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We demonstrate how in the fermionic systems the linear response to the external electromagnetic
field is related to momentum space topology. We use derivative expansion applied to the Wigner
transform of the two - point Green function. It appears, that the response of electric current to the
field strength is proportional to momentum space topological invariant. For the 2 + 1 D systems
this allows to reproduce the well - known expression for Hall conductivity. Next, we analyse for the
wide class of the 3 + 1 D fermionic systems the equilibrium chiral magnetic effect (CME). For the
lattice regularization of continuum quantum field theory (and also for the Dirac semimetals) the
mentioned topological invariant does not depend on the value of the chiral chemical potential. That
means, that the bulk equilibrium CME is absent in those systems.
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I. INTRODUCTION.

The chiral magnetic effect (CME) has been widely discussed recently in different contexts both within the continuous
quantum field theory and in the condensed matter physics. The CME for the case, when the left - handed and the
right - handed fermions are truly separated was first discussed in [1]. In the context of quantum field theory the
existence of chiral magnetic effect was considered in [2], followed by a number of papers (see, for example, [3, 6] and
references therein). In particular, CME has been discussed using a different technique in the Fermi liquids [4].
The possible existence of the chiral magnetic contribution to conductivity was proposed in [5], and was discussed

later in a number of papers. The experimental observation of this contribution to conductivity in the recently
discovered Dirac semimetals was reported in [7]. Notice, that from our point of view such a chiral magnetic contribution
to conductivity should be distinguished from the equilibrium CME [2]. In the former the chiral imbalance appears as
a pure kinetic phenomenon, and the final expression for the CME current is proportional to the squared magnetic field
and, in addition, to electric field. At the same time in the latter the nondissipative current is linear in magnetic field
and is predicted to appear without any external electric field. Therefore, the linear response theory to be considered
in the present paper, strictly speaking, does not describe chiral magnetic contribution to conductivity. Thus we will
concentrate on the equilibrium CME.
The family of the non - dissipative transport effects being the cousins of the CME has also been widely discussed

recently both in the context of the high energy physics and in the context of condensed matter theory [8–15]. The
possible appearance of such effects in the recently discovered Dirac and Weyl semimetals has been considered [16–22].
In the context of the high energy physics the possibility to observe CME in relativistic heavy - ion collisions was
widely discussed (see, for example, [3, 23, 24] and references therein). Certain lattice calculations seem to confirm
indirectly this possibility [25].
In several publications the existence of equilibrium CME was questioned. In particular, in [12–15] using different

numerical methods the CME current was investigated in the context of lattice field theory. It was argued, that the
equilibrium bulk CME does not exist, but close to the boundary of the system the nonzero CME current may appear.
It was demonstrated, that in the given systems the integrated total CME current remains zero. The similar conclusion
was drawn in [10] basing on the consderation of the system of finite size with the special boundary conditions in the
direction of the external magnetic field. The consideration of [10], however, does not refer to the systems, which do
not have boundaries or, say, have the form of a circle with magnetic field directed along the circle. In the context
of condensed matter theory the absence of CME was reported within the particular model of Weyl semimetal [34].
Besides, it was argued, that the equilibrium CME may contradict to the no - go Bloch theorem [35].
In the present paper we consider CME on the basis of Wigner transformation technique [30, 31] applied to Green

functions. First of all, we demonstrate, that the derivative expansion within this technique allows to reduce the
expression for the linear response of electric current to the external field strength to the momentum space topological
invariant. The power of this method is demonstrated on the example of the 2+1 D quantum Hall effect (QHE), where
it allows to derive in a simple way the conventional expression for Hall conductivity [26]. Momentum space topology is
a powerful method, which was developed earlier mainly within condensed matter theory. In addition to the ordinary
quantum Hall effect it allows to describe in a simple way a lot of the other effects (for the review see [26, 27]). Recently
certain aspects of momentum space topology were discussed in the framework of the four - dimensional lattice gauge
theory [28, 29]. Here we derive the expression for the linear response of the electric current to the external magnetic
field in the wide class of the 3 + 1 D fermionic systems, which includes popular lattice regularizations of continuum
quantum field theory and the models of discovered recently Dirac semimetals.
Strictly speaking, our calculations remain unambiguous only for the systems with the Green functions that do not

have poles (or zeros). It appears, that like in the 2 + 1 D case the resulting 3 + 1 D response of electric current to
the external magnetic field is proportional to the topological invariant in momentum space. Unlike the case of the
naive continuum fermions for the lattice regularized quantum field theory (or for the real Dirac semimetals) with the
infrared regularization via the nonzero Dirac mass the value of the mentioned topological invariant does not depend
on the chiral chemical potential. Moreover, the presence of chiral chemical potential eliminates poles of the Green
function even if the bare Dirac mass is zero. Therefore, the limit, when the physical Dirac mass tends to zero, does
not change our conclusion. This means, that the equilibrium bulk CME current is absent for the lattice regularized
quantum field theory and in the real Dirac semimetals.
The paper is organized as follows. In Sect. II we start the discussion of the linear response of electric current to

external electromagnetic field using continuum formulation. The Wigner transform of the two - point Green function
is defined in Sect. II A. The main equation obeyed by this object is proved in Appendix A. In Section II B we present
the gradient expansion for the Wigner transform of the Green function. The linear response of the electric current
to external gauge field is considered in Sect. II C. It appears, that the resulting expression is divergent and requires
regularization. In Sect. III we consider lattice regularization. In Sect. III A we discuss lattice theory of general form,
which allows to describe not only the lattice regularization of the continuum quantum field theory, but also the tight
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- binding like models of solid state physics. We propose the unusual way to introduce the external gauge field to
the lattice model. This method allows to deal with the theory written in momentum space, which is important for
our further considerations. The proposed method is manifestly gauge invariant, and it is obviously reduced to the
conventional minimal connection of theory with the gauge field in continuum limit. Therefore, it allows to introduce
effectively the gauge field both into the lattice regularization of quantum field theory and to the models of the solid
state physics. In Sect. III B the Wigner transform of the lattice two - point Green function in momentum space is
discussed. It appears, that it obeys the same equation as its continuum counterpart. This is proved in Appendix B.
In Sect. III C the linear response of the electric current to the external gauge field is derived for the lattice theory.
It appears, that the resulting expression represents the direct lattice discretization of the corresponding continuum
expression as expected. This expression is, in turn, a topological invariant in momentum space. This is proved in
Appendix C. In Sect. IV the celebrated expression for the Hall current is reproduced using the proposed technique. In
Sect. V we finally discuss the chiral magnetic effect, and prove basing on the proposed methodology, that it is absent
for the lattice regularized theory and for the solid state systems like topological insulators and Dirac semimetals. In
Sect. VI we end with the conclusions.

II. CONTINUUM THEORY

A. Wigner transform of the Green function.

In the present section we recall some of the basic notions of the Wigner (Weyl) transform. For the more details
see, for example, [37] and Appendix B in [36]. Next, we will apply those notions to the two point Green function of
a non - interacting fermion system in the presence of external gauge field.
Let us consider the d+1 = D dimensional continuum model with the fermionic Green function G(p) that depends on

the D vector p = (p1, ..., pD) of Euclidean momentum. (The Wick rotation has been performed.) When interactions
between the fermions are neglected, the external electromagnetic field A(r) may be taken into account through the

Hermitian operator - valued function Q̂(r, p̂) = G−1(p̂−A(r)), where p̂ = −i∂r. Operators p̂i−Ai(r) and p̂j −Aj(r)

do not commute for i 6= j. Therefore, we should point out the way of their ordering inside Q̂. We choose the
following way for definiteness: each product pi1 ...pin in the expansion of G−1 is substituted by the symmetrized
product 1

n!

∑

permutations(p̂i1 −Ai1)...(p̂in −Ain). This way of ordering corresponds to the so - called symmetrical (or,

Wigner) quantization according to [37]. The resulting function Q̂ enters the functional integral representation for the
Euclidean partition function

Z =

∫

DΨ̄DΨexp
(

−

∫

dDrΨ̄(r)Q̂(r, p̂)Ψ(r)
)

(1)

Here Ψ, Ψ̄ are the Grassmann - valued continuum fermionic fields. In the presence of the gauge field the Green
function appears as a correlator

G(r1, r2) =
1

Z

∫

DΨ̄DΨΨ̄(r2)Ψ(r1)

exp
(

−

∫

dDrΨ̄(r)Q̂(r, p̂)Ψ(r)
)

(2)

It obeys equation

Q̂(r1,−i∂r1)G(r1, r2) = δ(D)(r1 − r2) (3)

Wigner transform [30] of the Green function is defined as

G̃(R,p) =

∫

dDre−iprG(R+ r/2,R− r/2) (4)

In Appendix A the Groenewold equation [36] for the function G̃ is derived

1 = Q(R,p) ∗ G̃(R,p)

≡ Q(R,p)e
i
2
(
←−
∂ R

−→
∂ p−

←−
∂ p

−→
∂ R)G̃(R,p) (5)

Here function Q represents the so - called Weyl symbol of operator Q̂ being the Wigner transform of its matrix
elements [36, 37]. It depends on the real numbers rather than on the operators. The explicit form of the relation
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between Q and Q̂ is given in Appendix A. Here we will need only the following property of the correspondence between
Q̂ and Q. If Q̂ has the form of a function G−1 of the combination (p̂−A(r)) with a gauge potential A(r), i.e.

Q̂(r, p̂) = G−1(p̂−A(r)) (6)

then we have

Q(r,p) = G−1(p−A(r)) +O([∂iAj ]
2) (7)

Here O([∂iAj ]
2) may contain the terms with the second power of the derivative of A, with the squared derivative

of A, and the terms higher order in derivatives. In principle, the restrictions on the term O([∂iAj ]
2) may be more

strong1, but for our purposes it will be enough, that the terms linear in the derivatives of A are absent in O([∂iAj ]
2)

(which is proved in Appendix A and Appendix B).
Notice, that the star product entering Eq. (5) is widely used in deformation quantisation [32, 37] and also in some

other applications (see, for example, [31] and references therein).

B. Gradient expansion for the Wigner transform of the Green function in the presence of external gauge
field.

Here we apply the formalism of Wigner transform to the d+1 = D dimensional fermionic systems. Let us consider
the model with the Green function G(p) that depends on the D - vector p = (p1, p2, ..., p4) of Euclidean momentum.

We introduce the slowly varying external U(1) vector gauge field A(r) defining operator function Q̂ of Eq. (6). The
Wigner transform of the Green function Eq. (4) satisfies Eq. (5).
We apply the gradient expansion and come to

G̃(R,p) = G̃(0)(R,p) + G̃(1)(R,p) + ... (8)

G̃(1) = −
i

2
G̃(0)

∂
[

G̃(0)
]−1

∂pi
G̃(0)

∂
[

G̃(0)
]−1

∂pj
G̃(0)Aij(R)

Here G̃(0)(R,p) is defined as the Green function with the field strength Aij = ∂iAj − ∂jAi neglected. It is given by

G̃(0)(R,p) = G(p−A(R)) (9)

C. Linear response of electric current to the strength of external gauge field.

The components of vector U(1) current in the system of non - interacting fermions may be expressed as:

jk(R) = −Tr
∂G−1(−i∂r1 −A(r1))

∂Ak
G(r1, r2)

∣

∣

∣

r1,r2→R

=

∫

dDp

(2π)D
Tr G̃(R,p)

∂
[

G̃(0)(R,p)
]−1

∂pk
(10)

For the derivation of the second row in this expression we applied expressions of Appendix A. Also, this expression
follows as a continuum limit of the corresponding formula to be derived in the next section. We also advise the reader
to consult Appendix B of [36], where many useful relations are collected, including those, which give rise to Eq. (10).

In the 3 + 1 D systems the contribution to electric current originated from G̃(1) is given by

j(1)k(R) =
1

4π2
ǫijklMlAij(R), (11)

Ml =

∫

Tr νl d
4p (12)

νl = −
i

3! 8π2
ǫijkl

[

G
∂G−1

∂pi

∂G

∂pj

∂G−1

∂pk

]

(13)

1 For example, the Weyl symbol of the operator f(−i∂r −Hr) for the one - dimensional problem (r ∈ R
1) is given by f(p−Hr) exactly

[37].
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In the linear response theory we should substitute A = 0 into the expression for Ml. Therefore, in Eq. (12) we

substitute G instead of G̃(0).
In order to understand how Eq. (12) works let us consider the single massless Dirac fermion, which is the couple of

the left - handed and the right - handed Weyl fermions. The corresponding expression for the Green function in the
presence of chiral chemical potential µ5 is given by

G(p) =
(

∑

k

γkpk + iγ4γ5µ5

)−1

(14)

with the Euclidean gamma - matrices that satisfy {γa, γb} = 2δab and the γ5 matrix given by diag(1, 1,−1,−1) in
chiral representation. In this situation the Green function contains poles. Besides, the integral in Eq. (12) is divergent
at infinite values of p. Therefore, in order to apply the above expressions the regularization is needed.
The obvious expectation about Eq. (13) is that in lattice regularization we need simply to substitute into it

the lattice Green function defined as a function of lattice momentum, and integrate in Eq. (12) over the compact
momentum spaceM. Below we will see, that this is indeed what should be done.

III. LATTICE REGULARIZED THEORY

A. A way to introduce the external gauge field to lattice model.

Again, let us consider the d + 1 = D dimensional model with the fermionic Green function G(p) that depends on
the D vector p = (p1, ..., pD) of Euclidean momentum. Now we assume, that momentum space is compact and has
the form of the product M = S1 ⊗ Ω, where Ω is the d - dimensional Brillouin zone while S1 is the circle of pD.
Notice, that the lattice momentum p does not appear as the eigenvalue of the operator −i∂r. The same refers also to
the solid state models.
In the absence of the external electromagnetic field the partition function of the theory under consideration may

be written as

Z =

∫

DΨ̄DΨexp
(

−

∫

M

dDp

|M|
Ψ̄(p)G−1(p)Ψ(p)

)

(15)

where |M| is the volume of momentum space M. (We neglect here those interactions, which are not taken into
account by the form of the two point Green function G(p). Otherwise, the interaction terms with higher powers of Ψ
or with the additional dynamical fields would have been written.)
We assume, that the theory to be dealt with has the form of the lattice regularization of the continuum quantum

field theory, or the form of the solid state tight - binding like model. In both cases the theory is defined in discrete
coordinate space. We assume, that the dynamical variables Ψ of this theory are attached to the lattice sites rn.
The fields in coordinate space are related to the fields in momentum space as follows

Ψ(r) =

∫

M

dDp

|M|
eiprΨ(p) (16)

At the discrete values of r corresponding to the points of the lattice this expression gives the values of the fermionic
field at these points, i.e. the dynamical variables of the original lattice model. However, Eq. (16) allows to define
formally the values of fields at any other values of r. The partition function may be rewritten in the form

Z =

∫

DΨ̄DΨexp
(

−
∑

rn

Ψ̄(rn)
[

G−1(−i∂r)Ψ(r)
]

r=rn

)

(17)

Here the sum in the exponent is over the discrete coordinates rn. However, the operator −i∂r acts on the function
Ψ(r) defined using Eq. (16). In order to derive Eq. (17) we use identity

∑

r

eipr = |M|δ(p) (18)

Gauge transformation of the original lattice field

Ψ(rn)→ eiα(rn)Ψ(rn) (19)
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now may be understood as the gauge transformation of the field Ψ defined for any values of r: we simply extend the
definition of the function α(r) to the function, which is defined at any values of r and take the original values at the
discrete lattice points. This prompts the following way to introduce the external gauge field to our lattice model. We
consider the partition function of the form

Z =

∫

DΨ̄DΨexp
(

−
1

2

∑

r=rn

[

Ψ̄(r)G−1(−i∂r

−A(r))Ψ(r) + (h.c.)
])

(20)

Here by (h.c.) we denote the Hermitian conjugation, which is defined as follows. First of all, it relates the components
of Grassmann variable Ψ with the corresponding components of Ψ̄. Besides, it inverses the ordering of operators
and the variables Ψ̄,Ψ, and substitutes each operator by its Hermitian conjugated. For example, a conjugation of

Ψ̄B̂(i∂ri1 )...(i∂rin )Ψ for a certain operator (in internal space) B̂ is given by
[

(−i∂ri1 )...(−i∂rin )Ψ̄
]

B̂+Ψ. As well as

in continuum theory operators p̂i − Ai(r) and p̂j − Aj(r) do not commute for i 6= j. Therefore, we should point
out the way of their ordering inside G−1(−i∂r −A(r)). We choose the following way for definiteness: each product
pi1 ...pin in the expansion of G−1 is substituted by the symmetrized product 1

n!

∑

permutations(p̂i1 −Ai1 )...(p̂in −Ain).
This method of introducing the gauge field to the lattice model differs from the more conventional ways, but it is
manifestly gauge invariant, and it is obviously reduced to the conventional way the gauge field is to be introduced in
the naive continuum limit. Therefore, it satisfies all requirements to be fulfilled by the introduction of the gauge field
in lattice regularization of quantum field theory.
Now let us come back to momentum space:

Z =

∫

DΨ̄DΨexp
(

−
1

2

∫

M

dDp

|M|

[

Ψ̄(p)Qright(i∂p,p)Ψ(p)

+Ψ̄(p)Qleft(i∂p,p)Ψ(p)
])

(21)

Here by Qright we denote the function, that is constructed of G−1 as follows. We represent G−1(−i∂r − A(r)) as
a series in powers of −i∂r and A(r) such that in each term A(r) stand right to −i∂r. For example, we represent
(−i∂r −A(r))2 as (−i∂r)2 − 2(−i∂r)A(r) +A2(r)− i(∂A). Next, we substitute the argument of A by i∂p and −i∂r
by p. Correspondingly, Qleft is defined with the inverse ordering.
Let us introduce the following notation

Q̂ =
1

2

[

Qright(i∂p,p) +Qleft(i∂p,p)
]

(22)

Since the commutators [−i∂ri , r
j ] = iδji and [pi, i∂pj

] = iδji are equal to each other, the actual expression for Q̂ is
given by

Q̂ = G−1(p−A(i∂p)) (23)

The Green function of our system in momentum space satisfies equation

Q̂(i∂p1
,p1)G(p1,p2) = |M|δ

(D)(p1 − p2) (24)

B. Wigner transform in momentum space

According to the proposed above way to introduce the gauge field the Green function appears as a correlator

G(p1,p2) =
1

Z

∫

DΨ̄DΨΨ̄(p2)Ψ(p1) (25)

exp
(

−

∫

dDp

|M|
Ψ̄(p)Q̂(i∂p,p)Ψ(p)

)

It obeys equation Eq. (24). Wigner transform [30] of the Green function may be defined as

G̃(R,p) =

∫

dDP

|M|
eiPRG(p+P/2,p−P/2) (26)
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In terms of the Green function in coordinate space this Green function is expressed as:

G̃(R,p) =
∑

r=rn

e−iprG(R+ r/2,R− r/2) (27)

which is the direct analogue of Eq. (4). In Appendix B we prove, that this Green function obeys the same equation
as the one of the continuum theory:

1 = Q(R,p) ∗ G̃(R,p)

≡ Q(R,p)e
i
2
(
←−
∂ R

−→
∂ p−

←−
∂ p

−→
∂ R)G̃(R,p) (28)

As well as in continuum case the Weyl symbol of operator Q̂ is given by function Q that depends on the real numbers
rather than on the operators. As it is explained in Appendix B, if Q̂ has the form of a function G−1 of the combination
(p−A(r̂)) with a gauge potential A(r̂), i.e.

Q̂(r, p̂) = G−1(p−A(i∂p)) (29)

then we have

Q(r,p) = G−1(p−A(r)) +O([∂iAj ]
2) (30)

Here O([∂iAj ]
2) does not contain terms independent of the derivatives of A and the terms linear in those derivatives,

i.e. it is higher order in derivatives. In certain particular cases the restrictions on the term O(([∂iAj ]
2) may be more

strong, or it may even vanish at all [37].

C. Linear response of electric current to the strength of external gauge field.

In our lattice formalism the derivative expansion for the Wigner transform of the Green function is still given by
Eq. (8), where G̃(0)(R,p) = G(p−A(R)). Suppose, that we modified the external gauge field as A→ A+ δA. The
response to this extra contribution to gauge potential gives electric current. Let us calculate this response basing on
the description of the system given by Eq. (21):

δ logZ = −
1

Z

∫

DΨ̄DΨexp
(

−

∫

M

dDp

|M|
Ψ̄(p)Q̂(i∂p,p)Ψ(p)

)

∫

M

dDp

|M|
Ψ̄(p)

[

δQ̂(i∂p,p)
]

Ψ(p)

= −

∫

M

dDp

|M|
Tr

[

δQ̂(i∂p1
,p1)

]

G(p1,p2)
∣

∣

∣

p1=p2=p

= −
∑

R=Rn

∫

M

dDp

|M|
Tr

[

δQ̂(i∂P + i∂p/2,p+P/2)
]

e−iPRG̃(R,p)
∣

∣

∣

P=0
(31)

In Appendix B we introduce function Q(r,p) of real - valued arguments entering Eq. (28). Notice, that 2p and P

enter the expression inside Q̂ in a symmetric way. This allows to use Eq. (58). The form of Eq. (31) demonstrates,
that the above expression for the electric current may also be written through the function Q:

δ logZ = −
∑

R=Rn

∫

M

dDp

|M|
Tr

[

δQ(i
−→
∂ P − i

←−
∂ p/2,p+P/2)

]

e−iPRG̃(R,p)
∣

∣

∣

P=0

= −
∑

R=Rn

∫

M

dDp

|M|
Tr

[

δQ(R,p+P/2)
]

e−iPRG̃(R,p)
∣

∣

∣

P=0
(32)

According to the notations of Appendix B the arrows above the derivatives mean, that those derivatives act only

outside of Q, and do not act on the arguments of Q, i.e.
←−
∂ p acts on the function equal to 1 standing left to the

function Q while
−→
∂ P acts on the exponent e−iPR.
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As a result of the above mentioned manipulations we come to the following simple expression for the electric current
per unit volume of coordinate space, which follows from the relation δ logZ =

∑

R=Rn
jk(R)δAk(R)|V|:

jk(R) =

∫

M

dDp

|V||M|
Tr G̃(R,p)

∂

∂pk

[

G̃(0)(R,p)
]−1

(33)

Here by |V| we denote the volume of the unit cell understood as the ratio of the total volume of the system to the
number of lattice points at which the field Ψ is defined. For the ordinary hypercubic lattice the product of the
two volumes is obviously equal to (2π)D. One might think, that for the lattices of more complicated symmetry
the product of the momentum space volume and the defined above volume of the lattice cell may differ from this
expression. Nevertheless, this is not so, and in general case the given product is always equal to (2π)D exactly 2.
In general case of an arbitrary crystal the direct proof is rather complicated. However, the result for the product of
the two volumes may be found from the simple field theoretical correspondence: the limit of the microscopic model
described by the effective low energy theory should correspond to the product of the two volumes equal to (2π)D.
Notice, that the construction of the unit cell in the original lattice should be performed with care. One has to count
only those sites of the original crystal lattice, at which the dynamical variables of the model described by Eq. (20)
are incident. (This was illustrated above by the case of graphene, where we surrounded by this unit cell only the A
(or B) - atoms.) Thus Eq. (33) coincides with the continuum expression Eq. (10).
Let us apply the gradient expansion to Eq. (33). It results in the following expression for the electric cureent:

jk(R) = j(0)k(R) + j(1)k(R) + ...

j(0)k(R) =

∫

dDp

(2π)D
Tr G̃(0)(R,p)

∂
[

G̃(0)(R,p)
]−1

∂pk
(34)

Notice, that the second row of this expression represents the topological invariant as long as we deal with the system
with regular Green functions, which do not have poles or zeros, i.e. this expression is unchanged while we are
continuously deforming the Green function. We will not need this expression below since it does not contain the
linear response to the external field strength.
In the 3 + 1 D systems the contribution to this current originated from G̃(1) is given by

j(1)k(R) =
1

4π2
ǫijklMlAij(R), (35)

Ml =

∫

Tr νl d
4p (36)

νl = −
i

3! 8π2
ǫijkl

[

G
∂G−1

∂pi

∂G

∂pj

∂G−1

∂pk

]

(37)

In the linear response theory we should substitute A = 0 into the expression for Ml. Therefore, in Eq. (37) we

substitute G instead of G̃(0). Further we will be interested in the componentM4, which is the topological invariant,
i.e. it is robust to any variations of the Green function G̃ as long as the singularities are not encountered (for the
proof see Appendix C).
In the similar way for the 2 + 1 D systems we get

j(1)k(R) =
1

2π
ǫijkÑ3Aij(R), (38)

where the topological invariant (denoted by Ñ3 according to the classification of [26]) is to be calculated for the
original system with vanishing background gauge field:

Ñ3 =
1

24π2
Tr

∫

G−1dG ∧ dG−1 ∧ dG (39)

Notice, that the above expression for Ml is the direct 4D generalization of the invariant Ñ3. The proof that Ñ3 is
the topological invariant also follows from Appendix C.

2 For the purpose of illustration let us consider the 2D lattice of graphene [38]. In coordinate space we should take the hexagons that are
formed by the atoms of sublattice A (or B) because the resulting two component spinor is composed of the variables incident at the
two sublattices. The resulting unit cell of the lattice is the hexagon surrounding each atom of the sublattice A. The length of its size is

a, where a is the distance between the adjacent A and B atoms. The area of the hexagon is equal to |V| = 3
√

3
2

a2. The Brillouin zone

has also the form of the hexagon with the side length 2
3
√

3
2π
a
. Its volume is |M| = 2

3
√

3

(2π)2

a
2

. One can see, that the product is given

by (2π)2 as it should.
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IV. 2 + 1 D QUANTUM HALL EFFECT

In this section we demonstrate how the technique developed in the previous sections allows to reproduce the well
- known expression for the Hall current in the gapped systems. Let us consider the 2 + 1 D model with the gapped
fermions. In the presence of external electric field E = (E1, E2) we substitute A4k = −iEk into Eq. (38). This results
in the following expression for the Hall current

jkHall =
1

2π
Ñ3 ǫ

kiEi, (40)

Thus the well - known expression for the 2 + 1 D QHE is reproduced (see Eqs. (11.1) and (21.12) of [26]). For one
of the previous derivations of this result see, for example, [33]. The following remark is in order. In the real systems
of finite sizes the total current is still given by this expression integrated over the direction of electric field, but the
local current is concentrated close to the boundary. Our analysis based on the consideration of the systems of infinite
volume does not allow to distinguish this inhomogeneity of current in coordinate space.

V. BULK CHIRAL MAGNETIC CURRENT.

Now let us concentrate on the 3 + 1 D systems. We consider the situation, when vector gauge field Ak(R) has the
nonzero components with k = 1, 2, 3 that do not depend on (imaginary) time. The conventional expression for the
CME reads

jkCME =
µ5

4π2
ξCME ǫijk4 Aij (41)

where ξCME is integer number while µ5 is the chiral chemical potential. Such an expression should follow from Eq.
(35): we need to substitute A = 0 into Eq. (35) in the linear response approximation. Then one might expect that
M4 = µ5ξCME . However, below we will demonstrate, that ξCME calculated in this way vanishes identically (for the
reasonable choice of the way the chiral chemical potential is introduced) if we deal with compact momentum space
and regular Green functions.
There may exist many different definitions of µ5. Possibly, the most straightforward way is to consider the following

expression for the fermion Green function:

G(p) =
(

∑

k

γkgk(p) + iγ4γ5µ5 − im(p)
)−1

(42)

In the limit of vanishing chiral chemical potential it is reduced to

G(p)
∣

∣

∣

µ5=0
=

(

∑

k

γkgk(p)− im(p)
)−1

(43)

where γk are Euclidean Dirac matrices while gk(p) and m(p) are the real - valued functions, k = 1, 2, 3, 4. Here we
define γ5 in chiral representation as diag(1, 1,−1,−1). It can be easily seen, that the consideration of the previous
sections may be applied to the Green function, which has this form for nonzero value of µ5. Therefore, we may
substitute G of Eq. (42) into Eq. (35) instead of G̃(R,p) while dealing with the linear response to the external
magnetic field.
We are considering the theory with compact momentum space that can be represented as S1 ⊗ Ω, where Ω is the

compact 3D Brillouin zone. We assume, that the Green functions do not have zeros or poles, which means, that the
fermions are massive. However, at the end of the calculations the limit of vanishing mass may always be considered.
We need, though, that the inclusion of the chiral chemical potential does not produce poles in the Green function.
For the Green function of the form of Eq. (42) this may be proved as follows. The poles of the Green function appear

as the zeros of detG−1(p)
[

G−1(p)
]+

. The latter zeros are found as the solutions of the following equation

g24(p) +
(

µ5 ±
√

g21(p) + g22(p) + g23(p)
)2

+m2(p) = 0 (44)

One can easily see, that if functions m(p) and g4(p) never vanish simultaneously (which is the common case if the
original Green function Eq. (43) does not have poles), then the inclusion of the chiral chemical potential in the form
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of Eq. (42) cannot lead to the appearance of the poles of G. (This is in contrast to the case of the ordinary chemical
potential, in which the poles of the Green function may appear if chemical potential exceeds the gap.) In the following
we will need this property to be obeyed by the inclusion of the chiral chemical potential, and we will not need the
particular form of Eq. (42). To illustrate this general pattern let us recall, however, the form of the Green function
for the free lattice Wilson fermions:

gk(p) = sin pk, m(p) = m(0) +
∑

a=1,2,3,4

(1− cos pa) (45)

One can see, that for nonzero bare mass parameter m(0) the values of g4(p) and m(p) do not vanish at the same value
of p. The counter - examples are considered here as marginal.
As it was mentioned above, M4 is topological invariant, i.e. it is robust to any variations of the Green function

as long as the singularities are not encountered (for the proof see Appendix B). The introduction of chiral chemical
potential is the particular case of such a variation. Therefore, M4 does not depend on µ5. Actually, for the Green
function of the form of Eq. (43)M4 = 0. However, we do not need here the particular form of the Green function. We
only need that momentum space is compact and can be represented as S1 ⊗Ω, where Ω is the compact 3D Brillouin
zone.
The absence of the dependence on chiral chemical potential means, that there is no CME as long as we deal with

compact momentum space and regular Green function. The finite value of chiral chemical potential does not change
the situation because as we mentioned above such a finite value cannot provide the Green function of the form of Eq.
(43) with the pole (at least, when the form of G is not marginal).
We did not considered here yet the case of gapless fermions. In that case the pole of the Green function appears

and expression for M4 becomes ambiguous for µ5 = 0. However, even in that case for µ5 6= 0 the poles disappear,
the expression for M4 becomes well - defined and independent of µ5. This is demonstrated in clear way by the
consideration of the case of Wilson fermions Eq. (45) with zero bare mass parameter m(0) = 0: in this example Eq.
(44) does not have a solution for µ5 6= 0. Therefore, even for the gapless fermions our analysis gives the expression for
the linear response of the electric current to the magnetic field that does not depend on chiral chemical potential as
long as the latter is nonzero. This means, that the equilibrium CME is absent even for the fermions with zero mass.

VI. CONCLUSIONS AND DISCUSSION.

In the present paper we propose the methodology, which allows to reduce the consideration of the linear response
of electric current (to external gauge field) to the discussion of momentum space topology. We propose the original
method to introduce the slow varying external gauge field to the lattice models. Although the proposed method looks
unusual, it is manifestly gauge invariant, and it is obviously reduced in continuum limit to the conventional minimal
connection of the fermionic theory with the gauge field. Therefore, it allows to introduce effectively the gauge field
both into the lattice regularization of quantum field theory and to the models of the solid state physics. Since the
proposed formalism in momentum space utilizes the pseudo - differential operators, i.e. the argument of the gauge field
A(i∂p) is substituted by the differential operator, this formalism is not useful for the numerical simulations. However,
it appears as a powerful tool for the analytical derivations. The power of this methodology was demonstrated by the
consideration of the 2+ 1 D quantum Hall effect, where the conventional expression of the Hall conductivity through
the topological invariant in momentum space is reproduced.
Further, we apply the same technique to the analysis of the equilibrium chiral magnetic effect. We demonstrated

that the corresponding current is also proportional to the momentum space topological invariant. It does not depend
on the value of chiral chemical potential for the systems with compact momentum space (that can be represented as
S1⊗Ω, where Ω is the compact 3D Brillouin zone) and without poles or zeros of the Green function. This is the case
of the lattice regularized quantum field theory and the case of the discovered recently Dirac semimetals. The given
topological invariant does not depend on the value of the chiral chemical potential. Therefore, we conclude, that the
properly regularized quantum field theory does not possess the equilibrium bulk chiral magnetic effect. The limit of
the zero fermion mass may be taken at the end of the calculations, or it may be taken from the very beginning, but
then the nonzero chiral chemical potential should be introduced to prevent the appearance of the poles of the Green
function.
We calculated the response to the external magnetic field in the system of the non - interacting fermions. However,

according to the general properties of the topological invariants, they cannot be changed by the continuous deformation
of the system. Therefore, the mentioned above conclusion on the topological contribution to the CME remains the
same if we turn on the self - interactions. The expression for the topological contribution to the considered current
remains unchanged until the phase transition is encountered. Our considerations do not exclude that the self -
interactions cause the non - topological contribution to electric current proportional to chiral chemical potential and
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external magnetic field. However, since such a contribution is not related to topology, it must be dissipative, which
excludes its appearance because magnetic field cannot cause heat.
Our conclusion on the absence of bulk equilibrium CME current is in accordance with the recent lattice calculations

of the CME by Buividovich and co - authors [13–15], it is also in accordance with the consideration of the particular
model of Weyl semimetals [34] and with the no - go Bloch theorem [35]. (The formulations used in [35], however,
seem to the author rather distant from the setup of the present paper.) Besides, our conclusion is in line with the
discussion of the CME using the continuous model with special boundary conditions in the direction of magnetic field
[10]. However, the methodology presented in the present paper is rather general, and it allows to draw the conclusion
on the absence of the equilibrium CME for the wide class of systems, which is not limited to the particular models
considered in the mentioned above papers.
Notice, that our conclusion refers to the equilibrium states only. The contribution to the conductivity in the

presence of both electric and magnetic fields [5, 7]) due to the chiral chemical potential induced by chiral anomaly
may avoid the restrictions imposed on the CME by momentum space topology. This may be related to essentially non
- equilibrium nature of this phenomenon. The notion of the chiral chemical potential generated by the interplay of
chiral anomaly and the quasiparticle interactions with the change of chirality may differ from the notion of the chiral
chemical potential of equilibrium theory. Actually, the given contribution to conductivity is to be described by the
higher orders of the derivative expansion for the Wigner transform of the Green function just because it is expected to
be proportional to the magnetic field squared. This could restore the CME. Besides, the experience of the quantum
Hall effect prompts, that inclusion into consideration of boundaries may be important. These issues are, however, out
of the scope of the present paper.

ACKNOWLEDGEMENTS

The author is greateful to G.E. Volovik, who pointed out that the equilibrium CME in solids may contradict to
Bloch theorem, and thus changed the point of view of the author on the subject of the present paper. The author
also kindly acknowledges useful discussions with M.N.Chernodub.

APPENDIX A. WIGNER TRANSFORM OF THE GREEN FUNCTION

Let us consider the d+ 1 = D dimensional model with the Green function G(r1, r2) that obeys equation

Q̂(r1,−i∂r1)G(r1, r2) = δ(D)(r1 − r2) (46)

for some Hermitian operator - valued function Q. Let us apply Wigner decomposition

G̃(R,p) =

∫

dDre−iprG(R+ r/2,R− r/2) (47)

Below we will prove the following identity

Q(R,p)e
i
2
(
←−
∂ R

−→
∂ p−

←−
∂ p

−→
∂ R)G̃(R,p) = 1 (48)

Here the function Q depends on the real numbers rather than on the operators. Q is called the Weyl symbol of
the operator Q̂ [36]. We determine relation between the function Q(r,p) (of real - valued vectors r and p) and the

function Q̂(r, p̂) (of the operators p and p̂ = −i∂r) through the identity

∫

dDr f(r,R)Q(R+
r

2
, i
←−
∂ r −

i

2

−→
∂ R)h(r,R)

=

∫

dDr f(r,R)Q̂
(

R+
r

2
,−i

∂

∂(R+ r
2 )

)

h(r,R) (49)

which works for arbitrary functions f(r,R) and h(r,R) that decrease sufficiently fast at infinity. The important point

concerning this expression is that the derivatives
−→
∂ R and

←−
∂ r inside the arguments of Q act only outside of this

function, i.e.
←−
∂ r acts on f(r,R) while

−→
∂ R acts on h(r,R). At the same time the derivatives without arrows act as

usual operators, i.e. not only right to the function Q̂, but inside it as well. Notice, that ∂
∂(R+ r

2
) = ∂r +

1
2∂R.
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The given correspondence looks rather complicated. However, it takes the simple form in certain particular cases.

For example, if Q̂ = (p̂−A(r))2 = p̂2 +A2(r) + i
(

∂kAk(r)
)

− 2A(r)p̂, then Q = p2 +A2(r)− 2A(r)p. Besides, one

can easily check, that if Q̂ has the form

Q̂(r, p̂) = F(p̂−A(r)) (50)

then we have

Q(r, p̂) = F(p−A(r)) +O([∂iAj ]
2) (51)

Here O([∂iAj ]
2) may contain the terms with the second power of the derivatives of A and the terms higher order in

derivatives. In order to prove Eq. (51) it is necessary to consider the function F(p̂ −A(r)) =
∑

n Fi1...in(−i∂i1 −
Ai1(r))...(−i∂in − Ain(r)) as a series in powers of its arguments (Fi1...in are the Hermitian operator - valued coeffi-
cients), and apply the correspondence of Eq. (49) to each term. The details of the consideration are similar to that
of Appendix B, where the Wigner transform in momentum space is discussed. Therefore, we do not represent them
here and advise the reader to follow Appendix B.
In order to prove Eq. (48) let us substitute Eq. (47) into it. Argument of the exponent in Eq. (48) acts on Q as

follows:

1 =

∫

dDrQ(R+
i

2

−→
∂ p,p−

i

2

−→
∂ R)

e−iprG(R+ r/2,R− r/2) (52)

The important point concerning this expression is that the derivatives
−→
∂ R and

−→
∂ p inside the arguments of Q act

only outside of this function, i.e. on e−iprG(R+ r/2,R− r/2) and do not act inside the function Q, i.e. on p and R

in its arguments. This gives

1 =

∫

dDre−iprQ(R+
r

2
, i
←−
∂ r −

i

2

−→
∂ R) (53)

G(R+ r/2,R− r/2)

Up to the boundary terms (which are assumed to be absent) we arrive at

∫

dDre−iprQ̂(R+
r

2
,−i∂r −

i

2
∂R)G(R + r/2,R− r/2) = 1

Now it is clear why we should order operators p̂ and r in Q̂ according to Eq. (49) in order to obtain function Q.
Applying the inverse Wigner transform we finally arrive at Eq. (46).

Notice, that the Weyl symbol Q of the operator Q̂ may also be defined as [36, 37] the Wigner transform of the

matrix elements of Q̂:

Q(R,p) =

∫

dDxdDre−iprδ(R − r/2− x)Q̂(x,−i∂x)δ(R+ r/2− x) (54)

APPENDIX B. WIGNER TRANSFORM OF THE GREEN FUNCTION (LATTICE VERSION)

We consider the d+ 1 = D dimensional model with the Green function G(p1,p2) that obeys equation

Q̂(i∂p1
,p1)G(p1,p2) = |M|δ

(D)(p1 − p2) (55)

for some Hermitian operator - valued function Q̂. Let us apply Wigner decomposition in momentum space

G̃(R,p) =

∫

dDP

|M|
eiPRG(p+P/2,p−P/2) (56)

We will prove identity

Q(R,p)e
i
2
(
←−
∂ R

−→
∂ p−

←−
∂ p

−→
∂ R)G̃(R,p) = 1 (57)
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Weyl symbol Q of the operator Q̂ is the function of real numbers rather than the operators. Similar to the continuum
case we determine relation between the function Q(r,p) (of real - valued vectors r and p) and the function Q̂(r̂,p)
(of the operators p and r̂ = i∂p) through the identity

∫

dDXdDY f(X,Y)Q(−i
←−
∂ Y + i

−→
∂ X,X/2 +Y/2)h(X,Y)

=

∫

dDXdDY f(X,Y)Q̂
(

i∂X + i∂Y,X/2 +Y/2
)

h(X,Y) (58)

which works for arbitrary functions f(X,Y) and h(X,Y) defined on compact momentum space X,Y ∈ M. The

important point concerning this expression is that the derivatives
−→
∂ X and

←−
∂ Y inside the arguments of Q act only

outside of this function, i.e.
←−
∂ Y acts on f(X,Y) while

−→
∂ X acts on h(X,Y). At the same time the derivatives

without arrows act as usual operators, i.e. not only right to the function Q̂, but inside it as well. Notice, that
∂

∂(X/2+Y/2) = ∂Y + ∂X and ∂
∂(X/2−Y/2) = ∂X − ∂Y. Therefore, we may rewrite Eq. (58) as

∫

dDXdDY f(X,Y)Q(−i
←−
∂ Y + i

−→
∂ X,X/2 +Y/2)h(X,Y)

= −2

∫

dDQdDK f(Q+K,Q−K)Q̂
(

i∂Q,Q
)

h(Q+K,Q−K) (59)

The given correspondence takes the simple form in certain particular cases. For example, if Q̂ = (p −A(r̂))2 =

p2 +A2(r̂) + i
(

∂kAk(r̂)
)

− 2A(r̂)p (recall, that r̂ is operator equal to i∂p), then Q = p2 +A2(r)− 2A(r)p. Besides,

one can easily check, that if Q̂ has the form

Q̂(r̂,p) = F(p−A(r̂)) (60)

then we have

Q(r,p) = F(p−A(r)) +O([∂iAj ]
2) (61)

Here O([∂iAj ]
2) may contain the terms with the second power of the derivatives of A and the terms higher order

in derivatives. Let us prove Eq. (61). First of all, this is necessary to consider the function F(p − A(r̂)) =
∑

n Fi1...in(pi1 − Ai1(i∂p))...(pin − Ain(i∂p)) as a series in powers of its arguments (Fi1...in are Hermitian operators

that do not depend on p). Operator Q̂ is Hermitian, therefore, the kernel of the first row in Eq. (59) should also be
Hermitian. It may be represented as follows. Suppose, that function Q is expanded in powers of Q = (X+Y)/2 and

−i
←−
∂ Y + i

−→
∂ X as follows

Q(−i
←−
∂ Y + i

−→
∂ X,X/2 +Y/2) =

∑

qi1...in;j1...jm;k1...kl
(−i
←−
∂ Yi1

)...(−i
←−
∂ Yin

)Qj1 ...Qjm(i
−→
∂ Xk1

)(i
−→
∂ Xkl

) (62)

In this expression inside the first row of Eq. (58) we may be substitute −i
←−
∂ Yi

by i∂Yi
and i

−→
∂ Xk

by i∂Xk
. Be-

cause the second row in Eq. (58) is symmetric under the interchange of X and Y, we have qi1...in;j1...jm;k1...kl
=

qk1...kl;j1...jm;i1...in . For the same reason Eq. (62) is invariant under the interchange X↔ Y. Then the change of q...
by its Hermitian conjugate q+... is equivalent to the Hermitian conjugation of the whole expression. This demonstrates
that coefficients q... are Hermitian. Now let us suppose, that Q is linear in the derivative of A. Algebraically the linear
term appears as a product of a certain combination of F... and the commutator [pk,A(i∂p)] = −i(∂kA). Therefore,
it would lead to the appearance of imaginary unity in the expression for q... as a combination of F..., which means
that q... is not Hermitian. The contradiction proves the non - appearance of the terms linear in the derivatives of A
in the expression for Q(r,p).
In order to prove Eq. (57) let us substitute Eq. (56) into it. Argument of the exponent in Eq. (57) acts on Q as

follows:

1 =

∫

dDP

|M|
Q(R+

i

2

−→
∂ p,p−

i

2

−→
∂ R)

eiPRG(p+P/2,p−P/2) (63)
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In this expression the derivatives
−→
∂ p and

−→
∂ R inside the arguments of Q act only outside of this function, i.e. on

eiPRG(p+P/2,p−P/2) and do not act inside the function Q, i.e. on p and R in its arguments. This gives

1 =

∫

dDP

|M|
eiPRQ(−i

←−
∂ P +

i

2

−→
∂ p,p+

P

2
) (64)

G(p+P/2,p−P/2)

Because of the absence of boundary ofM we arrive at

∫

dDP

|M|
eiPRQ̂(i∂P +

i

2
∂p,p+

P

2
)G(p+P/2,p−P/2) = 1

where we applied Eq. (58). Now it is clear why we should order operators p and r in Q̂ according to Eq. (58) in
order to obtain function Q. Taking into account Eq. (59) and applying the inverse Wigner transform we finally arrive
at Eq. (55).

Finally, let us notice, that the Weyl symbol Q of the operator Q̂ may also be defined following that of Appendix A
(see also [36, 37]) as

Q(R,p) =

∫

dDKdDPeiPRδ(p−P/2−K)Q̂(i∂K,K)δ(p+P/2−K) (65)

APPENDIX C. TOPOLOGICAL INVARIANT RESPONSIBLE FOR THE LINEAR RESPONSE OF
ELECTRIC CURRENT TO MAGNETIC FIELD

In the main text we encountered Eq. (36) for the coefficient entering the linear response of electric current to
external magnetic field. If momentum spaceM has the form of the product S1⊗Ω, where Ω is the 3D Brillouin zone,
while S1 is the circle of the values of Matsubara frequencies (at zero temperature), then for l = 4 we may rewrite this
quantity as follows:

M4 = −
1

2

∫

dp4Ñ3(p
4),

Ñ3(p
4) =

i

24π2
ǫijk4Tr

∫

Ω

d3p
(

G∂iG−1
)

(

G∂jG−1
)(

G∂kG−1
)

(66)

Here for the fixed value of p4 we encounter the expression for the topological invariant in the 3D Brillouin zone. Green
function G should be considered here as the function of the 3 arguments p1, p2, p3 while p4 is to be considered as a
parameter.
Notice, that for the Green function of the form of Eq. (43) the value of Ñ3(p

4) is equal to zero. At the same time for
the Green function of general form this invariant may be nonzero. This explains the quantization of Hall conductivity
as has been explained in Sect. IV. One might naively think, that the deviation of the Green function from the form
of Eq. (43) - say, of the form of Eq. (42) may change the expressions for Ñ3 and M4. Below we will demonstrate,
that this does not occur as long as we deal with the compact Brillouin zone and regular Green functions.
Let us consider arbitrary variation of the Green function: G → G + δG. Then expression for Ñ3 is changed as

follows:

δÑ3 =
3

24iπ2

∫

Tr
(

([δG]dG−1 + Gd[δG−1]) ∧ GdG−1

∧GdG−1
)

= −
3

24iπ2

∫

dTr
(

([δG−1]G)dG−1 ∧ dG
)

= 0 (67)

Thus we proved that Ñ3 is the topological invariant.
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