induction rules in the style of Kozen; they are presented in Section 2. We provide completeness arguments for classes of formulas corresponding to automata inclusions; those classes are introduced in Section 3, motivated by the encodings of ω-automata into µ-calculus. As explained above, these specific statements are central in model-checking, and building proof certificates for them is thus particularly interesting. Our constructive completeness argument is based on a new translation result that does not impose a syntactic condition on formulas, but a weaker geometric condition on proofs. This result makes crucial use of the precise structure of µLK ω proofs, which are more constraining than the ones usually found in the litterature, notably [START_REF] Dax | A proof system for the linear time µ-calculus[END_REF]). As a result, the completeness of our circular proofs is already not obvious. First, we show in Section 4 that our circular proof system is complete for inclusions of parity automata. To obtain this result, we make use of Safra's determinization construction to build circular proofs. In other words, we view Safra's construction as a proof search method; we claim that the scope of this idea goes beyond the particular setting considered here. Second, we prove our translation result in Subsection 5.1 for finitizing circular proofs. Third, we show in Subsection 5.2 that the proofs constructed in the first step satisfy the translatability criterion when they are deterministic enough. This yields completeness of the finitary proof system for inclusions of sufficiently deterministic parity automata. We finally obtain Theorem 36, establishing completeness for inclusions of non-deterministic Büchi automata, by gradually diminishing their "level of non-determinism" using some specific proof construction in µLK. In Section 6, we conclude and discuss our contributions: although we only provide partial completeness results, we argue that we tackle the main difficulty, that is non-determinism, while remaining constructive.

Proof systems for the linear-time µ-calculus

In this section we introduce two proof systems for the linear-time µ-calculus. The first one can be viewed as a refinement of the system of [START_REF] Dax | A proof system for the linear time µ-calculus[END_REF]) system while the second is a classical and modal version of µMALL (Baelde 2012).

Linear-time µ-calculus

Definition 1. Let V = {X, Y, . . . } be a set of variables and P = {p, q, . . . } a set of atoms. Linear-time µ-calculus formulas F, G, H, . . . are given by:

F ::= | ⊥ | p | F ⊥ | F ∨F | F ∧F | F | µX.F | νX.F | X
In formulas µX.F and νX.F , the variable X must occur only positively in F , i.e., under an even number of negations (• ⊥). Bound and free variables are defined as usual and substitution is capture-avoiding. The subformula ordering is denoted ≤ and fv(•) denotes free variables.

Definition 2. The Fischer-Ladner closure of a formula F , denoted by FL(F), is the least set of formulas such that F ∈ FL(F) and, whenever G ∈ FL(F),

• G1, G2 ∈ FL(F) if G = G1 ∨ G2 or G = G1 ∧ G2; • G1 ∈ FL(F) if G = G1 or G = G ⊥ 1 ; • B[G/X] ∈ FL(F) if G = σX.B for σ ∈ {ν, µ}.
Formulas of FL(F) are induced by traversals of F with the possibility of jumping from a variable to the fixed point combinator that introduced it. Due to this ability to cycle, there are infinitely many such traversals. However, cycling in a traversal induces the

F F Γ, F ∆ Γ F, ∆ (Cut) Γ ∆ Σ Θ () Σ Θ Γ ∆ (W l) Γ, F ∆ Γ ∆ (Wr) Γ F, ∆ Γ F, ∆ (Neg l) Γ, F ⊥ ∆ Γ, F ∆ (Negr) Γ F ⊥ , ∆ Γ, F ∆ Γ, G ∆ (∨ l) Γ, F ∨ G ∆ Γ F, G, ∆ (∨r) Γ F ∨ G, ∆ (⊥) Γ, ⊥ ∆ Γ, F, G ∆ (∧ l) Γ, F ∧ G ∆ Γ F, ∆ Γ G, ∆ (∧r) Γ F ∧ G, ∆ () Γ , ∆
Figure 1: Inference rules for propositional connectives.

Γ, F [σX.F/X] ∆ (σ l) Γ, σX.F ∆ Γ G[σX.G/X], ∆ (σr)
Γ σX.G, ∆

Figure 2: Fixed point rules for the µLK ∞ proof system.

same formula as is obtained from the traversal before the cycle. Thus all formulas of FL(F) can be obtained from acyclic traversals, and there are finitely many.

Definition 3. The semantics F u ρ of a formula F with respect to an ω-word u over Σ = 2 P (i.e., u ∈ Σ ω) and a valuation ρ : V → 2 ω is a subset of natural numbers inductively defined as follows:

u ρ = ω ⊥ u ρ = ∅ F ⊥ u ρ = ω \ F u ρ X u ρ = ρ(X) p u ρ = {i ∈ ω | p ∈ ui} F u ρ = {i ∈ ω | i + 1 ∈ F u ρ } F ∨ G u ρ = F u ρ ∪ G u ρ F ∧ G u ρ = F u ρ ∩ G u ρ νX.F u ρ = { W ⊆ ω | W ⊆ F u ρ[X←W] } µX.F u ρ = { W ⊆ ω | F u ρ[X←W] ⊆ W } The set of models of F (wrt. ρ) is defined to be M(F)ρ = {u ∈ Σ ω | 0 ∈ F u ρ }.
2.2 Infinitary proof system µLK ∞

Our proof systems are based on sequent calculus. Depending on requirements, sequents are sometimes viewed as sets of formulas, sometimes as multisets. Neither viewpoint is satisfying when the computational contents of proofs matters; one needs to go further and distinguish between different occurrences of a formula. We follow this approach here, viewing sequents Γ ∆ as pairs of sets of occurrences of formulas. This is for two reasons. First, we ultimately seek to develop a full proof-theoretical account of µcalculus. Second and more concretely, our completeness argument involves a translation result that crucially relies on the precise tracking of formulas through deduction steps.

Definition 4. A pre-proof of µLK ∞ is a possibly infinite tree, coinductively generated by the rules of Figures 1 and2.

It is easy to see that pre-proofs are not sound: one may for instance derive µX.X. To obtain proper proofs from pre-proofs, we add a validity condition which (unlike the rules of Figure 2) reflects the different meaning of µ and ν.

Definition 5. Let r be a rule of conclusion c and let p be one of its premises. If F is a formula occurrence in c, and G is one in p, we write F c,r,p -→ G if (i) F is not principal in r and F = G or (ii) F is principal in r and G results from the application of r to F . Example 6. We have

F ∧ G c,∧r ,p -→ G when c = Γ F ∧ G, ∆ and p = Γ G, ∆.
Definition 7. Let γ = (si)i∈ω be an infinite branch in a pre-proof of µLK ∞ , and let (ri)i∈ω be the corresponding instances of inference rules. A thread t in γ is a sequence of formula occurrences

Γ, S ∆ F [S/X] S (µ l) Γ, µX.F ∆ Γ F [µX.F/X], ∆ (µr) Γ µX.F, ∆ Γ, F [νX.F/X] ∆ (ν l) Γ, νX.F ∆ Γ S, ∆ S F [S/X] (νr)
Γ νX.F, ∆ Figure 3: Fixed point rules for the µLK proof system.

(Fi)i∈ω such that Fi

s i ,r i ,s i+1 -→ Fi+1.
The set of formulas that occur infinitely often in (Fi)i∈ω admits a minimum wrt. the subformula ordering, we denote it by min(t). A thread t is valid if there are infinitely many indices i such that Fi is principal in ri, and min(t) is a ν formula (resp. µ formula) occurring infinitely often on the right-hand side (resp. left-hand side) along the thread.

Definition 8. The proofs of µLK ∞ are those pre-proofs in which every infinite branch admits a valid thread. We call µLK ω the subsystem of µLK ∞ where derivations are regular, i.e., possibly infinite but with only finitely many subderivations.

The weakening rules (W l) and (Wr) are notably useful to obtain the following two derived rules: Proposition 9. The following rules are derivable in µLK ∞ :

(Ax) Γ, F F, ∆ Σ Θ () Γ, Σ Θ, ∆
Classic tableaux arguments can be adapted to show that the infinitary proof system is sound and complete for the linear-time µ-calculus. Roughly, a valid sequent admits a pre-proof that can be constructed by applying rules in an invertible fashion, and infinite branches of that pre-proof must be valid, since we can extract counter-models from invalid infinite branches. Conversely, the existence of a counter-model allows one to find an invalid infinite branch in any pre-proof of an invalid sequent.

Remark 10. The system µLK ω is very close to the one presented by Dax, Hofmann and Lange [START_REF] Dax | A proof system for the linear time µ-calculus[END_REF]), which we shall call µLK ω DHL in the following. The essential difference is that sequents of µLK ω are sets of occurrences (roughly, multisets of formulas) while those of µLK ω DHL are sets of formulas. If this difference may look minor at first glance, it is not trivial how one could transform a µLK ω DHL derivation into one of µLK ω . Indeed, if we choose to keep all formula occurrences in sequents, we may get a non-regular proof, and weakening some occurrences away may a priori break validity, as one can see in the example of Appendix B. We will come back to this issue in Section 4.

Finitary proof system µLK

Unlike the previous system, which requires a non-trivial, global validity criterion, the validity of a µLK proof is easily established by checking local inference rules.

Definition 11. The proofs of µLK are finite trees inductively generated from the rules of Figures 1 and3.

The fixed point rules of Figure 3 express that µX.F is the least pre-fixed point of X → F , and dually for νX.F . From this it can be shown that µ and ν respectively form least and greatest fixed points: (σ l) and (σr) are derivable in µLK. The particular formulation of the rules is such that the system admits cut elimination, a result that can be shown by adapting arguments from [START_REF] Baelde | Least and greatest fixed points in linear logic[END_REF]. It is also easy to see that this proof system is sound and complete for linear-time µ-calculus, since it is equivalent (in terms of provability) to Kaivola's axiomatization [START_REF] Kaivola | Axiomatising linear time mu-calculus[END_REF]. In order to get a feel for our two proof systems, and their relationships, an example is developed in Appendix A. We conclude this section by introducing a useful construction in µLK, called functoriality: Proposition 12. Let B be a formula with fv(B) = X, X occurring positively in B and let P1, P2 be two closed formulas. The following functoriality rule is derivable in µLK.

P1 P2

(Functo)

B[P1/X] B[P2/X]

Encoding ω-automata in linear-time µ-calculus

In this section, we briefly recall the definitions of Büchi and parity automata and define our encoding of these automata into lineartime µ-calculus formulas. For a fixed finite set of atoms P, we consider automata over the alphabet Σ = 2 P , whose elements will simply be denoted by a, b, etc. We shall translate these subsets of atoms as formulas by setting [a] := (∧p∈ap) ∧ (∧ q ∈a q ⊥). We eventually simply write a for [a].

Definition 13. A parity automaton is a tuple A = (Q, qI , δ, c), where Q is a finite set of states, qI ∈ Q is the initial state, δ : Q × Σ → P(Q)
is the transition relation and c : Q → ω assigns a priority to each state. A run of A on a word α = (ai)i∈ω ∈ Σ ω is a sequence ρ = (qi)i∈ω such that q0 = qI and qi+1 ∈ δ(qi, ai) for i ≥ 0. RunA(α) denotes the set of runs of A on α. For an infinite sequence ρ, we denote by Inf(ρ) the set of symbols that occur infinitely often in ρ. We say that A accepts α if there exists a

ρ ∈ RunA(α) such that min { c(q) | q ∈ Inf(ρ) } is even. The language of A is L(A) = { α ∈ Σ ω | A accepts α }. Definition 14. A B üchi automaton is a parity automaton (Q, qI , δ, c) such that the image of c is restricted to { 0, 1 }.
In that context, we say that a state q is accepting when c(q) = 0.

Definition 15 (Encoding of parity automata). Let A = (Q, qI , δ, c) be a parity automaton. We assume a collection of variables (Xq)q∈Q. We define the formula [q] Γ encoding the state q ∈ Q under the environment Γ consisting of a list of states, as follows:

[q] Γ = Xq if Γ = q1, . . . , qn, q, Γ and qi = q, c(qi) ≥ c(q) for all 1 ≤ i ≤ n,

[q] Γ = σXq. a∈Σ,q ∈δ(q,a) [a] ∧ [q] q,Γ otherwise, with σ = ν iff c(q) is even.

When unspecified, Γ is taken to be empty. We finally set

[A] = [qI].
The encoding builds on the well-known correspondence between the µ-calculus and parity games. The key ingredient is the side condition of the first case of the definition, relying on Γ. The aim here is to bridge the gap between the acceptance condition on runs of the automaton and the validity condition on threads. The latter is almost a parity condition, but with a parity ordering corresponding to the subformula ordering. To obtain a match between the two orderings, we need to control the formation of cycles.

Example 16. Consider the following Büchi automata, where even states are double-circled:

A1: p q a a A2: p q p a a a
A naive encoding of A1 would be µXp.(a∧ (νXq.a∧ Xp)). It is incorrect since that formula is equivalent to ⊥. Syntactically, the problem is that the infinite traversal of the formula corresponds to a cycle on Xp, with a regeneration of Xq at each step. In a sense, Xq is hidden by Xp in this encoding. Our encoding of A1 is the same as for A2, which is an unfolding of A1. More generally, the encoding can be seen as duplicating states so as to avoid that an accepting state is hidden by a non-accepting one:

[A1] = [A2] = µXp. a ∧ (νXq. a ∧ (µX p . a ∧ Xq)))
Proposition 17. For any parity automaton A, M([A]) = L(A).

We now transpose automata-theoretic notions to an appropriate class of formulas that contains the image of our encoding. This will be useful since most of our work is done directly on formulas, and it allows us to state simpler and slightly more general results.

Definition 18. Disjunctive formulas are defined as follows:

F ::= X | σX. ∨i∈I (ai ∧ Fi) with X ∈ X , ai ∈ Σ.
The set of disjunctive formulas is denoted by F∨. A B üchi formula is any F ∈ F∨ such that, for all µX.G ≤ F , there is no νY.H ≤ G with X ∈ fv(νY.H).

Our disjunctive formulas are similar to the ones of [START_REF] Walukiewicz | Completeness of kozen's axiomatisation of the propositional mu-calculus[END_REF]. They present the form of non-determinism that makes it difficult to translate circular proofs into finite proofs: their negations are not aconjunctive in the sense of [START_REF] Kozen | Results on the propositional mu-calculus[END_REF].

Definition 19. Let F be a disjunctive formula. The states of F are the formulas of Q(F) := FL(F) ∩ F∨. For G, H ∈ Q(F) we write G a → H if G = σX. ∨i∈I Fi and Fi = (a ∧ H) for some i ∈ I such that H = H [G/X]. We set a -1 G := {H : G a → H}, and define δ(F) to be (G, a) → a -1 G. A parity automaton AF is associated to F if it is of the form (Q(F), F, δ(F), c) where c is any priority assignment such that (i) G is a ν-formula iff c(G) is even and (ii) if G1 and G2 are co-accessible (i.e., Gi ∈ F L(G3-i), i ∈ {1, 2}), G1 ≤ G2 iff c(G1) ≤ c(G2).
Proposition 20. For any closed disjunctive formula F , and any associated parity automaton AF , one has M(F) = L(AF).

Note that Definition 19 may be understood as dealing with formulas or with occurrences of formulas. The second, more precise viewpoint should be taken in the rest of the paper, as it is the one that makes sense proof theoretically. For instance, in the next proposition, a -1 G (where G is a formula occurrence) really extracts a set of sub-occurrences of (the unfolding of) G.

Proposition 21. For any closed disjunctive formulas F , G1, . . . , Gn, the following rule is derivable in µLK ω : {Fa a -1 G1, . . . , a -1 Gn} a∈Σ,F a →Fa (→) F G1, . . . , Gn Proof. We restrict to n = 1 for clarity, but the general case is similar by applying the right-hand side rules successively on all Gi formulas. In that case, assuming F = σX. i∈I (ai ∧ Fi), we derive (→) as follows:

π1 a1, F1[F/X] G1 . . . πn an, Fn[F/X] G1 (σ l),(∨ l),(∧ l) σX. i∈I (ai ∧ Fi) G1
with πi being defined as:

Fi[F/X] a -1 i G1 () ai, Fi[F/X] { G i k } G 1 a i →G i k (∧r),(Ax),(W l) ai, Fi[F/X] { ai ∧ G i k } G 1 a i →G k (σr),(∨r),(Wr) ai, Fi[F/X] G1
Note that threads of this derived inference rule do not encounter fixed-point formulas except the ones visible at the premise and conclusion of the rule. Therefore, one can ignore the internal construction of the rule when checking the validity of pre-proofs.

Parity automata inclusions in µLK ω

We shall establish the completeness of µLK ω for automata inclusions. Here we can actually work with the full class of parity automata, which we exploit later.

Theorem 22. For any disjunctive formulas F and G one has:

L(F) ⊆ L(G) iff F G is derivable in µLK ω .
The soundness of µLK ∞ implies one direction of the result. For the other direction, the completeness of µLK ∞ is not enough to conclude. Proposition 21 indicates that we can embed the powerset construction in the logic, suggesting a natural strategy for building proofs of language inclusions. But we face a problem here due to the fact that our sequents are not made of sets of formulas, but keep track of distinct occurrences of formulas. This means that we are in fact considering a "powermultiset" construction, accounting for all possible runs rather than reachable states only. If we apply this naive construction, keeping all the copies of a state coming from different states, we are certainly going to get a µLK ∞ proof, but this proof has no chance of being regular in general, since sequents will become larger and larger.

In order to recover regularity, we have to weaken some occurrences. The challenge is to do so whilst preserving validity: for each word accepted by F , we need to preserve at least one valid thread among the ones witnessing the fact that G also accepts the word. In other words, we need to select a bounded subset of the possible runs of G. The recipe for such a selection can be found in the Safra trees used to determinize ω-word automata. In order to translate nondeterministic parity automata into deterministic Rabin automata, two distinct problems are solved in Safra's construction. The first problem is to refine the powerset construction in a way that bounds the set of alternative runs to consider. Safra trees achieve this, keeping only a single run per reachable state. Once this is achieved, determinization is realized in an abstract sense, but a second problem remains: that of designing a Rabin acceptance condition for the refined powerset (the Safra tree) that matches the acceptance conditions of the individual threads that it represents. While the first problem is precisely the one that we are facing in order to obtain regular proofs, the second one is not immediately relevant to our task. In the simple case of Büchi automata, this remark could motivate the use of simpler tools than Safra trees, e.g., the reduced trees of [START_REF] Kähler | Complementation, disambiguation, and determinization of büchi automata unified[END_REF]. In the case of parity automata, it seems difficult to find such a clear cut decomposition, and so we directly use Safra trees for parity automata. Anyway, we shall see that the structure of the trees pertaining to the acceptance condition is a useful device for reasoning about our proofs.

We specialize Safra's construction for Streett automata [START_REF] Safra | Exponential determinization for ω-automata with strong-fairness acceptance condition (extended abstract)[END_REF][START_REF] Grädel | Automata Logics, and Infinite Games: A Guide to Current Research[END_REF] to parity automata, in order to obtain a more direct presentation. This is important since the precise construction will impact the structure of µLK ω derivations.

We assume a fixed formula G of interest, and an associated automaton AG = (Q(G), G, δ(G), c). We consider without loss of generality that the priorities of AG are in P = {0, 1, . . . , 2k, 2k + 1}.

Definition 23. A Safra tree is a finitely branching tree whose leaves are labelled with non-empty subsets of Q(G) and whose edges are labelled by priorities from P . Descendants of a node are ordered, from left (younger) to right (older). Leaves' labels are pairwise disjoint. Every internal node has at least one outgoing edge with an odd label. On every branch, edge labels appear in increasing order starting from the root. Further, only even labels can appear more than once on a branch and if two labels occur on a branch then odd labels in between must occur too. Each node is identified by a name in a finite set N ; we say that v ∈ N is a node in T if T contains a node of name v. We denote by eT (v) the union of the labels of all leaves of the subtree of T rooted in node v.

Note that the conditions on leaves and edges alone imply that only finitely many trees exist, so that the finiteness condition on N is not constraining. The role of node names is to be able to track nodes through the modifications of the trees corresponding to automata transitions. Given a Safra tree T and a letter a, we now describe the transition function ∆(T, a) by the following procedure. A detailed example of that construction is given in Appendix C. Whenever we create a new node in the procedure, we assume that it is given a fresh name, i.e., one that does not yet occur in the whole tree.

(1) For any leaf node v0 of T , let 2m + 1 be the least odd label that does not occur from the root to v0 (skip this step if all odd labels occur). Create nodes v1, . . . , v k-m+1 such that for each i = 0, . . . , k -m, vi+1 is the son of vi, with an edge (vi, vi+1) labelled 2(m + i) + 1. The leaf v k-m+1 takes the label of v0.

(2) Replace each leaf label S by a -1 S.

(3) For each leaf v and state q appearing in it, let (w, w) be the edge appearing in the path from the root to v, that is labelled by c(q) if c(q) is odd, c(q) + 1 otherwise. Remove q from the label of v and append to w a new child leaf v , to the right, labelled {q}, with the edge (w, v) labelled c(q).

(4) Whenever a state q belongs to the labels of two distinct leaves w1 and w2, let b1, b2 be two branches starting from the root and ending in w1, w2 respectively. Let v be the node on which these branches fork, and vi be the child of v in bi, i ∈ {1, 2}. If the label of the edge (v, v1) is strictly greater than that of (v, v2) then remove q from w1 and conversely. If they have the same label, remove q from the rightmost wi.

(5) Remove any subtree whose leaves all have empty labels.

(6) If after the previous steps all edges going from a node v to its children are labelled by the same even priority, make v a leaf and label it eT (v).

Safra's construction yields a deterministic Rabin automaton equivalent to the original parity automaton. We only need the completeness direction of that equivalence, established next.

Remark 24. The following properties are invariants of our Safra construction, i.e., they are satisfied by the initial singleton trees and are preserved by ∆:

• If l is a leaf of a Safra tree T and q appears in the label of l, then c(q) ≥ p, where p is any edge label from the root to l. • If v is an internal node in a Safra tree T , then there is an even priority p such that all the outgoing edges from v in T are either labelled p or p + 1. In the following, this even priority will be denoted by pT (v), or simply p(v) when T is obvious or irrelevant.

• Moreover, if T = ∆(T, a) and v appears in both T and T as an internal node, then pT (v) = p T (v).

Proposition 25. Let α := (ai)i∈ω ∈ Σ ω and ρ := (Gi)i∈ω be a run of AG over α. Let T0 be the Safra tree with a single leaf node labelled {G0}, and Ti+1 := ∆(Ti, ai) for all i ∈ ω. If ρ is accepting then there is a node v ∈ N and an index j such that for all i > j, v is a node in Ti and v becomes a leaf infinitely often.

Proof. Let us first prove the following assertion: Assertion: Let v ∈ N . If there is iv ∈ ω such that for all i > iv, v is a node of Ti and Gi ∈ eT i (v), then there are two possibilities:

1. The node v becomes a leaf infinitely often.

2. There is w ∈ N and iw ∈ ω such that for all i > iw, w is a son of v in Ti and Gi ∈ eT i (w).

Proof of the assertion: Let m be the minimal priority that appears infinitely often in ρ. Suppose that v does not become a leaf infinitely often: let k be an index such that for all i > k, the node v is never a leaf in Ti and c(Gi) ≥ m. By Remark 24, there is an even priority p such that p = pT i (v) for all i > iv. Since Gi ∈ eT i (v) for all i > k, and again by Remark 24, we have that p ≤ m. For all i > k, Gi ∈ eT i (wi) for some child wi of v; we seek to establish that (wi) i>k is eventually constant. We distinguish two cases: (i) If p < m, we actually have p + 1 < m. Let T i be the tree obtained after steps (1-3) of the construction of Ti+1 = ∆(Ti, ai). Because c(Gi+1) > p + 1 we still have Gi+1 ∈ e T i (wi). We now consider the rest of the construction, from T i to Ti+1. Step (4) may remove the occurrence of Gi+1 ∈ e T i (wi) in favor of another one in eT i (wi+1) for wi+1 = wi. However, this can only happen if (a) the edge (v, wi+1) is labelled p while (v, wi) is labelled p + 1, or (b) the edge labels are the same but the rank of wi+1 among the children of v is less than that of wi. Thus, this can happen only finitely many times, and the sequence (wi)i is eventually constant. (Obviously, Step (5) is irrelevant in this argument, and Step (6) cannot happen because v never becomes a leaf by assumption.)

(ii) Otherwise, p = m. We first show that there is some i such that (v, wi) is labelled p. Consider any position j > k such that c(Gi) = m. If (v, wi) = p + 1 then Gi+1 will be moved by step (3) of the construction of Ti+1 to a new child w of v, with an edge (v, w) labelled p. Then step (4) may not keep the occurrence of Gi+1 in w , but it will preserve an occurrence in a child w with (v, w) labelled p too. Next we observe that, once (v, wi) is labelled p, we have (v, wj) labelled p as well for all j ≥ i. This follows from a simple inspection of the procedure, arguing as above. From this point on, we can only have wj = wj+1 because of step (4) but, as observed before, this can only decrease the rank of wj+1 among the children of v. This can only happen finitely often, which concludes the proof.

To prove the initial proposition, we iterate the assertion starting from the root node, which satisfies trivially the hypothesis of the lemma, and iterate it as many times as necessary to find the wanted node. This iteration is bound by the maximal height of Safra trees.

For a Safra tree T , we define Φ(T) to be the union of the labels of the leaves of T (which contain formula occurrences), forgetting all the tree structure. In the following, when unambiguous, we will sometimes write T instead of Φ(T). The Safra tree structure corresponds to a refined powerset construction, in the sense that, if T is a Safra tree and a ∈ Σ, Φ(∆(T, a)) ⊆ a -1 (Φ(T)). We now observe that Safra's construction can be immediately adapted to proof theory, in a way that yields proofs of inclusions for disjunctive formulas.

Proposition 26. Given a disjunctive formula F and a Safra tree T , the following rule is derivable:

{ Fa Φ(∆(T, a)) } a∈Σ,F a →Fa (S) F Φ(T)
Proof. Since Φ(∆(T, a)) ⊆ a -1 (Φ(T)), rule (S) can be obtained by applying rule (→) of Proposition 21 and some weakenings. It is however crucial to perform those weakenings in a way that selects appropriate threads in the powerset construction, to be able to replay Safra's argument in the rest of the development. This is done in the obvious manner, once one understands that Safra's construction is selecting runs, and that threads are runs.

Definition 27 (Π(F, T), Π(F, G)). Given a disjunctive formula F and a Safra tree T , we coinductively define Π(F, T) to be the following µLK ω pre-proof:

Π(Fa, ∆(T, a)) Fa Φ(∆(T, a)) a∈Σ,F a →Fa (S) F Φ(T)
In other words, it is the infinite derivation obtained by repeatedly applying rule (S). It is obviously regular, as only finitely many F and T may be encountered. Note that Π(F, T) is a standard µLK ω pre-proof, whose sequents are sets of occurrences, but those sequents have been obtained by forgetting the structure of Safra trees which form the blueprint of the construction. If G is a disjunctive formula, we set Π(F, G) := Π(F, T) where T is the single-node Safra tree with label {G}.

Proposition 28. Let F, G ∈ F∨. If L(F) ⊆ L(G), then Π(F, G) is a µLK ω proof.
Proof. Let us establish the validity of each infinite branch γ = (si)i∈ω of Π(F, G). For each such branch, there is an ω-word α = (ai)i∈ω such that, for all i, si = Fi Φ(Ti) where F0 = F , T0 is the tree with a single node labeled by {G}, Fi a i → Fi+1 and ∆(Ti, ai) = Ti+1. Hence ρF := (Fi)i∈ω corresponds to a run of F and ρG := (Ti)i∈ω corresponds to a run of the Rabin automaton obtained by Safra's construction on AG.

If the run ρF is not accepting, we have that min(Inf(ρF)) is a µ-formula and thus ρF , seen as a thread, validates the branch γ.

Otherwise, the run ρF is accepting, thus α ∈ L(F), and α ∈ L(G) by hypothesis. By Proposition 25, there is a node v and an index j such that ∀i ≥ j, v is a node of Ti and v appears as a leaf infinitely often. Now, let us extract a valid thread from this node. To do so, we prove the following assertion: Assertion 1: Let m > n ≥ j such that the node v is a leaf in Tn and Tm, and it is not a leaf in Ti for all n < i < m. For every K ∈ eT m (v), there is a sequence of formulas Fn, . . . , Fm satisfying the following conditions:

• Fm = K; • for all i = n, . . . , m -1, Fi s i ,(S),s i+1 -→ Fi+1 • min(Fn, . . . , Fm) is a ν-formula.
We first show that the assertion allows us to conclude the main proof. Let j < i0 < i1 < . . . such that v is a leaf in Ti where i > j iff i = in for some n ∈ ω. We define a tree T whose set of nodes N is

N := {r} ∪ { (F, n) | n ∈ ω, F ∈ eT in (v) },
where r is a distinguished root node, with an edge from r to any node of the form (F, 0), and an edge from (H, n) to (K, n + 1) iff there is a thread Fi n Fi n+1 . . . Fi n+1 such that H = Fi n , K = Fi n+1 and min(Fi n , Fi n +1, . . . , Fi n+1) is a ν-formula. By the previous assertion, every node except r have at least a parent. The tree T is thus an infinite tree which is finitely branching, hence by König's lemma it has an infinite branch. It is easy to see that this branch corresponds to a valid thread.

Before proving Assertion 1, we will first enunciate and prove a stronger version of it. By Remark 24, there exists an even priority p such that for all i ≥ j, the outgoing edges from v are either labelled p or p + 1. We actually prove, by induction on i = n, . . . , m -1 the following: Assertion 2: Let w be a child of v in Ti and K ∈ eT i (w), then there are formulas F k , . . . , Fi satisfying the following conditions:

• Fi = K;
• For all l = n, . . . , i -1, F l s l ,(S),s l+1 -→ F l+1 ;

• For all l = n, . . . , i, F l ∈ eT l (v); • If c is the label of the edge (v, w), then min(c(Fn+1), . . . , c(Fi)) = c.

Let us prove Assertion 2. When i = n, the result is obvious, notably because v is a leaf in Tn. Now, suppose that the result is true for i and let us prove it for i + 1. Let w be a child of v in Ti+1 and K ∈T i+1 (w). The edge (v, w) is labelled c. Notice first that c(K) ≥ c, otherwise it would be absorbed by a parent of v.

There exists L ∈ eT i (v) such that L s i ,(S),s i+1 -→ K. Actually, L should belong to one of the children of v in Ti; call it w and let c be the label of the edge connecting v and w in Ti. We distinguish two cases:

1. If w = w we conclude by applying the induction hypothesis. 2. If w = w , that is w is a new child in Ti+1, created by Step 3, then we distinguish two cases: if c = c , here again we apply directly the induction hypothesis. Otherwise, the node w has been created because c(Fi+1) = p and c = p + 1. We then have that c = p. Here again we apply induction hypothesis to conclude.

We finally prove Assertion 1. Let K ∈ eT m (v) and let w be a child of v in Tm-1 and L a formula such that L ∈ eT m-1 (w) and L s m-1 ,(S),sm -→ K. By the previous result instanciated for i = m -1, we have a thread Fn, . . . Fm-1 such that Fm-1 = L and min(c(Fn), . . . , c(Fm-1)) = c where c ∈ {p, p + 1} is the label of the edge (v, w). As v is a leaf in Tm, it has been obtained after Step 6, which means that before Step 6, the tree Tm-1 has only ongoing edges labelled p. Let w be the child of Tm-1 just before Step 6 such that K is in the label of this subtree rooted in w . There are two possibilities:

• If w = w, we have c = p and, since c(Fm) ≥ p, then min(c(Fn), . . . , c(Fm-1)) = p. • Otherwise, w has been created in Step 3, and c(Fm) = p.

Hence we also have min(c(Fn), . . . , c(Fm)) = p.

Anyway, the thread Fn, . . . Fm satisfies min(c(Fn), . . . , c(Fm)) = p. Since p is even, min(Fn, . . . , Fm) is a ν-formula.

B üchi automata inclusions in µLK

The problem of relating finite and infinite proof systems for fixed point logics is still insufficiently understood. In the case of modal µ-calculi, some partial connections have been identified and exploited as part of completeness arguments, but no care has been taken to make these observations generic in proof-theoretical terms. Santocanale [START_REF] Santocanale | A calculus of circular proofs and its categorical semantics[END_REF][START_REF] Santocanale | A calculus of circular proofs and its categorical semantics[END_REF] provided a technique to give a semantics to his circular proof system with fixed points in µ-bicomplete categories. This technique can be used to translate purely additive circular proofs into (the purely additive fragment of) µLK. Dealing with with multiplicative connectives or structural rules remains a challenge. We shall extend this technique to obtain a new partial translation result, that applies to Safra proofs, allowing us to finally obtain µLK proofs of Büchi inclusions. The translation is based on a combinatorial condition on threads, which makes it quite generic and directly applicable to other circular proof systems than µLK ω .

A translation result from µLK ω to µLK

We give a sufficient condition on µLK ω proofs which guarantees that they can be translated into µLK proofs, using an adaptation of Santocanale's procedure. The translation procedure works on any finite representation of regular derivations. To get a handle on this notion, we shall work with annotated µLK ω derivations throughout the whole section. Such derivations are simply µLK ω derivations where each sequent is given an annotation in a finite set, in such a way that regularity is not lost and if two sequents of a µLK ω derivation have the same annotation, they also have the same derivation. Later on, annotations will be used to keep track of the Safra trees that generated sequents in inclusion proofs, giving a formal way to distinguish identical sequents that originate from distinct Safra trees.

Definition 29 (Translatable proofs). Let π be an annotated µLK ω proof and γ = (si)i∈ω an infinite branch of π. A thread t = (Fi)i∈ω in γ is said to be strongly valid if t is valid and there is an annotated sequent s k such that, for all i ≥ k such that si and s k correspond to the same annotated sequent, Fi = min(t) and Fi is active in the rule of conclusion si. A proof is said to be translatable if every infinite branch contains a strongly valid thread.

Proposition 30. Let π be a µLK ω proof of a sequent s. If π is translatable then there is a proof of s in µLK.

To prove this, we extend both µLK ω and µLK with an assumption rule:

(A)

Γ ∆

We call the resulting systems µLK ω and µLK . The validity condition remains the same, as it is about infinite branches only.

Definition 31. Let π be an annotated proof in µLK ω or in µLK . We define Sπ as the set of annotated sequents appearing in π. We define the assumptions of π, written A(π), as the set of annotated conclusion sequents of (A)-rules in π. Finally, we define Cπ := Sπ \ A(π) and the complexity of π as #π := card(Cπ).

Definition 32. Let π be a proof in µLK ω or in µLK , and let s be an annotated sequent. The proof π s is obtained from π by replacing all subtrees rooted in s by an assumption on s.

Proof of Proposition 30. We actually establish that if Π is a translatable µLK ω proof of a sequent s, there is a µLK proof π of s such that A(π) ⊆ A(Π). The proof is by induction on #Π. When #Π = 0, the derivation is reduced to an assumption on the conclusion sequent s, and the result obviously holds by using rule (A) on s in µLK . Otherwise, we distinguish two cases.

The proof is not "strongly connected". If there exist s1, s2 ∈ CΠ such that no occurrence of sequent s2 appears above an occurrence of s1 in Π, let Π1 be a sub-tree of Π rooted in s1 and Π2 = Π s 1 . Both Π1 and Π2 are translatable and have strictly smaller complexity than Π. By induction hypothesis we obtain µLK proofs π1 of s1 and π2 of s, such that A(π1) ⊆ A(Π) and A(π2) ⊆ A(Π) ∪ {s1}, which we plug together at the level of s1 to get a proof π of s satisfying A(π) ⊆ A(Π).

The proof is "strongly connected". Otherwise, we can find an infinite branch γ = (si)i∈ω containing all sequents of CΠ. Further, we choose this branch such that it contains any finite branch that connects two consecutive occurrences of a sequent; the reasons for this condition will become clear next.

By hypothesis, this branch admits a strongly valid thread t = (Fi)i∈ω. We assume that the minimum of the formulas occurring infinitely often in t is a µ formula occurring on the left-hand sides of sequents; the case of a ν on the right is similar. Let F := min(t) = µX.B. By strong validity, there is an annotated sequent s ∈ CΠ such that if si = s then Fi = F and Fi+1 = B[F/X]. We assume, without loss of generality, that Π is rooted in s , i.e., s = s .

The sequent s is of the form Γ, F ∆; this allows us to define the environment of F in s:

env(s) := (G∈Γ G ⊥) ∨ (H∈∆ H).

Note that Γ, env(s)

∆ is then obviously derivable. We finally consider the formula I, which will be shown to be an invariant of F :

I := µX.(B ∧ env(s))
Observe that I F is easily derivable using rule (µ l) with F itself as the invariant.

Let Πu be the immediate subderivation of Π; the conclusion of Πu is thus the premise of the (µ l) rule applied to F in s. Consider now the derivation Π s u . Its conclusion sequent contains an occurrence B[F/X]. We construct Θ from Π s u by replacing that occurrence by B[I/X] in the conclusion sequent, and simply propagating that substitution, unfolding I when the corresponding F is unfolded. Note that assumptions may be affected by the substitution, so we do not have A(Θ) = A(Π s u) in general. Still, one has #Θ < #Π since CΘ does not contain the sequent s and, if two annotated sequents were equal in CΠ, they are similarly impacted by the substitution and remain equal in CΘ. Moreover, Θ is still translatable. Thus, we obtain by induction hypothesis a µLK proof θ satisfying A(θ) ⊆ A(Θ).

We now seek to adapt θ in order to obtain a µLK derivation β such that A(β) ⊆ A(Π). Every assumption h of θ is an assumption of Θ, which has been obtained from an assumption of Π s u . That original assumption is either an assumption of Π, or s. In each case, we modify the assumption h of θ into a µLK derivation with assumptions in A(Π):

• If h originates from an assumption h0 of Π, some occurrences of F in h0 have been substituted for I during the construction of Θ. In other words we have h0 = (Γ[F/X] ∆[F/X]) and h = (Γ[I/X] ∆[I/X]). Note that, by positivity of F , all substituted occurrences of X must be positive in Γ (resp. negative in ∆). As observed before, I F is derivable. Thus we can derive h from h0, by repeatedly applying functoriality and cut.

• Otherwise, h originated from an assumption on s in Π s u , which has also been affected by the substitution of F by I during the construction of Θ. By construction of the infinite branch γ, and because s is the sequent associated to the thread that strongly validates γ, we have that the occurrence of F in the assumption s = (Γ, F ∆) in Π s u must be traced back to B[F/X] in the conclusion of that derivation. Thus, that toplevel occurrence of F in s has been impacted by the substitution in the construction of Θ, and it becomes I in h. More precisely, h is of the form (Γ , I ∆) where Γ (resp. ∆) is obtained from Γ (resp. ∆) by substituting some positive (resp. negative) instances of F by I. We can conclude by completely eliminating that assumption, deriving instead h from Γ, I ∆, which itself can be derived from Γ, env(s) ∆, which is easily derivable as observed before.

We have thus obtained a derivation β of Γ, B[I/X] ∆ such that A(β) ⊆ A(Π). We are now ready to conclude by constructing a µLK derivation π of s = (Γ, F ∆) such that A(π) ⊆ A(Π). The derivation starts with a (µ l) rule on F , using I as invariant. As the second subderivation of that inference, we derive Γ, I ∆ from Γ, env(s) ∆, which itself is easily derived. For the first subderivation, we proceed as follows:

(Ax) B[I/X] B[I/X] β B[I/X] env(s) (∧r) B[I/X] B[I/X] ∧ env(s) (µr) B[I/X] I
Note that this development makes crucial use of the difference between µLK ω and µLK ω DHL : our translatability criterion and translation procedure rely in a fundamental way on the precise thread structure of µLK ω proofs.

Weakly deterministic parity inclusions and B üchi inclusions in µLK

We show that inclusion proofs are translatable for a particular class of disjunctive formulas called weakly deterministic, and use this as a stepping stone for constructing µLK proofs for all Büchi inclusions.

Definition 33. We say that a disjunctive formula F is deterministic iff for any G ∈ Q(F) and a ∈ Σ, a -1 G contains at most one formula. The level of non-determinism lvl(F) of F is the number of its even states that are not deterministic: The construction of Π(F, G) depends on the choice of automaton associated to G. We choose it here with a priority assignment c for the states of the formula G such that c(K) = 1 for all K ∈ QN , and c(K) > 1 for all K ∈ Qi, 1 ≤ i ≤ n. Such an assignment exists since QN contains only µ-formulas and, for all 1 ≤ i ≤ n, the states in QN and Qi are not coaccessible.

lvl(F) = #{ G ∈ Q(F) | c(G) is even, G is not deterministic }.
Let us first make some observation about Safra's construction over weakly-deterministic formulas, with the chosen priority assignment. Consider a run (Ti)i∈ω on some word (ai)i∈ω, as in the proof of Proposition 28. Assertion: Let i ∈ ω and v be a child of the root r in Ti. One has:

• the edge (r, v) is labelled by 1;

• either eT i (v) = {K} where K ∈ QN and in this case v is a leaf (call it child of Type 1); or eT i (v) = {K1, . . . , Kp} such that for all k ∈ [1, p] there exists j k ∈ [1, n] such that K k ∈ Qj k , and k = k implies j k = j k (call it child of Type 2); • if v is also a node in Ti+1, then v is of Type 2 in Ti+1.

We prove this assertion by induction on i. When i = 0 it is trivial since the root has no child. Suppose that the assertion is true for some i and let us prove it for i + 1. Let v be a child of the root in Ti+1. The edge (r, v) is labelled by 1: indeed the outgoing edges from the root can only be 1 or 0. But by definition of the priority assignment we gave above, no state has priority 0. On the other hand, the only way to create an edge of label 0 is by Step 3 when a formula has a priority 0. Hence the outgoing edges from r are labelled by 1. To prove the second item, we separate two cases:

• If v does not exist in Ti this means that w has been created in

Step 3, hence it is a leaf labelled by a singleton {K}. We have that K ∈ QN since only formulas from QN have priority 1. • Otherwise, v is a child of r in Ti. By induction hypothesis, the node v is of Type 2 in Ti+1.

Suppose that v is also a child of r in Ti+2. There are two cases:

• If v is of Type 1 in Ti+1, let eT i+1 (v) = {K} and δ(K, ai+1) = { M , K}, M ⊆ QN and K ⊆ ∪ 1≤i≤n Qi. The tree structure of G implies that K is of the form K := {K1, . . . , Kn} with at most one K k per Qj, and none in QN . After Step 3, all formulas of M will be in new child of the root in Ti+2. Hence, v will be of Type 2 in Ti+2.

• If v is of Type 2 in Ti+1, it is also of Type 2 in Ti+2 since D k are deterministic.
Having proved our assertion, we now establish the result. Let v be a node and j an index such that for all i ≥ j, v is a node in Ti and v is a leaf infinitely often. As the outgoing edges of the root all have label 1, v cannot be the root. Indeed, to become a leaf infinitley often, a node has to collapse in Step 6, and this is possible only when the outgoing edges are of even priority. Hence v appears in the subtree of a child w of the root in Ti, for all i > j. Since v is persistent, w is also persistent, and by the above assertion, the node w is of Type 2 in Ti, for all i > j. Hence v is also of Type 2, that is, eT i (v) has at most one formula from each Q k and no formulas from QN .

We finally come back to the proof of Proposition 28, and show that each time we exhibited a valid thread t in that proof, t was actually strongly valid. This follows from the following remarks:

(i) When the sequents of a branch contain only one formula in their left-hand side, any valid thread visiting only left-hand side formulas is strongly valid. Since all the sequents in Π(F, G) have only one formula in their left-hand side, the left-hand side thread exhibited in the first case of the proof of Proposition 28 is actually strongly valid.

(ii) Consider the right-hand side thread t that we extracted from the persistent node v in the second case of the proof of Proposition 28. Let Fr := min(t), there is some k such that Fr ∈ Q k . Let s be a sequent appearing infinitely often in γ such that (i) the thread meets s at the level of the formula Fr (ii) s is the conclusion of the unfolding of Fr. We prove that s satisfies the property in the definition of strong validity. Suppose that there is some i such that si = s and Fi = Fr. Since Fi is in the thread, we have that Fi ∈ Q k . But si = s hence eT i (v) contains the formula Fr also, which means that eT i (v) contains two distinct elements from Q k contradicting the last observation above.

Note that the previous argument easily yields a slightly more general result: Proposition 35. Let F be a disjunctive formula and (Gj) 1≤j≤n be weakly deterministic ones. If L(F) ⊆ j L(Gj) then there is a translatable proof of F G1, . . . Gn.

Theorem 36. Let F and G be two Büchi formulas. We have L(F) ⊆ L(G) iff there is a µLK proof of F G.

Proof. Let us consider the following more general result:

Let F be a disjunctive formula and (Gj) 1≤j≤n be disjunctive formulas of the form Bj[P i j /X i] 1≤i≤k where Bj is a Büchi formula and the P i j are deterministic, disjunctive νformulas. If L(F) ⊆ ∪jL(Gj) then there is a µLK proof of F G1, . . . , Gn.

We prove the latter by induction on max{lvl(Gj)}j.

Base case: When lvl(Gj) = 0 for all j, the formulas Gj are obviously weakly deterministic. We thus apply Proposition 35 and Proposition 30 to get a µLK proof of F G1, . . . , Gn.

Inductive case: For the sake of readability we assume n = 1, i.e., we consider only one G = G1 = B[P1/X1, . . . , P k /X k]. Notice first that since B is a Büchi formula, it can be written as B = Bµ[Q1/Y1, . . . , Q l /Y l] where Bµ does not contain any νformulas and, for all 1 ≤ i ≤ l, Qi = νZi.Bi, with fv(Qi) ⊆ {X1, . . . , X k } and variables (Yi)i and (Xj)j being pairwise disjoint. We have that G = Bµ[Ri/Yi]i where Ri = Qi[Pj/Xj]j.

Since Ri is a closed disjunctive formula, there exists a parity automaton Ai associated to it. Let A i be any deterministic parity automaton accepting the same language as Ai, and let R i be the disjunctive formula encoding A i . We thus have L(Ri) = L(R i). Further, L(G) = L(Bµ[R i /Yi]i) since any accepting run of G starts by a finite run in Bµ and continues with an accepting run of some Ri.

Consider the following derivation:

π0 F Bµ[R i /Yi]1≤i≤l π1 R 1 R1 . . . πl R l Rl (Functo) Bµ[R i /Yi]1≤i≤l Bµ[Ri/Yi]1≤i≤l (Cut) F G
The sub-proof π0 can be obtained by applying the base case since L(F) ⊆ L(Bµ[R i /Yi]i), lvl(Bµ[R i /Yi]i) = 0, and the formula on the right is of the expected form.

For each 1 ≤ i ≤ l, the sub-proof πi is obtained by applying the coinduction rule (νr) with coinvariant R i for Ri. The non-trivial premise of that rule is then R i Bi[Pj/Xj]j[R i /Zi]. We derive it using rule (→), slightly modified because the formula on the right is not a fixed point formula. We are left to construct, for each R i a → R i,a , a derivation πi,a of R i,a ∆i,a where ∆i,a is (with a slight abuse of notation) a -1 (Bi[Pj/Xj]j[R i /Zi]).

Let us show that each πi,a can be obtained by induction hypothesis. We obviously have L(R i,a) ⊆ L(∆i,a). Moreover, any formula H ∈ ∆i,a is of the expected form. It suffices to establish that it is the case for Bi[P j /X j]j[R i /Zi], which follows from the fact that B[P j /X j]j = Bµ[(νZi.Bi[Pj/Xj]j)/Yi]i: indeed, if a νformula contains a variable of a greater (outermost) µ formula in Bi then this is also the case in B contradicting the hypothesis that B is a Büchi formula. Finally, lvl(Bi[Pj/Xj]j[R i /Zi]) = lvl(Ri) -1 and thus lvl(H) < lvl(G) for all H ∈ ∆i,a.

Underlying this final result, we have successfully given an algorithm that checks for Büchi inclusions and yields proofs in case of success. At the heart of the procedure, given two automata encoded as F and G, we first build a circular proof by means of Safra's construction. If we were interested in a µLK ω certificate, we should check for the proof's validity at this point, which can be done using Ramsey-based techniques. But if the target is µLK, there is no need to do so: we can simply run the translation algorithm underlying the proof of Proposition 30 specialized for Safra proofs. In the case of a strongly connected proof the algorithm searches, along some branch that visits all sequents, for a persistent node that becomes a leaf infinitely often in Safra trees. If this is found, the translation can continue. Otherwise, it actually means that the branch is invalid, and it immediately yields a word accepted by F but not by G. Thus our proof-producing verification algorithm can also produce counterexamples.

Conclusion

Contributions. We have given a new completeness argument in the linear time µ-calculus, for sequents corresponding directly to 9

2016/2/17 inclusions of Büchi automata. We have done so in µLK, a cousin of the well understood proof system µMALL. This proof system has a complete, well understood proof theory. It notably enjoys cut elimination, and its proofs are checkable in polynomial time.

Although our result does not imply completeness for the full calculus2 , the result is non-trivial, dealing with one of the main problems in such proofs, namely the non-determinism induced by disjunctions appearing on cycles over ν formulas -this is the exact problem avoided by Kozen with aconjunctivity when translating refutations rather than proofs. On the way to this final result we have also obtained an intermediate result for inclusions of sufficiently deterministic parity automata; here, non-determinism is avoided to some extent, but fixed point alternations are arbitrary.

Unlike the full proof of completeness for linear time µ-calculus (Kaivola 1995), our argument is constructive and gives a central role to circular proofs. As by-products of this result, we have defined µLK ω , a new circular proof system for linear µ-calculus, and given a strong translation result from µLK ω to µLK. This result does not rely on syntactic conditions on formulas, but on a geometric condition on circular proofs. By its nature, the result is quite generic; it obviously carries to similar circular proof for other µ-calculi, e.g., µMALL. The translation exploits a key difference between µLK ω and previous circular deductive systems for linear time µ-calculus : in µLK ω , we distinguish occurrences of formulas, which induces a very structured notion of thread. Because of this structure, completeness of µLK ω itself is not obvious. In fact, we had to tackle non-determinism already when building circular proofs for automata inclusions. We did so by exploiting determinization techniques for ω-automata to guide a complete proof search strategy, thus giving a logical meaning to Safra's construction.

Future work. We are considering several directions for further investigation. An obvious one is to extend our argument to obtain completeness for inclusions of parity automata, and then for the full calculus. It would also be interesting to investigate the efficiency of the algorithm underlying our argument. There might be room for improvements, for instance by attempting to build more compact circular proofs by improving the proof search technique used in Theorem 22. Here, other determinization techniques than the Safra trees used in this paper (e.g., Piterman trees (Piterman 2007)) could be leveraged, if they can be shown to yield translatable circular proofs. We are also interested in giving a proper proof-theoretical status to µLK ω . We believe that the precise structure of this proof system makes it a good candidate to investigate important properties such as cut elimination and focalisation; cut elimination for circular proof systems is an open question beyond the purely additive calculus of [START_REF] Fortier | Cuts for circular proofs: semantics and cutelimination[END_REF]. This would make it possible to propose circular proofs as proof certificates themselves; although non-trivial to check, such proofs can be simpler to produce and smaller, as seen in this study.

B. Comparison with µLK ω

DHL : an example

We give here a proof of inclusion in µLK ω DHL that cannot be directly translated to µLK ω , for the reasons explained in Section 2. Consider the automata B1 and B2 depicted in Figures 6 and7. The first one has an empty language, but this is irrelevant to our example, which illustrates a problem on the traces induced by B2. In the sequent e i on the top right, the formula i comes from both p and q; there are two threads leading to it. In µLK ω , this is not allowed. To keep a sequent e i and close the cycle in the same way, we would need to choose one of the two threads. However that is not possible, since any choice would break the validity condition. The Safra construction used in the proof of Theorem 22 proceeds differently. It corresponds to choosing one of the two threads, but the resulting Safra tree will be different from the one used at the root. Therefore the cycle is not closed there, but later in the proof construction, which does result in a valid proof.

C. Example of Safra construction

We develop in this section an example of Safra's construction illustrating the different steps of the construction and Proposition 25.

Let us consider the parity automaton A = ({q1, q2}, q1, δ, c) depicted in Figure 8 where priorities are such that c(qi) = i. We thus consider the following set of priorities P = {0, 1, 2, 3}. We now consider a run of Safra trees starting with T1 (i.e., a single node of name n0, labelled by {q1}) on the word w = a ω . This run is given in Figure 9, i.e., T1.(T2.T3) ω . We denote node names by using brackets (e.g., [n0]) and we indicate the leaves' labels to the right of their names (e.g., [n0] {q1}). We simply write T T when T = ∆(T, a). We also detail the construction of T3 = ∆(T2, a) in Figure 10, where i denotes the application of Step (i) of Safra's construction as defined in Section 4.

In the stationary part of the run, i.e., (T2.T3) ω , the node of name [n1] is persistent (i.e., it is never removed from the trees) while the ones named [n2] and [n3] are not. This reflects the fact that all (non-accepting) runs visiting both states q1 and q2 infinitely often are removed by our Safra's construction. Indeed, Safra trees remove some runs when performing Step (4) of the construction. Concretely, the non-accepting run (q1.q2) ω is discarded in the Safra run (Ti)i∈ω when the node [n8] {q1} is removed by Step (4) in Figure 10 -we assume here that the state q1 in node n3, which we decided to keep, comes from node n5. In this simple example, the only run that is never removed is ρ = q1.q ω 2 ; it is associated to the persistent node [n1].

More generally, a persistent node v whose incoming edge is labelled p intuitively selects all runs for which the minimum priority p visited infinitely often is even and equal to either p or p + 1, depending on the priority of p. If at some point, a run visits a state of priority p1 < p then the node would discard it when applying Step (3). Moreover, it may be the case that this run will not be selected by another node and will be removed at Step (4). This is happening in our example (cf. Figure 10) for nodes n1 and n2 and states q1 (in n6 and n5). Further, if this node becomes a leaf infinitely often, it means that Step (6) is applied infinitely often and thus all runs it has selected have visited infinitely many times a state of priority p . This is happening in our example for the node n1 when performing Step (6). Altogether, we can obtain that the node only selects runs that are accepting for the priority p .

Finally , F

 , is said to be weakly deterministic iff lvl(F) = 0. Proposition 34. Let F be a disjunctive formula and G a weakly deterministic disjunctive formula. If L(F) ⊆ L(G) then Π(F, G) is translatable. Proof. Since G is weakly deterministic, it has the form G = N [Di/Xi]i=1...n where D k are deterministic formulas and N is a formula that does not contain the ν connective. Let us denote the set of states of D k by Q k and those of N by QN .

 Figure 6: Automaton B1

 Figure 8: Automaton A

2016/2/17

Although one only ever needs to consider regular derivation trees, checking the validity condition on these derivations remains highly non-trivialfor instance, validity is reduced to an inclusion of Büchi automata in(Dax et

 al. 2006).

2016/2/17 (Ax)

2016/2/17

2016/2/17

2016/2/17

2016/2/17

2016/2/17

2016/2/17

Any linear time µ-calculus formula is equivalent to a Büchi formula, but it is far from obvious to prove that equivalence in, say, µLK.

2016/2/17

Example proofs in µLK ω and µLK

We consider proving a simple implication which, informally, expresses that (ab) ω is included in (a * b) ω . More precisely, we will prove Φ Ψ where:

We show in Figure 4 a µLK ω pre-proof of Φ Ψ, where the vertical dots denote a repetition of the tree, and Ψ stands for µY. (a∧ Y)∨(b∧ Ψ) -this formula is obtained by unfolding the two fixed point expressions of Ψ and accessing the first subformula under . The threads in this pre-proof are unambiguous, as there is at most one occurrence of a formula in a given sequent. It is easy to see that the pre-proof is valid, and is thus a proof in µLK ω : indeed, it has a single infinite branch, which admits a single thread on the right-hand side of sequents, and that thread unfolds Ψ infinitely often, and is thus valid.

We prove the same sequent in µLK. Instead of cycling in a way that unfolds Ψ infinitely often on the right-hand side, we show that Φ is a coinvariant of Ψ. Specifically, we apply rule νr of Figure 3 with S := Φ. The first premise is an instance of the axiom. The second one is Φ Ψ where Ψ stands for µY. (a ∧ Y) ∨ (b ∧ Φ); its derivation is shown in Figure 5.

Our two derivations are obviously related. The most part of the µLK derivation has the same structure as the µLK ω derivation, with Φ replacing Ψ (and, consequently, Ψ replacing Ψ) so that the cycle can be replaced by an axiom. In fact, the µLK derivation would be obtained (modulo minor adjustments) from the translation result of Section 5. This simple example illustrates the obvious fact that cycles can be translated by means of (co)induction, but not the difficulty of doing so in a way that terminates (in the case of nested cycles, translating one may expand the other, so that a naive translation process would not terminate).

[n0] {q1}