
HAL Id: hal-01275265
https://hal.science/hal-01275265v1

Preprint submitted on 17 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fault and Byzantine Tolerant Self-stabilizing Mobile
Robots Gathering - Feasibility Study -

Xavier Défago, Maria Gradinariu Potop-Butucaru, Julien Clément, Stéphane
Messika, Philippe Raipin-Parvédy

To cite this version:
Xavier Défago, Maria Gradinariu Potop-Butucaru, Julien Clément, Stéphane Messika, Philippe
Raipin-Parvédy. Fault and Byzantine Tolerant Self-stabilizing Mobile Robots Gathering - Feasibility
Study -. 2014. �hal-01275265�

https://hal.science/hal-01275265v1
https://hal.archives-ouvertes.fr

manuscript No.
(will be inserted by the editor)

Fault and Byzantine Tolerant
Self-stabilizing Mobile Robots
Gathering

— Feasibility Study —

Xavier Défago ·
Maria Gradinariu

Potop-Butucaru · Julien

Clément · Stéphane

Messika · Philippe

Raipin-Parvédy

the date of receipt and acceptance should be inserted later

Abstract Gathering is a fundamental coordination problem

in cooperative mobile robotics. In short, given a set of robots

with arbitrary initial locations and no initial agreement on a

global coordinate system, gathering requires that all robots,

following their algorithm, reach the exact same but not pre-

determined location. Gathering is particularly challenging

in networks where robots are oblivious (i.e., stateless) and

direct communication is replaced by observations on their

respective locations. Interestingly any algorithm that solves

gathering with oblivious robots is inherently self-stabilizing

if no specific assumption is made on the initial distribution

of the robots.

In this paper, we significantly extend the studies of de-

terministic gathering feasibility under different assumptions

This manuscript considerably extends preliminary results presented

as an extended abstract at the DISC 2006 conference [7]. The cur-

rent version is under review at Distributed Computing Journal since

February 2012 (in a previous form) and since 2014 in the cur-

rent form. The most important results have been also presented in

MAC 2010 organized in Ottawa from August 15th to 17th 2010

http://people.scs.carleton.ca/ santoro/MAC/MAC-2010.html

X. Défago

School of Information Science, JAIST, Ishikawa, Japan

E-mail: defago@jaist.ac.jp

M. Potop-Butucaru

LIP6, Université Pierre et Marie Curie, Paris 6, France

E-mail: maria.potop-butucaru@lip6.fr

J. Clement, S. Messika

LRI/Université Paris Sud, France

E-mail: jclement, messika@lri.fr

P. Raipin-Parvédy

France Telecom R&D, France

E-mail: philippe.raipin@orange-ft.com

related to synchrony and faults (crash and Byzantine). Un-

like prior work, we consider a larger set of scheduling strate-

gies, such as bounded schedulers. In addition, we extend our

study to the feasibility of probabilistic self-stabilizing gath-

ering in both fault-free and fault-prone environments.

1 Introduction

Many applications of mobile robotics envision groups of

mobile robots self-organizing and cooperating toward the

resolution of common objectives. In many cases, the group

of robots is aimed at being deployed in adverse environ-

ments, such as space, deep sea, or after some natural (or un-

natural) disaster. It results that the group must self-organize

in the absence of any prior infrastructure (e.g., no global po-

sitioning), and ensure coordination in spite of the presence

of faulty robots and unanticipated changes in the environ-

ment.

The gathering problem, also known as the Rendez-Vous

problem, is a fundamental coordination problem in cooper-

ative mobile robotics. In short, given a set of robots with

arbitrary initial location and no initial agreement on a global

coordinate system, gathering requires that all robots, follow-

ing their algorithm, reach the exact same location—one not

agreed upon initially—within a finite number of steps, and

remain there.

Similar to the Consensus problem in conventional dis-

tributed systems, gathering has a simple definition but the

existence of a solution greatly depends on the synchrony of

the systems as well as the nature of the faults that may pos-

sibly occur. In this paper, we investigate some of the funda-

mental limits of deterministic and probabilistic gathering in

the face of various synchrony and fault assumptions.

To study the gathering problem, we consider a system

model first defined by Suzuki and Yamashita [19], and some

variants with various degrees of synchrony. The model rep-

resents robots as points that evolve on a plane. At any given

time, a robot can be either idle or active. In the latter case,

the robot observes the locations of the other robots, com-

putes a target position, and moves toward it. The time when

a robot becomes active is governed by an activation dae-

mon (scheduler). In the original definition of Suzuki and

Yamashita, called the SYm model, activations (i.e., look–

compute–move) are atomic, and the scheduler is assumed

to be fair and distributed, meaning that each robot is acti-

vated infinitely often and that any subset of the robots can

be active simultaneously. In the CORDA model of Prencipe

[16], activations are completely asynchronous, for instance

allowing robots to be seen while moving. Flocchini et al.

[10] provide an excellent overview on the subject.

Suzuki and Yamashita [19] proposed a gathering algo-

rithm for non-oblivious robots in the SYm model. They also

2

proved that gathering can be solved in systems with three or

more oblivious robots, but not in systems with only two.1

Prencipe [17] studied the problem of gathering in both SYm

and CORDA models. He showed that the problem is im-

possible without additional assumptions such as being able

to detect the multiplicity of a location (i.e., knowing the

number of robots that may simultaneously occupy that loca-

tion). Flocchini et al. [11] proposed a solution to gathering,

for oblivious robots with limited visibility in the CORDA

model, where robots share the knowledge of a common di-

rection (e.g., as given by a compass). Based on that work,

Souissi et al. [18] considered a system in which compasses

are not necessarily consistent initially. Ando et al. [2] pro-

posed a gathering algorithm for the SYm model with limited

visibility. Cohen and Peleg [6] studied the problem when

robots’ observations and movements are subject to errors.

None of the studies mentioned above address the feasi-

bility of gathering in fault-prone environments. One of the

first steps in this direction was done by Agmon and Pe-

leg [1]. They proved that gathering of correct robots (called

weak gathering in this paper) can be achieved in the SYm

model even in the face of the crash of a single robot. Fur-

thermore, they proved that no deterministic gathering algo-

rithm exists in the SYm model that can tolerate a Byzantine2

robot. Finally, they considered a stronger model, called fully

synchronous, in which all robots are always activated simul-

taneously, and showed that weak gathering can be solved in

that model provided that less than one third of the robots are

Byzantine.

Contribution. In this paper, we study further the feasibility

of gathering in the SYm model in both fault-free and fault-

prone (crash and, to some extent, Byzantine) environments.

In particular, we consider centralized schedulers3 (i.e., acti-

vations occur in mutual exclusion) and bounded schedulers

(i.e., between any two consecutive activations of a robot, no

other robot is activated more than k-times for some finite k).

More specifically, we obtain the following important re-

sults.

Firstly, we strengthen an important impossibility result

of Prencipe [17] by showing that it also holds in strictly

stronger models. In particular, in oblivious fault-free envi-

ronments without multiplicity, Prencipe [17] proved the im-

1 With two robots, all configurations are symmetrical and may lead

to robots endlessly swapping their positions. In contrast, with three or

more robots, an algorithm can be made such that, at each step, either

the robots remain symmetrical and they eventually reach the same lo-

cation, or symmetry is broken and this is used to move one robot at a

time into the same location.
2 A Byzantine robot is a faulty robot that behaves arbitrarily, possi-

bly in a way to deliberately prevent the other robots from gathering in

a stable way.
3 The rationale for considering a centralized scheduler is that, with

communication facilities, the robots can synchronize by running a mu-

tual exclusion algorithm, such as token passing.

possibility of distinct4 gathering under a fair scheduler. We

considerably strengthen this result by proving that the same

problem remains impossible under more restrictive sched-

ulers, even under a 2-bounded centralized scheduler. We

further prove that the problem of self-stabilizing gathering

is impossible even under a round-robin scheduler, and this

is also conjectured for distinct gathering.

Secondly, still without multiplicity, we prove that self-

stabilizing gathering can be solved probabilistically under a

fair bounded scheduler (with arbitrary by finite bound) when

n ≥ 3 and under an unfair scheduler when n = 2, by exhibit-

ing a simple algorithm that solves the problem.

Thirdly, given multiplicity, we prove that gathering can

be solved deterministically under a fair centralized sched-

uler even if up to n−1 robots can crash. We then extend the

algorithm to prove that gathering can also be solved proba-

bilistically even if the scheduler is not centralized.

Fourthly, we study the case of Byzantine-tolerance by

extending the range of impossibility results. Most notably,

Agmon and Peleg [1] proved that (3,1)-Byzantine gathering

is impossible deterministically under a fair scheduler. We

extend the result by showing that even probabilistic gath-

ering is impossible under a round-robin scheduler. We also

prove other impossibility results.

More generally, we show in what situations randomized

algorithms can help solve the problem, and when they can-

not. To the best of our knowledge our work5 was the first to

investigate the feasibility of probabilistic gathering in both

fault-free and fault-prone systems.

Structure of the paper. The rest of the paper is structured as

follows. Section 2 describes the system model and basic ter-

minology. Section 3 formally defines the gathering problem

and recalls important lemmas found in the literature. Sec-

tion 4 proposes possibility and impossibility results for de-

terministic and probabilistic gathering in fault-free environ-

ments. Section 5 and 6 extend the study to crash and Byzan-

tine prone environments. Section 7 summarizes the results,

and Section 8 concludes the paper.

2 Model

We define the system model used in the paper, as well as de-

fine important terminology. The model we consider is based

on the SYm model [19], and most definitions are due to var-

ious authors [19,16,1].

4 Distinct gathering is a tighter definition of the gathering problem,

in which robots are required to have distinct positions initially. In con-

trast, self-stabilizing gathering puts no such requirements on initial

configurations.
5 An extended abstract of this work was presented at DISC [7] in

2006, although it has been considerably extended since. Meanwhile,

some authors have published very insightful results on the problem

[12].

3

2.1 Robot network

A robot network consists of a finite set R = {r1, · · · ,rn}

of n dimensionless robots evolving in a boundless 2D Eu-

clidean space, devoid of any landmarks or obstacles.

Robots cannot communicate with each other and do not

share any notion of a global coordinate system. In particular,

they have no agreement on a common origin, unit distance,

or directions and orientations of the axis.

2.2 Robot

A robot is modeled as an I/O automaton6 ([13]).

Robots are oblivious which means that they do not re-

tain any information on past actions and observations. The

state of a robot consists only of its current position in the

environment, which is neither directly readable7 nor directly

writable8 by the robot’s algorithm.

Robots are anonymous in that they are not aware of any

distinctive identity and all of them execute the same algo-

rithm consisting of cycles of the operations: Observe, Com-

pute, Move. In the SYm model, the three operations are ex-

ecuted atomically. Thus, for simplicity, an algorithm is ex-

pressed as one or more Observe input actions with effects

Compute and Move, and guarded by a possible precondi-

tion.

Observe(Π)
︸ ︷︷ ︸

input

:: 〈precondition〉 −→ 〈compute〉 ; 〈move〉
︸ ︷︷ ︸

effect

In this paper, actions being always enabled, the precondition

is always set to true.

– Observe (input action).

The parameter to the action is a set P or multiset Π of

points representing the positions occupied by all robots,

as expressed in the private coordinate system of the robot

making the observation. The origin of the private coor-

dinate system corresponds to the current position of the

robot with arbitrary unit distance and orientation.

When the system is said to be with multiplicity,9 The ob-

servation is a multiset Π of points and the multiplicity of

an element in Π corresponds to the number of robots

sharing that location. Conversely, when the system is

said to be without multiplicity, then the observation is

a set P.

6 In the CORDA model [16], a robot exhibits a continuous behavior

that can be modeled by an hybrid I/O automaton ([14]).
7 The current position is exclusively available in local coordinates.
8 A robot can change its position only through move operations.
9 Our definition of multiplicity is sometimes called “strong multi-

plicity”, in contrast to a weaker definition where robots are only able

to distinguish whether a given location is occupied by one or by several

robots [12].

In this paper, robots are assumed to have unlimited visi-

bility, in that all robots are part of each other’s observa-

tion regardless of their respective distance.

– Compute.

A stateless computation returning a target destination in

the private coordinate system.

If the algorithm is deterministic, the computation is de-

terministic and depends only on the observation P (or

Π). In contrast, if the algorithm is probabilistic, the out-

put may additionally depend on random choices.

– Move (effect).

Directs the actual motion of the robot toward a desig-

nated target destination.

The robot may or may not reach this destination. For ev-

ery robot r, there exists a reachable distance δr > 0 un-

known to r, such that, any target destination computed

within a distance δr from the current position is reached

in that step. Conversely, if the target is not reachable,

then r travels at least a distance δr. This condition is nec-

essary to ensure progress.

We denote by δ = min
r

δr the minimal reachable dis-

tance. We often use δ in place of each individual δr for

simplicity, but only as a worst case choice.

When not explicitly specified, the trajectory of the robot

is assumed to be a straight line to the destination.

2.3 Activations and schedulers

A scheduler decides, for every configuration, which subset

of the robots is active (i.e., allowed to perform their actions).

In this paper we consider the following schedulers:

– unfair arbitrary: At each activation, a non-empty subset

of robots is activated. A non-triviality condition ensures

that, infinitely often, a non-faulty robot becomes active.

– unfair centralized: The scheduler is unfair (as described

above) with the additional restriction that at most one

(i.e., exactly one) robot is activated at each activation.

– fair arbitrary: At each activation, any non-empty subset

of the robots is activated, with the guarantee that every

robot becomes active infinitely often in an infinite exe-

cution.

– fair centralized: The scheduler is fair (see above) with

the additional guarantee that no more than one (i.e., ex-

actly one) robot is activated at each activation.

– fair k-bounded: The scheduler is fair with the additional

guarantee that there exists some bound k such that be-

tween any two consecutive activations of some robot, no

other robot is activated more than k times. The bound

may be known or unknown to the robots. In the sequel

we assume that robots do not know the scheduler bound.

4

Unfair

Fair

Fair k-bounded

Fair 2-bounded

Fair 1-bounded

Fully synchronous

Unfair centralized

Fair centralized

k-bounded centralized

2-bounded centralized

Round-robin

Fig. 1: Relationships between scheduler classes. Conven-

tional models are highlighted: SYm [19] and CORDA [16]

are fair, and the fully synchronous model [1] is its namesake.

– round-robin: The scheduler is fair 1-bounded and cen-

tralized. This implies that the robots are activated always

in the same sequence.

– fully synchronized: Every robot is active at every activa-

tion.

Figure 1 summarizes the relationships between the sched-

ulers presented above. Given two schedulers A and B, A ⊃

B means that the set of all possible executions allowed by

scheduler A strictly contains the set of all executions allowed

by scheduler B. As a result, any algorithm that is correct un-

der scheduler A is also correct under scheduler B. Likewise,

any impossibility proven under scheduler B also holds under

scheduler A.

2.4 Executions and configurations

A configuration is the union of the local states of the robots

in the system at some discrete time t. An execution e =

(γ0, . . . ,γt , . . .) of the system is a sequence (finite or infinite)

of configurations, where γ0 is an initial configuration of the

system, and every transition γt → γt+1 corresponds to the ac-

tivation of a subset of the robots, according to the scheduler.

An execution fragment is any non-empty subsequence of an

execution.

The valence of a configuration γ denotes the number of

distinct locations occupied by some robot in γ . Thus, a q-

valent configuration has q distinct locations (where 1 ≤ q ≤

n is the valence and n the number of robots in the system).

A univalent configuration is a configuration in which all

robots share the same location (valence 1). A univalent con-

figuration γ is said to be centered at p if p is the location

occupied by the robots in γ .

A multivalent configuration is a configuration that is not

univalent (q > 1).

A bivalent configuration is a multivalent configuration

with valence 2.

A 1-bivalent configuration is a bivalent configuration in

which one of the two locations is occupied by a single robot.

A distinct configuration is a configuration in which all

robots have distinct positions (valence n).

2.5 Fault models

The behavior of a correct robot never deviates from its spec-

ification. In contrast, a robot is considered faulty if its behav-

ior deviates from its specification in some executions. In this

paper, we consider two classes of faults: crash and Byzan-

tine.

(n, f)-crash model: The system consists of n robots, among

which up to f faulty robots may fail by crashing. To rule out

the trivial case, f < n, so there is at least one correct robot.

A crash may occur at any time. A robot that crashes per-

manently stops performing any action. In particular, it no

longer moves from the position it crashed. A crash cannot

be detected by other robots.

(n, f)-Byzantine model: The system consists of n robots,

among which up to f < n faulty robots may exhibit an arbi-

trary behavior.

Byzantine robots are controlled by an adversary. The ac-

tivations of Byzantine robots are subject to the restrictions

imposed by the scheduler. The behavior of the Byzantine

robots can however be based on a global awareness of the

environment, including all past actions and the current state

of all robots.

Since a Byzantine robot may elect to stop performing

actions, the Byzantine model is a strict generalization of the

crash model.

2.6 Computational Models

The literature proposes mainly two computational models,

namely, SYm and CORDA. The SYm model was introduced

by Suzuki and Yamashita [19]. In this model each robot per-

forms, once activated by the scheduler, a computation cy-

cle consisting of the following three actions: observation,

computation and motion. The atomic action performed by a

robot in this model is a computation cycle. The execution of

the system can be modeled as an infinite sequence of rounds.

In a round one or more robots are activated and perform a

computation cycle.

5

The CORDA model, introduced by Prencipe [16], re-

fines the atomicity of actions, by decoupling observe and

move actions, as well as separate the beginning and the end

of a move as distinct events. Robots may be interrupted by

the scheduler halfway through a computation cycle. More-

over, while a robot performs an observation, another robot

may be partway through a movement.

As stated before, in this paper we consider the SYm

model,10 refined with the above scheduling strategies. We

focus our study on the case of oblivious robots, i.e., robots

do not conserve any information between two computational

cycles. A major motivation for considering oblivious robots

is that, as observed by Suzuki and Yamashita [19], algo-

rithms designed for that model are inherently self-stabilizing

[9].

2.7 Notation

Let γ be a configuration, then val(γ) denotes the valence of

configuration γ .

Let Π be a multiset of points representing the locations

of robots in configuration γ , and let p be a location in Π .

Then, mul(p) is the multiplicity of point p and corresponds

to the number of robots located at p in configuration γ .

The maximal multiplicity µ(Π) (resp. µ(γ)) of a multi-

set (resp. configuration) is µ(Π) = max
p∈Π

(mul(p)).

We now define the set of points with maximal multiplic-

ity as MaxMult(Π) = {p ∈ Π | mul(p) = µ(Π)}. A point in

MaxMult(γ) is called a point of maximal multiplicity.

For convenience, we introduce the following additional

terminology. A tower is a location occupied by at least two

robots. A castle is a tower with maximal multiplicity.

2.8 Geometry Definitions

Given a set of points P, we have the following definitions.

Convex Hull: The convex hull, denoted Conv(P), is defined

as the smallest convex set that contains P. The convex hull

is unique. A point p in P is a vertex of the convex hull if and

only if p is outside of Conv(P\ {p}).

Smallest Enclosing Circle: The smallest enclosing circle,

denoted SEC(P), is defined as the smallest circle that con-

tains all point in P. It is unique and can be computed in lin-

ear time [15]. It is defined either by two points which form

a diameter, or by three or more points located on its circum-

ference and forming no angle greater than π . Any point in P

10 Note that all impossibility results proven in the SYm model nec-

essarily hold in the CORDA model.

on the circumference of SEC(P) is also a vertex of the con-

vex hull. The diameter of SEC(P) provides an upper bound

on the distance between any pair of points in P.

Voronoi Diagram: The Voronoi diagram Voronoi(P) is a di-

vision of the space into cells, one for each point in P, such

that the Voronoi cell Vcell(p) of point p contains all points

whose distance to p is smaller or equal to its distance to

any other points in P. The Voronoi diagram is unique and

maps the entire space. All Voronoi cells are convex poly-

gons. Given a point p in P, Vcell(p) has vertex at infinity if

and only if p is a vertex of the convex hull Conv(P).

3 The Self-Stabilizing Gathering Problem

In the gathering problem, robots are required to eventually

reach a configuration in which they all share the same loca-

tion. There are several variants to the problem.

3.1 Strong gathering

We define the self-stabilizing strong gathering problem as

follows.

Convergence: Any execution starting in an arbitrary con-

figuration reaches a univalent configuration after a finite

number of steps.

Closure: Any execution suffix that starts in a univalent con-

figuration contains only univalent configurations.

The problem is called point formation with an equivalent

definition by Suzuki and Yamashita [19].

Note 1 Other authors, such as Prencipe [17], define gath-

ering as the problem of reaching a univalent configuration

when starting from any distinct configuration rather than ar-

bitrary ones. Let us call that definition “distinct gathering.”

Distinct gathering is however not self-stabilizing because,

solving the problem with oblivious robots does not readily

make the algorithm self-stabilizing.

Distinct gathering is covered by self-stabilizing gather-

ing. In other words, an algorithm that solves self-stabilizing

gathering also solves distinct gathering. Conversely, if dis-

tinct gathering is impossible in a given system, then self-

stabilizing is also impossible in that system.

In the paper, we consider the self-stabilizing definition,

except in Section 4 when we extend impossibility results

that were originally proved for distinct gathering.

3.2 Weak gathering

The definition of strong gathering and univalent does not

distinguish between correct robots and faulty ones. In fault-

6

tolerant contexts, a weaker definition of the problem is often

desirable.

Let us define a gathered configuration as a configuration

in which all correct robots are located at a unique point of

maximal multiplicity.

Convergence: Any execution starting in an arbitrary con-

figuration reaches a gathered configuration after a finite

number of steps.

Closure: Any execution suffix that starts in a gathered con-

figuration contains only gathered configurations.

In a fault-free system, univalent and gathered configu-

rations are identical. Consequently, the distinction between

strong and weak gathering is irrelevant in that context.

3.3 Convergence

Gathering is difficult to achieve in most environments. And

thus, weaker forms of gathering were studied so far. An in-

teresting version of this problem requires robots to converge

toward a single location rather than reach that location in

a finite time. Convergence is however considerably easier

to deal with. For instance, with unlimited visibility, it can

be achieved trivially by having robots moving toward the

barycenter of the network [19].

3.4 Existing Results

We now present a few lemmas proved previously by others,

that are related to our study. When appropriate, the lemmas

have been rephrased in order to keep the terminology con-

sistent. First, the following two lemmas have been proved

by Suzuki and Yamashita [19] and refer to oblivious robots

under a fair scheduler.

Theorem 1 ([19]; Th. 3.1) There is no deterministic algo-

rithm that solves gathering for n = 2 robots under a fair

scheduler.

Notice that, although the above theorem is expressed ac-

cording to a fair scheduler (SYm model), the execution used

in the proof to show the impossibility is compatible with a

fair bounded scheduler with the bound k = 1. It follows that

the result also applies to a system based on that scheduler.

Theorem 2 ([19]; Th. 3.4) Gathering of n ≥ 3 robots can

be solved deterministically under a fair scheduler with mul-

tiplicity detection.

The next theorem, proved by Prencipe [17], considers

distinct gathering (i.e., gathering starting from any distinct

configuration) and also applies to oblivious robots under a

fair scheduler.

Theorem 3 ([17]; Th. 2) Under a fair scheduler, There is

no deterministic algorithm that solves distinct gathering for

n≥ 2 robots without additional assumptions (e.g., multiplic-

ity detection).

Finally, the following two theorems, proved by Agmon

and Peleg [1], refer to models with the presence of faulty

robots. These theorems state positive results.

Theorem 4 ([1]; Th. 3.5) Weak gathering can be solved de-

terministically in a (3,1)-crash model under a fair scheduler

with multiplicity detection.

Note 2 Agmon and Peleg [1] also show (Th. 3.8) that weak

gathering can be solved by a deterministic algorithm in an

(n,1)-crash model for any n ≥ 3, but under the restriction

that the system is never in a configuration with more than

one point of multiplicity.

When n= 3, there cannot be more than one point of mul-

tiplicity, so this is not an issue. But, for n > 3, although their

algorithm does solve the distinct gathering problem, it fails

to solve self-stabilizing gathering. The definition of the lat-

ter problem indeed requires that any configuration leads to

gathering, including any one with several points of multi-

plicity.

They also present also two highly relevant results relat-

ing to Byzantine models.

Theorem 5 ([1]; Th. 4.4) There is no deterministic algo-

rithm that solves weak gathering in a (3,1)-Byzantine model

under a fair scheduler.

In contrast, they state a positive result in the fully-syn-

chronous model—a model in which all robots are activated

at every step.

Theorem 6 ([1]; Th. 5.3) Weak gathering can be solved

deterministically in a (3,1)-Byzantine system in the fully-

synchronous model.

Theorem 7 ([1]; Th. 5.10) Weak gathering can be solved

deterministically in an (n, f)-Byzantine system in the fully-

synchronous model for any n ≥ 3 f + 1.

Theorem 8 ([8]; Th. 1) With strong multiplicity detection,

there exists a deterministic algorithm solving self-stabilizing

gathering in the semi-synchronous model for n robots if, and

only if, n is odd.

The following theorem synthetizes the recent results re-

lated to the probabilistic gathering under various multiplic-

ity conditions. In particular, [12], introduces the notions of

local-weak and local-strong multiplicity. Local multiplicity

means that a robot is able to detect the multiplicity only for

its current position. Local-weak multiplicity means that a

robot can detect if at its local position there are one or more

than one robots. Local-strong multiplicity means that a robot

can detect the exact number of robots at its location.

7

Theorem 9 ([12]) Probabilistic self-stabilizing gathering is

possible in constant expected time with local-strong multi-

plicity and exponential expected time with local-weak mul-

tiplicity. Probabilistic distinct gathering is possible in con-

stant expected time with local-weak multiplicity.

The next result states the possibility of wait-free11 dis-

tinct gathering (i.e., the initial configuration must exclude

balanced bivalent configurations) in the semi-synchronous

model, when robots have strong multiplicity detection and

chirality knowledge.

Theorem 10 ([3]) In the semi-synchronous model, wait-free

gathering is possible with fair scheduler, under the follow-

ing assumptions: chirality knowledge and strong multiplicity

detection.

The following results refer to the possibility and impossibil-

ity of convergence and, by consequence, of gathering, when

some robots in the system have Byzantine behavior.

Theorem 11 ([5]) Byzantine-resilient convergence in one-

dimensional robot networks is impossible under a fully-syn-

chronous scheduler when n ≤ 2 f .

Theorem 12 ([5]) Byzantine-resilient convergence In one-

dimentional robot networks is impossible under a fair k-

bounded scheduler (k > 1) when n ≤ 3 f .

Theorem 13 ([4]) Starting from a trivalent configuration,

no cautious algorithm is able to achieve byzantine-resilient

convergence in uni-dimensional networks under an asyn-

chronous scheduler when 3 f < n ≤ 5 f .

4 Gathering in Fault-Free Environments

In this section, we refine results showing the impossibil-

ity of gathering [17,1] by proving first that these results

hold even under more restrictive schedulers. Interestingly,

we also prove that some of these impossibility results hold

even in probabilistic settings. Additionally, to circumvent

these impossibility results, we propose a probabilistic algo-

rithm that solves the fault-free gathering, under a bounded

scheduler.

First, we introduce two support lemmas that apply to

any gathering algorithm (deterministic or probabilistic) un-

der any form of centralized scheduler.

Lemma 1 Under a centralized scheduler and in any execu-

tion, the valence of two consecutive configurations differs by

at most one.

11 An algorithm is said to be wait-free if it tolerates the crash of up

to n−1 robots.

Proof The scheduler being centralized, at most one robot is

active at each step. Regardless of the algorithm, the move-

ment of the active robot falls into one of three categories,

depending on the respective multiplicities of the departure

and destination locations of the movement:

Move 1: distinct → multiple.

The valence decreases by one.

Move 2: multiple → multiple or distinct → distinct.

The valence is unchanged.

Move 3: multiple → distinct.

The valence increases by one.

Therefore, when the scheduler is centralized, the valence be-

tween any two consecutive configurations differs by at most

one. ⊓⊔

Lemma 2 Under a centralized scheduler, every execution

fragment that starts in a multivalent configuration and ends

in a univalent configuration contains a 1-bivalent configu-

ration.

Proof By Lemma 1 and the centralized scheduler, we know

that the valence between any two consecutive configurations

differs by at most one. Since the execution fragment ends in

a univalent configuration, the last multivalent configuration

in the fragment must be bivalent. This configuration neces-

sarily exists since the fragment starts in a multivalent con-

figuration.

Furthermore, since only one robot moves between any

two configurations (centralized scheduler), the last bivalent

configuration is 1-bivalent with the distinct robot doing the

last move. ⊓⊔

4.1 Deterministic Gathering

We begin by proving a theorem that strengthen the impos-

sibility result of Prencipe [17] (Lemma 3), as applied to the

problem of self-stabilizing gathering. The theorem proves

that the impossibility not only holds under a fair scheduler,

but also under a round-robin scheduler.

Theorem 14 Under a round-robin scheduler, there is no de-

terministic algorithm that solves self-stabilizing gathering

for n ≥ 3, without additional assumptions (e.g., multiplicity

knowledge).

Proof Assume, by contradiction, that such an algorithm ex-

ists. Let A be a deterministic algorithm that solves (distinct)

gathering under a round-robin scheduler.

Without loss of generality, let the reachable distance of

the robots be so large that the robots can reach each others’

location in a single step.

Consider the initial configuration Γ1 as described below

(see Fig 2). Γ1 is a 1-bivalent configuration such that all

8

r1

r2

r3···n

r3···n
r2

r1 r3···n

r1

r2

robot

active robot

move

transition

configuration

Γ1 Γ2 Γ3

r3···n move r1 moves

r2 moves

Fig. 2: Proof of Theorem 14: From a 1-bivalent configuration Γ1 with robot r1 in a distinct location, an activation schedule

r3···n,r1,r2,r3···n, . . . generates a cycle of equivalent configurations. r3···n represent the remaining robots r3 to rn.

robots are at one location, except one robot, r1, which is at a

distinct location.

Consider an execution e under algorithm A that starts in

Γ1 and follows the round-robin activation schedule given by

the sequence σ = r3, · · · ,rn,r1,r2. The application of σ to

configuration Γ1 leads to a cycle of bivalent configurations,

as illustrated in Figure 2.

Therefore, a univalent configuration is never reached in

execution e, which contradicts the fact that every execution

under algorithm A satisfies the Convergence property.

Thus, algorithm A does not exist. ⊓⊔

The impossibility of Lemma 3 is for the distinct gath-

ering problem, namely when initial configurations are re-

stricted to distinct ones.

In order to extend that result, we must prove that the

impossibility also holds under the same conditions, namely,

starting from distinct configurations. As stated earlier, an

impossibility for distinct gathering implies an impossibility

for self-stabilizing gathering.

We introduce an additional theorem below, which stricto

senso extends the impossibility of Lemma 3. We show that,

under a k ≥ 2-bounded scheduler, every multivalent config-

uration (this includes every distinct configuration) can lead

to a non-terminating execution. In other words, this proves

the impossibility of distinct gathering.

Theorem 15 Under a centralized k ≥ 2-bounded scheduler,

there is no deterministic algorithm that solves distinct gath-

ering for n ≥ 3, without additional assumptions (e.g., multi-

plicity knowledge).

Proof With no loss of generality, assume that the scheduler

is 2-bounded since this is the most restrictive case for the

adversary given the hypotheses of the lemma.

Let the adversary select an arbitrary sequence σ of the

robots and activate them according to a round-robin policy

over σ . The scheduler is centralized, so Lemma 2 holds and

thus, from any initial multivalent configuration, in particular

any distinct configuration, if an algorithm exists, it must nec-

essarily lead the system to a 1-bivalent configuration. Let γx

be this 1-bivalent configuration and let r denote the distinct

robot.

If robot r is not the next robot in σ , then continue the

activations in a round-robin fashion until another 1-bivalent

configuration is reached, and repeat the argument.

If robot r is the next robot in σ , then apply the following

permutation. Let r′ be the robot in the one-before-last posi-

tion in σ and r′′ the robot at the last position. The adversary

updates σ by letting r swap positions with r′. This leads to

the configuration Γ1 depicted in Fig. 2, where r1 = r, r2 = r′′,

and r3 = r′, and the cycle follows.

The swap is valid under the 2-bounded scheduler be-

cause no further swap occurs, and no robot is activated more

than twice between the last activation of r before the swap

and the first one after. ⊓⊔

We strongly believe that the impossibility under a round-

robin scheduler applies not only to self-stabilizing gather-

ing, but also to distinct gathering. We state the following

conjecture under which the impossibility holds.

Conjecture 1 Given a system with no additional assump-

tions (e.g, multiplicity knowledge). For every gathering al-

gorithm under a round robin scheduler, there exists an exe-

cution starting in a distinct configuration such that a gath-

ered configuration is reached by activating exactly once, ev-

ery robot except one.

To substantiate why the claim might be true, let us con-

sider some examples.

First, say that the criteria applied by the algorithm is to

select the location of the nearest robot. Then, one distinct

configuration that meets the requirement of the lemma is to

place a first robot r1, and then all other robots such that their

distance to r1 follows a geometric progression. Activating

each robots except r1 in the order they were placed let them

gather at r1.

Second, if the criteria is to select the farthest robot, then

gathering is obtained from placing the robots along a line

and activating them from one extremity to the next.

Third, if the criteria is to select a robot near a centroid,

then by placing robots along the circumference of a circle

9

centered at r1 and an interleaved activation of the robots, r1

can still remain near the centroid until the system reaches a

bivalent configuration.

This is not exhaustive, and more complex criteria can be

made to change depending on the valence of the observation.

Theorem 16 Under the hypothesis that Conjecture 1 holds,

There is no deterministic algorithm that solves distinct gath-

ering for n ≥ 3 under a round-robin scheduler, without ad-

ditional assumptions (e.g., multiplicity knowledge).

Proof Assume, by contradiction, that such an algorithm ex-

ists. Let A be a deterministic algorithm that solves distinct

gathering under a round-robin scheduler.

Let the reachable distance of the robots be so large that

the robots can reach each others’ location in a single step.

By assumption, Conjecture 1 holds and there exists a

configuration Γ0 such that, by activating every robot at most

once, an execution e starting in Γ0 reaches a univalent con-

figuration. Let us name the robots such that the successful

activation sequence is r3···n,r2,r1.

Since a robot moves only once, all robots must select

the location of r1 as their target, and the configuration after

activating robots r3···n is 1-bivalent with r2 at the distinct

location.

Consider execution e′ with the same prefix, but where

r1 is activated before r2. Without multiplicity, what r1 ob-

serves in e′ is the same as what r2 observes in e. Therefore,

r1 moves to the location of r2, leading to configuration Γ3 of

Figure 2. And the rest follows. ⊓⊔

Consider now the case when the system consists of two

robots. Suzuki and Yamashita [19] have proved that the de-

terministic gathering of two oblivious robots is impossible

under a fair scheduler (Lemma 1). The simple lemma below

shows that 2-gathering is however possible when the sched-

uler is centralized.

Lemma 3 The 2-gathering problem can be solved deter-

ministically under a centralized scheduler (fair or unfair).

Proof Let r1 and r2 be the two robots. Consider the sim-

ple algorithm which consists for one robot to move to the

location of the other robot. Given that the scheduler is cen-

tralized, at each step only one of the two robots, say r1, is

active.

If r2 is reachable from r1, then gathering is achieved in

that step. If r2 is not reachable from r1, then the distance

between both robots decreases by δr1
.

Thus, by repeating the argument, we see that the distance

between the robots decreases monotonically, until they be-

come reachable and then gathering is achieved in the next

activation. ⊓⊔

Note that, in the above proof, it does not matter which

robot is activated in each round. In particular, even if the

scheduler is unfair, it must activate either one of the two

robots.

4.2 Probabilistic Gathering

We now look at the case of probabilistic algorithms in a

fault-free environment. In the following, we prove that, for

the case of two robots, there exists a probabilistic solution

for gathering in the SYm model, under any type of sched-

uler.

Algorithm 4.1 Probabilistic gathering for robot p.

Actions:

Observe(P) :: true −→
with probability α = 1

|P| do

select location q ∈ P uniformly;

move towards q;

else

stay;

Algorithm 4.1 describes the probabilistic strategy of a

robot. When a robot becomes active, it decides, with prob-

ability α , whether it will actually compute a location and

move whereas, with probability 1−α , the robot will remain

stationary. The following lemma shows that Algorithm 4.1

reaches a univalent configuration in constant expected steps.

Lemma 4 Algorithm 4.1 probabilistically solves gathering

for n = 2 under an unfair scheduler.

Proof Consider two robots r1 and r2, and an arbitrary initial

configuration γ0. If r1 and r2 are already gathered, the con-

figuration is univalent and neither will move, regardless of

activations and the probability α .

Since there are two robots, every non-gathered configu-

ration is bivalent, and thus α = 1
2
.

Assume that both robots have the same reachable dis-

tance δ (or, if they are different, define δ conservatively as

their minimum).

Let us show how r1 and r2 reach a configuration in which

they are mutually reachable, from one in which they are not.

Let D0 > δ be the initial distance between r1 and r2. At

each successful move of either one of the robots, the dis-

tance between them is decreased by at least δ (by 2δ if

both move). Thus, it takes at most x = ⌈D0
δ ⌉−1 successful

moves of either one robot, for them to be within reachable

distance. Since the scheduler must activate at least one of

the robots, the probability of a successful move at each trial

is at least 1
2
. The number of failures until the xth success of

a Bernoulli trial with success probability α is known to be a

random variate that follows a negative binomial distribution

NB(x,α). It follows that the expected number of steps until

10

both robots are within reachable distance δ is at most

E[steps to reachable]≤ ⌈
D0

δ
⌉−1+E

[

NB

(

⌈
D0

δ
⌉−1,

1

2

)]

≤ 2

(⌈
D0

δ

⌉

− 1

)

Let us now consider gathering from a configuration in

which the two robots are reachable from each other.

Consider some discrete time t when the two robots have

distinct locations. If only one of the robots, say r1, is acti-

vated by the scheduler, then there is a probability α that r1

moves, and thus both robots end up gathered in the next con-

figuration (terminal). If both robots are activated at time t,

then they end up in a univalent configuration only if exactly

one of them changes its position. This occurs with probabil-

ity 2α(1−α).

Consequently, the probability to reach gathering during

at time t + 1 is at least q = min(α,2α (1−α)) = 1
2
> 0, re-

gardless of the choice of the scheduler. The number of fail-

ures before first success is a random variate that follows a

geometric distribution G(q). This yields the expected num-

ber of steps until gathering as

E[steps to gathering] = 1+E[G(q)] = 1+
(1− q)

q
=

1

q
= 2

Thus, gathering is achieved in at most 2⌈D0

δ ⌉ steps in expec-

tation. ⊓⊔

The next lemma extends the impossibility result proved

in Theorem 14 to probabilistic algorithms under a fair cen-

tralized scheduler.

Lemma 5 There is no probabilistic algorithm that solves

gathering for n ≥ 3, under a fair centralized scheduler with-

out additional assumptions (e.g., multiplicity knowledge).

Proof A randomized algorithm can use randomization in

two different ways. It can select random locations (case A),

or it can toss a coin before doing a move (case B).

With respect to the first case, the proofs of Theorem 14

and 15 still stand when destinations are based on random

choices, except when the random choice of a robot is to se-

lect its current location. This is however equivalent to toss-

ing a coin and stay still with some probability, which is in

turn equivalent to the second case.

Hence, we focus on the second case (case B) and repre-

sent a randomized algorithm as one in which an active robot

tosses a coin and, with some positive probability α , executes

an action (and stays still otherwise). Note that, if the prob-

ability depends on the robot, α can be defined as the mini-

mum. It must be positive because, since Theorem 15 shows

that no algorithm exists based on deterministic choices, a

robot cannot set the probability to zero based only on its ob-

servations.

Consider an adversary that selects a robot r and activates

r until the coin toss is successful, and r actually executes its

action. Since α is positive, the activation is fair (albeit un-

bounded). By doing so, the adversary can actually “deran-

domize” the algorithm with the remainder of the proof being

the same as for Theorem 15. ⊓⊔

The key issue leading to the above impossibility is the

freedom that the scheduler has in selecting a robot r until its

probabilistic local computation allows r to actually move.

The scenario can however no longer hold with systems in

which the scheduler is k-bounded. That is, in systems where

a robot cannot be activated more than k times before the

activation of another robot. In this type of game, robots win

against the scheduler and the system converges to a gathered

configuration.

Theorem 17 Algorithm 4.1 probabilistically solves gather-

ing for n ≥ 3, under a fair bounded scheduler and without

multiplicity knowledge.

Proof Let k denote the bound of the scheduler. The sched-

uler being fair, there are at most k(n− 1) steps between any

two consecutive activations of any robot. Let δ be the reach-

able distance of the robots (or their minimum if they are

different).

The probability α depends on the valence of the current

configuration. However, in multivalent configurations, it is

bounded as follows: 1
n
= αmin ≤ α ≤ αmax =

1
2
.

For clarity, the proof has two parts. First, we show that,

from an arbitrary configuration, the system reaches a con-

figuration in which all robots are within reachable distance

from each other. Second, we show that, with high probabil-

ity, in a configuration where robots are reachable from each

other, the valence of successive configurations decreases un-

til gathering is reached.

Theorem 17; Part 1: from arbitrary to reachable. Consider

the smallest enclosing circle SECt defined by the robots’ lo-

cations in a configuration γt . By definition of the smallest

enclosing circle, and because a circle is convex, all locations

and all segments between them are either inside the circle or

on its circumference. By Algorithm 4.1, a robot r selects a

target r′ among the robots’ locations, r can move only to r′ or

to some point in the segment between them. Thus, r in γt+1

is necessary enclosed by SECt . Thus, SECt+1 ⊆ SECt . In

other words, the smallest enclosing circle is non-increasing.

To show the convergence, we now show that, with some

positive probability p, the diameter of the smallest enclosing

circle decreases by at least δ , which is a constant positive

value.

11

Ω ρ
=

2R
t
si

n
θ
−

δ

δ

δ

T

X

X′

δ
θ

R
t

SECt

R
t − δ

2

C

Fig. 3: Proof of Theorem 17; Part 1: Strict decrease of the

smallest enclosing circle SECt (of radius Rt) occurs with

positive probability. After all robots select T as a target

and move once (dashed lines), they are all contained inside

area Ω , which is itself contained within a circle C of radius

Rt −
δ
2

. Positions are expressed in polar coordinates centered

at T.

Let γt be a configuration and SECt the smallest enclosing

circle in γt . Let T be the position of a robot located on the

boundary of SECt .

Consider the situation in which all other robots take T as

their target for a successful move and let γx be the resulting

configuration (Fig. 3). We show that the smallest enclosing

circle SECx in configuration γx is smaller than SECt in di-

ameter by at least δ .

To characterize the movement of the robots, we consider

polar coordinates (θ ,ρ) centered at T. The smallest enclos-

ing circle SECt is given by

θ ∈ [0;π] ρ = 2Rt sinθ

Let Ω be the area that the robots will reach after moving

toward T of a distance at least δ (Fig. 3). This area can be

characterized as follows12

θ ∈

[

arcsin
δ

2
;π−arcsin

δ

2

]

ρ = 2Rt sinθ − δ

Let C be a circle with diameter 2Rt − δ and anchored at T.

θ ∈ [0;π] ρ = (2Rt − δ)sinθ

Let us show that Ω is contained within C. When

θ ∈

[

arcsin
δ

2
;π − arcsin

δ

2

]

12 Note that Ω is not a circle; it is best described as the inner loop of

a limaçon of Pascal.

this holds if the following inequality always holds

(2Rt − δ)sinθ ≥ 2Rt sinθ − δ

−δ sinθ ≥−δ

sinθ ≤ 1

which is always true. Since all robots are contained within

C, it follows that SECx is contained within C, and thus its

diameter is at most 2Rt − δ .

Notice that selecting T on the boundary is a worst case

for convergence; the best case occurs when T is located near

the center of SECt and the decrease in diameter then be-

comes 2δ .

Let us now show that, with positive probability p, SEC

decreases by at least δ in diameter in a constant number of

activation steps.

Note that we do not need to calculate the probability p

accurately. It is sufficient to show that p has a positive lower

bound. For this reason, we do not need to consider all cases.

Consider an execution fragment e[t:t +K] of K = nk suc-

cessive configurations starting in γt . The scheduler is fair k-

bounded so, regardless of its choices, every robot is activated

at least once and at most nk times in fragment e[t:t +K].

We need to calculate the probability that (1) every robot

except one (at T) makes exactly one successful move toward

T at first trial and takes no further move in the K−1 remain-

ing steps, and (2) one robot (at T) makes no successful move

in K steps.

For one of the robots (except one at T), the probability

that it makes a successful move toward T at first trial is

P[1 robot moves to T at first trial]≥ αmin
1

n
=

1

n2

Assuming a worst case situation when the scheduler acti-

vates the robot every time after the move, the probability for

that robot to take no successful move in K − 1 steps is

P[1 robot stays for K − 1 steps]≥ (1−αmax)
K−1 =

1

2K−1

For the n− 1 robots, we combine and obtain

P[n−1 robots move once then stay]≥
1

(n22K−1)n−1

Assuming again a worst case scheduling decision, the prob-

ability that the robot located at T takes no move in all K

steps is

P[T stays for K steps]≥ (1−αmax)
K =

1

2K

and we combine all this to obtain the probability that one

robot (at T) takes no move and that all other robots move

exactly once with T as their target

P[· · ·]≥
1

2nK−n+1n2(n−1)

12

That probability P[· · ·] is a strictly positive constant because

K and n are both positive constants. To sum up, the proba-

bility that all robots are contained in a circle with diameter

decreased by constant δ > 0 in constant K = nk steps is at

least P[· · ·].

An upper bound on the expected number of steps need

for all robots to be reachable is now easily obtained from a

negative binomial distribution, following the same method

as in Lemma 4. With D0 being the diameter of SEC in the

initial configuration, the number of successful progress nec-

essary is x = ⌈D0
δ ⌉−1, and we obtain, after much simplifica-

tion,

E[steps to reachable]≤ K
x

P[· · ·]
= k

⌈D0

δ ⌉−1

2kn2−n+1n2n−3

which is constant since D0, k, and n are all constant. This

completes the proof of the first part.

Theorem 17; Part 2: From reachable to gathering. Starting

from a configuration in which all robots are mutually reach-

able, we show that we reach gathering with high probability.

First, since the smallest enclosing circle is non increas-

ing, once a reachable configuration has been achieved, all

subsequent configurations are reachable.

Taking an execution fragment of nk steps starting in a

reachable configuration, there is a positive probability that

(1) every robot except one (say T ′) makes exactly one suc-

cessful move toward T ′ at first trial and takes no further

move in the nk − 1 remaining steps, and (2) one robot (at

T ′) makes no successful move in nk steps.

This is the same probability as one fragment of nk steps

considered in the first part, so one additional successful frag-

ment will reach gathering. This yields,

E[steps from arbitrary to gathering]≤ k
⌈D0

δ ⌉

2kn2−n+1n2n−3

Thus, gathering is achieved in constant expected steps. ⊓⊔

5 Crash-Tolerant Self-Stabilizing Gathering

We now extend the study on the feasibility of gathering to

fault-prone environments. In this section, we consider the

family of (n, f)-crash models, where n is the total number of

robots and up to f < n of them are faulty and may possibly

crash.

Recall the two definitions for self-stabilizing gathering,

namely, strong and weak. Let us first state a simple impossi-

bility about strong gathering in systems with multiple faults.

Lemma 6 No algorithm can possibly solve strong gather-

ing in a crash-prone system with f > 1.

Proof Consider any multivalent initial configuration (f >

1 thus n > 1). Take any two robots with distinct locations

and let them crash before they move. They cannot move, so

they will never share the same location, and hence strong

gathering is never achieved. ⊓⊔

Notice that the above lemma holds regardless of the sched-

uler or additional assumptions of any kind, and obviously

applies to both deterministic and probabilistic algorithms.

This leaves for study the case of strong gathering in the

face of a single faulty robot (in Sect. 5.1), and the case of

weak gathering with multiple faulty robots (in Sect. 5.2).

5.1 Single Crash (f = 1); Strong Gathering

We investigate the feasibility of strong gathering in the pres-

ence of a single faulty robot. We express the impossibility

lemmas to cover one or several robots and simply refer to

Lemma 6 for multiple robots so that the proof can focus on

the case of a single crash.

Lemma 7 In an (n, f)-crash system with n ≥ 3 and f ≥

1, strong gathering is deterministically impossible under a

round-robin scheduler, even with multiplicity knowledge.

Proof The case when f > 1 is covered by Lemma 6, which

leaves the case when f = 1.

By contradiction, assume that an algorithm A solves

gathering deterministically in an (n,1)-crash system under

a round-robin scheduler.

From Theorem 14, A must rely on multiplicity knowl-

edge. The impossibility of Theorem 14 indeed applies here

because a crash-free execution is valid in an (n,1)-crash sys-

tem. Assuming that A could solve gathering without multi-

plicity knowledge would imply that it can solve it in a fault-

free execution; a contradiction.

A round-robin scheduler is centralized by definition, so

Lemma 2 applies and the system must necessarily reach a 1-

bivalent configuration before it achieves gathering. Let γr be

such a configuration and let r be the distinct robot. Consider

also an arbitrary robot in the other location and call it r′.

It is easy to see that r′ cannot chose to move to r in a 1-

bivalent configuration, or else, an adversary can lead a fault-

free execution to the same cyclic execution described in the

proof of Theorem 14 (Fig. 2).

Now, consider the case when r crashes in γr. The algo-

rithm is deterministic and robots are oblivious, so r′ cannot

distinguish that configuration from the fault-free one. The

same decision must hence be applied and thus r′ and r can

never share the same location; a contradiction. ⊓⊔

We now prove a similar impossibility for probabilistic

algorithms, but this time, under a fair centralized scheduler.

13

Lemma 8 In an (n, f)-crash system with n ≥ 3 and f ≥ 1,

there is no probabilistic algorithm that solves strong gather-

ing under a fair centralized scheduler, even with multiplicity

knowledge.

Proof The case when f > 1 is covered by Lemma 6, which

leaves the case when f = 1.

By contradiction, assume that an algorithm A solves

gathering probabilistically in an (n,1)-crash system under

a fair centralized scheduler.

Lemma 2 applies since the scheduler is centralized, and

any gathering execution must reach a 1-bivalent configura-

tion γr. Let r be the distinct robot in γr and G the location of

the other robots.

We can now construct an adversary that prevents gather-

ing. First, let r be the faulty robot and let it crash in γr be-

fore it moves. Second, let the adversary activate the correct

robots in turn. Each time a robot r′ moves to r, it is activated

repeatedly until it moves back to G. The move to G must

be possible or else G could not form in the first place (re-

call that robots are oblivious, anonymous, and disoriented).

This activation is compatible with the fair centralized sched-

uler because every correct robot is activated infinitely often

(fair) and in mutual exclusion (centralized). This leads to

an infinite execution that holds no univalent configuration.

Thus, A violates the Convergence property of gathering; a

contradiction. ⊓⊔

We present now a simple lemma for a probabilistic algo-

rithm in a system with two robots.

Lemma 9 In a (2,1)-crash system, Algorithm 4.1 solves the

strong gathering problem probabilistically under an unfair

scheduler.

Proof In a fault-free execution, the proof of Lemma 3 ap-

plies as it stands. In an execution with one crash, gather-

ing is achieved through repeated activations of the correct

robot. By the non-triviality condition of the unfair sched-

uler, it must activate the correct robot infinitely often. ⊓⊔

Based on the same proof, we obtain a lemma for the

deterministic gathering of two robots under a centralized

scheduler.

Lemma 10 In a (2,1)-crash system, Algorithm 4.1 solves

strong gathering probabilistically under an unfair central-

ized scheduler.

In a system with more than two robots, strong gathering

can still be achieved with a probabilistic algorithm, but re-

quires the scheduler to be fair bounded. The algorithm does

not need to rely on multiplicity knowledge.

Lemma 11 In an (n,1)-crash system with n ≥ 3 and under

a fair bounded scheduler, Algorithm 4.1 solves strong gath-

ering probabilistically.

Proof The proof is identical to that of Theorem 17, where

the target location T of the first part is chosen as the loca-

tion of the faulty robot (crashed or not), and the second part

requires no adaptation. ⊓⊔

5.2 Multiple Crashes (f ≥ 2); Weak Gathering

We now extend the study to the case of weak gathering in

the presence of multiple faulty robots.

We begin by proving the impossibility of deterministic

and probabilistic weak gathering under a round-robin sched-

uler without additional assumptions.

Lemma 12 In a (n, f)-crash system with n ≥ 3 and f ≥ 2,

there is neither a probabilistic nor a deterministic algorithm

that solves weak gathering under a round-robin scheduler,

without additional assumptions.

Proof By contradiction, assume that such an algorithm ex-

ists and call it A .

Consider a fault-free execution e. The scheduler being

centralized (implied by round-robin) Lemma 2 holds and ev-

ery execution under algorithm A reaches a 1-bivalent con-

figuration γb. Let r1 be the distinct robot, and {r2, · · · ,rn}

the robots in the other location.

Consider an execution e′ which differs from e in that

r1 and r2 both crash in configuration γb, leading to the 1-

bivalent configuration γ ′b. In the absence of multiplicity, bi-

valent configurations are undistinguishable for the robots.

So, some robot rx in {r3, · · · ,rn} is correct and has a

positive probability of moving to the other location. To see

this, consider that, otherwise, an adversary can generate an

execution that is unable to transit from a 1-bivalent config-

uration to a univalent configuration in the fault-free case; a

contradiction.

Take the more general case and assume that A is proba-

bilistic. Assuming γ ′b does not change, the scheduler ensures

that rx is activated infinitely often. It follows that, with high

probability, rx moves, violating the Closure property; a con-

tradiction. ⊓⊔

An immediate consequence of the previous lemma is the

necessity of an additional assumption, such as multiplicity

knowledge, even for probabilistic solutions and even under

round-robin or bounded schedulers. Accordingly, we now

consider systems in which robots are aware of multiplicity.

5.2.1 Deterministic weak gathering with multiple crashes

Algorithm 5.1 is a deterministic algorithm that relies on mul-

tiplicity detection. Roughly, when a robot r becomes active,

it considers the castles in the current configuration. If there

are castles to which r does not belong, then it moves to the

nearest one, say q, with ties broken arbitrarily.

14

r

q

rCW

rCCW

block

S
D

Vcell(q)

ACW = S∩D∩Vcell(q)

q′
r′δr

Fig. 4: Side Move: Robot r selects maximal multiplicity

point q as its target. Some robots block the way between

r and q. Robot rCW is the next robot clockwise (arbitrary

choice) with respect to q. Robot r selects a point inside area

ACW, called q′, and moves toward it.

Algorithm 5.1 Deterministic fault-tolerant weak gathering

for robot r at location p

Functions:

µ(Π) :: the maximal multiplicity.

MaxMult(Π) :: the set of elements with multiplicity µ(Π).
#onSegment(p,q) :: the number of robots on segment pq.

Actions:

Observe(Π) :: true −→
if ∃q 6= p : q ∈ MaxMult(Π) then

select nearest q ∈ MaxMult(Π)\{p};

if #onSegment(p,q)< 2µ(Π) then

// Straight Move

move toward q;

else

// Side Move (see Fig. 4)

let C := circle with center q and radius pq;

let S := largest sector in C from p with no robot;

let D := disc with diameter pq;

select some q′ inside A = S∩D∩Vcell(q);
move toward q′;

else

stay;

When several robots occupy the space between r and q,

moving over these robots brings the risk of a cyclic behavior

that can never converge (see details in the appendix). To pre-

vent this, r is required to perform a side move (see Fig. 4), in

which r selects a destination within a zone ACW (resp. ACCW)

constructed as the intersection of three areas (boundaries ex-

cluded).

– Vcell(q): cell of castle q in the Voronoi diagram built

from the set of castles.

– D: the disc with segment rq as diameter.

– S: the largest sector clockwise (resp. counter-clockwise)

centered at q and starting from r that contains no robot.

By moving within the zone, this ensures that (1) the dis-

tance between r and q decreases (r moves within D), (2) q

remains the nearest castle from r (r moves within Vcell(q)),

and (3) there are no robots between r and q (r moves within

S).

Before proving the correctness of Algorithm 5.1, we es-

tablish two of its important properties.

The first property is an observation that the maximal

multiplicity of configurations throughout executions of Al-

gorithm 5.1 is non-decreasing. It holds for any centralized

scheduler.

Proposition 1 The maximal multiplicity of configurations is

non-decreasing over any execution of Algorithm 5.1, under

an unfair centralized scheduler.

Proof In configurations with a single point of maximal mul-

tiplicity, the condition of the test in Algorithm 5.1 evaluates

to false for any robot r that is on the point of maximal mul-

tiplicity, and thus, r does not move and the multiplicity does

not change.

When there are several points of maximal multiplicity,

they can be destroyed (one of its robot leaving the location,

its multiplicity decreases) only one at a time because the

scheduler is centralized. ⊓⊔

Another important property, which holds for any fair

scheduler (i.e., not necessarily a centralized one), states that,

in distinct configurations, the minimum distance between

two robots is non-increasing.

Proposition 2 Consider an execution of Algorithm 5.1 un-

der a fair scheduler. Let D(γ) be a function defined as the

shortest distance between a robot and its nearest neighbor

in configuration γ . Then, D(γ) is non-increasing.

Proof Assume by contradiction that there is a configuration

γt such that D(γt)< D(γt+1). Let r and r′ be two robots with

distance D(γt) from each other in γt . If neither r nor r′ move

at time t, then D(γt) = D(γt+1). So assume that at least one

of them moves at time t. In γt+1, the distance from r to r′

must have increased to be at least D(γt+1) so, one of the

robots must have moved away from the other, say r′ moved

away from r. This means that r′ had a neighbor r′′ 6= r such

that the distance from r′ to r′′ was: (1) at most D(γt), or else

r (not r′′) would be the nearest neighbor of r′ and r′ must

have moved toward r, and (2) at least D(γt+1) + δ since,

after moving, the nearest distance from a correct robot to its

nearest neighbor is at least D(γt+1). It follows that D(γt) ≥

D(γt+1)+ δ . A contradiction with D(γt)< D(γt+1).

Hence, D(γ) is non-increasing. ⊓⊔

We can now show that a distinct configuration eventually

leads to a configuration that contains a castle.

Proposition 3 In an (n, f)-crash system, where n> f , a fair

centralized scheduler and multiplicity detection, let e be an

15

execution (or execution suffix) when robots move to the near-

est robot. Starting from any distinct configuration, then e

contains a configuration with maximal multiplicity larger

than one.

Proof We show that, starting from any distinct configura-

tion, a location with multiplicity 2 is eventually formed.

Consider again the function D(γ) defined as the short-

est distance from a robot to its nearest neighbor. We know

already from Proposition 2 that D(γ) is non-increasing.

We now show that there is a configuration such that D(γ)
decreases strictly. Consider some distinct configuration γt ,

and let r be a correct robot with distance D = D(γt) to its

nearest neighbor r′ in γt . Then, there must be a configura-

tion γt′ (t ′ > t) during which one of the following situation

occurs:

1. r′ moves away from r. This means that there is a robot

r′′, originally at distance D or less from r′, toward which

r′ moves. The distance from r′ to r′′ is at most D(γt)−δ ,

so D(γt′)≤ D− δ .

2. r moves and r′ is still its nearest neighbor. r moves to-

ward r′ by distance δ , so D(γt′)≤ D− δ .

3. r has a robot r′′ as nearest neighbor. There are three

cases:

(a) either r or r′ have moved, then we have already en-

countered one of the two previous cases, or

(b) r′′ has moved near r, then dist(r,r′′)≤ D, or

(c) the criteria used by r to break up ties among several

of its nearest neighbors makes it select r′′ instead of

r′, then dist (r,r′′) = D.

So, D(γt′)≤D and we can rename r′ to r′′ when iterating

over the argument.

Since the scheduler is fair, there is a time after which r

moves and D(γ) decreases by at least δ . The rest follows.

⊓⊔

Theorem 18 In an (n, f)-crash system, where n> f , Algo-

rithm 5.1 deterministically solves weak gathering under a

fair centralized scheduler if robots are aware of multiplicity.

Proof Let us first prove that the Algorithm 5.1 satisfies the

closure property of weak gathering, i.e., to a gathered con-

figuration follow only gathered configurations. Let gi be a

gathered configuration. By definition of a gathered configu-

ration, there is a unique point of maximal multiplicity that

all correct robots occupy. Since, by construction of Algo-

rithm 5.1, the correct robots do not move, any subsequent

configuration is gathered. This proves closure.

By Proposition 1, the maximal multiplicity is nonde-

creasing. Let us now prove convergence by induction on the

maximal multiplicity of configurations.

Proposition 3 forms the basis of the induction by show-

ing that a distinct configuration leads to a configuration with

maximal multiplicity larger than one.

Theorem 18; Induction step. We show that, starting from

a non-gathered configuration γx with maximal multiplicity

M = µ(γx)> 1, a configuration γy with maximal multiplicity

M+ 1 is eventually reached.

We say that a robot pb is blocked if there are at least

µ(c)−1 robots on the segment between pb and qb, where qb

is the castle13 that pb selects if it is active in configuration γ .

Let #castle(γ), #blocked(γ), and Σ(γ) respectively denote

the number of castles, the number of blocked robots, and

the sum of distances from each robot to its nearest castle in

configuration γ .

We can characterize a configuration γ by the quantities

µ(γ), #castle(γ), #blocked(γ), and Σ(γ). Consider a con-

figuration γt with x ≤ t < y, characterized by µ(γt) = M,

#castle(γt), #blocked(γt), and Σ(γt), and consider all possi-

ble transitions from γt to the next configuration γt+1. Since

the scheduler is centralized, one correct robot, say r, is ac-

tive in configuration γt . We can summarize the transitions as

follows:

1. r is in a castle.

(a) #castle(γt) = 1.

r does not move. No change.

(b) #castle(γt)> 1.

r aims for castle q.

i. r is blocked. r takes a side move.

#castle(γt+1) = #castle(γt)− 1.

ii. r does not reach q.

#castle(γt+1) = #castle(γt)− 1.

iii. r reaches q.

GOAL: µ(γt+1) = M+1 and #castle(γt+1) = 1.

2. r is not in a castle (aims for castle q).

(a) r is blocked. r takes a side move.

#blocked(γt+1) = #blocked(γt)− 1

and Σ(γt+1)< Σ(γt).

(b) r does not reach q.

Σ(γt+1) = Σ(γt)− δ .

(c) r reaches q.

GOAL: µ(γt+1) = M+ 1 and #castle(γt+1) = 1.

A first observation is that no new castle is created, in

other words, #castle(γ) never increases.

As long as there is a castle with at least one correct robot,

that robot is eventually active since the scheduler is fair. Pro-

vided that there are at least two castles, the number of castles

decreases. This happens until the system reaches a configu-

ration γt′ (x ≤ t ′ < y) in which any one of the following two

conditions hold:

– There is one single castle.

– There are several castles, all of which consist only of

crashed robots.

In either case, no robot already located in a castle moves.

13 C.f., definition of castle and tower in Section 2.7.

16

If the configuration is already gathered, convergence is

proved, so assume it is not. Then, there must be some cor-

rect robot located outside of a castle, and that robot must

eventually become active as the scheduler is fair.

Let r′ be a correct robot located outside of a castle. Each

time r′ is active, it selects one of the castles q′ as its desti-

nation. In case another robot reaches a castle, the induction

step is proved. So again assume that this is not the case. It

follow that the number of castles and their locations do not

change, thus q′ is the same castle across activations of r′.

Let ∆ ′ be the distance between r′ in configuration γt′ . If

r′ is initially blocked, then it performs a side move and r′ is

no longer blocked (#blocked(γ) decreases). Recall that, by

construction, performing a side move does not increase the

distance between the robot and its destination.

After
⌈

∆ ′

δ

⌉

activations of r′, it reaches castle q′ thus in-

creasing its multiplicity and proving the step.

The induction ensures that, as long as a gathered config-

uration is not reached, the maximal multiplicity increases.

The multiplicity cannot possibly be larger than the number

of robots, so it follows that a gathered configuration is even-

tually attained.

This proves convergence and, since we have proved clo-

sure before, the fact that Algorithm 5.1 solves weak gather-

ing. ⊓⊔

5.2.2 Probabilistic weak gathering with multiple crashes

In the remainder of this section, we show that weak gather-

ing can be solved probabilistically in an (n, f)-crash system

(with f < n) under a fair scheduler.

Algorithm 5.2 is a probabilistic algorithm constructed

on the deterministic Algorithm 5.1. While the latter is for

a centralized scheduler, the former is for a fair scheduler,

which allows robots to be active simultaneously.

Algorithm 5.2 Probabilistic fault-tolerant gathering for

robot p with multiplicity knowledge

Functions:

µ(Π) :: the maximal multiplicity in Π .

MaxMult(Π) :: the set of points with multiplicity µ(Π).

Actions:

Observe(Π) :: true −→
if p 6∈ MaxMult(Π) then /* p not in a castle */

execute extended Algorithm 5.1;

else if |MaxMult(Π)| = 1 then /* unique castle */

stay;

else /* several castles */

with probability α = min
(

1
µ(Π) ,

1
2

)

do

execute extended Algorithm 5.1;

otherwise

stay;

The idea of the algorithm is that, in some situations (sev-

eral castles or distinct configurations), the simultaneous ac-

tivation of several robots could lead to endless oscillations of

the system. For instance, given two robots which are reach-

able and nearest from each other, activating them together

would lead to them swapping their positions. To prevent this

situation from occurring endlessly, the robots are required to

first toss a coin and actually move only upon success.

In addition, the side move performed in Algorithm 5.1

defines a region from which a target point is selected arbi-

trarily. Due to concurrent moves under Algorithm 5.2, an ar-

bitrary choice is no longer adequate. Therefore, it becomes

necessary to extend Algorithm 5.1 such that the side move

prevents two simultaneously moving robots from reaching

the same location. The choice of an appropriate target is

guided by the following requirements:

– Let two robots r and r′, initially collinear with castle q,

select target points T and T ′. Then, segments rT and r′T ′

intersect if and only if r and r′ are collocated.

A construction that satisfies this requirement is presented in

the appendix (Sect. A.2). The probabilistic algorithm relies

on Algorithm 5.1 extended with a side move meeting those

requirements.

We first show that the convex hull of positions is non-

increasing. This simple result is important as one factor to

ensure that the system does not oscillate.

Proposition 4 In an (n, f)-crash system, where n> f , with

any scheduler and multiplicity detection, let e be an execu-

tion under Algorithm 5.2.

Let γt and γt′ be two configurations of e, and Conv(γt)

(respectively Conv(γt′)) the convex hull of robot locations in

γt (resp. γt′). Then, t ′ > t =⇒ Conv(γt′)⊆ Conv(γt).

Proof Let r be an arbitrary robot that moves through Algo-

rithm 5.2: it can stay, move toward another robot, or perform

a side move.

In all three cases, the entire segment between r’s location

and its target destination must be contained within the con-

vex hull. When r stays, this holds trivially. When r moves

toward another robot, this holds because of the convexity of

the convex hull. When r performs a side move, this holds

from the definition of the side move.

As a result, no move can possibly bring a robot outside

of the convex hull, which is thus non-increasing. ⊓⊔

Notice however that the convex hull is not necessarily de-

creasing since the robots located at the vertices of the convex

hull could be crashed robots.

We continue by proving important properties of execu-

tions under Algorithm 5.2. The first proposition shows that,

if the number of castles can increase from one configuration

to the next, then the maximal multiplicity must necessarily

have decreased.

17

Proposition 5 In an (n, f)-crash system, where n> f , a fair

scheduler and multiplicity detection, let e be an execution

under Algorithm 5.2. Let γt and γt+1 be any two consecutive

configurations in e. The number of castles increases in γt+1

only if the maximal multiplicity decreases in γt+1.

Proof Let K denote the number of castles in γt , and M the

maximal multiplicity in γt . Suppose that there are K+1 cas-

tles in γt+1. Now, assume by contradiction that the maximal

multiplicity in γt+1 is M or more. Since there are K + 1 cas-

tles in γt+1, at least one castle of multiplicity M or more must

have been created from M independent robots (i.e., robots

that did not belong to a castle in γt).

Consider one of the robots, call it r, independent in γt

and forming the new castle in γt+1. There are three possible

cases.

– If r did not move, then there must be another robot r′ that

has moved, or else r would not have been independent

in γt . Then, consider the case of r′ instead.

– r performed a straight move. By construction of the al-

gorithm, there are less than M independent robots on the

segment between r and its nearest castle, r included. But,

by construction, no robot performing a side move can

reach a ray containing robots performing straight moves.

– r performed a side move. The area targeted by the side

move is convex, does not contain any robot, and does not

contain any point reachable with a straight move.

Hence, all robots collocated with r in γt+1 must have

performed a side move.

With the extended construction of the side move, every

robot r′ collocated with r in γt+1 must have been collo-

cated with r in γt . Thus, r was forming a castle in γt . A

contradiction.

The maximal multiplicity in γt+1 is not M or more. The num-

ber of castles increases in γt+1 only if the maximal multiplic-

ity decreases in γt+1. ⊓⊔

Proposition 6 In an (n, f)-crash system, where n> f , a fair

scheduler and multiplicity detection, let e be an execution

under Algorithm 5.2. If a configuration has a unique castle,

then all configurations after that have only one castle and

the maximal multiplicity is nondecreasing.

Proof Let γt be a configuration in e with a unique castle.

By construction of Algorithm 5.2, no robots in the castle

move when activated. Thus, the maximal multiplicity does

not decrease in configuration γt+1. From Proposition 5, the

number of castles increases in γt+1 only if the maximal mul-

tiplicity decreases in γt+1. Therefore, the number of castles

does not increase in γt+1.

The rest follows by induction on configurations. ⊓⊔

An important consequence of these two propositions is

that, when a configuration with a unique castle is reached,

then only configurations with a unique castle can follow. In

other words, distinct configurations or configurations with

several castles can no longer occur. We now additionally

show that the system progresses deterministically to a gath-

ered configuration. As a result, we can later consider the for-

mation of a unique castle to be final, as it deterministically

leads to gathering in finite steps.

Proposition 7 In an (n, f)-crash system, where n> f , a fair

scheduler and multiplicity detection, any execution e (or ex-

ecution suffix) under Algorithm 5.2 that starts in a configu-

ration with a unique castle leads to a gathered configuration

in finite steps.

Proof Let γt be a configuration with a single castle Qt and

maximal multiplicity M = µ(γt)≥ 2. We prove that, either γt

is gathered or there exists a configuration γt′ in e with t < t ′

such that µ(γt′)> M.

Since γt has a single castle, a robot located in the cas-

tle does not move when activated. Thus, only independent

robots can move when active. In Algorithm 5.2, indepen-

dent robots execute the first clause of the test, so the execu-

tion is deterministic and depends only on the activations of

the scheduler.

If there are no independent correct robots, then the con-

figuration is already gathered. Let us now consider the case

when some correct robot is independent. Let r be one such

robot and let Dt be the distance from r to Qt in configura-

tion γt .

The scheduler being fair, it must activate r eventually.

We consider two cases, depending whether r is blocked or

not in configuration γt .

– If r is not blocked, then it takes ⌈Dt/δr⌉ activations of

r to reach Qt , thus increasing the multiplicity of Qt , and

hence maximal multiplicity, by at least one.

– If r is blocked in γt , then it performs a side move when

it is activated. It is possible that all other robots blocked

on the same ray as r are activated at the same time, per-

forming a side move in the same direction. Let Bt be

the number of robots blocked on the same ray as r. Bt

is at most n− 2M because M robots form castle Qt and

M robots block the others on the ray (those may have

crashed, so they will not necessarily move).

Let all blocked robots move together with r, with r be-

ing the farthest robot on the ray. After completing a side

move, the number of blocked robots decreases by M. So,

after at most n
M
− 2 side moves, r is no longer blocked,

and the rest follows from the first case.

This proves the claim and the remainder of the proof follows

by induction on the maximal multiplicity. ⊓⊔

We now show that the shortest distance between a robot

and its nearest neighbor is also non-increasing for Algo-

rithm 5.2.

18

Proposition 8 Consider an execution of Algorithm 5.2 un-

der a fair scheduler. Let D(γ) be a function defined as the

shortest distance between a robot and its nearest neighbors

in configuration γ . Then, D(γ) is non-increasing.

Proof In distinct configurations, all robots execute only the

third clause of the test of Algorithm 5.2. So, a robot either

(1) executes Algorithm 5.1 and D(γ) is non-increasing by

Proposition 2, or (2) stays and D(γ) is non-increasing triv-

ially. ⊓⊔

Proposition 9 In an (n, f)-crash system, where n> f , with

a fair scheduler and multiplicity detection, let e be an ex-

ecution under Algorithm 5.2, and let e[t:] be any execution

suffix of e starting in a distinct configuration γt .

Then, with high probability, e[t:] contains a configura-

tion with maximal multiplicity larger than one.

Proof Given a distinct configuration γ , let us first define its

attractor graph AG(γ) to be a weighted directed graph in

which each robot is a vertex, and such that, there is an arc

from robot r to robot r′ if and only if r is not crashed in γ

and, upon activation in γ , r will select r′ as its target des-

tination according to Algorithm 5.2 (and by extension Al-

gorithm 5.1). The weight of an arc is given by the distance

separating the two robots. We say that r′ is the attractor of r

in configuration γ .

Each path in AG(γ) has non-increasing weights and ends

either in a cycle of equal weights or with a crashed robot.

Since n> f , there is at least one robot that never crashes, and

hence at least one path exists in every configuration of e.

Consider the execution fragment e[t:] starting in distinct

configuration γt , and take the extremity of one path in AG(γt)
such that the weight of the last arc(s) is minimal. Let us de-

note this weight by ∆(γt), and consider independently the

two possible situations regarding the extremity of the path.

1. The path ends with a crashed robot.

Let r′ be the crashed robot and r the last correct robot on

the path, with r′ as attractor. Then, ∆(γt) is the distance

separating r and r′ in γt .

Over successive activations in fragment e[t:], three situ-

ations may occur. When we say that a robot gets close

to r, we mean that there is a third robot r′′ such that

dist (r,r′′) ≤ dist(r,r′) and hence r changes its attractor

from r′ to r′′.

(a) Robot r does not crash and no other robot gets close

to r.

After
⌈

∆ (γt)
δr

⌉

successful moves of r, r reaches the

location of r′, resulting in a configuration with max-

imal multiplicity larger than one.

The number of activations follows a binomial distri-

bution, and hence this occurs after constant expected

number of activations of r. The scheduler being fair,

e[t:] contains a configuration with maximal multi-

plicity larger than one with high probability.

(b) Robot r crashes in configuration γt′ with t ′ > t.

We apply the same argument starting with configura-

tion γt′ and other robots. This happens at most f − 1

times.

(c) Robot r changes its attractor to another robot r′′ in a

configuration γt′ .

In γt′ , the distance dist(r,r′′) ≤ dist (r,r′). Take the

new path in which r is now involved and continue

applying the argument over its extremity with ∆(γt′)

such that:

∆(γt′)≤ dist
(
r,r′′
)
≤ dist

(
r,r′
)
≤ ∆(γt)

2. The path ends in a cycle.

The cycle involves q non-crashed robots (2≤q≤n), all

at distance ∆(γt) to their attractor.

Over successive activations in fragment e[t:], there are

several situations that may occur.

(a) No robots crash and no external robot gets close.

Each time some of the robots involved in the cycle

are activated, the following situations may occur.

i. Some other robot in the cycle is not activated.

Let r be an activated robot with attractor r′, such

that r′ is not activated.

With probability at least 1
n

robot r moves (while

r′ does not), and the cycle is broken. We apply

the argument again starting with the new con-

figuration γt′ , with ∆(γt′) such that:

∆(γt′)≤ dist
(
r,r′
)
− δr ≤ ∆(γt)− δr

ii. All robots in the cycle are activated.

There are three sub-cases:

– With probability
(
1− 1

n

)q
no robots move.

The situation does not change.

– With probability
(

1
n

)q
all robots move. The

situation remains if and only if (1) all robots

ri involved in the cycle have the same reach-

able distance δri
, and (2) ∆ [γt] = δri

.

In all other cases, ∆ [γt+1]< ∆ [γt].

– With remaining probability, a strict subset

of the robots move and the other don’t. This

is identical to the previous case, when some

robot is not activated. This results in the cy-

cle being broken, and we apply the argu-

ment again starting with the new configura-

tion γt′ , with ∆(γt′) such that:

∆(γt′)≤ dist
(
r,r′
)
− δr ≤ ∆(γt)− δr

(b) Some robot r in the cycle crashes in configuration γt′

with t ′ > t.

The path no longer ends in a cycle, and we apply the

19

argument starting in configuration γt′ and with ∆(γt′)

such that ∆(γt′)≤ ∆(γt).

(c) Some robot r changes its attractor to another robot

r′′ in a configuration γt′ .

This breaks the cycle and defines a new path involv-

ing r. We apply the argument over the extremity of

this path, with ∆(γt′) such that

∆(γt′)≤ dist
(
r,r′′
)
≤ ∆(γt)

Regardless of scheduler choices, the minimal distance from

a non-crashed robot to its attractor eventually decreases and,

with high probability, the system reaches a configuration

with multiplicity larger than one. ⊓⊔

Lemma 13 In an (n, f)-crash system, where n> f , with a

fair scheduler and multiplicity detection, let e be an execu-

tion under Algorithm 5.2. Let e′ be any execution suffix start-

ing in a configuration with multiple castles. Then, with high

probability, e′ contains a configuration with a single castle.

Proof Let γ be a configuration with K > 1 castles of multi-

plicity M in e′, and let us calculate the probability to reach a

configuration γ ′ with K′ castles of multiplicity M′ after the

next activation.

Let K denote the set of castles in γ . For each castle k ∈

K, let ik denote the number of (incoming) robots that can

enter castle k upon activation. To be counted, a robot must be

correct, located outside castle k, activated by the scheduler in

configuration γ , have castle k as its destination, and be able

to reach k in one step. Similarly, let ok denote the number

of (outgoing) robots that can leave castle k upon activation.

To be counted, a robot must be correct, located inside castle

k, and activated by the scheduler. Note that, when castles

are near, a single robot may be counted simultaneously as

an outgoing robot of some castle and an incoming robot of

another castle.

We now define a function BALANCE(i,o) to calculate

the probability that the movement of i incoming robots and o

outgoing robots exactly compensate each other. This is given

by the probability that the same number of incoming and

outgoing robots move, so that every departure of an outgoing

robot is compensated by the arrival of an incoming one.

BALANCE(i,o) = P[none move]+
min(i,o)

∑
m=1

P[m arrive/depart]

= (1−
1

M
)i+o +

min(i,o)

∑
m=1

(
i

m

)

(
1

M
)m(1−

1

M
)i−m

×

(
o

m

)

(
1

M
)m(1−

1

M
)o−m

= (1−
1

M
)i+o +

min(i,o)

∑
m=1

[(
i

m

)(
o

m

)

(
1

M
)2m(1−

1

M
)(i+o−2m)

]

= (1−
1

M
)i+o

(

1+
min(i,o)

∑
m=1

(
i

m

)(
o

m

)

(
1

M− 1
)2m

)

We define the function INCREASE(i,o,x) to return the

probability that the multiplicity of a castle increases by x

in the presence of i incoming robots and o outgoing robots.

This is the probability that x incoming robots move with the

remaining incoming and outgoing robots compensating each

other’s movements.

INCREASE(i,o,x) =

(
i

x

)

(
1

M
)x ·BALANCE(i− x,o)

Let Pinc(K
′,x) return the probability that configuration

γ ′ has exactly K′ castles of multiplicity M′ = M + x. That

probability can be expressed as the probability that any sub-

set K′ of K′ castles increase their multiplicity by x and all

remaining castles do not increase multiplicity to any value

x′ larger or equal to x. Let P=K′(K) denote the set of sub-

sets of K of cardinality K′, and we can express Pinc(K
′,x) as

follows.

Pinc(K
′,x)=

∏
K′∈P=K′ (K)

∏
k′∈K′

INCREASE(ik′ ,ok′ ,x)

× ∏
k′′∈K\K′

ik′′

∏
x′=x

(
1−INCREASE(ik′′ , ok′′ , x′)

)

The probability of having a single castle in the next con-

figuration is obviously at least as high as having a single

castle by increasing the multiplicity of one of them by one.

So, we can state the following inequality

P [γ ′ has one single castle]≥ Pinc(K
′ = 1,x = 1)

The exact probability must consider increases of the multi-

plicity by more than one, and the change in number of cas-

tles due to a decrease of the multiplicity. However, this is

sufficient for the proof since, as we are not concerned here

with measuring an actual convergence rate, the mere exis-

tence of a transition with positive probability is sufficient.

Let us consider the configurations for which Pinc(K
′ =

1,x = 1) is zero. From the formula obtained for Pinc, we see

that it is zero when, for all castle k, ik is zero. This can occur

in several situations.

20

– All robots have crashed.

This contradicts the assumption that f < n which implies

that there is at least one correct robot (i.e., a robots that

never fails).

– The “near” robots are never activated.

This contradicts the assumption that the scheduler is fair.

If some “near” and correct robots exist, they must be

activated eventually.

– There are no “near” robots.

When a “far” robot r is activated, its distance to the near-

est castle decreases by δr (to simplify the discussion we

omit the case of the side move). Thus, either the config-

urations of castle change or r becomes a “near” robot.

So, with high probability, e′ contains a configuration with a

single castle. ⊓⊔

Theorem 19 In an (n, f)-crash system, where n> f , Algo-

rithm 5.2 probabilistically solves weak gathering under a

fair scheduler if robots are aware of multiplicity.

Proof Closure is satisfied by Algorithm 5.2 because, in a

gathered configuration, all correct robots are by definition

located on a unique castle, and hence do not move when ac-

tivated. Thus, a gathered configuration always follows after

a gathered configuration and closure is satisfied.

To show convergence, let us consider an adversary Adv,

as defined by (1) an initial configuration, (2) an activation

strategy, and (3) control of robot crashes. However, Adv has

no control on random choices made by robots, and no prior

knowledge of their outcomes. The goal of Adv is then to

construct an infinite execution ε̄ that contains no gathered

configurations, and such that ε̄ occurs with non-zero proba-

bility.

From Proposition 7, the formation of a single castle leads

to a gathered configuration. So, Adv must prevent the for-

mation of a single castle. Let us now focus on the number of

castles in each configuration and look at the transitions when

this changes. Figure 5 depicts a Markov chain that represents

the changes in the number of castles. The chain provides

a conservative estimation by integrating simplifications that

systematically favor Adv. Since we are not concerned here

with measuring the actual convergence rate, the mere exis-

tence of transitions with a positive probability is sufficient.

We now describe its construction.

Assume first that the system is in a distinct configura-

tion. From Proposition 9, Adv cannot prevent the formation

of castles. It can however control activations so that several

castles are formed simultaneously. To maximize the chance

of creating multiple castles, Adv can postpone the activations

of every robot that can reach its nearest neighbor, until all

robots form pairs14 of mutually nearest neighbors. Then, all

14 Situations in which robots form a chain or a cycle result in the

creation of fewer castles, which is less favorable to the adversary Adv.

1

single

23K⌊ n
2
⌋

D

distinct

0

all destroyed

G

gathered

pKi =
(

K
i

)
pi(1− p)K−i

p0i =
(⌊n/2⌋

i

)
1

2
⌊ n

2
⌋

1 1

.

pK3

pK2

pK1pKK

pK0

p00

p01p02p03p0K

p0 n
2

Fig. 5: Markov chain representing the transitions of changes

in the number of castles. A number represents the number

of castles in the configurations. For every K ∈ {2, . . . ,⌊ n
2
⌋},

outgoing transitions follow a binomial distribution (only K

depicted). Transitions from K to distinct are ignored because

transitioning to state 0 instead favors an adversary. State 1

(single castle) leads to a gathered configuration, which is ab-

sorbing. When all castles are destroyed, a worst-case choice

leads to ⌊ n
2
⌋ castles (e.g., with lower multiplicity) in the next

configuration.

robots are activated and move with probability 1
2
, resulting

in a number of castles that follows a binomial distribution

B(⌊ n
2
⌋, 1

2
).

P [x castles created] = p0x =

(
⌊ n

2
⌋

x

)
1

2⌊
n
2 ⌋

When no castles are created, the resulting configuration is

distinct and the process repeats itself.

Assume now that the system is in a configuration with

K > 1 castles. The number of castles can change in two pos-

sible ways: (1) independent robots moving inside a castle,

or (2) robots leaving a castle thus destroying it.

When independent robots move inside a castle, no addi-

tional castle can be created in the next configuration (from

Proposition 5). Looking at the best case (for Adv) when one

independent robot is ready to move inside every castle, we

obtain that the probability of castle creation follows a bino-

mial distribution B(K, 1
M
).

P [x castles created] = pKx =

(
K

x

)

(
1

M
)x(1−

1

M
)K−x

When no castles are created, the resulting configuration is

identical and the situation is repeated.

When robots leaving castles result in their destruction,

there can be three possible outcomes in the configuration

that follows:

– Several castles remain. There can be no more than K

castles.

21

– A single castle remain. This is the situation that Adv

must avoid.

– All castle destroyed. The next configuration has a lower

maximal multiplicity, and can result in a larger number

of castles of multiplicity lower than M.

The probability that a given castle is not destroyed by some

robot moving outside has the following probability

P [castle not destroyed] = αM = (
1

M
)M = p(M)

For a configuration to have multiple castles, M must nec-

essarily be between 2 and ⌊ n−1
2
⌋. For any of these values,

both p(M) and 1− p(M) are strictly positive. To simplify

the model (Fig. 5), we assume that it is a positive constant p

with 0 < p < 1, chosen to be the value that favors the adver-

sary most, and that does not depend on multiplicity. Again,

its exact value is secondary, as long as it is strictly positive

for any value of K, M, and n finite.

The number of castles in the following configuration fol-

lows a binomial distribution B(K,αM)

P [x castles size M remain] = pKx =

(
K

x

)

px(1− p)K−x

When no castles remain, the maximal multiplicity decreases

and a larger number of castles of lower multiplicity may

be created. Unless the next configuration is distinct, there

can be no more than ⌊ n
2
⌋ castles in the resulting configura-

tion. We observe that, from the viewpoint of the adversary

Adv, the best case is when the maximal number of castles

are formed. So, we assume that the destruction of all castles

in a configuration always leads to a configuration with the

maximal number of castles.

Putting this together gives us the Markov chain depicted

in Fig. 5. For configurations with multiple castles, the fig-

ure shows only the transitions from state K. According to

Proposition 7, configurations with a single castle lead to a

gathered configuration with probability 1.

The resulting Markov chain contains a single absorb-

ing state G. It is a well-known result that, in an absorbing

Markov chain, the process will be absorbed with probabil-

ity 1. Since the only absorbing state is G (gathered), conver-

gence is satisfied with probability 1. ⊓⊔

6 Byzantine Tolerant and Self-stabilizing Gathering

We study now the feasibility of gathering in systems prone

to Byzantine failures.

Agmon and Peleg [1] proved the impossibility of weak

gathering in a (3,1)-Byzantine system under a fair scheduler

(Theorem 5). The result applies to both SYm and CORDA

models. The following lemma proves that the impossibility

still holds under a round-robin scheduler, and even if the

algorithm is probabilistic.

Lemma 14 In a Byzantine-prone system, there is no deter-

ministic or probabilistic algorithm that solves (n, f)-weak

gathering, f ≥ 1 and n > f +1, under a round-robin sched-

uler without additional assumptions.

Proof By contradiction, let A be an algorithm that solves

gathering. Assume that a single robot rB is Byzantine (or let

the other Byzantine robots behave like correct ones). Let A

execute normally until all robots share the same location P.

When activated, let rB move to a second location P′ selected

as follows:

– if A is deterministic, chose P′ such that, applying the

criteria used in A when selecting a target location, some

correct robot r will move to P′.

– if A is probabilistic, chose any P′ 6= P.

In either case, a correct robot r must move because, robots

being oblivious, they have no way to know that gathering

was already achieved. Furthermore, in the absence of multi-

plicity detection, there is no way to distinguish P and P′ by

their multiplicity. Since there are at least two correct robots

(n > f + 1) and the scheduler is centralized, the move of r

toward P′ results in a non-gathered configuration.

The situation can be repeated each time the system is

in a gathered configuration. This clearly violates the closure

property of weak gathering, since closure requires that any

execution suffix starting in a gathered configuration contains

only gathered configurations. Thus, A does not solve weak

gathering. ⊓⊔

6.1 Deterministic Byzantine Gathering

The following lemma shows that if the power of the sched-

uler is increased, weak gathering is impossible in a (3,1)-

Byzantine system, even if robots are aware of the system

multiplicity.

Lemma 15 In a (3,1)-Byzantine system, there is no deter-

ministic algorithm that solves weak gathering under a fair

centralized k-bounded scheduler with k ≥ 2, even if robots

are aware of multiplicity.

Proof Assume an arbitrary initial configuration, a configu-

ration where robots occupy distinct positions. The general

proof idea is the following : the byzantine node plays the at-

tractor role, hence the system never reaches a terminal con-

figuration. Consider a schedule Sch such that after each exe-

cution of a correct robot the scheduler gives the permission

to the byzantine robot to move. This schedule verifies the

specification of the 2-bounded scheduler. Assume that each

time a correct node chooses to move, it chooses as target the

location of the Byzantine node. Then, following the sched-

uler Sch the Byzantine node will replace the location of the

node that just joined its location. Therefore, the system never

converges.

22

The following lemma establishes a lower bound for the

fair centralized bounded scheduler that prevents the deter-

ministic gathering.

Lemma 16 In an (n, f)-Byzantine system with n even and

f ≥ 1, there is no deterministic algorithm that solves weak

gathering under a fair centralized k-bounded scheduler with

k ≥
⌈

n− f
f

⌉

, even if robots are aware of multiplicity.

Proof Consider an initial configuration such that the con-

figuration is bivalent with two locations having equal multi-

plicity (n is even), and robots are reachable from each other.

Assume that the Byzantine robots are spread evenly between

the two locations. Let g1 and g2 be the two groups, such that,

if f is odd, g1 has one more Byzantine robot than g2. Con-

sider the following activation schedule.

– Activate a correct robot in g2: it must necessarily move

to g1 or else no execution could possibly reach gather-

ing.

– Activate a Byzantine robot in g1, and let it move to g2.

The resulting configuration is symmetrical to the origi-

nal one.

By repeating the same sequence, a Byzantine robot counter-

balances every move of a correct robot, and the system is

always in a bivalent configuration.

Since there is a total of n− f correct robots and f Byzan-

tine robots, the adversary can distribute the moves between

the Byzantine robots. Thus, between each consecutive ac-

tivation of a correct robot, the adversary must activate a

Byzantine robot only
⌈

n− f
f

⌉

times. ⊓⊔

The following lemma states a lower bound for a bounded

scheduler that prevents deterministic gathering.

Lemma 17 In an (n, f)-Byzantine system with n odd and

f ≥ 2, there is no deterministic algorithm that solves weak

gathering under a fair centralized k-bounded scheduler with

k ≥
⌈

n− f
f−1

⌉

, even if robots are aware of multiplicity.

Proof Let the initial configuration be a bivalent configura-

tion such that robots are reachable from each other and the

multiplicity of the two locations differ by one.

Let ga be the small group and gb the big one. Let all f

Byzantine robots be in gb. If there are more than half Byzan-

tine robots, then simply let all robots in gb be Byzantine

ones.

Now, call one of the Byzantine robots in gb the switch

rsw, and consider the following schedule:

1. Activate a correct robot in ga, say r. It must be instructed

to move to the other point of multiplicity, or else gather-

ing would not possibly be achieved in a fault-free case.

2. Each time a correct robot moves to gb, activate a Byzan-

tine robot in gb (except the switch rsw), and let it move

to ga.

3. Repeat the procedure until one of the following condi-

tion holds: (1) all correct robots originally in ga have

moved, or (2) all Byzantine robots originally in gb have

moved, except rsw.

4. Move rsw to ga, which becomes now the larger group.

5. Repeat the procedure with correct robots in gb so that

they move to ga.

At each iteration of the procedure, f−1 correct robots move

from one group to the other, while f −1 Byzantine robots

negate their move.

Thus, a Byzantine robot needs to be activated at most
⌈

n− f
f−1

⌉

times between two consecutive activations of a cor-

rect robot, . ⊓⊔

7 Summary

We have summarized most of the theorems, their relation-

ships, and their scope into tables (Table 1 and 2). Results

are grouped according to the problem (strong or weak gath-

ering) and the fault models: strong gathering in fault-free

(Table 1a) and single crash (Table 1b) environments; as well

as weak gathering in multiple crashes (Table 2a) and single

Byzantine environments (Table 2b).

All tables are designed to be read as follows: Each row

represents a different scheduler, while columns distinguish

other assumptions, such as multiplicity, conditions on the

number of robots n, conditions on the maximum number of

faulty robots f , or whether deterministic or probabilistic so-

lutions are admissible.

Each cell answers whether the problem admits a solu-

tion under the corresponding set of assumptions. A positive

result appears as “OK” followed by the number of the corre-

sponding lemma or theorem in brackets. Conversely, a neg-

ative result (impossibility) is denoted by “NO” and a greyed

background.

An “OK” or “NO” in bold means that the cell corre-

sponds to the assumptions stated explicitly in the relevant

theorem. When the text appears in normal face, the result

comes instead as a consequence of the theorem and the rela-

tionship between assumptions. For instance, a positive result

expressed and proved with an unfair centralized scheduler

(e.g., Table 1a; L.3) necessarily applies to the more restric-

tive schedulers, such as the fair centralized or round-robin

schedulers, even though this is implicit.

7.1 Strong self-stabilizing gathering

The results pertaining to the strong gathering in a fault-free

model are summarized in Table 1a, while those related to the

crash model with a single faulty robot are in Table 1b. The

tables are divided vertically according to the availability of

23

Table 1: Strong gathering problem

(a) Fault-free model

multiplicity without multiplicity

deterministic probabilistic Scheduler deterministic probabilistic

n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3

NO(Th.1) OK(L.4) unfair NO(Th.1) NO(Th.3) OK(L.4) NO(L.5)

OK(L.3) OK(L.4) unfair centr. OK(L.3) NO(Th.15) OK(L.4) NO(L.5)

NO(Th.1) OK(Th.2) OK(L.4) OK(Th.2) fair NO(Th.1) NO(Th.3) OK(L.4) NO(L.5)

OK(L.3) OK(Th.2) OK(L.4) OK(Th.2) fair centr. OK(L.3) NO(Th.15) OK(L.4) NO(L.5)

NO(Th.1) OK(Th.2) OK(L.4) OK(Th.2) fair k-bounded NO(Th.1) NO(Th.15) OK(L.4) OK(Th.17)

OK(L.3) OK(Th.2) OK(L.4) OK(Th.2) fair 2-bounded centr. OK(L.3) NO(Th.15) OK(L.4) OK(Th.17)

NO(Th.1) OK(Th.2) OK(L.4) OK(Th.2) fair 1-bounded NO(Th.1) NO/?(Th.14/16)a OK(L.4) OK(Th.17)

OK(L.3) OK(Th.2) OK(L.4) OK(Th.2) round-robin OK(L.3) NO/?(Th.14/16)a OK(L.4) OK(Th.17)
a Special: Th. 14 proves the impossibility of self-stabilizing gathering. Th. 16 proves it for gathering provided Conjecture 1 holds.

(b) Crash model; f = 1

multiplicity without multiplicity (f = 1)

deterministic probabilistic Scheduler deterministic probabilistic

n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3 n = 2 n ≥ 3

NO(Th.1) NO(L.7) OK(L.9) NO(L.8) unfair NO(Th.1) NO(Th.3) OK(L.9) NO(L.5)

OK(L.10) NO(L.7) OK(L.9) NO(L.8) unfair centr. OK(L.10) NO(L.7) OK(L.9) NO(L.5)

NO(Th.1) NO(L.7) OK(L.9) NO(L.8) fair NO(Th.1) NO(Th.3) OK(L.9) NO(L.5)

OK(L.10) NO(L.7) OK(L.9) NO(L.8) fair centr. OK(L.10) NO(L.7) OK(L.9) NO(L.5)

NO(Th.1) NO(L.7) OK(L.9) OK(L.11) fair k-bounded NO(Th.1) NO(L.7) OK(L.9) OK(L.11)

NO(Th.1) NO(L.7) OK(L.9) OK(L.11) fair 1-bounded NO(Th.1) NO(L.7) OK(L.9) OK(L.11)

OK(L.10) NO(L.7) OK(L.9) OK(L.11) round-robin OK(L.10) NO(L.7) OK(L.9) OK(L.11)

multiplicity detection, then whether gathering is determin-

istic or probabilistic, and finally to the number of robots n

(i.e., n = 2 or n > 2). Note that, when n = 2, the detection of

multiplicity is irrelevant, and thus the results are identical in

both columns.

7.1.1 Fault-free model

As shown on Table 1a, in the absence of multiplicity detec-

tion, a bounded scheduler is both necessary and sufficient

for solving probabilistic gathering of more than two robots.

There is however no deterministic solution, regardless of the

scheduler (i.e., even if the scheduler is round-robin).

In the presence of multiplicity detection, gathering is

known to be possible with a fair scheduler, as proved by

Suzuki and Yamashita [19]. The question remains open in

the case of unfair schedulers.

When there are only two robots, gathering is known to

be more difficult than with three or more robots, since all

configurations are symmetrical. Suzuki and Yamashita [19]

have proved the impossibility under a fair scheduler, and

their proof actually applies to more restrictive schedulers,

such as the fair 1-bounded scheduler. Interestingly, the prob-

lem becomes solvable under all classes of centralized sched-

ulers, even the unfair ones.

7.1.2 Crash model

Table 1b summarizes the results obtained for the strong gath-

ering problem with at most one robot crash.

Interestingly, without multiplicity detection, the results

obtained for the fault-free and the crash models are identical,

although they are covered by different theorems. Unlike in

the fault-free model, multiplicity detection does not seem to

help solve gathering. Indeed, in the crash model, results are

identical whether or not robots are able to detect multiplicity,

whereas they differed widely in the fault-free case.

In other words, while the introduction of multiplicity de-

tection is indeed determinant in the fault-free case, it has no

effect on solvability when faced with a single crashed robot.

7.2 Weak self-stabilizing gathering

Table 2 summarizes the results for weak gathering. Let us

first remind that, in the fault-free model, there is actually

no difference between strong and weak gathering (since the

only difference in definitions is about the requirements put

on the faulty robots), and thus the results of Table 1a, al-

though not repeated, are of course also relevant here.

Table 2a summarizes the results for weak gathering (i.e.,

only the correct robots are required to gather at the same lo-

cation) and distinguishes between the case of a single crash

and multiple crashes. One interesting observation is that, in

24

Table 2: Weak gathering problem

(a) Crash model

f = 1 2 ≤ f < n

multiplicity without multiplicity Scheduler multiplicity without multiplicity

determ. proba. determ. proba. determ. proba. determ. proba.

NO(Th.3) NO(L.5) unfair NO(L.12) NO(L.12)

NO(Th.15) NO(L.5) unfair centr. NO(L.12) NO(L.12)

OK(Th.4)b OK(Th.19) NO(Th.3) NO(L.5) fair NO(N. 2) OK(Th.19) NO(L.12) NO(L.12)

OK(Th.18) OK(Th.18) NO(Th.15) NO(L.5) fair centr. OK(Th.18) OK(Th.18) NO(L.12) NO(L.12)

OK(Th.4) OK(Th.19) NO(Th.15) OK(L.11) fair k-bounded NO(N. 2) OK(Th.19) NO(L.12) NO(L.12)

OK(Th.4) OK(Th.19) NO/?(Th.14/16)a OK(L.11) fair 1-bounded NO(N. 2) OK(Th.19) NO(L.12) NO(L.12)

OK(Th.18) OK(Th.18) NO/?(Th.14/16)a OK(L.11) round-robin OK(Th.18) OK(Th.18) NO(L.12) NO(L.12)
a Special: Th. 14 proves the impossibility of self-stabilizing gathering. Th. 16 proves it for gathering provided Conjecture 1 holds.
b Note that the results derived from Theorem 4 hold for the case (3,1). According to Note 2, in the case of (n,1)-crash, weak gathering

is possible only if, during the execution, each configuration has at most one multiplicity point. Therefore, the self-stabilizing (n,1) weak-

gathering is impossible since the initial configuration can contain more than one multiplicity point.

(b) Byzantine model

multiplicity; deterministic

f = 1 2 ≤ f < n/2

n ≥ 4 n ≥ 4 n ≥ 4 n ≥ 4

Scheduler n = 3 (even) (odd) (even) (odd)

unfair NO(Th.5) NO(L.16) NO(L.16) NO(L.17)

unfair centr. NO(L.15) NO(L.16) NO(L.16) NO(L.17)

fair NO(Th.5) NO(L.16) NO(L.16) NO(L.17)

fair centr. NO(L.15) NO(L.16) NO(L.16) NO(L.17)

fair k-bounded NO(L.15) NO(L.16) NO(L.16) NO(L.17)

(k ≥ n−1)-bounded NO(L.15) NO(L.16) NO(L.16) NO(L.17)

(Γ (n, f)≤ k ≤ n−2)-bounded NO(L.15) NO(L.16) NO(L.16) NO(L.17)

(2 ≤ k < Γ (n, f))-bounded NO(L.15)

fair 1-bounded

centr. (k ≥ n−1)-bound. NO(L.15) NO(L.16) NO(L.16) NO(L.17)

centr. (Γ (n, f)≤ k ≤ n−2)-bound. NO(L.15) NO(L.16) NO(L.16) NO(L.17)

centr. (2 ≤ k < Γ (n, f))-bound. NO(L.15)

round-robin

fully synchronized OK(Th.6) OK(Th.7) OK(Th.7) OK(Th.7) if n ≥ 3 f +1

Γ (n, f) =
{⌈

n− f
f

⌉

if n even;
⌈

n− f
f−1

⌉

if n odd
}

the case of a single crash (left part of Table 2a), results of

weak with respect to strong gathering differ only if robots

are able to detect multiplicity. In particular, Theorems 18

and 19 show that weak gathering is possible with schedulers

for which strong gathering is not. This is because a system

may reach a stable configuration in which all robots except

the faulty one share the same location. In such a configura-

tion, weak gathering is achieved but strong gathering is not.

In the case of multiple crashes and without multiplicity

detection, even probabilistic gathering is impossible under

any of the schedulers considered. With multiplicity detec-

tion and fair schedulers, however, probabilistic gathering is

possible under any fair scheduler while deterministic gather-

ing is possible if and only if the scheduler is also centralized.

The question remains open for unfair schedulers, but we be-

lieve that the answer depends greatly on minute details in

the definition of the unfair scheduler.

7.3 Byzantine model

While Byzantine gathering is possible in fully synchronous

environments, other positive results remain quite elusive.

We have been able to extend impossibility results, but un-

able to find additional solutions for other models.

Under very specific assumptions, Algorithm 5.1 is likely

to solve Byzantine gathering for some values of f , n, and

k. However, this requires very specific assumptions, among

which the requirement that Byzantine robots have a mobil-

ity range no larger than the correct ones. We have found

a counter-example where the algorithm fails without this

assumption, and thus omitted entirely from the study, thus

leaving the question open.

25

8 Conclusion

The results presented in this paper extend prior work on

the self-stabilizing gathering problem in fault-free and fault-

prone environments, by shading light on the subtil line be-

tween possibility and impossibility. Most notably, we iden-

tify the role that additional synchrony, embodied by sched-

ulers, can play toward making the problem possible. So far,

our work is the most extensive study on the combined roles

that randomization, multiplicity, and schedulers (centralized

and bounded) can play in allowing a solution to fault-free

and fault-tolerant gathering.

In particular, we have strengthened several key impos-

sibility results on gathering, including Prencipe’s [17] im-

possibility of fault-free gathering in the absence of multi-

plicity strengthened to cover up to the round-robin or 2-

bounded centralized schedulers (depending on the definition

of the problem), and Agmon and Peleg’s [1] impossibility of

Byzantine gathering under a fair scheduler extended to cover

bounded centralized schedulers.

The main results of the paper are summarized in Ta-

ble 1a for fault-free systems; in Table 1b and Table 2a for

strong, resp. weak, gathering in crash-prone systems; and

in Table 2b for weak gathering problem in Byzantine-prone

systems.

The main results of the paper are summed up in Table 1a

for fault-free systems; in Table 1b and Table 2a for strong

respectivelly weak gathering in crash-prone systems; and in

Table 2b for the weak gathering problem in Byzantine-prone

systems.

Acknowledgments

We are grateful to François Bonnet, the editor, and the re-

viewers for their insightful and valuable comments.

Research partly supported by JSPS KAKENHI Grants

No. 23500060 and No. 26330020.

References

1. N. Agmon and D. Peleg. Fault-tolerant gathering algorithms

for autonomous mobile robots. SIAM Journal of Computing,

36(1):56–82, 2006.

2. H. Ando, Y. Oasa, I. Suzuki, and M. Yamashita. Distributed

memoryless point convergence algorithm for mobile robots with

limited visibility. IEEE Trans. on Robotics and Automation,

15(5):818–828, October 1999.

3. Zohir Bouzid, Shantanu Das, and Sébastien Tixeuil. Gathering of

mobile robots tolerating multiple crash faults. In IEEE 33rd Inter-

national Conference on Distributed Computing Systems, ICDCS

2013, 8-11 July, 2013, Philadelphia, Pennsylvania, USA, pages

337–346, 2013.

4. Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and Sébastien

Tixeuil. Byzantine convergence in robot networks: The price of

asynchrony. In Principles of Distributed Systems, 13th Interna-

tional Conference, OPODIS 2009, Nı̂mes, France, December 15-

18, 2009. Proceedings, pages 54–70, 2009.

5. Zohir Bouzid, Maria Gradinariu Potop-Butucaru, and Sébastien

Tixeuil. Optimal byzantine-resilient convergence in uni-

dimensional robot networks. Theor. Comput. Sci., 411(34-

36):3154–3168, 2010.

6. R. Cohen and D. Peleg. Convergence of autonomous mobile

robots with inaccurate sensors and movements. In B. Durand and

W. Thomas, editors, 23rd Annual Symposium on Theoretical As-

pects of Computer Science (STACS’06), volume 3884 of LNCS,

pages 549–560, Marseille, France, February 2006. Springer.

7. X. Défago, M. Gradinariu Potop-Butucaru, S. Messika, and

P. Raipin-Parvédy. Fault-tolerant and self-stabilizing mobile

robots gathering: Feasibility study. DISC’06, pages 46–60, 2006.

8. Yoann Dieudonné and Franck Petit. Self-stabilizing gathering

with strong multiplicity detection. Theor. Comput. Sci., 428:47–

57, 2012.

9. S. Dolev. Self-Stabilization. MIT Press, 2000.

10. P. Flocchini, G. Prencipe, and N. Santoro. Distributed Computing

by Oblivious Mobile Robots. Synthesis Lectures on Distributed

Computing Theory. Morgan & Claypool Publishers, 2012.

11. P. Flocchini, G. Prencipe, N. Santoro, and P. Widmayer. Gathering

of asynchronous mobile robots with limited visibility. Theoretical

Computer Science, 337:147–168, 2005.

12. Ta. Izumi, To. Izumi, S. Kamei, and F. Ooshita. Feasibility

of polynomial-time randomized gathering for oblivious mobile

robots. IEEE Trans. Parallel Distrib. Syst., 24(4):716–723, 2013.

13. N. A. Lynch. Distributed Algorithms. Morgan Kaufmann, San

Francisco, CA, USA, 1996.

14. N. A. Lynch, R. Segala, and F. W. Vaandrager. Hybrid I/O au-

tomata. Information and Computation, 185(1):105–157, August

2003.

15. N. Megido. Linear-time algorithms for linear programming in R
3

and related problems. SIAM Journal of Computing, 12(4):759–

776, 1983.

16. G. Prencipe. CORDA: Distributed coordination of a set of au-

tonomous mobile robots. In Proc. 4th European Research Seminar

on Advances in Distributed Systems (ERSADS’01), pages 185–

190, Bertinoro, Italy, May 2001.

17. G. Prencipe. On the feasibility of gathering by autonomous mo-

bile robots. In A. Pelc and M. Raynal, editors, Proc. Struc-

tural Information and Communication Complexity, 12th Intl Coll.,

SIROCCO 2005, volume 3499 of LNCS, pages 246–261, Mont

Saint-Michel, France, May 2005. Springer.

18. S. Souissi, X. Défago, and M. Yamashita. Using eventually con-

sistent compasses to gather memory-less mobile robots with lim-

ited visibility. ACM Trans. Autonomous and Adaptive Systems,

4(1):9:1–27, 2009.

19. I. Suzuki and M. Yamashita. Distributed anonymous mobile

robots: Formation of geometric patterns. SIAM Journal of Com-

puting, 28(4):1347–1363, 1999.

A Appendix

A.1 Necessity of the Side Move for Algorithm 5.1

We must now show the necessity of introducing a side move in Al-

gorithm 5.1. Assuming that robots execute the naive algorithm (Algo-

rithm 5.1 without the clause executing the side move), we exhibit a

situation in which the robots are unable to gather (depicted in Fig. 6):

Consider the initial configuration depicted in Figure 6a. Assume

that the reachable distance of all robots is the same and call it δ . Let D

be some arbitrary distance strictly larger than δ . The robots (or a subset

26

QFarL QFarRWL WR

rL rR
D

≥ 5D

D

≥ 5D

(a) Initial Configuration: D > δ

QFarL QFarRWL WR

rL rR

(b) rR active: moves toward nearest castle (WL ∪{rR})

QFarL QFarRWL WR

rL rR

δ

(c) rL active: moves toward nearest castle (QFarL)

QFarL QFarRWL WR

rL rR

(d) rR active: moves toward nearest castle (QFarR)

QFarL QFarRWL WR

rL rR

(e) rL active: moves toward nearest castle (WR ∪{rR})

Fig. 6: Illustration of the necessity of introducing the side

move. The naive algorithm (without side move) can result

in and endless cycle.

thereof) are initially located such that they form four castles on a seg-

ment. Let QFarL,QFarR be the two castles at both ends of the segment

and assume that they consist only of crashed robots. Let WL,WR be two

towers such that they become a castle by adding one robot. For sim-

plicity, assume again that they also consist only of crashed robots. Let

rL, rR be two correct robots initially with WL,WR respectively. The lo-

cation of the four castles is symmetric such that the midpoint between

QFarL and QFarR is also the midpoint between WL and WR. The distance

between WL and WR is 2D and the distance between QFarL and QFarR is

at least 10D.

Consider the scheduler as an adversary following a round-robin

policy. First, rR is active (Fig. 6b). According to the naive algorithm, rR

must move toward the nearest castle, which is the castle formed by WL

and rL. The dashed lines on the figure represent the boundaries of the

Voronoi cells of each of the three castles: {QFarL,QFarR,WL ∪{rL}}.

Since rR is located inside the Voronoi cell of castle WL ∪{rL}, it moves

toward it.

Second, rL is active (Fig. 6c). Since rR has moved in the previous

step, WR is no longer the location of a castle. Now, rL is located inside

the Voronoi cell of QFarL and moves toward it.

Third, rR is active again (Fig. 6d). There are only two castles left on

the configuration, namely QFarL and QFarR. Since D > δ , rR is located

to the right of the midpoint between WL and WR, which is also the

midpoint between QFarL and QFarR. This means that rR is in the Voronoi

cell of QFarR and hence moves toward it. But, because rR is at distance

δ to WR, it ends its movement exactly at WR, thus forming a castle

again.

Fourth, rL is active and there are three castles (Fig. 6e). By con-

struction, WR is located at a distance at least 6D from QFarL, and hence

rL remains inside the Voronoi cell of the castle formed by WR and rR.

rL is also at a distance δ from WL , and hence ends its movement ex-

a

b

θ+

Q

P

Va

Vb

Vcell(q)
: y=

m
x+

a+
b

a
′

b
′

P′

Fig. 7: Disambiguated side move. a
a+b

= a′

a′+b′
.

actly at WL, forming a castle. This leads back to the initial configuration

(Fig. 6a), and thus the cycle continues forever.

A.2 Disambiguation of Side Move for Algorithm 5.2

Algorithm A.1 Disambiguation of side move (robot at p).

Procedure:

SIDEMOVE(p,q,Π) −→
set origin at q

let Πq ⊂ Π be all robots in Vcell(q) or on its boundary.

let rCW be the first robot clockwise in Πq starting from p.

let θCW be angle ∠pqrCW or π , whichever is smaller.

let θ+ be one third of θCW .

let vp be the intersection of qp and the boundary of Vcell(q).
let ray be the ray from q with clockwise angle θ+ from qp.

let Va be the intersection of ray with Vcell(q).
let Vb be the intersection of ray with the circumference of D.

let V ′ be Va or Vb, whichever is nearest q.

let vector target = dist(q,p)

dist(q,vp)
qv′.

move toward point target.

Algorithm A.1 describes one method to disambiguate the side move,

and is illustrated in Figure 7. The lengths a and b depend on the posi-

tion of robot P on the ray from castle Q relative to the boundary of the

Voronoi cell of Q.

The construction uses a trisection of the sector S calculated in the

original side move. This ensures that a robot moving from a different

ray does not end up at the same location.

In addition, taking the minimum between points Va and Vb ensures

that the segment QV ′ lies entirely within the zone desired for a side

move. Since the zone is convex (intersection of three convex areas),

segment PV ′ lies entirely inside the zone.

27

α =
a

a+b
∈ (0;1] (1)

a′(α) = min

(

α2 cosθ+,
α

cosθ+− 1
m

sinθ+

)

(2)

Since a′(α) is taken as the minimum of two functions that are both

monotonic increasing in α over the range considered, a′(α) is itself

monotonic increasing. It follows that, for two values α1 and α2 with

α1 6= α2, the segments from P(α) to P′(α) do not cross.

