
HAL Id: hal-01274956
https://hal.science/hal-01274956v1

Submitted on 16 Feb 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Overview of Discrete Event Systems Opacity: models,
validation, and quantification

Romain Jacob, Jean-Jacques Lesage, Jean-Marc Faure

To cite this version:
Romain Jacob, Jean-Jacques Lesage, Jean-Marc Faure. Overview of Discrete Event Sys-
tems Opacity: models, validation, and quantification. Annual Reviews in Control, 2016,
�10.1016/j.arcontrol.2016.04.015�. �hal-01274956�

https://hal.science/hal-01274956v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Overview of Discrete Event Systems Opacity:
models, validation, and quantificationI

Romain Jacoba,∗, Jean-Jacques Lesagea,∗, Jean-Marc Faureb

aLURPA, ENS Cachan, Univ. Paris-Sud, Université Paris-Saclay, 94235 Cachan, France
bLURPA, ENS Cachan, Univ. Paris-Sud, Supmeca, Universit Paris-Saclay, 94235 Cachan, France

Abstract

Over the last decade, opacity of discrete event systems (DES) has become a very fertile field of research. Driven by
safety and privacy concerns in network communications and online services, much theoretical work has been conducted
in order to design opaque systems. A system is opaque if an external observer in unable to infer a ”secret” about the
system behavior. This paper aims to review the most commonly used techniques of opacity validation for deterministic
models and opacity quantification for probabilistic ones. Available complexity results are also provided. Finally, we
review existing tools for opacity validation and current applications.

Keywords: Opacity, Discrete event systems, Validation, Verification, Enforcement, Quantification, Secrecy, Privacy,
Security

1. Introduction

Online services and network communications have be-
come ubiquitous over the past 30 years. This evolution
in our everyday life brought along new preoccupations
regarding security and privacy. Despite continuously re-
leasing tons of information about everything we do and
think, we still want some information to remain secret.
Thus, a new problem has arisen in computer science, called
Information Flow. It characterizes the (possibly illegal
and indirect) transmission of secret data from a high level
user to a low level one. Various information flow proper-
ties have been defined in the literature: anonymity, non-
interference, secrecy, privacy, security, and opacity; e.g.,
refer to Schneider & Sidiropoulos (1996); Focardi & Gorri-
eri (1994); Hadj-Alouane et al. (2005); Bérard et al. (2015a);
Alur et al. (2006).

In this paper, we focus on opacity. It is a general in-
formation flow property: anonymity and secrecy can be
formulated as opacity problems. Opacity characterizes
whether a given ”secret” about a system behavior is hid-
den or not from an external observer, further called the
intruder. It is assumed the intruder has full knowledge
of the system’s structure but only partial observability.
Based on its observations, the intruder constructs an es-
timate of the system’s behavior. The secret is said to be

IThis paper is an extended version of one published in the pro-
ceedings of the 5th IFAC International Workshop On Dependable
Control of Discrete Systems (DCDS’15), May 26-28, 2015.

∗Corresponding authors
Email addresses: rjacob@ens-cachan.fr (Romain Jacob),

jean-jacques.lesage@ens-cachan.fr (Jean-Jacques Lesage),
jean-marc.faure@ens-cachan.fr (Jean-Marc Faure)

opaque if the intruder’s estimate never reveals the sys-
tem’s secret. Specifically, the system is opaque if, for any
secret behavior, there exists, at least, one other non-secret
behavior that looks the same to the intruder.

Opacity is a rather recent field of research. It was first
introduced in 2004 in computer science to analyze cryp-
tographic protocols (Mazaré, 2004). It reached the dis-
crete event systems (DES) community with the work of
Bryans et al. (2005) which investigated opacity in sys-
tems modeled as Petri nets. Secrets were set as pred-
icates over Petri net markings (i.e., states). In Bryans
et al. (2008), previous work was extended by investigating
opacity in labeled transition systems (LTS), in which se-
crets were defined as predicates over runs. More recently,
Saboori and Hadjicostis investigated state-based opacity
properties using finite-state automata (FSA) models (Sa-
boori & Hadjicostis (2007); Saboori (2011)). Many re-
searchers have considered the validation of opacity prop-
erties which spans from system’s opacity verification (e.g.,
Badouel et al. (2007); Hadjicostis & Keroglou (2014); Sa-
boori & Hadjicostis (2008b, 2009, 2010a, 2013)) to the
synthesis of a controller/scheduler which assures opacity,
either through supervision (Dubreil (2010); Dubreil et al.
(2008); Saboori & Hadjicostis (2008a)) or enforcement (Fal-
cone et al. (2014)). In a general way, opacity valida-
tion w.r.t. a given secret and intruder is a yes/no ques-
tion for logical models (whether with deterministic or non-
deterministic transition function). In the opposite, if one
is interested in quantifying the risk of possible information
leakage from the system, it implies usage of probabilistic
models (e.g., Bérard et al. (2010, 2015a); Ibrahim et al.
(2014); Keroglou & Hadjicostis (2013); Saboori & Hadji-
costis (2010b,a)).

Preprint submitted to Annual Reviews in Control January 12, 2016

From a practical point of view, these properties are of
great interest for anyone aiming for more privacy, safety,
or even secrecy, in communication protocols, complex net-
worked systems, or even a simple software architecture.
It is ever more common to have privacy-related specifica-
tions in both software and hardware design. Using opacity
theory, one can formally verify whether or not these spec-
ifications are satisfied, or, at least, have a quantitative
measure for the risk of violation.

This paper aims to provide a comprehensive and gen-
eral review of opacity related work considering DES mod-
els, hence, we purposefully leave out too technical details.
We assume the reader has a general knowledge of DES the-
ory and practice and of classically related problems (i.e.,
formalism of finite automata and probabilistic automata,
diagnosis, verification, supervisory control...). In case of
need, please refer to Cassandras & Lafortune (2008) for
more information on these problems. This paper is an ex-
tended version of a paper presented by the authors at the
5th IFAC International Workshop On Dependable Control
of Discrete Systems (DCDS’15)(Jacob et al., 2015).

After introducing relevant notations in Section 2, we
synthesize different notions of opacity used in the litera-
ture in Section 3. Section 4 reviews validation methods
of various opacity properties. Section 5 presents exten-
sions to probabilistic models and Section 6 summarizes
decidability and complexity of most approaches surveyed
in this paper. Finally, applications of opacity in DES are
presented in Section 7 and Section 8 suggests some per-
spectives for further research.

2. Preliminaries

Let E be an alphabet of events. E∗ is the set of all
finite strings composed of elements of E, including the
empty string ε. A language L ⊆ E∗ is a set of finite-length
strings of labels in E. For a string t, |t| denotes the length
of t. For a string ω, ω denotes the prefix-closure of ω and is
defined as ω = {t ∈ E∗|∃s ∈ E∗, ts = ω}. The post-string
ω/s of ω after s is defined as ω/s = {t ∈ E∗, st = ω}.

A finite-state automaton G = (X,E, f,X0) is a 4-tuple
composed of a finite set of states X = {0, 1, ..., N − 1},
a finite set of events E, a partial state transition func-
tion f : X × E → X, and a set of initial states X0.
The function f is extended to the domain X × E∗ in
the usual manner. The language generated by the sys-
tem G describes the system’s behavior and is defined by
L(G,X0) = {s ∈ E∗|∃i ∈ X0, f(i, s) is defined}; it is
prefix-closed by definition.

Note that in opacity problems, the initial state needs
not to be known a priori, therefore, we have a set of initial
states instead of a single initial state. We consider partially
observable systems. The event set is partitioned into an
observable set Eo and an unobservable set Euo. Given a
string t ∈ E∗, its observation is the output of the natural
projection function P : E∗ → E∗o , which is recursively
defined as P (te) = P (t)P (e) where t ∈ E∗ and e ∈ E. The

projection of an event P (e) = e if e ∈ Eo, while P (e) = ε if
e ∈ Euo ∪ {ε}. Finally, for a language J ⊆ E∗, the inverse
projection is defined as P−1(J) = {t ∈ E∗ : P (t) ∈ J}.

3. Opacity of discrete event systems

In this section, we formalize different opacity proper-
ties of DES. In the general case, the intruder is assumed to
have full knowledge of the system structure (plus eventu-
ally of the system’s controller) but he/she has only partial
observability over it. Opacity is parameterized by a secret
predicate S and by the intruder’s observation mapping P
over the system’s executions. A system is opaque w.r.t. S
and P if, for any secret run in S, there is another run not
in S which is observably equivalent.

In cases of DES models, the secret predicate S can be of
two classes: a subset of executions (or parts of executions)
or a subset of states. This classifies opacity properties
into two families: language-based opacity and state-based
opacity.

3.1. Language-based opacity – LBO

LBO has been formalized in different ways in the liter-
ature. It was first introduced in Badouel et al. (2007) and
Dubreil et al. (2008). LBO (also referred to as trace-based
opacity) is defined over a secret behavior described by a
language LS ⊆ E∗. The system is opaque w.r.t. LS and
the projection map P if no execution leads to an estimate
that is completely inside the secret behavior. Alterna-
tively, in Lin (2011), LBO is defined over two sublanguages
of the system, (L1, L2) ⊆ (L(G,X0))2. Sublanguage L1 is
opaque w.r.t. L2 and an observation mapping θ if the in-
truder confuses every string in L1 with some strings in L2

under θ. In most recent papers considering LBO, the lat-
ter definition is used with the observation mapping θ being
the natural projection mapping P .

Definition 1 (LBO – Strong Opacity). Given a sys-
tem G = (X,E, f,X0), a projection P , a secret language
LS ⊆ L(G,X0), and a non-secret language
LNS ⊆ L(G,X0), G is language-based opaque if for ev-
ery string t ∈ LS , there exists another string t′ ∈ LNS
such that P (t) = P (t′).
Equivalently, LS ⊆ P−1[P (LNS)].

The system is language-based opaque if for any string t
in the secret language LS , there exists, at least, one other
string t′ in the non-secret language LNS with the same pro-
jection. Therefore, given the observation s = P (t) = P (t′),
the intruder cannot conclude whether the secret string t
or the non-secret string t′ has occurred. Note that LS and
LNS do not need to be prefix-closed in general, nor even
regular.

Part of the literature refers to Definition 1 as strong
opacity. In Lin (2011), a smoother opacity property is
also introduced.

2

43

0 21
a

b
d d

b

c

Figure 1: From Wu & Lafortune (2013) – Example 1 (LBO)

Definition 2 (LBO – Weak Opacity). Given a
system G = (X,E, f,X0), a projection P , a secret lan-
guage LS ⊆ L(G,X0), and a non-secret language
LNS ⊆ L(G,X0), G is weakly opaque if for some string
t ∈ LS , there exists another string t′ ∈ LNS such that
P (t) = P (t′).
Equivalently, LS ∩ P−1[P (LNS)] 6= ∅.

The system is weakly opaque if some strings in LS are
confused with some strings in LNS . As a consequence, we
can further define easily the property of no opacity.

Definition 3 (LBO – No opacity). LS is no opaque
w.r.t. LNS and P if LS is not weakly opaque w.r.t. LNS
and P .
Equivalently, LS ∩ P−1[P (LNS)] = ∅.

Remark 1. It is shown in Ben-Kalefa & Lin (2009) that
LBO properties are closed under union, but may not be
closed under intersection. They further discuss how to
modify languages to satisfy the strong, weak, and no opac-
ity by investigating sublanguages and superlanguages.

Example 1. From Wu & Lafortune (2013) – Consider the
system G in Fig. 1 with Eo = {a, b, c}.

It is language-based opaque when LS = {abd} and
LNS = {abcc∗d, adb} because whenever the intruder sees
P (LS) = {ab}, it is not sure whether string abd or string
adb has occurred.

However, this system is not language-based opaque if
LS = {abcd} and LNS = {adb, abd, abccc∗d}; no string in
LNS has the same projection as the secret string abcd.

Remark 2. In general, LBO refers to strong opacity in
the literature, as in the rest of this paper.

3.2. State-based opacity – SBO

The state-based approach for opacity of DES was intro-
duced in Bryans et al. (2005) for Petri nets models then
extended to FSA in Saboori & Hadjicostis (2007). The
state-based approach relates to the intruder ability to in-
fer that the system is or has been in a given ”secret” state
or set of states. Depending on the nature of the secret set,
different opacity properties have been defined.

42

0 31
a b

c

b

Figure 2: From Wu & Lafortune (2013) – The system G discussed
in Example 2 (CSO) and 4 (IFO)

3.2.1. Current-State Opacity – CSO

CSO was first introduced in Bryans et al. (2005) and
called final opacity in the context of Petri nets. The def-
inition was then adapted to LTS in Bryans et al. (2008),
and further developed in finite state automata models in
Saboori & Hadjicostis (2007). A system is CSO if the in-
truder can never infer, from its observations, whether the
current state of the system is a secret state or not.

Definition 4 (Current-State Opacity). Given a
system G = (X,E, f,X0), a projection P , a set of secret
states XS ⊆ X, and a set of non-secret states XNS ⊆ X,
G is current-state opaque if
∀i ∈ X0 and ∀t ∈ L(G, i) such that f(i, t) ∈ XS ,
∃j ∈ X0 and ∃t′ ∈ L(G, j) such that

f(j, t′) ∈ XNS and P (t) = P (t′).

The system is CSO if for every string t that leads to a
secret state, there exists another string t′ leading to a non-
secret state whose projection is the same. As a result, the
intruder can never assert with certainty that the system’s
current state belongs to XS .

Remark 3. In Bryans et al. (2005), the property of
always-opacity is also introduced. A system is always-
opaque (or total-opaque in Bryans et al. (2008)) over a set
of runs if it is CSO for any state visited during these runs.
This is equivalent to consider a set of secret states which
lies on a prefix-closed language.

Example 2. From Wu & Lafortune (2013) – Consider G
in Fig. 2 and the sets of secret and non-secret states XS =
{3} and XNS = X\XS .

If Eo = {b}, then G is current-state opaque because
the intruder is always confused between ab and cb when
observing b; that is, the intruder cannot tell if the system
is in state 3 or 4.

However, if Eo = {a, b}, CSO does not hold because
the intruder is sure that the system is in state 3 when
observing ab.

3.2.2. Initial-State Opacity – ISO

ISO property relates to the membership of the system’s
initial state within a set of secret states. The system is
initial-state opaque if the observer is never sure whether
the system’s initial state was a secret state or not.

3

32

10
b

� �
a

a

b

Figure 3: From Wu & Lafortune (2013) – The system G discussed
in Example 3 (ISO)

Definition 5 (Initial-State Opacity). Given a system
G = (X,E, f,X0), a projection P , a set of secret initial
states XS ⊆ X0, and a set of non-secret initial states
XNS ⊆ X0, G is initial-state opaque if
∀i ∈ XS and ∀t ∈ L(G, i),
∃j ∈ XNS and ∃t′ ∈ L(G, j) such that P (t) = P (t′).

The system is ISO (or initial-opaque in Bryans et al.
(2005)) if, for every string t that originates from a secret
state i, there exists another string t′ originating from a
non-secret state j such that t and t′ are observationally
equivalent. Therefore, the intruder can never determine
whether the system started from a secret state i or from a
non-secret state j.

Example 3. From Wu & Lafortune (2013) – Consider G
in Fig. 3 with Eo = {a, b}, XS = {2}, and XNS = X\XS .
G is initial-state opaque because for every string t starting
from state 2, there is another string (τ)t starting from
state 0 that looks the same.

However, ISO does not hold if XS = {0}. Whenever
the intruder sees string aa, it is sure that the system orig-
inated from state 0; no other initial states can generate
strings that look the same as aa.

Remark 4. There is one important difference to note be-
tween current-state and initial-state opacity in terms of
monotony: initial state opacity exhibits a monotonic prop-
erty (the set of possible initial states can only decrease as
more observations become available), in contrast with cur-
rent state opacity, for which there is no guarantee to obtain
more relevant information over time.

Remark 5. Hadjicostis (2012) defines resolution of initial
state w.r.t. a secret set of states S. It requires that when
the system starts from a secret state, the observer will be
able to eventually (i.e., after a finite sequence
of events/observations) determine with certainty that the
system’s initial state lied within the set of secret states
S. It is worth pointing out at this point that absence of
resolution of initial state is necessary but not sufficient for
ISO.

3.2.3. Initial-and-Final-State Opacity – IFO

In Wu & Lafortune (2013), the authors introduce initial-
and-finite opacity. It is an extension of ISO and CSO which
requires both the initial and final state to be hidden from
the intruder. The only difference is that the secret is now
defined over pairs of states (and not only states).

Definition 6 (Initial-and-Final-State Opacity).
Given systemG = (X,E, f,X0), projection P , set of secret
state pairs XSP ⊆ X0×X, and set of non-secret state pairs
XNSP ⊆ X0 ×X, G is initial-and-final-state opaque if
∀(x0, xf) ∈ XSP and ∀t ∈ L(G, x0) such that

f(x0, t) = xf ,
∃(x′0, x′f) ∈ XNSP and ∃t′ ∈ L(G,X0) such that

f(x′0, t
′) = x′f and P (t) = P (t′).

The system is initial-and-final-state opaque if for any
string t that starts from x0 and ends at xf , with (x0, xf) ∈
XSP , there exists another string t′ starting from x′0 and
ending at x′f , where (x′0, x

′
f) ∈ XNSP , that has the same

projection. Therefore, the intruder can never determine
whether the initial-and-final state pair is a secret pair or
a non-secret pair.

Remark 6. ISO and CSO are special cases of IFO.
To obtain an ISO problem from an IFO formulation, set
XSP = XS ×X and XNSP = XNS ×X.
Likewise, to obtain a CSO problem, set XSP = X0 ×XS

and XNSP = X0 ×XNS .

Example 4. From Wu & Lafortune (2013) – Consider
again G in Fig. 3 and take XSP = {(3, 1)}.

G is initial-and-final state opaque if the non-secret state
pair set is XNSP = {(1, 0), (1, 1), (1, 2), (1, 3)}.

However, initial-and-final-state opacity property does
not hold if we take XNS = {(0, 0)} since (0, 0) is the only
state pair that corresponds to string aa; no other state
pairs give strings that look the same as aa.

3.2.4. K-step opacity

Except for ISO, previously defined opacity properties
do not consider the system behavior once it has exited a
secret state. A more general problem would be to keep
secret the fact the system was in a secret state a few steps
ago. This property is called K-step opacity and was first
introduced in Saboori & Hadjicostis (2007).

Definition 7 (K-step (weak) opacity).
Given a system G = (X,E, f,X0), a projection P , and a
set of secret states XS ∈ X, G is K-step (weakly) opaque
w.r.t. XS and P for K ≥ 0 (or (XS , P,K)-(weakly) opa-
que) if
∀i ∈ X0, ∀t ∈ L(G, i), and ∀t′ ∈ t such that

f(i, t′) ∈ XS and |P (t)/P (t′)| ≤ K,
∃j ∈ X0, ∃s ∈ L(G, j), and ∃s′ ∈ s, such that

f(j, s′) ∈ XNS , P (s) = P (t) and P (s′) = P (t′).

This definition can be reformulated as in Falcone et al.
(2014). The system is (XS , P,K)-opaque if for every ex-
ecution t of G and for every secret execution t′ prefix of
t with an observable difference inferior to K, there exists
two executions s and s′ observationally equivalent respec-
tively to t and t′ such that s′ is not a secret execution (i.e.,
which does not bring the system in a secret state).

4

Figure 4: From Falcone & Marchand (2013) – System discussed in
Example 5.

Example 5. From Falcone & Marchand (2013) – Con-
sider G in Fig. 4 with Eo = {a, b}, XS = {2}, and
XNS = X\XS . Secret state is shown as red square.

G is (XS , P, 1)-opaque, but it is not (XS , P, 2)-opaque,
as only (τ)aba is a compatible execution with the obser-
vation aba. Hence, after the second a has occurred, the
intruder can deduce that the system was in state 2 two
steps before.

Remark 7. K-step opacity is a direct extension of CSO.
CSO is equivalent to 0-step opacity (Saboori & Hadjicostis
(2007)).

In Falcone et al. (2014), Definition 7 is referred to as K-
step weak opacity. The property of K-step strong opacity
holds if the system is K-step weakly opaque and there
exists a trace of the system (observably equivalent to the
actual execution) which does not cross any secret state
over the last K steps. This can be formalized with the
following definition.

Definition 8 (K-step strong opacity).
Given a system G = (X,E, f,X0), a projection P , and a
set of secret states XS ∈ X, G is K-step strongly opaque
w.r.t. XS and P for K ≥ 0 (or (XS , P,K)-strongly opa-
que) if
∀i ∈ X0 and ∀t ∈ L(G, i),
∃j ∈ X0 and ∃s ∈ L(G, j) such that

P (s) = P (t) and
∀s′ ∈ s, |P (s)/P (s′)| ≤ K

⇒ ∃j′ ∈ X0 such that f(j′, s′) ∈ XNS .

Example 6. From Falcone & Marchand (2013) – Con-
sider G in Fig. 5 with Eo = {a, b, c}, XS = {2, 7}, and
XNS = X\XS . Secret states are shown as red square.

G is (XS , P,K)-weakly opaque for any K ∈ N. The in-
tuition is that we will always have confusion between pairs
of states (5, 2), (6, 3), and (7, 4), such that the intruder will
never know with absolute certainty that the system was in
state 2 or 7 at a given point in time.

It also holds that the system is (XS , P, 1)-strongly opa-
que. However, it is not (XS , P, 2)-strongly opaque since
after observing aba, we know that the system is either in
state 7 (which is a secret state) or in state 4, which implies
it was in state 2 (the other secret state) two steps ago. Ul-
timately, we know for sure that the system was in a secret
state at most 2 steps ago.

Remark 8. In general, K-step opacity refers to weak opac-
ity in the literature, as in the rest of this paper.

Figure 5: From Falcone & Marchand (2013) – System discussed in
Example 6.

3.2.5. Infinite-step opacity

In Saboori & Hadjicostis (2009) and Saboori (2011),
K-step opacity has been further extended to infinite-step
opacity.

Definition 9 (Infinite-step opacity). Given a system
G = (X,E, f,X0), a projection P , and a set of secret
states XS ∈ X, G is infinite-step opaque w.r.t. XS and P ,
or (XS , P,∞)-opaque, if
∀i ∈ X0, ∀t ∈ L(G, i), and ∀t′ ∈ t such that

f(i, t′) ∈ XS ,
∃j ∈ X0, ∃s ∈ L(G, j), and ∃s′ ∈ s, such that

f(j, s′) ∈ XNS , P (s) = P (t), and P (s′) = P (t′).

A system is infinite-step opaque if, for every execution
of the system, after having observed an arbitrarily long se-
quence of events, the intruder cannot infer that the system
was in a secret state at some point (at any step back in
the execution).

3.3. Transformations between different opacity properties

The aforementioned opacity properties have strong con-
nections between each other. Several works have addressed
the translation between them.

Saboori & Hadjicostis (2008a) adapts the language-
based definition to ISO in order to apply supervisory con-
trol methods (refer to Section 4.2). On the contrary, Cassez
et al. (2009, 2012) describes transformations from LBO to
CSO. In Wu & Lafortune (2013), the authors extend these
works and provide a full transformation mapping between
LBO, CSO, ISO, and IFO.

In addition, we already mentioned that K-step opacity
is an extension of CSO. CSO is equivalent to 0-step opacity.

Finally, in Saboori (2011), a language-based transla-
tion of K-step opacity is suggested: trace-based K-step
opacity. It is a special case of K-step opacity which, to
the best of our knowledge, has never been used or consid-
ered in any other work. It is mentioned here for the sake
of completeness.

3.4. Distributed opacity

Even though most opacity-related studies account for
a single intruder only, a few of them consider distributed
notions of opacity. Hence, Badouel et al. (2007) consider
multiple intruders, each of them having its own observa-
tion mapping and secret of interest. The system is said to

5

be concurrently opaque if all secrets are safe. A different
notion, called joint opacity is presented in Wu & Lafortune
(2013) and Wu (2014). In this setting, several intruders
collaborate through a coordinator in order to discover the
same secret. Finally, Paoli & Lin (2012) consider decen-
tralized framework with and without coordination among
agents and formalize definitions of decentralized opacity.
It is shown to be an extension of co-observability, used
in traditional supervisory control (Ramadge & Wonham,
1989).

3.5. Infinite DES models

Up to a few years ago, opacity-related studies only con-
sidered finite-state DES models. There are recent works
addressing extensions to infinite-state. CSO and diagnos-
ability verification are investigated for infinite-state DES
modeled by pushdown automata in Kobayashi & Hiraishi
(2013) (therein called pushdown systems), as well as in
Chédor et al. (2014) and Chédor (2014), in the more gen-
eral setting of recursive tile systems.

Extension to timed DES has also been considered, but
it has been shown in Cassez (2009) that even for a very
restrictive class of Timed Automata, opacity is already
undecidable for a problem in dense-time. However, con-
sidering not dense-time domains (e.g., N) may render the
opacity problem tractable.

3.6. Relation with other DES and information flow prop-
erties

We mentioned in Section 1 that opacity is a very gen-
eral information flow property. Relations between several
of these properties can be easily drawn.

Easiest is secrecy, in which the system predicate is se-
cret if the predicate and its complement are simultaneously
opaque (Badouel et al. (2007)). It is also referred to as
symmetrical opacity (Bérard et al. (2015b)). It was shown
that anonymity (Bryans et al., 2008; Bérard & Mullins,
2014) and some non-interference problems (Cassez et al.,
2007; Bryans et al., 2008; Benattar et al., 2015; Bérard
et al., 2015c) may be reduced to opacity by using suitable
observation functions and depending on the type of secret
under consideration. The equivalence between opacity and
intransitive non-interference is proven in Mullins & Yed-
des (2013). Lin (2011) also establishes links between opac-
ity, anonymity, and secrecy and shows that observability,
diagnosability, and detectability can be reformulated as
opacity as well.

More generally, opacity is a problem closely related to
diagnosis (Sampath et al., 1996; Zaytoon & Lafortune,
2013): for opacity to hold, the secret should not be di-
agnosable from the viewpoint of the intruder. Some in-
stances of opacity problem can be formulated as diagnosis
ones (e.g., resolution of ISO from Hadjicostis (2012)). As
a result, several opacity-related works try to bridge with
the huge amount of work done in the diagnosis commu-
nity; e.g., Dubreil et al. (2009); Dubreil (2010); Kobayashi
& Hiraishi (2013); Chédor et al. (2014).

4. Ensuring opacity

Traditional opacity formulations from the literature
were presented in Section 3. The questions are now the
following: How does one know that a given system G is
opaque w.r.t. a secret and the information available to
intruders? Furthermore, if it is not, what can be done
to make it opaque? These questions have been contin-
uously addressed and this section aims to synthesize the
approaches available in the literature.

There are three main approaches to ensure opacity
properties of DES:

1. Verification, which roughly consists in model-
checking opacity properties;

2. Supervisory control theory (SCT), which restricts
the system’s behavior in order to preserve the secret;

3. Enforcement, which inputs observable events of the
systems and outputs (possibly) modified information
to observers, such that the secret is preserved.

The key difference to note between SCT and enforce-
ment is that SCT constrains the system behavior (by re-
straining its output) by means of a supervisor while en-
forcement allows the system free-behavior but post proces-
ses all its output. For more details about these approaches
and their pros-and-cons, one can refer Falcone et al. (2014).
The three mechanisms are illustrated by Fig. 6.

4.1. Verification of opacity properties

As mentioned in Introduction, opacity is a rather re-
cent field of research. Verification of opacity relates di-
rectly to the general problem of verification of DES, which
has been extensively studied and is well-known. It was
shown in Cassez et al. (2012) that opacity verification is
equivalent to the universality problem (i.e., whether or
not the system admits all possible words constructed on
its alphabet). The specific task to perform is to encode
the opacity property of interest (refer to Section 3) such
that classical model-checking approaches and tools can be
used. However, such opacity encoding might not be trivial,
like for K-step opacity for instance. Verification of K-step
opacity was tackled in Saboori & Hadjicostis (2011b) by
use of two types of K-delay state estimators. It is also
developed in Falcone et al. (2014).

Remark 9. We mentioned in Section 3.6 that opacity can
be related to diagnosability. Dubreil et al. (2009) investi-
gate the use of techniques from diagnosis of DES (Zaytoon
& Lafortune (2013)) to detect and predict the flow of se-
cret information and construct a monitor that allows an
administrator to detect it.

In the sequel of this section, we choose to further present
solely control and enforcement approaches, for which spe-
cific opacity-related methods have been developed. For
more details about verification of LBO, refer to Lin (2011);

6

��

System opaque?

System

(a) Verification

�������
�

System

Supervisor

(b) Supervision

���������
System

Enforcer

(c) Enforcement

Figure 6: The main three approaches for ensuring opacity

for SBO, refer to Falcone et al. (2014) and Hadjicostis &
Keroglou (2014). General results about verification of DES
can be found in Cassandras & Lafortune (2008).

4.2. Supervisory control theory – SCT

The potential use of SCT for opacity validation of DES
is rather obvious. Several works present construction of
minimally restrictive opacity-enforcing supervisory control-
lers; e.g., Takai & Oka (2008); Takai & Kumar (2009);
Saboori & Hadjicostis (2008a); Saboori (2011); Saboori &
Hadjicostis (2012); Ben-Kalefa & Lin (2011). It is shown
that optimal control always exists for strong-opacity (Dubreil
et al., 2010; Dubreil, 2010).

In these approaches, the intruder is generally assumed
to have full knowledge of the supervisor’s structure in ad-
dition to the system’s. Moreover, the set of events the
intruder can observe is fixed.

The applicability of SCT depends on the hypothesis
made on the system’s model. Given EI , EO and EC being
respectively, the set of events observable by the intruder,
the set of events observable by the supervisor, and the set
of controllable events, SCT can be directly applied in the
following cases (Dubreil (2010)):

1. EC ⊆ EO ⊆ EI ;

2. EI ⊆ EC ⊆ EO.

Furthermore, to deal with the following two cases, slight
extensions of SCT have been suggested in Dubreil (2010)
and Dubreil et al. (2010)

3. EC ⊆ EI ⊆ EO ;

4. EI ⊆ EO and EC ⊆ EO
but without EC and EI being comparable.

Example 7. From Dubreil et al. (2010). Let G be the
transition system depicted in Fig. 7(a), withX = {0, ..11},
X0 = {0}, XS = {1, 5, 7, 11} and E = {u, d, c, s}. Let f
be the transition function defined according to the arcs of
the figure. Secret states are shown as red square.

G is a representation of all sequences of possible moves
of an agent in a three story building with a south wing
and a north wing, both equipped with lifts and both con-
nected by a corridor at each floor. Moreover, there is a
staircase that leads from the first floor in the south wing
to the third floor in the north wing. The agent starts from
the first floor in the south wing. He can walk up the stairs

d5

4

0 3

u

c

c

2
c

u

u

u

6 9

u

c

c

8
c

u

u

u
10

11

d

d

d

1

5

7

s s

(a) G

d5

4

0 3
c u

u

9

u

10d

5

s

(b) G||S

Figure 7: (a) G: Nominal model of the system; (b) G||S: Minimally
restrictive supervisor ensuring opacity of G regarding the agent being
at a secret floor.

(s) or walk through the corridors (c) from south to north
without any control. The lifts can be used several times
one floor upwards (u) and at most once one floor down-
wards (d) altogether. The moves of the lifts are control-
lable. Thus EC = {u, d}. The secret is that the agent is
either at the second floor in the south wing or at the third
floor in the north wing. The adversary may gather the
exact subsequence of moves in EI = {u, c, s} from sensors,
but he cannot observe the downwards moves of the lifts.
Furthermore, all events are observable to the supervisor,
i.e., EO = E. Hence, this example falls into the fourth of
the aforementioned cases.

The derivation of the minimally restrictive supervisor
ensuring the secret will not be disclosed is performed by
a sequential derivation of condensed state estimators and
their losing configurations. In a nutshell, a configuration
is combination of the true system state (the upper line)
and the best estimate the intruder can make of the system
state (the lower line). A losing configuration is such that
the intruder’s estimate belongs to the set of secret states.
One can track controllable actions backward from losing
configurations on acyclic paths of the condensed estimator
and disable the last controllable transition on each losing
path. The next condensed state estimator is then derived,

7

taking into account the newly disabled transitions. Once
we get to a condensed state estimator without any losing
configuration, we have reached the minimally restrictive
supervisor. Refer to Dubreil et al. (2010) for more details.

Fig. 8(a), (b), and (c) show the subsequent condensed
state estimators needed to solve this example. losing con-
figurations are boxed red, the controllable transitions to
disabled in the next step are in dashed lines. Fig. 7(b) is
the resulting supervisor.

One can notice that one secret state only remains in the
controlled system. This means others secret states cannot
be opaque to the intruder. If the agent aims to go and
stay in state 1, 7 or 11, it will be inferred by the intruder.
This is an example of ensuring current-state opacity by
supervisory control. Note that this system is not 1-opaque
(refer to Def. 7).

In Badouel et al. (2007), the authors solved the prob-
lem of concurrent secrecy (Section 3.4) using SCT. Suffi-
cient conditions to compute an optimal supervisor preserv-
ing all secrets are provided, assuming that the supervisor
has complete knowledge of the system and full control over
it.

The work of Ben-Kalefa & Lin (2011) considers the ver-
ification of both strong and weak LBO. It shows that the
solution to the Strong-Opacity Control Problem (SOCP)
exists and is unique if all controllable events are observ-
able. However solutions for the Weak-Opacity Control
Problem (WOCP) does not exist. This means that if a sys-
tem is not weakly opaque w.r.t. a given secret language,
there exists no controllable and observable sublanguage
which can assure weak opacity.

In Darondeau et al. (2014), the authors lift the opacity
enforcing control problem using SCT from a single finite
transition systems to families of finite transition systems
specified by modal transition systems (Larsen (1990)). The
objective is to ensure opacity of a secret predicate on all
LTS derived from a given modal transition system.

Using SCT is naturally more suited to language-based
notions of opacity. However, the verification of initial
state opacity has been addressed in Saboori & Hadjicostis
(2008a) by means of reformulation of ISO into LBO, under
regular SCT hypothesis (cases (1) and (2)). Similar work
was performed in Saboori & Hadjicostis (2012) for infinite-
step opacity even though it cannot be so easily translated
to LBO. It is shown that the approach for ISO can be ex-
tended by using a finite bank of supervisors and ensure
infinite-step opacity in a minimally restrictive way.

Remark 10. In a nutshell, supervisory control resumes
to find the supremal sublanguage that ensures opacity. In
Ben-Kalefa & Lin (2009), the authors further investigate
language composition and show that opacity properties
(with secrets being languages) are closed under union, but
may not be closed under intersection. They also demon-
strate the following results:

u

c

c

c

u

u

u
1
1

2
2,7

3
3

0
0

4
4

5
5,10

4
4,9

u

c

c

c

u

u

u

8
8

7
2,7

9
4

6
1

5,10
10

11
11

9
4,9

u

u

5
5

5
10
u

s

d
d

d
d
d

d

s

(a) Ad0

u

c

c

c

u

u

u

2
2

3
3

0
0

4
4

5
5,10

c

u

7
2

9
4

5,10
10

5
5

5
10

s

d
d

d
d1

1

(b) Ad1

c
u

u

3
3

0
0

4
4

5
5,10

u
9
4

5,10
10

5
5

5
10

d
d

d

s

(c) Ad2

Figure 8: The three condensed state estimator; (a) Ad0 : first step,
one losing configuration {11, 11}, 4 transitions to disabled; (b) Ad1 :
second step, one losing configuration {1, 1}, 1 transition to disabled;
(c) Ad2 : third step, no more losing configuration, minimally restric-
tive supervisor is reached.

8

(i) the supremal strongly opaque sublanguage exists and
is unique;

(ii) the minimal strongly opaque superlanguage exists
but may not be unique;

(iii) the minimal weakly opaque superlanguage exists but
may not be unique;

(iv) the supremal not opaque sublanguage exists and is
unique.

4.3. Enforcement of opacity properties

Opacity enforcement at run-time was introduced in
Schneider (2000) and recently surveyed in Falcone et al.
(2014). Enforcement does not restrict the system behav-
ior anymore. Instead, it ”hides” some of the system’s out-
put events whenever it is necessary. It is a non-intrusive
approach compared to supervision. There are three main
methods used for opacity enforcement:

1. Deleting occurrences of events from the output;

2. Adding events to the output;

3. Delaying the output.

4.3.1. Deletion of events

Considering a trace observed by the intruder, it may
happen that the observation of the next event discloses
the secret. A simple idea is to hide the occurrence of this
event from observation at run-time (and possibly only this
single occurrence) to avoid information flow.

Main work achieving this is synthesized in Cassez et al.
(2009) and Cassez et al. (2012). In this approach, the en-
forcer is a device called a mask. This mask restricts the
observable outputs of the system either in a static or dy-
namic fashion. The latter case allows the mask to adapt
to the intruder observation mapping (assumed to be dy-
namic) at each execution step.

Example 8. From Cassez et al. (2012). Consider the
automaton G of Fig. 9, where the set of secret states is
XS = {2, 5}. If EO = E = {a, b}, the system is not opa-
que (e.g., b∗ab leads in the set of secret states). If either
EO = {a} or EO = {b}, then it becomes opaque. Thus,
one can define static sets of observable events, where at
least one event will have to be permanently unobservable.
This is a valid but very restrictive control. One could hide
fewer events, the observable behavior of the system would
be more important, and the control would be less restric-
tive. Thus, one should try to reduce as much as possible
the hiding of events. On this particular example, we can
be more efficient by using a dynamic mask that will ren-
der unobservable an event only when necessary. In this
example, after observing b∗, the intruder knows that the
system is still in the initial state. However, if a subsequent
a follows, then the intruder should not be able to observe
b as this particular b would revel the system is in a secret

4

0 1
a

6

6 3

5

b
2

b

b

a

a

a

a,b

a,b

b

Figure 9: From Cassez et al. (2012) – Automaton G for Example 8

state. We can then design a dynamic events hider as fol-
lows: at the beginning, everything is observable; when an
a occurs, the mask hides any subsequent b occurrence and
permits only the observation of a. Once an a has been ob-
served, the mask releases its hiding by letting both a and
b be observable again. Hence, event deletion is minimal.

In Zhang et al. (2014) and Zhang et al. (2015), the au-
thors introduced the Maximum Information Release Prob-
lem which aims to restrict as few occurrences of output
events as possible. They consider both strong and weak
opacity. This work is very similar to the enforcement by
means of a mask. The main difference comes from the
initial definition of opacity used. They use the language
inclusion definition from Lin (2011), while Cassez et al.
(2012) considers a state-based approach. This allows the
Maximum Information Release Problem to adapt more
easily to weak opacity, but the two methods are essentially
the same.

4.3.2. Addition of events

Deleting events from the output was still considered as
intrusive by some researchers. Even if the internal behav-
ior of the system is no longer restricted (as it is with SCT),
its actual output is.

To cope with this problem, Wu and Lafortune derived
a method which artificially adds outputs to the set of ob-
served events at run-time. This approach is called in-
sertion functions (refer to Wu & Lafortune (2014); Wu
(2014)). An insertion function is a monitoring interface at
the system’s output that changes it by inserting additional
(”fake”) occurrences of observable events.

Remark 11. These two approaches were suggested in Lig-
atti et al. (2005), which proposed an enforcement mecha-
nism called edit-automata. This mechanism featured the
idea of ”suppressing” and ”inserting” actions in the cur-
rent execution of a system but without direct application
to information flow and opacity.

4.3.3. Delay of events

The last approach to enforce opacity properties is to
delay emissions of one or several events which would have
disclosed the secret, up to the point where the disclosure
is of no interest anymore, or the system reaches a state
in which opacity holds again. This method allows the full
system behavior as well, but can only apply to secrets for
which time duration is of concern.

9

This approach has been presented in Saboori & Had-
jicostis (2007) and applied to K-step (weak) opacity in
Saboori & Hadjicostis (2011b). It was later extended in
Falcone et al. (2014) to K-step strong opacity.

5. Quantifying opacity

We presented in Section 3 the main formulations of
opacity properties which have been considered in the lit-
erature. With these definitions, even decidable problems
(refer to Section 6) only provide a yes/no answer to the
system’s opacity. Supervisory control (Section 4.2) and en-
forcement (Section 4.3) can manage to turn a non-opaque
system into an opaque one.

However, this only accounts for logical models, with
deterministic transition function, which is known to be a
strong limitation in practice. Thus, researchers extended
some definitions and tried to quantify opacity in a proba-
bilistic setting. That is, how can one evaluate the possi-
ble information leakage of a system w.r.t. a given secret?
Hence, for a given system’s execution, we do not ask if
there exists an observably equivalent execution, but how
many there are, with a probabilistic measure taking into
account the likelihood of such executions.

The reader should note that there is no absolute con-
sensus on the interpretation of primitives. Depending on
the authors and the problem considered, the model, the
type of secret, and the meaning of probabilities can all
vary to some extend. We attempt to formulate thereafter
the problem statements as clearly as possible.

5.1. Quantification of language-based opacity

Initial work on quantification of opacity properties was
presented in Lakhnech & Mazaré (2005) and reviewed in
Bryans et al. (2011). It provides quantitative measures of
LBO in a probabilistic setting but it is limited to purely
probabilistic models, based on labeled Markov chains.

In Bérard et al. (2015b), two dual notions of proba-
bilistic opacity are introduced:

(i) Liberal probabilistic opacity (LPO) measures the prob-
ability for an intruder observing a random execution
of the system to be able to gain information he can
be sure about. This definition provides a measure
of how insecure the system is. LPO = 0 ⇔ LBO.
Hence, computation of LPO is irrelevant for opaque
systems.

(ii) Restrictive probabilistic opacity (RPO) measures the
level of certitude in the information acquired by an
intruder observing the system. RPO = 0 means the
system is never opaque, whichever the running exe-
cution. Hence, computation of RPO express ”how
opaque” an opaque system is, which is irrelevant for
non-opaque systems.

Accept, 0.05
Accept, 0.80

Reject, 0.20

Call, 0.95

Accept, 0.25
Accept, 0.90

Reject, 0.10

Call, 0.75

Reject, 0.05

Accept, 0.50
Accept, 0.95

Call, 0.50

Accept, 0.80
Accept, 0.99

Reject, 0.01

Call, 0.20

Buy(�)

� > 1000, 0.05

100 < � < 500, 0.45

� < 100, 0.30

500 < � < 1000, 0.20

Figure 10: From Bérard et al. (2015b) – The Debit Card system of
Example 9 – ,

Example 9. From Bérard et al. (2015a) – Consider a
Debit Card system in a store. When a card is inserted,
an amount of money x to be debited is entered, and the
client enters his/her pin number (all this being gathered
under the action Buy(x)). The amount of the transaction
is given probabilistically as an abstraction of the statis-
tics of such transactions. Provided the pin is correct, the
system can either directly allow the transaction, or interro-
gate the client’s bank for solvency. In order to balance the
cost associated with this verification (bandwidth, server
computation, etc.) with the loss induced if an insolvent
client was debited, the decision to interrogate the bank’s
servers is taken probabilistically according to the amount
of the transaction. When interrogated, the bank can re-
ject the transaction with a certain probability or accept it.
This system is represented by the automaton of Fig. 10.

Let assume the intruder can only observe whether or
not the bank is called. This can be achieved, for example,
by measuring the time taken for the transaction to be ac-
cepted (it takes longer when the bank is called). Suppose
the intruder wants to know if the transaction was worth
more than 500, say euros. This is described by the opaque
language LS = E∗(”x > 1000” or ”500 < x < 1000”)E∗.

This system is of course opaque, as there is always
a chance of the bank being called (or not) whatever the
transaction amount. It follows LPO = 0. However, if
the intruder sees a call, there are rather high chances that
the transaction was worth more than 500. RPO evaluates
the level of confidence in this information. In this case,
simple probabilistic calculi return RPO ≈ 0.718. Refer to
Bérard et al. (2015b) for more details on the computation
procedure.

This work was extended in Bérard et al. (2015a) to
Markov decision processes with infinite executions. Quan-
tification is performed through the computation of a prob-
abilistic disclosure (PD), which is the probabilistic mea-
sure that a run disclosing the secret has been executed.
Several problems are addressed:

(i) Value: What is the PD of the system?

10

(ii) General disclosure: Is PD bigger than a threshold?

(iii) Limit disclosure: Is PD = 1?

(iv) Almost-sure disclosure: does there exists a scheduler
such that PD = 1?

(v) Almost-sure opacity: Is PD = 0?

Future extensions to this work would include the in-
vestigation of disclosure before some given delay, either as
a number of steps in the spirit of Saboori & Hadjicostis
(2011b) or Saboori (2011), or for probabilistic timed sys-
tems with an explicit time bound. However this last per-
spective is seriously hindered by the undecidability of ver-
ification for dense time DES models (Cassez, 2009).

5.2. Quantification of state-based opacity

Saboori first investigated the extension of state-based
opacity properties to probabilistic models. Three proba-
bilistic properties are introduced in Saboori & Hadjicostis
(2010b,a, 2014)

(i) Step-based almost current-state opacity considers
the a priori probability of violating current state
opacity following any sequence of events of length
K. It requires this probability to lie below a thresh-
old for all possible lengths k = (0, 1, . . .K). It is the
extension of K-step opacity.
As for LBO, step-based almost current-state opac-
ity aims to quantify the probability of the secret to
be disclosed, which is only relevant for non-opaque
systems.

(ii) Almost current-state opacity is equivalent to step-
based almost current-state opacity with no consider-
ation regarding the length of the sequence of events,
i.e., it considers the a priori probability of violating
CSO following any sequence of events. It requires
this probability to lie below a threshold. It is the
extension of infinite-step opacity.
Similarly, it is relevant only for non-opaque systems.

(iii) Probabilistic current-state opacity holds if the max-
imum increase in the conditional probability that
the system’s current state lies in the set of secret
states (conditioned on a sequence of observations)
compared to the case when no observation is avail-
able (prior probability) is bounded.
As for RPO, probabilistic current-state opacity is
only relevant for opaque systems. Otherwise, the
probability of being in a secret state reaches 1 even-
tually.

Example 10. From Saboori & Hadjicostis (2014) – Con-
sider the probabilistic finite automaton from Fig. 11 with
E0 = E = {α, β, γ}. Assume XS = {4} and the initial
probability distribution is π0 = [1, 0, 0, 0, 0]′ (i.e., the sys-
tem starts in state 0.

0

1
�, 1

3
�, 1

�, 0.5

2
�, 0.9

4

�, 0.3

�, 0.5

�, 0.1 �, 0.7

Figure 11: Example 10 – From Saboori & Hadjicostis (2014)

The set of words disclosing the secret is referred to as
LC = αγγ∗βγ∗ (first γ is necessary to make sure the sys-
tem is in the lower branch). The system is step-based
almost current-state opaque with respect to a threshold θ
if, for any k > 0,

Prk =
∑

t∈LC ,|t|=k

Pr(t) < θ

There are no words in LC of length less than 3.
Pr3 = Pr(αγβ) = 0.045 and
Pr4 = Pr(t) = Pr(αγγβ) + Pr(αγβγ) = 0.018.

It is not hard to see in this case that Prk decreases with k
which implies that this system is step-based almost current-
state opaque for any θ > 0.045.

The set of words disclosing the secret for the first time
is referred to as LPC = αγγ∗β (i.e., no prefix of one of such
words reveals the secret). The system is almost current-
state opaque with respect to a threshold θ if

Pr∞ =
∑
t∈LP

C

Pr(t) < θ

In this case, Pr∞ =
∑∞
n=0 = 0.5 × 0.1 × (0.1)n × 0.9 =

0.05, which implies that this system is almost current-state
opaque for any θ > 0.05.

Finally, assume now that XS = {3} and the initial
probability distribution is π0 = [0.2, 0.2, 0.2, 0.2, 0.2]′. The
system is probabilistic current-state opaque with respect
to a threshold θ if

∀t ∈ E∗O, ||πt(XS)|| − ||π0(XS)|| ≤ θ

where πt(XS) denotes the probability of being in a secret
state after observing word t and ||.|| is vector 1-norm. We
are interested in ensuring the confidence of being in the
secret state is never higher than 0.75, that is, we want
0.75−0.2 = 0.55−probabilistic current-state opacity. This
does not hold, as after observing the sequence αβγ, the
probability distribution vector παβγ = [0, 0, 0, 0.79, 0.21]′,
and 0.79− 0.2 = 0.59 > 0.55.

These definitions were extended to ISO in Keroglou
& Hadjicostis (2013) for systems modeled as probabilistic
finite automata:

(i) Step-based almost initial state opacity captures the
a priori probability that the system will generate
behavior that violates initial state opacity after a
certain number of events.

11

(ii) Almost initial-state opacity captures the a priori
probability that the system will eventually generate
behavior that violates initial state opacity.

Finally, Ibrahim et al. (2014) extended step-based al-
most current-state opacity from
Saboori & Hadjicostis (2010a). Instead of the disclosure
probability being below a threshold at each time step, it
considers the probability of revealing the secret over the
set of all behaviors. Two properties are introduced:

(i) Sτ -Secrecy (stochastic-secrecy) holds if the probabil-
ity of secret disclosure is always below τ .
Secrecy ⇔ S0-secrecy.

(ii) I-S-Secrecy (increasing stochastic-secrecy) hold if
whatever the threshold, there exists a size n of execu-
tion length beyond which every trace has a disclosure
probability below the threshold.

6. Decidability and Complexity of opacity proper-
ties

Opacity is a very general property. As a result, many
opacity problems are undecidable. This was demonstrated
in Bryans et al. (2008) by reducing opacity verification to
the reachability problem for Turing machines. It remains
undecidable for general finite labeled transition systems
if you do not restrict the class of observation function.
Even when decidable, opacity problems are computation-
ally complex to solve in general. This section synthesizes
decidability and complexity results demonstrated in the
literature.

Note that LBO, ISO, CSO, and IFO– referred to as
general opacity problems – have been proven to be re-
ducible into one another in polynomial time (Wu & Lafor-
tune (2013), Chédor et al. (2014)). Therefore, these prob-
lems have same decidability and complexity (since their
complexity is, at least, polynomial).

We propose in Table 1 to 3 a general overview of de-
cidability and complexity results published up to date in
the literature. Several problems have been addressed by
different approaches (e.g., initial-state opacity), which re-
sults in different order of complexity. When appropriate,
we only kept the best (i.e., the smaller) order with the
associated reference.

• Table 1 synthesizes decidability and complexity re-
sults of general opacity problems w.r.t the system’s
model and the observation mapping. Static observers
are constrained to a fixed a priori interpretation of
(un)observable events. Dynamic observers have dif-
ferent capabilities depending on previous events. Or-
wellian observers can also re-interpret past unobserv-
able events on the base of subsequent observation.
The first two are special cases of the latter.

• Table 2 gathers results from opacity quantification
approaches.

• Finally, more specific complexity results are presented
in Table 3.

7. Applications and related issues

Most opacity properties and validation strategies have
been applied and evaluated in the literature. One refer-
ence case study is known as the Dinning cryptographers
problem, introduced by Chaum (1988); see e.g., Lakhnech
& Mazaré (2005); Bérard et al. (2010); Wu & Lafortune
(2013). It illustrates properties of ISO and CSO. An-
other ISO application is presented in Saboori & Hadji-
costis (2008b), related to encryption using pseudo-random
generators. The same work also presents the problem of
sensor network coverage for vehicle tracking (also detailed
in Saboori & Hadjicostis (2011a)). Similar problems have
been considered in Dubreil et al. (2010), more precisely, the
guidance of semi-autonomous agents traveling through fi-
nite networks, with the objective of preventing current po-
sitions from being known to adversaries that receive partial
information from sensors (see Example 7). Opacity Issues
in Games with Imperfect Information is another applica-
tion considered in Maubert et al. (2011). It exhibits rele-
vant opacity verification problems, which noticeably gen-
eralizes approaches considered in the literature for opacity
analysis in DES.

We mentioned in Introduction that opacity theory ap-
plies naturally in privacy-enhancing problems such as those
we face nowadays in communication protocols design. In
Saboori & Hadjicostis (2010b), the authors present a mo-
tivational example of the use of probabilistic opacity meth-
ods to evaluate the well-known anonymity protocol Crowds
for the world-wide-web, initially presented in Reiter & Ru-
bin (1998). More recently, Wu and Lafortune addressed
the issue of Ensuring Privacy in Location-Based Services
in Wu et al. (2014) and Wu (2014), using opacity enforce-
ment techniques. To the best of our knowledge, this is the
closest it gets to real-life applications so far.

Indeed, most of the current literature on opacity re-
mains mainly theoretical. Nevertheless, there have been
a few successful implementations. There are briefly intro-
duced in the following subsection.

Tools and implementation

Saboori used the Umdes library (Umdes, 2009) to im-
plement his verification method for infinite-step opacity,
as described in Saboori & Hadjicostis (2011b) and Saboori
(2011). Umdes is a library of C routines developed at the
University of Michigan for studying DES modeled by finite
automata.

Falcone developed a specific toolbox named Takos: a
Java Toolbox for the Analysis of K-Opacity of Systems
(Takos (2010)) to implement the K-step opacity enforce-
ment method presented in Falcone et al. (2014) using de-
lays.

12

Table 1: Decidability and complexity results for general opacity problems and regular languages

System model Observation Decidability Complexity Reference
mapping

Petri Nets Static Undecidable – Bryans et al. (2008)

Finite labeled
transition system

Static Decidable PSPACE-complete
Cassez et al. (2012)

Dynamic Decidable PSPACE-complete
Orwellian Decidable PSPACE-complete Bérard & Mullins (2014)

Timed Automata (dense-time) Static Undecidable Cassez (2009)

Pushdown automata (PDA) Static

Kobayashi & Hiraishi (2013)
General case Undecidable –
If X\XS is a visible PDA Decidable 2-EXPTIME
If X\XS and XS are visible PDA Decidable 1-EXPTIME

Recursive tile systems (RTS)
Static

Undecidable –
Chédor et al. (2014)

Weighted RTS (CwRTS) Decidable 2-EXPTIME

Table 2: Decidability and complexity results for quantified opacity problems

Problem Decidability Complexity Reference

with controller observability being Perfect/Partial Perfect/Partial
Bérard et al. (2015a)

Value
General disclosure
Limit disclosure

 Decidable Undecidable

Decidable
Decidable for

ω-regular secrets

Polynomial –

Polynomial EXPTIME
Almost-sure disclosure
Almost-sure opacity

}
(Step-based) Almost current-state opacity Decidable PSPACE-hard
Probabilistic current-state opacity opacity Undecidable – Saboori & Hadjicostis (2014)

(Step-based) Almost initial-state opacity Decidable – Keroglou & Hadjicostis (2013)

Sτ -Secrecy/I-S-Secrecy Decidable – Ibrahim et al. (2014)

Table 3: Other complexity results

Problem Complexity Order Reference

Current-state opacity PSPACE-complete O(2N)
Saboori (2011)K-Step weak opacity NP-hard O((|Eobs|+ 1)K × 2N)

Infinite-Step opacity PSPACE-hard –

K-Step strong opacity NP-hard O((|Eobs|+ 1)K × 2N) Falcone et al. (2014)

Initial-state opacity PSPACE-complete O(2N) Wu & Lafortune (2013)

Resolution of initial-state Polynomial – Hadjicostis & Keroglou (2014)

LBO Strong-opacity PSPACE-complete – Lin (2011)

LBO Weak-opacity Polynomial – Zhang et al. (2012)

Static mask synthesis PSPACE-complete –
Cassez et al. (2012)

Dynamic mask systhesis EXPTIME lower bound –

13

Finally, in Klai et al. (2014), a symbolic observation
graph-based opacity checker has been implemented in C++
using a binary decision diagram package called BuDDy
(BuDDy (1998)). Results are compared with the Takos
toolbox on the also well known Dinning philosophers prob-
lem.

8. Conclusions and open problems

Over the past ten years, opacity applied to DES has
been broadly studied. Almost all opacity problems proven
decidable have a known complexity. Future trends are
oriented toward infinite-state discrete event models, even-
tually coupled with probabilistic transition functions.

Some ongoing work tackles the verification of state-
based opacity for some classes of Petri nets.

We already mentioned the similarities between opacity
and diagnosis. There has been a quite decent amount of
work related to prognosis (or predictability), which does
not try to detect a fault but to predict that a fault will
eventually happen in the future. It could be interesting to
consider these approaches for the enforcement of opacity
properties.

Moreover, in order to broaden the fields of applica-
tions, one could consider opacity validation from another
perspective. Starting from a fully observable system and
a given secret, which events one should ”hide” in order to
ensure opacity? This approach could provide a pragmatic
methodology for people interested in designing opaque sys-
tems. Very recent work (O’Kane & Shell (2015)) is a first
attempt in this direction. It models both the information
we need the system to reveal and those we want to be
opaque as lower and upper bound filters. It shows that
determining whether it is possible to satisfy both the dis-
tinguishability and indistinguishability constraints is NP-
hard, along with simulation results from their implemen-
tation.

As we are moving at high speed toward permanent con-
nectedness, big data, user profiling and such, efficient tools
to control the information we are disclosing and those to
be kept private are becoming of paramount importance.
Opacity is part of the answer. We believe it is now time
to use this knowledge to handle the actual security and
privacy problems we now face in our everyday life.

References

Alur, R., Černý, P., & Zdancewic, S. (2006). Preserving secrecy un-
der refinement. In Automata, Languages and Programming (pp.
107–118). Springer. doi:10.1007/11787006_10.

Badouel, E., Bednarczyk, M., Borzyszkowski, A., Caillaud, B., &
Darondeau, P. (2007). Concurrent secrets. Discrete Event Dy-
namic Systems, 17 , 425–446. doi:10.1007/s10626-007-0020-5.

Ben-Kalefa, M., & Lin, F. (2009). Opaque superlanguages and sub-
languages in discrete event systems. In Decision and Control,
2009 held jointly with the 2009 28th Chinese Control Conference.
CDC/CCC 2009. Proceedings of the 48th IEEE Conference on
(pp. 199–204). IEEE. doi:10.1109/CDC.2009.5400704.

Ben-Kalefa, M., & Lin, F. (2011). Supervisory control for opacity
of discrete event systems. In Communication, Control, and Com-
puting (Allerton), 2011 49th Annual Allerton Conference on (pp.
1113–1119). IEEE. doi:10.1109/Allerton.2011.6120292.

Benattar, G., Cassez, F., Lime, D., & Roux, O. H. (2015). Con-
trol and synthesis of non-interferent timed systems. International
Journal of Control , 88 . doi:10.1080/00207179.2014.944356.

Bérard, B., Chatterjee, K., & Sznajder, N. (2015a). Probabilistic
opacity for markov decision processes. Information Processing
Letters, 115 , 52–59. doi:10.1016/j.ipl.2014.09.001.

Bérard, B., & Mullins, J. (2014). Verification of information flow
properties under rational observation. CoRR, abs/1409.0871 .
URL: http://arxiv.org/abs/1409.0871.

Bérard, B., Mullins, J., & Sassolas, M. (2010). Quantifying opac-
ity. In Quantitative Evaluation of Systems (QEST), 2010 Sev-
enth International Conference on the (pp. 263–272). IEEE. URL:
http://arxiv.org/pdf/1301.6799.pdf.

Bérard, B., Mullins, J., & Sassolas, M. (2015b). Quantifying opac-
ity. Mathematical Structures in Computer Science, 25 , 361–
403. URL: http://arxiv.org/pdf/1301.6799.pdf. doi:10.1017/
S0960129513000637.

Bérard, B., Mullins, J. et al. (2015c). Non-interference in partial
order models. In ACSD 2015 . IEEE.

Bryans, J. W., Koutny, M., Mazaré, L., & Ryan, P. Y. (2008). Opac-
ity generalised to transition systems. International Journal of In-
formation Security, 7 , 421–435. doi:10.1007/s10207-008-0058-x.

Bryans, J. W., Koutny, M., & Mu, C. (2011). Towards quantitative
analysis of opacity. Technical Report No. CS-TR-1304 Newcastle
University: Computing Science.

Bryans, J. W., Koutny, M., & Ryan, P. Y. (2005). Modelling opac-
ity using petri nets. Electronic Notes in Theoretical Computer
Science, 121 , 101–115. doi:doi:10.1016/j.entcs.2004.10.010.

BuDDy (1998). Buddy. online. URL: http://vlsicad.eecs.umich.
edu/BK/Slots/cache/www.itu.dk/research/buddy/.

Cassandras, C. G., & Lafortune, S. (2008). Introduction to discrete
event systems. Springer Science & Business Media.

Cassez, F. (2009). The dark side of timed opacity. In J. Park,
H.-H. Chen, M. Atiquzzaman, C. Lee, T.-h. Kim, & S.-S. Yeo
(Eds.), Advances in Information Security and Assurance (pp.
21–30). Springer Berlin Heidelberg volume 5576 of Lecture
Notes in Computer Science. URL: http://dx.doi.org/10.1007/
978-3-642-02617-1_3. doi:10.1007/978-3-642-02617-1_3.

Cassez, F., Dubreil, J., & Marchand, H. (2009). Dynamic observers
for the synthesis of opaque systems. In Automated Technology for
Verification and Analysis (pp. 352–367). Springer. doi:10.1007/
978-3-642-04761-9_26.

Cassez, F., Dubreil, J., & Marchand, H. (2012). Synthesis of opa-
que systems with static and dynamic masks. Formal Methods in
System Design, 40 , 88–115. doi:10.1007/s10703-012-0141-9.

Cassez, F., Mullins, J., & Roux, O. H. (2007). Synthesis of non-
interferent systems. In 4th Int. Conf. on Mathematical Methods,
Models and Architectures for Computer Network Security (MMM-
ACNS’07) (pp. 307–321). Saint Petersburg, Russia: Springer vol-
ume 1. URL: https://hal.inria.fr/inria-00363029.

Chaum, D. (1988). The dining cryptographers problem: Uncondi-
tional sender and recipient untraceability. Journal of cryptology,
1 , 65–75. doi:10.1007/BF00206326.

Chédor, S. (2014). Diagnosis, opacity and conformance testing for
recursive tile systems. Theses Université Rennes 1. URL: https:
//tel.archives-ouvertes.fr/tel-00980800.

Chédor, S., Morvan, C., Pinchinat, S., Marchand, H. et al. (2014).
Diagnosis and opacity problems for infinite state systems modeled
by recursive tile systems. Discrete Event Dynamic Systems, .
doi:10.1007/s10626-014-0197-3.

Darondeau, P., Marchand, H., & Ricker, L. (2014). Enforcing opacity
of regular predicates on modal transition systems. Discrete Event
Dynamic Systems, (pp. 1–20). doi:10.1007/s10626-014-0193-7.

Dubreil, J. (2010). Monitoring and Supervisory Control for Opac-
ity Properties. English. tel-00461306 Ph.D. dissertation, Soft-
ware Engineering, Universit Rennes 1. URL: https://tel.

archives-ouvertes.fr/tel-00461306/.

14

http://dx.doi.org/10.1007/11787006_10
http://dx.doi.org/10.1007/s10626-007-0020-5
http://dx.doi.org/10.1109/CDC.2009.5400704
http://dx.doi.org/10.1109/Allerton.2011.6120292
http://dx.doi.org/10.1080/00207179.2014.944356
http://dx.doi.org/10.1016/j.ipl.2014.09.001
http://arxiv.org/abs/1409.0871
http://arxiv.org/pdf/1301.6799.pdf
http://arxiv.org/pdf/1301.6799.pdf
http://dx.doi.org/10.1017/S0960129513000637
http://dx.doi.org/10.1017/S0960129513000637
http://dx.doi.org/10.1007/s10207-008-0058-x
http://dx.doi.org/doi:10.1016/j.entcs.2004.10.010
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
http://vlsicad.eecs.umich.edu/BK/Slots/cache/www.itu.dk/research/buddy/
http://dx.doi.org/10.1007/978-3-642-02617-1_3
http://dx.doi.org/10.1007/978-3-642-02617-1_3
http://dx.doi.org/10.1007/978-3-642-02617-1_3
http://dx.doi.org/10.1007/978-3-642-04761-9_26
http://dx.doi.org/10.1007/978-3-642-04761-9_26
http://dx.doi.org/10.1007/s10703-012-0141-9
https://hal.inria.fr/inria-00363029
http://dx.doi.org/10.1007/BF00206326
https://tel.archives-ouvertes.fr/tel-00980800
https://tel.archives-ouvertes.fr/tel-00980800
http://dx.doi.org/10.1007/s10626-014-0197-3
http://dx.doi.org/10.1007/s10626-014-0193-7
https://tel.archives-ouvertes.fr/tel-00461306/
https://tel.archives-ouvertes.fr/tel-00461306/

Dubreil, J., Darondeau, P., & Marchand, H. (2008). Opacity
enforcing control synthesis. In Discrete Event Systems, 2008.
WODES 2008. 9th International Workshop on (pp. 28–35). IEEE.
doi:10.1109/WODES.2008.4605918.

Dubreil, J., Darondeau, P., & Marchand, H. (2010). Supervisory
control for opacity. Automatic Control, IEEE Transactions on,
55 , 1089–1100. doi:10.1109/TAC.2010.2042008.

Dubreil, J., Jéron, T., Marchand, H. et al. (2009). Monitoring confi-
dentiality by diagnosis techniques. In European Control Confer-
ence (pp. 2584–2589).

Falcone, Y., & Marchand, H. (2013). Runtime enforcement of k-
step opacity. In Decision and Control (CDC), 2013 IEEE 52nd
Annual Conference on (pp. 7271–7278). IEEE. doi:10.1109/CDC.
2013.6761043.

Falcone, Y., Marchand, H. et al. (2014). Enforcement and valida-
tion (at runtime) of various notions of opacity. Discrete Event
Dynamic Systems, (p. pp.42). doi:10.1007/s10626-014-0196-4.

Focardi, R., & Gorrieri, R. (1994). A taxonomy of trace-based
security properties for ccs. In Computer Security Foundations
Workshop VII, 1994. CSFW 7. Proceedings (pp. 126–136). IEEE.
doi:10.1109/CSFW.1994.315941.

Hadj-Alouane, N. B., Lafrance, S., Lin, F., Mullins, J., & Yeddes,
M. M. (2005). On the verification of intransitive noninterference
in mulitlevel security. Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on, 35 , 948–958. doi:10.1109/
TSMCB.2005.847749.

Hadjicostis, C., & Keroglou, C. (2014). Opacity formulations and
verification in discrete event systems. In Emerging Technology
and Factory Automation (ETFA), 2014 IEEE (pp. 1–12). IEEE.
doi:10.1109/ETFA.2014.7005032.

Hadjicostis, C. N. (2012). Resolution of initial-state in security ap-
plications of des. In Control & Automation (MED), 2012 20th
Mediterranean Conference on (pp. 794–799). IEEE. doi:10.1109/
MED.2012.6265735.

Ibrahim, M., Chen, J., & Kumar, R. (2014). Secrecy in stochastic
discrete event systems. In Networking, Sensing and Control (IC-
NSC), 2014 IEEE 11th International Conference on (pp. 48–53).
IEEE. doi:10.1109/ICNSC.2014.6819598.

Jacob, R., Lesage, J.-J., & Faure, J.-M. (2015). Opac-
ity of discrete event systems: models, validation and quan-
tification. In DCDS15 (pp. 174–181). Cancun, Mex-
ico. URL: https://hal.archives-ouvertes.fr/hal-01139890.
doi:10.1016/j.ifacol.2015.06.490.

Keroglou, C., & Hadjicostis, C. N. (2013). Initial state opacity in
stochastic des. In Emerging Technologies & Factory Automation
(ETFA), 2013 IEEE 18th Conference on (pp. 1–8). IEEE. doi:10.
1109/ETFA.2013.6648005.

Klai, K., Hamdi, N., & Hadj-Alouane, N. B. (2014). An on-the-
fly approach for the verification of opacity in critical systems. In
WETICE Conference (WETICE), 2014 IEEE 23rd International
(pp. 345–350). IEEE. doi:10.1109/WETICE.2014.84.

Kobayashi, K., & Hiraishi, K. (2013). Verification of opacity and
diagnosability for pushdown systems. Journal of Applied Mathe-
matics, 2013 . doi:10.1155/2013/654059.

Lakhnech, Y., & Mazaré, L. (2005). Probabilistic opac-
ity for a passive adversary and its application to chaum’s
voting scheme. IACR Cryptology ePrint Archive, 2005 ,
98. URL: http://citeseerx.ist.psu.edu/viewdoc/download?

doi=10.1.1.219.5335&rep=rep1&type=pdf.
Larsen, K. G. (1990). Modal specifications. In Automatic Verifica-

tion Methods for Finite State Systems (pp. 232–246). Springer.
doi:10.1007/3-540-52148-8_19.

Ligatti, J., Bauer, L., & Walker, D. (2005). Edit automata: En-
forcement mechanisms for run-time security policies. Interna-
tional Journal of Information Security, 4 , 2–16. doi:10.1007/
s10207-004-0046-8.

Lin, F. (2011). Opacity of discrete event systems and its appli-
cations. Automatica, 47 , 496–503. doi:10.1016/j.automatica.
2011.01.002.

Maubert, B., Pinchinat, S., & Bozzelli, L. (2011). Opacity is-
sues in games with imperfect information. arXiv preprint

arXiv:1106.1233 , . doi:10.4204/EPTCS.54.7.
Mazaré, L. (2004). Using unification for opacity properties. In

Proceedings of WITS (pp. 165–176). volume 4. URL: http:

//www-verimag.imag.fr/TR/TR-2004-24.pdf.
Mullins, J., & Yeddes, M. (2013). Opacity with orwellian

observers and intransitive non-interference. arXiv preprint
arXiv:1312.6426 , . URL: http://arxiv.org/abs/1312.6426.

O’Kane, J. M., & Shell, D. A. (2015). Automatic design of dis-
creet discrete filters. In Proc. IEEE International Conference on
Robotics and Automation. URL: http://robotics.cs.tamu.edu/
dshell/papers/icra2015discreet.pdf.

Paoli, A., & Lin, F. (2012). Decentralized opacity of discrete event
systems. In American Control Conference (ACC), 2012 (pp.
6083–6088). IEEE. doi:10.1109/ACC.2012.6315028.

Ramadge, P. J., & Wonham, W. M. (1989). The control of discrete
event systems. Proceedings of the IEEE , 77 , 81–98. doi:10.1109/
5.21072.

Reiter, M. K., & Rubin, A. D. (1998). Crowds: Anonymity for
web transactions. ACM Transactions on Information and System
Security (TISSEC), 1 , 66–92. doi:10.1145/290163.290168.

Saboori, A. (2011). Verification and enforcement of state-based no-
tions of opacity in discrete event systems. Ph.D. thesis University
of Illinois at Urbana-Champaign. URL: http://hdl.handle.net/
2142/18226.

Saboori, A., & Hadjicostis, C. N. (2007). Notions of security and
opacity in discrete event systems. In Decision and Control, 2007
46th IEEE Conference on (pp. 5056–5061). IEEE. doi:10.1109/
CDC.2007.4434515.

Saboori, A., & Hadjicostis, C. N. (2008a). Opacity-enforcing super-
visory strategies for secure discrete event systems. In CDC (pp.
889–894). doi:10.1109/CDC.2008.4738646.

Saboori, A., & Hadjicostis, C. N. (2008b). Verification of initial-state
opacity in security applications of des. In Discrete Event Systems,
2008. WODES 2008. 9th International Workshop on (pp. 328–
333). IEEE. doi:10.1109/WODES.2008.4605967.

Saboori, A., & Hadjicostis, C. N. (2009). Verification of infinite-step
opacity and analysis of its complexity. In Dependable control of
discrete systems (pp. 46–51). volume 2.

Saboori, A., & Hadjicostis, C. N. (2010a). Opacity verification in
stochastic discrete event systems. In Decision and Control (CDC),
2010 49th IEEE Conference on (pp. 6759–6764). IEEE. doi:10.
1109/CDC.2010.5717580.

Saboori, A., & Hadjicostis, C. N. (2010b). Probabilistic current-
state opacity is undecidable. In Proceedings of the 19th Inter-
national Symposium on Mathematical Theory of Networks and
Systems–MTNS . volume 5. URL: http://fwn06.housing.rug.

nl/mtns2010/Papers/084_478.pdf.
Saboori, A., & Hadjicostis, C. N. (2011a). Coverage analysis of mo-

bile agent trajectory via state-based opacity formulations. Control
Engineering Practice, 19 , 967–977. doi:10.1016/j.conengprac.
2010.12.003.

Saboori, A., & Hadjicostis, C. N. (2011b). Verification of k-step
opacity and analysis of its complexity. Automation Science and
Engineering, IEEE Transactions on, 8 , 549–559. doi:10.1109/
TASE.2011.2106775.

Saboori, A., & Hadjicostis, C. N. (2012). Opacity-enforcing super-
visory strategies via state estimator constructions. Automatic
Control, IEEE Transactions on, 57 , 1155–1165. doi:10.1109/TAC.
2011.2170453.

Saboori, A., & Hadjicostis, C. N. (2013). Verification of initial-state
opacity in security applications of discrete event systems. Infor-
mation Sciences, 246 , 115–132. doi:10.1016/j.ins.2013.05.033.

Saboori, A., & Hadjicostis, C. N. (2014). Current-state opacity
formulations in probabilistic finite automata. Automatic Con-
trol, IEEE Transactions on, 59 , 120–133. doi:10.1109/TAC.2013.
2279914.

Sampath, M., Sengupta, R., Lafortune, S., Sinnamohideen, K., &
Teneketzis, D. C. (1996). Failure diagnosis using discrete-event
models. Control Systems Technology, IEEE Transactions on, 4 ,
105–124. doi:10.1109/87.486338.

Schneider, F. B. (2000). Enforceable security policies. ACM Trans-

15

http://dx.doi.org/10.1109/WODES.2008.4605918
http://dx.doi.org/10.1109/TAC.2010.2042008
http://dx.doi.org/10.1109/CDC.2013.6761043
http://dx.doi.org/10.1109/CDC.2013.6761043
http://dx.doi.org/10.1007/s10626-014-0196-4
http://dx.doi.org/10.1109/CSFW.1994.315941
http://dx.doi.org/10.1109/TSMCB.2005.847749
http://dx.doi.org/10.1109/TSMCB.2005.847749
http://dx.doi.org/10.1109/ETFA.2014.7005032
http://dx.doi.org/10.1109/MED.2012.6265735
http://dx.doi.org/10.1109/MED.2012.6265735
http://dx.doi.org/10.1109/ICNSC.2014.6819598
https://hal.archives-ouvertes.fr/hal-01139890
http://dx.doi.org/10.1016/j.ifacol.2015.06.490
http://dx.doi.org/10.1109/ETFA.2013.6648005
http://dx.doi.org/10.1109/ETFA.2013.6648005
http://dx.doi.org/10.1109/WETICE.2014.84
http://dx.doi.org/10.1155/2013/654059
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.5335&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.219.5335&rep=rep1&type=pdf
http://dx.doi.org/10.1007/3-540-52148-8_19
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1007/s10207-004-0046-8
http://dx.doi.org/10.1016/j.automatica.2011.01.002
http://dx.doi.org/10.1016/j.automatica.2011.01.002
http://dx.doi.org/10.4204/EPTCS.54.7
http://www-verimag.imag.fr/TR/TR-2004-24.pdf
http://www-verimag.imag.fr/TR/TR-2004-24.pdf
http://arxiv.org/abs/1312.6426
http://robotics.cs.tamu.edu/dshell/papers/icra2015discreet.pdf
http://robotics.cs.tamu.edu/dshell/papers/icra2015discreet.pdf
http://dx.doi.org/10.1109/ACC.2012.6315028
http://dx.doi.org/10.1109/5.21072
http://dx.doi.org/10.1109/5.21072
http://dx.doi.org/10.1145/290163.290168
http://hdl.handle.net/2142/18226
http://hdl.handle.net/2142/18226
http://dx.doi.org/10.1109/CDC.2007.4434515
http://dx.doi.org/10.1109/CDC.2007.4434515
http://dx.doi.org/10.1109/CDC.2008.4738646
http://dx.doi.org/10.1109/WODES.2008.4605967
http://dx.doi.org/10.1109/CDC.2010.5717580
http://dx.doi.org/10.1109/CDC.2010.5717580
http://fwn06.housing.rug.nl/mtns2010/Papers/084_478.pdf
http://fwn06.housing.rug.nl/mtns2010/Papers/084_478.pdf
http://dx.doi.org/10.1016/j.conengprac.2010.12.003
http://dx.doi.org/10.1016/j.conengprac.2010.12.003
http://dx.doi.org/10.1109/TASE.2011.2106775
http://dx.doi.org/10.1109/TASE.2011.2106775
http://dx.doi.org/10.1109/TAC.2011.2170453
http://dx.doi.org/10.1109/TAC.2011.2170453
http://dx.doi.org/10.1016/j.ins.2013.05.033
http://dx.doi.org/10.1109/TAC.2013.2279914
http://dx.doi.org/10.1109/TAC.2013.2279914
http://dx.doi.org/10.1109/87.486338

actions on Information and System Security (TISSEC), 3 , 30–50.
doi:10.1145/353323.353382.

Schneider, S., & Sidiropoulos, A. (1996). Csp and anonymity. In
Computer SecurityESORICS 96 (pp. 198–218). Springer. doi:10.
1007/3-540-61770-1_38.

Takai, S., & Kumar, R. (2009). Verification and synthesis for secrecy
in discrete-event systems. In American Control Conference, 2009.
ACC’09. (pp. 4741–4746). IEEE. doi:10.1109/ACC.2009.5160162.

Takai, S., & Oka, Y. (2008). A formula for the supremal control-
lable and opaque sublanguage arising in supervisory control. SICE
Journal of Control, Measurement, and System Integration, 1 ,
307–311. doi:10.9746/jcmsi.1.307.

Takos (2010). Takos: A java toolbox for analyzing the k-opacity of
systems. online. URL: http://toolboxopacity.gforge.inria.

fr/.
Umdes (2009). Umdes-lib. online. URL: http://www.eecs.umich.

edu/umdes/toolboxes.html software library.
Wu, Y.-C. (2014). Verification and Enforcement of Opacity Security

Properties in Discrete Event Systems. Ph.D. thesis University of
Michigan. URL: http://hdl.handle.net/2027.42/108905.

Wu, Y.-C., & Lafortune, S. (2013). Comparative analysis of re-
lated notions of opacity in centralized and coordinated architec-
tures. Discrete Event Dynamic Systems, 23 , 307–339. doi:10.
1007/s10626-012-0145-z.

Wu, Y.-C., & Lafortune, S. (2014). Synthesis of insertion functions
for enforcement of opacity security properties. Automatica, 50 ,
1336–1348. doi:10.1016/j.automatica.2014.02.038.

Wu, Y.-C., Sankararaman, K. A., & Lafortune, S. (2014). Ensuring
privacy in location-based services: An approach based on opacity
enforcement. In Discrete Event Systems (pp. 33–38). volume 12.
doi:10.3182/20140514-3-FR-4046.00008.

Zaytoon, J., & Lafortune, S. (2013). Overview of fault diagnosis
methods for discrete event systems. Annual Reviews in Control ,
37 , 308–320. doi:10.1016/j.arcontrol.2013.09.009.

Zhang, B., Shu, S., & Lin, F. (2012). Polynomial algorithms to
check opacity in discrete event systems. In Control and Decision
Conference (CCDC), 2012 24th Chinese (pp. 763 – 769). IEEE.
doi:10.1109/CCDC.2012.6244117.

Zhang, B., Shu, S., & Lin, F. (2014). Maximum information re-
lease while ensuring opacity in discrete event systems. In Robotics
and Automation (ICRA), 2014 IEEE International Conference
on (pp. 3285–3290). IEEE. doi:10.1109/ICRA.2014.6907331.

Zhang, B., Shu, S., & Lin, F. (2015). Maximum information release
while ensuring opacity in discrete event systems. Automation Sci-
ence and Engineering, IEEE Transactions on, (pp. 1067–1079).
doi:10.1109/TASE.2014.2379623.

Romain Jacob was a final year Master student at ENS
Cachan, France at the time of writing. After one year as
visiting scholar at the University of California Berkeley,
he completed his M.Eng. degree in Industrial Automa-
tion and Control from ENS Cachan (2015). He is now
with the ETH Zürich where he is pursuing his Ph.D. on
wireless sensor networks architectures and control. His
research interests span from control synthesis and artifi-
cial intelligence to communication protocol, modeling and
simulation.

Jean-Jacques Lesage received the Ph.D. degree from the
Ecole Centrale de Paris and the ”Habilitation diriger des
recherches” from the University Nancy 1 in 1989 and 1994
respectively. He is currently Professor of Automatic Con-
trol at the Ecole Normale Suprieure de Cachan, France.
His research interests are in the field of formal methods
and models for synthesis, analysis and diagnosis of Discrete
Event Systems (DES), and applications to manufacturing
systems, network automated systems, energy production,
and ambient assisted living.

Jean-Marc Faure received the Ph.D. degree from Ecole
Centrale de Paris in 1991. He is currently Professor of
Automatic Control and Automation Engineering at the
Institut Superieur de Mecanique de Paris and researcher
at Ecole Normale Superieure de Cachan, France. His re-
search fields are modeling, synthesis and analysis of Dis-
crete Event Systems (DES) with special focus on formal
verification and conformance test methods to improve de-
pendability of critical systems. J.-M. Faure is member of
the IEEE and Associate Editor of the Journal T-ASE since
2012. He is chair of the steering committee of the IFAC
workshop series ”Dependable Control of Discrete Systems”
and has served in many committees of IFAC and IEEE
conferences.

16

http://dx.doi.org/10.1145/353323.353382
http://dx.doi.org/10.1007/3-540-61770-1_38
http://dx.doi.org/10.1007/3-540-61770-1_38
http://dx.doi.org/10.1109/ACC.2009.5160162
http://dx.doi.org/10.9746/jcmsi.1.307
http://toolboxopacity.gforge.inria.fr/
http://toolboxopacity.gforge.inria.fr/
http://www.eecs.umich.edu/umdes/toolboxes.html
http://www.eecs.umich.edu/umdes/toolboxes.html
http://hdl.handle.net/2027.42/108905
http://dx.doi.org/10.1007/s10626-012-0145-z
http://dx.doi.org/10.1007/s10626-012-0145-z
http://dx.doi.org/10.1016/j.automatica.2014.02.038
http://dx.doi.org/10.3182/20140514-3-FR-4046.00008
http://dx.doi.org/10.1016/j.arcontrol.2013.09.009
http://dx.doi.org/10.1109/CCDC.2012.6244117
http://dx.doi.org/10.1109/ICRA.2014.6907331
http://dx.doi.org/10.1109/TASE.2014.2379623

	Introduction
	Preliminaries
	Opacity of discrete event systems
	Language-based opacity – LBO
	State-based opacity – SBO
	Current-State Opacity – CSO
	Initial-State Opacity – ISO
	Initial-and-Final-State Opacity – IFO
	K-step opacity
	Infinite-step opacity

	Transformations between different opacity properties
	Distributed opacity
	Infinite DES models
	Relation with other DES and information flow properties

	Ensuring opacity
	Verification of opacity properties
	Supervisory control theory – SCT
	Enforcement of opacity properties
	Deletion of events
	Addition of events
	Delay of events

	Quantifying opacity
	Quantification of language-based opacity
	Quantification of state-based opacity

	Decidability and Complexity of opacity properties
	Applications and related issues
	Conclusions and open problems

