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We present comprehensive design rules to optimize the process of spectral compression arising from nonlinear 
pulse propagation in an optical fiber. Extensive numerical simulations are used to predict the performance 
characteristics of the process as well as to identify the optimal operational conditions within the space of system 
parameters. It is shown that the group-velocity dispersion of the fiber is not detrimental and, in fact, helps achieve 
optimum compression. We also demonstrate that near-transform-limited rectangular and parabolic pulses can be 
generated in the region of optimum compression. 

OCIS codes: (060.4370) Nonlinear optics, fibers; (060.7140) Ultrafast processes in fibers; (060.5530) Pulse propagation and temporal solitons.  

1. INTRODUCTION 
The optical nonlinearity in a fiber is ordinarily associated with spectral 
broadening of an ultrashort optical pulse. In certain regimes, however, 
the fiber nonlinearity can induce the opposite effect, resulting in 
spectral compression of a pulse [1]. For example, a fundamental soliton 
propagating in an anomalous dispersion-increasing fiber can 
experience narrowing of its spectral width as a result of its adiabatic 
adaptation to the slowly varying fiber dispersion [2]. The working 
principle is the reverse operation of the well-known adiabatic soliton 
temporal compression in a dispersion-decreasing fiber [3]. Ultrashort 
laser pulses can be spectrally compressed in the regime of soliton self-
frequency shift induced by the Raman effect in a highly nonlinear fiber 
[4]. Owing to the anomalous dispersion of the highly nonlinear fiber, 
laser pulses evolve toward solitons and experience a continuous 
frequency downshift. A lowering frequency and increasing dispersion 
of a red-shifting soliton dictate spectral narrowing. Another way to 
realize spectral compression relies on the self-phase modulation (SPM) 
of a pulse with an initial negative frequency modulation (chirp) [5-7]. 
Indeed, the intensity-dependent nonlinear phase shift induced by SPM 
results, in silica, in a frequency downshift in the leading edge of the 
pulse and an upshift in the trailing edge. Thus the effect of SPM is 
dependent on the sign of the initial chirp. Negatively chirped pulses, 
where the long and the short wavelengths are in the trailing and the 
leading edges, respectively, are spectrally compressed, since both the 
long and the short wavelengths are shifted toward the center 
wavelength. This method of spectral compression has been 
implemented using standard single-mode fibers [8], optical gain fibers 
[9-12], and photonic crystal fibers [13-15], and is suitable for a very 
large range of wavelengths including Ti:sapphire wavelengths [8, 13], 
the widely used 1-m [9, 11] and 1.55-m [16] windows and the 
emerging 2-m band [12]. However, most of the discussions and 

demonstrations using this approach have been carried out in the 
nonlinearity-dominant regime of propagation in which the dispersion 
of the fiber is of little importance, as the dispersion and its interplay 
with SPM are commonly believed to ultimately limit the spectral 
compression performance [13]. The role of group-velocity dispersion 
(GVD) in the spectral compression process has been discussed in [7, 
13, 17]. 

In this paper, we present an accurate analysis of the impact of 
normal GVD on the spectral compression by SPM of negatively chirped 
pulses in a fiber, which extends and generalizes the prior works of [7, 
13, 17] in several respects. Relevantly, the studies reported in [17, 18] 
showed that the GVD can change substantially the physical pattern of 
the spectral compression process: the combined action of GVD and 
SPM can result in a deformation of the temporal profile of the pulse 
tending to acquire a rectangular shape while complete compensation 
of the pulse chirp occurs. Here, we provide a thorough characterization 
of the process based on extensive numerical simulations. The optimal 
operational conditions are identified in terms of normalized input 
pulse power and fiber length for varying initial stretching ratio, which 
enables us to provide general design rules for spectral-compression 
fiber schemes over the parameter space that is typically accessible 
experimentally. Quite surprisingly, our results show that the fiber 
dispersion rather enhances the quality of the compression compared 
to the purely nonlinear regime. We also show that initially Gaussian 
pulses with a linear negative chirp experiencing spectral narrowing in 
the fiber can result in near-transform-limited rectangular or parabolic 
shaped pulses in the region of optimum compression, in accordance 
with previous results [17, 18]. Firstly, we introduce the situation being 
studied and the metrics used to quantify the performance of the 
compression process. Next we recall the results that can be obtained in 
the purely nonlinear case, and then we describe the effects of normal 
GVD. Finally, we discuss the influence of the initial stretching ratio and 
pulse shape on the performances. 
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2. SITUATION UNDER INVESTIGATION 
For the purpose of illustration, we use both transform-limited pulses 

with a Gaussian intensity profile       √             
 ⁄   and an 

hyperbolic secant profile       √          ⁄   as initial 

conditions for our study. The parameters T0 and P0 are a characteristic 
temporal value and the peak power of the initial pulse, respectively; T0 

can be related to the full-width at half-maximum (FWHM) pulse 
duration as TFWHM = K1T0, where K1=1.665 and K1=1.763 for the 
Gaussian and hyperbolic secant pulses, respectively. The linear 
negative temporal chirp required for spectral compression to take 
place can be imprinted onto the initial pulse by stretching the pulse in 
the temporal domain in an anomalously dispersive medium, such as a 
pair of diffraction gratings [10, 13], a prism pair [6, 8], a fiber Bragg 
grating, or a segment of hollow core [11] or standard [16] fiber with 
anomalous GVD (and very low nonlinearity). As a result of GVD 
(described by Eq. (1) with     , the different spectral components of 
the pulse acquire a frequency dependent delay. Even though such 
phase changes do not affect the pulse spectrum, they lead to temporal 
broadening of the pulse and a time dependence of the pulse phase.  If A 
denotes the temporal broadening factor, the peak power of the pulse 
will drop by the same factor (P1=P0/A) owing to the conservation of 
energy (in the absence of losses). In the far-field regime (i.e., when 
A>>1), the temporal phase becomes parabolic, so that the pulse 
envelope at the exit of the dispersive element takes the form 
                         , where      is the stretched amplitude 
profile and b<0 is the chirp parameter. This negatively linearly chirped 
pulse is then spectrally compressed in a nonlinear fiber with normal 
GVD. Pulse propagation in the fiber can be described by the standard 
nonlinear Schrödinger equation (NLSE) [19] : 
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where z is the propagation distance, t is the reduced time,    is the 
GVD parameter, and    is the coefficient of cubic nonlinearity of the 
fiber. For the sake of simplicity, we do not include the effect of fiber 
loss, or higher-order linear or nonlinear effects in our model. Note that 
neglecting the effect of third-order dispersion is well suited to describe 
the evolution of a pulse undergoing progressive spectral narrowing in 
the fiber.   

The narrowing of the pulse spectrum is quantified with the spectral 
compression factor C defined as the ratio of the spectral FWHM width 
at some distance in the fiber and the entrance of the fiber. In order to 
assess the quality of the spectral compression, we use the Strehl ratio S 
defined as the ratio of the maximum spectral brilliance of the actual 
pulse to the spectral brilliance obtained assuming a flat temporal phase 
of the pulse [16]. Therefore, S is comprised between 0 and 1, with 1 
defining an ideal compression. We also characterize the temporal 
shape of the pulse by means of the excess kurtosis parameter K [20, 
21] and the parameter of misfit M between the pulse intensity profile 
and a parabolic fit     

  of the same energy  [22] : 
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3. PULSE EVOLUTION IN A PURELY NONLINEAR 
MEDIUM 
The effects of SPM on a pulse propagating in a purely nonlinear 
medium are studied by setting      in Eq. (1). In this case, the 
nonlinear term in (1) imposes a time-dependent phase on the pulse so 
that after a propagation length z: 

                                     
                (3) 

In general an input pulse with a negative linear chirp        cannot be 
spectrally compressed to the Fourier transform limit because the 
instantaneous frequency            ⁄          

    ⁄    
    cannot in general be made equal to zero for all times. However, if 

we approximate the initial Gaussian or hyperbolic secant shape     
  

by a parabola in the central region of the pulse, the resulting 
instantaneous frequency near the pulse center can be expressed as: 
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and, thus, yields zero for all t at the propagation distance       ⁄  
       

    where           ⁄  is the nonlinear length associated 
with the pulse at the input to the system. In the far-field conditions 
when A >>1, we can use the following empirical relationship between 
the broadening factor A and the chirp coefficient b: 
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where K2  is the time-bandwidth product (TBP) of the initial transform-
limited pulse      This leads to a simple approximate expression for z1: 

     ⁄     
  

  
  
        (6) 

 

Fig. 1.  Longitudinal evolution of: (a) the spectral intensity profile, (b) 
the spectral compression factor, and (c) the Strehl ratio for an initial 
Gaussian pulse with the stretching factor A=20 propagating in a purely 
nonlinear fiber.  

 
An example of the evolution of an initial Gaussian pulse along the 

nonlinear fiber is presented in Fig. 1 for the initial stretching factor A = 
20. Significant spectral compression occurs in the fiber, followed by 
splitting of the pulse spectrum [panel (a)]. The evolutions of 
parameters C and S in panels (b) and (c), respectively, reveal that the 
propagation distance at which the spectral compression factor reaches 
its maximum value (denoted by z3) differs from the distance of 
optimum compression in terms of Strehl ratio (denoted by z2), as well 
as from the distance z1 of chirp cancellation near the pulse center given 
by Eq. (6). We can also infer from Fig. 1 that the highest brilliance in the 
central region of the pulse spectrum is achieved at the point of 
maximum Strehl ratio. At z2, the spectral brilliance has increased by a 
factor of more than 6 compared to the input spectrum, and the gain in 
spectral brilliance is more than 60% compared with the propagation 
distance predicted by Eq. (6), whereas the FWHM spectral width of the 
pulse is only 12% larger than that at the point of maximal 
compression. After z3, the compression factor C drops abruptly due to 



an increase of the intensity level of spectral satellites above the –3dB 
threshold used for the computation of C. The pulse spectrum splits up 
shortly after z3.  

The characterizations of the pulse at the different operational 
distances in the fiber are given in Fig. 2. From panel (a) we can see that 
at the distance z1 foretold by Eq. (6) the pulse spectrum is effectively 
conveniently compressed, and the spectral profile does not display any 
oscillations, which is in agreement with the monotonic temporal 
variation of the frequency chirp at this distance [panel (b)]: the chirp 
continuously decreases across the pulse, and has a point of inflexion at 
the pulse center. At the other operational distances, the spectrum 
features an oscillating structure, which results from interference 
between different pulse parts having the same instantaneous 
frequency. This is confirmed by the non-monotonic temporal variation 
of the chirp. Such a constructive interaction can have a beneficial 
impact on the spectral compression process as it can increase the peak 
spectral intensity of the pulse, as shown by the pulse spectrum 
obtained at the optimum compression point in terms of Strehl ratio z2. 
But it can also induce strong and detrimental oscillations in the wings 
of the pulse and concomitant strong side lobes in the pulse spectrum, 
as it appears from the spectrum at the point of maximum compression 
factor z3. On the other hand, at z1, while the spectrum narrowing is less 
in terms of FWHM spectral width, the spectrum exhibits significantly 
lower substructures. We note that this scenario is similar to the 
situation when the B-integral accumulation in chirped pulse 
amplification systems is not exactly compensated for: as a result of the 
distortion of the linear chirp by SPM, temporal structure unavoidably 
appears in the recompressed pulse, even for relatively small values of B 
[23]. The presence of residual pedestals in the compressed spectrum 
could be avoided by taking advantage of the strictly linear chirp 
induced by the SPM of a parabolic-shaped input pulse [15, 16]. 

 
 

 

Fig. 2.  (a) Spectral intensity profile, and (b) temporal intensity and 
chirp profiles of an initial Gaussian pulse with the stretching factor A = 
20 at different propagation distances in a purely nonlinear fiber: the 
point z1 predicted by Eq. 6 (blue), the point z2 of maximum Strehl ratio 
(red), and the point z3 of maximum spectral compression factor 
(green).  Also shown are the initial pulse profiles (black).  

 
 

In the light of these considerations, we can conclude that the Strehl 
ratio plays a major role in determining the optimum working 
parameters for the spectral compression process. Indeed, the point of 
maximum C brings about relatively strong spectral side lobes and low 
peak spectral intensity, and the simple guidelines provided by Eq. (4) 
(or Eq. (6)) are not accurate enough except for the case of a parabolic 
input pulse.  It is also worth noting that the TBP, which is commonly 
used for indicating how close a pulse is to the transform limit, may be a 
misleading metric: for example, at the propagation distance z2 the TBP 
is 0.20, which is well below the well-known value of a bandwidth-
limited Gaussian-shaped pulse. 

We also studied the effect of the initial stretching factor A on the 
pulse evolution. In Fig. 3, we summarize the results obtained for 
Gaussian and hyperbolic secant initial conditions and using stretching 
values that are typical of experimental realizations [16]. It is seen that a 
larger A results in a larger maximum compression factor. However, 
due to imperfect spectral compression, the maximum compression 
factor reaches only approximately half of the value (C=A) that it would 
attain in the case of a Fourier transform-limited process. Furthermore, 
the overall quality of the process deteriorates with increasing A, as 
indicated by the decrease of the Strehl ratio. These results suggest a 
tradeoff between the degree of spectral narrowing and the growth of 
spectral satellites. A larger A also leads to a longer optimum 
propagation distance in terms of Strehl ratio z2, with the variation of z2 
with A exhibiting the parabolic growth suggested by Eq. (6). The 
guidelines that can be drawn from these numerical results are found in 
qualitative agreement with the experiments on the spectral 
compression of picosecond pulses in a highly nonlinear fiber at 
telecommunication wavelengths reported in[16]. We can also see from 
Fig. 3 that the initial Gaussian pulse overall outperforms the hyperbolic 
secant pulse.  
 

 

Fig. 3.  Dependencies of: (a) the maximum spectral compression factor, 
(b) the maximum Strehl ratio, and (c) the optimum propagation 
distance in terms of Strehl ratio on the stretching factor A for initial 
Gaussian (black) and hyperbolic secant (grey) pulses propagating in a 
purely nonlinear fiber. The predictions from Eq. (6) for the distance of 
approximate chirp cancellation are also shown for comparison 
(dashed lines). The grey circles represent the experimental results of 
[16] for an initial hyperbolic secant pulse.  



4. PULSE EVOLUTION IN A NONLINEAR DISPERSIVE 
FIBER 
In this section, we perform a detailed analysis of the spectral 
compression process taking into account the influence of GVD.  

A. Normalization of the problem 

To simplify the analysis, we normalize the NLSE (1) by introducing the 
normalized distance variable      ⁄  and the parameter N defined 
as         ⁄ , where      

   ⁄  is the dispersion length 
associated with the pulse at the input to the system. This way, for a 
given value of the initial stretching factor A, finding the best system 
parameters results in a two-dimensional optimization problem in the 
plane        It is worth noting here that a change of T0 implies a 
change of the dispersion length of the linear pre-chirping element, 
thereby of the stretching factor A. Therefore, in such case parameter A 
should be correspondingly adjusted in order to interpret the 
predictions based on the scaling laws from the NLSE correctly. In this 
paper, we limit the discussion to normally dispersive fibers as we 
found that in the anomalous dispersion regime of a fiber the trends and 
performances are similar to those of the pure SPM configuration.  
Indeed, in the anomalous GVD region the optimal operational 
conditions are obtained for the highest input peak power, leading to 
the shortest propagation length and a nonlinearity-dominant regime of 
propagation.  

B. Evolution of the spectral characteristics 

The maps presented in Fig. 4 summarize the evolution of the spectral 
compression factor and the Strehl ratio versus   and N for an initial 
Gaussian pulse with the stretching factor A=20. Note that the 
computation of the Strehl ratio takes into account the actual pulse 
temporal profile and, thus, the evolution of S carries information on the 
corresponding variation of the temporal profile. We can see from Fig. 4 
that similarly to the purely nonlinear case, the combination of system 
parameters leading to maximal compression differs from the point of 
maximum Strehl ratio (indicated by a plus sign marker).  It is also seen 
that there are two areas of operational conditions bearing high S 
values. However, only area (1) corresponds to an effective significant 
spectral compression and, thus, we will focus our attention on this 
area. By contrast, area (2), obtained for longer propagation distances 
and lower input peak powers, supports a poor compression. This area 
can be partly understood in the framework of the weak-nonlinearity 
scenario analyzed in [7]. 

The pulse spectra obtained for different sets of system parameters 
are plotted in Fig. 5. We can see that at the point of optimum 
compression in terms of Strehl ratio, opt=13.6, Nopt=4.4), the central 
lobe of the spectrum is only slightly wider than that obtained at the 
point of maximal compression, ( =6.8, N=7.1), while the intensity level 
of spectral satellites  is reduced by more than twice. Notwithstanding, 
the quality of the compression is still degraded compared to the ideal 
compression of the initial pulse (i.e., before the actual propagation in 
the fiber causes deformations of the temporal waveform). 
Furthermore, Fig. 6 highlights that the GVD significantly change the 
evolution of the pulse spectrum in the fiber: contrary to the pure SPM 
case (Fig. 1(a)), the spectrum does not split into multiple sidebands 
after the stage of optimum compression. 

 

 

Fig. 4.  Evolution of: (a) the spectral compression factor and (b) the 
Strehl ratio versus   and N in a nonlinear dispersive fiber for an initial 
Gaussian pulse with the stretching factor A=20. The sign plus denotes 
the point of maximum Strehl ratio.  

 

 

Fig. 5. Spectral intensity profiles of an initial Gaussian pulse with the 
stretching factor A=20 at different points in the plane ( ,N), plotted on 
(a) linear and (b) logarithmic scales. The spectrum of a pulse with the 
optimum power parameter Nopt at the entrance of the fiber (solid 
black) is compared with the spectrum at the optimum compression 
point ( opt, Nopt) (solid red) and at the point of maximal compression 
(solid green). Also shown are the spectra that would result from the 
spectral compression of the initial pulse with Nopt before actual 
propagation in the fiber (dashed black) and of the pulse at ( opt,Nopt) 
after perfect propagation (dashed red), and the spectrum of the initial 
pulse with Nopt at the stage where the temporal profile is close to a 
parabola (solid blue).   



 

 

Fig. 6.  Longitudinal evolution of the spectral intensity profile of an 
initial Gaussian pulse with the stretching factor A=20 and the optimum 
power parameter Nopt. 

C. Evolution of the temporal characteristics 

Unlike the purely nonlinear regime where the temporal profile of the 
pulse remains unchanged upon propagation, the combined action of 
GVD and SPM results in significant modifications of the pulse temporal 
characteristics. The evolution of the excess kurtosis parameter and the 
misfit parameter to a parabolic temporal shape versus   and N are 
summarized in the maps of Fig. 7. We can see that the excess kurtosis 
strongly evolves upon propagation: for the range of initial powers of 
interest (N boundary of region 1), it progressively decreases and 
reaches negative values. This indicates a flattening of the central part of 
the pulse [20], consistently with the usual trends observed in the 
regime of normal dispersion in the presence of strong nonlinearity [24, 
25]. Note that for the powers within the characteristic range of region 
2, the kurtosis evolution is rather different in that it bears an increase 
of the peakedness of the pulse, suggesting that this region is better 
suited for the observation of triangular waveforms [26-28]. Figure 8 
confirms that the initial Gaussian pulse reshapes into an almost 
rectangular pulse form at the point of optimum spectral compression, 
in agreement with the results presented in [17, 18]. Compared to the 
input temporal waveform, the pulse is slightly shorter and has an 
approximately 20% higher peak power (in the lossless scenario being 
considered). As changes in the pulse shape bring about corresponding 
changes in the temporal gradient of the pulse profile, the SPM-induced 
frequency chirp tends to become linear and flat over most of the pulse. 
This contrasts with the purely nonlinear regime (Fig. 2(b)) in which the 
chirp is not compensated at the point of optimum compression. The 
TBP of the pulse is 0.86, which is comparable to the transform limit for 
a rectangular pulse (0.88).  This expounds why the observed spectral 
profile (Fig. 5) is very close to the spectrum that would be obtained in 
the case of a perfect spectral compression (i.e., assuming a perfectly flat 
chirp profile). The nearly rectangular pulse shape also explains the 
train of oscillations that is observed in the compressed spectrum, 
which is typical of the cardinal sine shape of the Fourier transform of a 
rectangular waveform. Therefore, the spectral compression process in 
the presence of GVD provides a passive method for generating near-
transform-limited pulses with a rectangular time envelope [17, 18]. 
Note that the formed pulses differentiate from the rectangular 
temporal waveforms with a linear chirp variation over most of the 
pulse that correspond to the nonlinear evolution regime in a normally 
dispersive fiber immediately preceding wave breaking [24-26].  
 

 

Fig. 7. Evolution of: (a) the excess kurtosis parameter and (b) the misfit 
parameter to a parabolic temporal shape versus   and N in a nonlinear 
dispersive fiber for an initial Gaussian pulse with the stretching factor 
A=20. The sign plus denotes the point of maximum Strehl ratio. 

 

The evolution of the misfit parameter (Fig. 7(b)) reveals that the 
pulse acquires an almost parabolic intensity profile before the point of 
optimum spectral compression. As it can be seen from Fig. 8, the 
formed pulse features a very low chirp value over its central part. This 
is in strong contrast with the linearly chirped parabolic pulses that can 
be generated through progressive pulse reshaping upon nonlinear 
propagation in a normally dispersive fiber, which are accompanied by 
a significantly wider spectrum than that of the input pulse [22, 26, 29, 
30]. Note also that the monotonic variation of the chirp across the 
pulse prevents oscillations from arising in the spectrum (Fig. 5). 
 
 

 

Fig. 8.  Temporal intensity and chirp profiles of an initial Gaussian pulse 
with the stretching factor A=20 and the optimum power parameter 
Nopt at: the entrance of the fiber (black), the propagation distance of 
optimum spectral compression (red), and the distance of reshaping 
into an almost parabolic pulse form (blue).   

 



 

5. IMPACT OF INITIAL PULSE PROPERTIES 
We also studied the effect of the initial temporal broadening factor A 
and pulse shape on the spectral compression that takes place at the 
optimum operational conditions defined by ( opt, Nopt). In Fig. 9 we 
summarize results for the evolution of   opt and Nopt with A for initial 
Gaussian and hyperbolic-secant pulses. It is seen that for both initial 
conditions the larger the initial stretching ratio, the higher the value of 
the optimum power parameter and the longer the optimum 
normalized propagation distance. Furthermore, optimum 
compression of the hyperbolic secant pulse requires smaller power 
parameter and longer normalized distance than that of the Gaussian 
pulse. 
 

 

Fig. 9.  Evolution of:  (a) the optimum power parameter and (b) the 
optimum normalized propagation distance versus stretching factor A 
for initial Gaussian (black) and hyperbolic-secant (grey) pulses.  

 

The influence of the initial stretching factor on the performance 
characteristics of the optimum compression process is illustrated on 
Fig. 10. We can see from panel (a) that for all A values, the spectral 
compression factor at the point of optimum compression is smaller 
than that obtained in the purely nonlinear regime. The Strehl ratio 
calculated using the actual temporal profile of the pulse at the optimum 
compression point (panel (b)) takes values above 0.9, thus proving the 
nearly bandwidth-limited nature of the optimally compressed pulse. 
The GVD remarkably enhances the quality of the compression 
compared with the purely nonlinear regime. Moreover, contrarily to 
the pure nonlinear case, the degradation of the compression quality 
with increasing A values is negligible. By contrast, if one is interested in 
the Strehl ratio defined in terms of the initial pulse profile, then the 
pinpointed compression quality is close to that of the pure SPM-driven 
case. The excess kurtosis plotted in panel (c) indicates that the 
flattening of the temporal profile of the pulse at the point of optimum 
compression is significant and almost independent of the stretching of 
the initial pulse. Figure 10 also shows overall outperformance of the 
initial Gaussian pulse over the hyperbolic-secant one. 
 

 

Fig. 10. Evolution of: (a) the spectral compression factor C, (b) the 
Strehl ratio S, and (c) the excess kurtosis parameter K at ( opt, Nopt) 
versus initial stretching ratio A for initial Gaussian (solid) and 
hyperbolic-secant (dashed) pulses. Results are shown for the 
dispersive nonlinear  (black) and the purely nonlinear (blue) regimes. 
Also shown is the Strehl ratio defined in terms of the initial pulse shape 
(red).  

6. CONCLUSION 
We have presented an in-depth characterization of the spectral 
compression of negatively chirped pulses that occurs upon 
propagation in a normally dispersive fiber. The study enables general 
rules for the design of spectral-compression fiber schemes over the 
experimentally accessible parameter space. We have shown that the 
GVD of the fiber plays a considerable role in the compression process 
and can enhance the quality of the compressed spectrum of the pulse. 
Indeed, the progressive reshaping of the pulse temporal profile upon 
dispersive nonlinear propagation helps increase the spectral Strehl 
ratio so as to achieve a near-bandwidth-limited spectrally compressed 
pulse. We have also shown that nearly parabolic and rectangular 
pulses with low levels of chirp are generated in the parameter region of 
optimum spectral compression.  

A natural extension of this work would include the impact of optical 
gain on the spectral compression process [10] or the analysis of a 
multistage fiber amplifier comprising a spectral compression stage 
[31]. An accurate description of the resulting pulse dynamics could 
indeed provide a deeper insight into the rich dynamics occurring in 
fiber cavities [32, 33] or help a better understanding of the pulse 
spectrum narrowing induced by external phase modulators [34].   
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