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bInstitute of Mathematics and Physics, Bauhaus University Weimar, Germany

Abstract

One of the most fruitful and elegant approach (known as Kolosov-Muskhelishvili formulas) for plane isotropic

elastic problems is to use two complex-valued holomorphic potentials. In this paper, the algebra of real quater-

nions is used in order to propose in three dimensions, an extension of the classical Muskhelishvili formulas. The

starting point is the classical harmonic potential representation due to Papkovich and Neuber. Alike the classical

complex formulation, two monogenic functions very similarto holomorphic functions in 2D and conserving many

of interesting properties, are used in this contribution. The completeness of the potential formulation is demon-

strated rigorously. Moreover, body forces, residual stress and thermal strain are taken into account as a left side

term. The obtained monogenic representation is compact anda straightforward calculation shows that classical

complex representation for plane problems is embedded in the presented extended formulas. Finally the classical

uniqueness problem of the Papkovich-Neuber solutions is overcome for polynomial solutions by fixing explicitly

linear dependencies.

Keywords: Isotropic elasticty, Quaternions, Monogenic potential, Meshless, Residual stress, Thermal load

Table 1: Nomenclature

Linear elasticity

x1, x2, x3 Cartesian coordinates

σ Stress tensor

ǫ Total strain tensor

ǫ
th Thermal strain tensor

ǫ
res Residual strain tensor

ǫ
∗ Strain tensorǫ∗ = ǫ th + ǫres

σ
∗ Auxiliary stress tensorσ∗ = σ + λtr

(
ǫ
∗
)

I + 2µǫ∗

u Displacement field

f b Body forces

Ω Elastic medium (open subset ofR3)

∂Ω Boundary ofΩ

∂Ωu Subpart of∂Ω where displacement is imposed
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∂Ωσ Subpart of∂Ω where surface traction is imposed

n Normal vector

ub Displacement imposed on∂Ωu

Tb Surface traction imposed on∂Ωσ

T0 Temperature of the released configuration

T Temperature of the body

λ, µ Lamé’s coefficients

E, ν Young modulus and Poisson coefficient

Potential theory

Γ Vector potential (left side term of the Lamé-Navier equation)

Γ
∗ Vector potential related toΓ

F Galerkin vector potential

f , G, h Papkovich-Neuber potentials

Φ Monogenic potential

Θ, Ψ̂ Anti-monogenic potentials

Λ Monogenic constant

Al
n Monogenic polynomials of degreen (n ∈ N, l = 0, .., n)

1. Introduction

1.1. Applications of potential theory

Well known numerical methods such as Finite Element Method (FEM) or Boundary Element Method (BEM)

enable to solve various complex mechanical problems including non-linear problems (plasticity or other non-

linear behaviors, contact problems, large displacements etc.). Isotropic linear elasticity is nevertheless a frequent

problem in mechanical engineering. Potential theory developed since the late 19th century is still widely used

in linear elasticity in 2D and 3D. Barber (2003) presents an overview of the fundamental potential theory for

elasticity related among others to Airy, Boussinesq, Green, Zerna, Galerkin, Papkovich and Neuber names. New

potential formulations for instance developed by Kashtalyan and Rushchitsky (2009) deal with inhomogenous

media.

Many practical applications rely on potential theory. Stress Intensity Factors (SIF) in the framework of linear

fracture mechanics have been intensively studied. For example Sneddon and Lowengrub (1969) or Kassir and

Sih (1973, 1975) proposed various analytical solutions based on potential theory. Dual integral equations were

intensively used for mixed boundary value problems that arise in potential theory adapted for crack problems.

An overview of useful methods is given by Sneddon (1966). Fully analytical or semi-analytical solutions have

also been established for various elastic problems using potential theory. For instance, Ying et al. (1996) applied

potential theory for a pressure vessels and piping. Chau andWei (2000) proposed a semi-analytical solution

(relying on truncated expansions into series of the potentials) of a finite solid circular cylinder subjected to arbitrary

surface load. More recently potential theory has been used for applied industrial investigations. In the field of
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rolling process for instance, coupled thermo-elastic inverse solutions that interpret (in real time) measurements of

stress and temperature done under the surface of a cylindrical tool have been proposed in 2D by Weisz-Patrault

et al. (2011, 2012a, 2013a) and in 3D by Weisz-Patrault et al.(2013b, 2014). Thus, the contact between the

product and the tool can be characterized during the process. Experimental tests that confirm the feasibility of

such an approach have been performed by Weisz-Patrault et al. (2012b) and Legrand et al. (2012, 2013). This

kind of recent works contributes to renew the interest for potential theory because of their practical and technical

content.

Furthermore, numerical methods can also be developed on thebasis of potential theory. Hintermüller et al.

(2009) proposed a 3D potential based numerical method for cracks and contact problems. Potential theory adapted

for numerical methods are completely meshless and can be suitable for problems where very steep stress gradients

are obtained avoiding mesh refinement and long computation times issues that arise with FEM for instance. Cruse

(1969) proposed such a numerical algorithm based on potentials and singular integral equations. Morales et al.

(2013) proposed more recently a potential based numerical solution for 2D problems, and Morales et al. (2012)

focuses on numerical uniqueness of the Boussinesq and Timpesolutions.

1.2. Motivations for extended Muskhelishvili formulas

For plane problems one of the most elegant and fruitful approach has been developed by Muskhelishvili

(1953b). Complex plane is used and holomorphicC-valued potentials are derived from bi-harmonic Airy potential

and Goursat theorem. A presentation of the theory and practical methods has been given by Lu (1995). The

main advantages are related to the holomorphy of the involved potentials, indeed expansion into series, Cauchy

formula and conformal mapping techniques are available as well as singular integral equation techniques studied

by Muskhelishvili (1953a). Usually, for three-dimensional problemsR-valued harmonic or bi-harmonic potentials

are used, known as Galerkin vector potential and Papkovich-Neuber potentials initially introduced by Papkovich

(1932) and re-discovered by Neuber (1934). These potentialrepresentations are complete, thus one can prove the

existence of the potentials as studied by Mindlin (1936); Gurtin (1962); Stippes (1969); Cong and Steven (1979a);

Millar (1984); Hackl and Zastrow (1988). Complete general solutions are also studied in the fundamental works

by Slobodyansky (1954, 1959) and Wang et al. (2008) among others.

On the basis of Papkovich-Neuber potentials, this paper aims at establishing a generalized Muskhelishvili for-

mula in three dimensions. There is no direct extension of thecomplex plane in 3D. However, the four dimensional

algebra of quaternions (Definition 1) is a convenient extension of the complex plane. Extensive work has been

done in this field and a suitable extension in higher dimensions of holomorphic functions has been defined and

studied intensively. For instance the book of Gürlebeck et al. (2007) gathers standard knowledge about the algebra

of real quaternions. A class of functions, called monogenic(Definition 3), presents interesting similarities with

holomorphic functions defined in the complex plane. Thus several advantages of the classical formulas of Muskhe-

lishvili (1953b) in 2D are transposed in 3D with the presented potential formulation. Indeed, monogenic power

series expansions studied for instance by Malonek (1990); Bock and Gürlebeck (2010); Bock (2012b) and Laurent

series expansions (see e.g. van Lancker (1999); Bock (2012a)) as well as the Cauchy formula (e.g. Brackx et al.
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(1982)) are still available. Conformal mapping technics are more limited than in 2D, but Möbius transformations

are still available as detailed by Sudbery (1979).

A second motivation is the disadvantage of Papkovich-Neuber representation that arises if polynomial so-

lutions of exact degreen are considered for the displacement field. Indeed, Bauch (1981) showed that if very

classical spherical harmonics are used for the Papkovich-Neuber potentials then 8n+ 4 polynomial solutions are

generated, but the dimension of the subspace of polynomial solutions of degreen is only 6n + 3. Thus, many

solutions obtained with Papkovich-Neuber representationare linear dependent which can cause numerical stabil-

ity problems. But fixing these dependencies in explicit formulas is very difficult. However, Bock and Gürlebeck

(2009b) already proposed a representation of displacementfield by means of two monogenic functions which is

similar to the representation demonstrated in this paper. Then Bock and Gürlebeck (2009a) demonstrated that

8n+ 8 polynomial solutions are generated by considering spherical monogenics for the two monogenic functions.

But 2n+ 5 are linear dependent and explicit formulas have been given. Thus, monogenic representations present

the significant advantage (compared with classical Papkovich-Neuber representation) of allowing explicit formu-

las of linear dependencies when spherical harmonics (or monogenics) are used for the potentials. Thus, numerical

stability is expected to be much better for numerical applications.

In this paper, the existence of the two monogenic potentialsis proven a priori by using only mathematical tools

related to differentials calculus alike classical proofs of Airy potentials, Muskhelishvili formulas or Papkovich-

Neuber representation. Thus completeness is demonstratedand an elegant and very compact representation of the

displacement and stress fields is obtained. Moreover body forces, thermal strain and residual stress are taken into

account in the potential representation. Finally in section 6, polynomial solutions are constructed and it is shown

how the redundancy of polynomial systems can be overcome.

Furthermore Piltner (1987, 1988, 1989) contributed significantly to potential theory by developing an alterna-

tive complete representations of 3D isotropic elasticity based on complex functions. Piltner (2001) provided an

overview of complex methods. He was using six holomorphic functions depending on three complex variables,

defined as complex-valued linear functions onR
3. These representations cover under certain restrictions on the

parameters the known representation formulas for the planecase and there are also results to restrict the number

of complex variables to one. Without going too much into the details it should be mentioned that these represen-

tations are deeply related to each other. The linear functions used by Piltner can be found in Whittaker (1903) and

in the book by Whittaker and Watson (1927) as a tool to describe spherical harmonics. In this way they are related

also to the representation of Legendre polynomials and associate Legendre functions which are nowadays mainly

used for this purpose (see for instance Sansone (1959)).

In this paper, a different framework is used (algebra of real quaternions instead of complex plane) regarding to

the advantages listed in this section. It should be noted that another potential solution for 3D Neumann and Dirich-

let problems (surface tractions or displacements imposed at the surface) for a general elastic body is described in

the book of Bui (2006). The solution relies on the Kelvin-Somigliana or Kupradze-Bashelishvili tensors (equiv-

alent to the Green tensor for elastostatic) introduced by Kupradze (1965). On this basis a simple or double layer

potential vector and an integral equation has been solved analytically (in the form of an absolutely convergent
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series) by Pham (1967). In this paper the extended Muskhelishvili formulas are not derived from these potentials,

because this method does not rely on harmonic analysis.

1.3. Geometrical restrictions

Complete representations for displacements require geometrical restrictions due to constructions. These re-

strictions are relatively weak and related to the boundary value problem that has to be solved. More serious is the

problem of redundancy in the representation formulae because this avoids the uniqueness of the representations.

Analyzing for instance the classical Papkovich-Neuber representation then it is known already for a long time that

under certain additional assumptions only three of the fourharmonic functions are needed. Sokolnikoff (1956)

showed that one of the three harmonic functions in the vectorpotential can be omitted (set to be zero) if the domain

is normal with respect to the corresponding direction. The scalar potential can be removed if forν , 1
4 the domain

is star-shaped. What is not so much discussed is the questionwhether additional assumptions are necessary if one

of the four functions should only be expressed as a linear combination of the other three. A good survey on results

about the uniqueness of the representations can be found also in Cong (1995).

This idea becomes more important when it is tried to construct better structured representation formulae.

Taking the classical Kolosov-Muskhelishvili formulae as astarting point the improved structure is given by the

formulation based on two holomorphic functions. This representation can be generalized to the three-dimensional

case and was done in Bock and Gürlebeck (2009b,a) by using thetheory of quaternion-valuedholomorphic (mono-

genic) functions. In these papers it is the goal to find finallypolynomial approximations for displacements and

stresses, respectively. Collecting all geometrical restrictions final results are valid for star-shaped domains.

This paper aims at demonstrating generalized Kolosov-Mushelishvili formulae with thermal strain and residual

stress, in a constructive way. For this reason, as explainedbelow in detail the elastic domain is assumed to be

normal with respect to thex1-direction (Definition 4). The proof of completeness of the representation using two

monogenic functions is related to Theorem 1, which is valid for domains normal with respect to thex1-direction.

Thus the representation demonstrated in this paper is proved to be complete on domains normal with respect to the

x1-direction. This constitutes a large class of shapes for theelastic body. The paper generalizes the applicability of

the considered representations by adding domains normal with respect to thex1-direction to the already available

class of star-shaped domains. For domains that are not normal with respect to thex1-direction, if the body can be

split into subparts that meet the geometrical restrictions, one could solve the elastic problem on each subpart with

a parametrized boundary condition at the junction of two successive parts, the final solution would be obtained by

ensuring the continuity of displacements and the tensile vector at each interface.

However if monogenic potentials are well defined on the entire spaceR3 and not only on the studied domain

Ω, then the representation is proven even ifΩ does not fulfill the geometrical restrictions. This can be useful for

practical applications, because most of the time sphericalmonogenics are used for the potentials (and are well

defined inR3), therefore practically for many common cases there is no geometrical restrictions.
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1.4. Notations and structure of the paper

Real vectors are classically written in bold. The quaternionic counter-parts (although representing the same

vectors) are written with the same letter but not in bold alike classical notations for complex representation in 2D.

Usually (x0, x1, x2, x3) denote the coordinates of points in the algebra of real quaternions, however in this paper

(x1, x2, x3, x4) is used instead in order to be consistent with classical mechanical notations, in this way a point of the

real 3D space is denoted by (x1, x2, x3) and displacement, stress and strain tensors are indexed with {1, 2, 3}. Real

second order tensors are underlined and bold. Notations arelisted in Table 1. In this paperΩ denotes a connected

subset ofR3 representing the studied elastic body. In the whole paperΩ has a piecewise smooth boundary.

In Section 2, Papkovich-Neuber potentials are introduced with body forces, thermal strain and residual stress.

Then in Section 3, the necessary mathematical results are stated and demonstrated. This latter section aims at

establishing a rigorous framework for the monogenic potential representation. Thus, in Section 4, the extension

of Muskhelishvili complex formulas is proved in 3D by demonstrating the existence of two monogenic potentials.

In Section 5, the classical 2D complex equation set is derived from the 3D monogenic representation in order

to show that the latter is a straightforward extension of theformer. Finally, in Section 6 complete orthogonal

systems of monogenic polynomials are used to construct a complete system of polynomial solutions to the Lamé-

Navier equations. As usual there are some linearly dependent polynomials and it will be shown explicitly how the

dependent polynomials can be removed from the system.

2. Classical complete representations

Let consider an elastic body represented byΩ (a connected subset ofR3). Both thermal (superscriptth)

and residual (superscriptres) strain tensors are considered, resulting in additional thermal and residual stresses.

Displacementsub and surface tractionTb are respectively prescribed on subparts of the boundary∂Ωu and∂Ωσ

such as∂Ω = ∂Ωu ∪ ∂Ωσ. Thus the isotropic elastic problem onΩ with body force f b consists in solving the

following equation set:


div
(
σ

)
= − f b Equilibrium

σ = λtr
(
ǫ

e
)

I + 2µǫe Isotropic elastic behaviour

ǫ = 1
2

(
∇ (u) + ∇ (u)T

)
Compatibility

ǫ
th = α(T − T0)I Isotropic thermal behaviour

ǫ
e = ǫ − ǫ th − ǫres Elastic strain tensor

(x1, x2, x3) ∈ ∂Ωu, u(x1, x2, x3) = ub(x1, x2, x3) Boundary conditions: displacements

(x1, x2, x3) ∈ ∂Ωσ, σ.n = Tb(x1, x2, x3) Boundary conditions: surface traction

(1)

It should be noted that body forcesf b, temperature fieldT and residual strainǫres are assumed to be known.

The elastic calculation does not evaluate these latter quantities but use them as inputs alike loads. Displacement

field of elastic problems on a domainΩ can be written by means of the classical vector potentialF introduced by

Galerkin (1930) and proven to be complete for instance by Westergaard (1952).

2µu = 2(1− ν)∆ F − ∇div F (2)
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A constitutive equation for the Galerkin vector is obtainedby verifying the equilibrium equation. Thus, the Lamé-

Navier equation (which is obtained by writing the equilibrium as a function of displacements) is used:

∆ u +
λ + µ

µ
∇div u = α

(
3λ + 2µ
µ

)
∇T +

Eres

µ
−

f b

µ
(3)

Where:

Eres =

[
(λ + 2µ)

∂ǫres
11

∂x1
+ λ

(
∂ǫres

22

∂x1
+
∂ǫres

33

∂x1

)
+ 2µ

(
∂ǫres

12

∂x2
+
∂ǫres

13

∂x3

)]
e1

+

[
(λ + 2µ)

∂ǫres
22

∂x2
+ λ

(
∂ǫres

11

∂x2
+
∂ǫres

33

∂x2

)
+ 2µ

(
∂ǫres

12

∂x1
+
∂ǫres

23

∂x3

)]
e2

+

[
(λ + 2µ)

∂ǫres
33

∂x3
+ λ

(
∂ǫres

11

∂x3
+
∂ǫres

22

∂x3

)
+ 2µ

(
∂ǫres

13

∂x1
+
∂ǫres

23

∂x2

)]
e3

(4)

There existsΓ such as:

∆ ∆ Γ = α

(
3λ + 2µ
µ

)
∇T +

Eres

µ
−

f b

µ

Thus the classical constitutive equation for the Galerkin vector is obtained:

∆ ∆ [F − Γ] = 0 (5)

The main disadvantage of the Galerkin vector representation is that three scalar bi-harmonic functions are needed.

On can simplify significantly this representation. Let introduce the harmonic vectorf :

f =
1
2
∆ [F − Γ] (6)

Let introducex = x1e1 + x2e2 + x3e3, thusx. f = x1 f1 + x2 f2 + x3 f3. A straightforward calculation gives (sincef

is harmonic):

∆ (x. f ) = 2div f = div ∆ [F − Γ] = ∆ div [F − Γ] (7)

Thus by integrating the Laplacian operator in (7) there exists a real harmonic functionh such as:

G = x. f + h = div [F − Γ] (8)

It is easily verified from (7) that:

∆∆G = 2div∆ f = 0 (9)

Hence from (2):

2µu = 4(1− ν) f − ∇G + Γ∗ (10)

Where:

Γ
∗ = 2(1− ν)∆ Γ − ∇div Γ

Finally the complete Papkovich-Neuber representation is obtained:


2µu1 = 4(1− ν) f1 −
∂G
∂x1
+ Γ∗1

2µu2 = 4(1− ν) f2 −
∂G
∂x2
+ Γ∗2

2µu3 = 4(1− ν) f3 −
∂G
∂x3
+ Γ∗3

(11)

This potential representation is the basis of the extended Muskhelishvili formulas that are proven in this paper.
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3. Mathematical results

This section presents the mathematical preliminaries for the quaternionic representation. Some definitions

and classical theorems are reminded for sake of clarity. This section does not aim at presenting a mathematical

discussion but presents only the useful results for establishing the three-dimensional extension of the classical

complex formulas of Muskhelishvili (1953b).

Definition 1 (Algebra of real quaternions). LetH denote the non-commutative algebra of real quaternions:

H =
{
x = x1 + ix2 + jx3 + kx4, (x1, x2, x3, x4) ∈ R4

}

Wherei, j andk are the imaginary numbers verifying following multiplication rules:

i2 = j2 = k2 = −1 i j = − ji = k jk = −k j = i ki = −ik = j

Of courseH ≃ R4. Let (e1, e2, e3, e4) be an orthonormal basis ofR4. For all x = x1e1 + x2e2 + x3e3 + x4e4 ∈ R4,

the corresponding quaternion isx = x1 + ix2 + jx3 + kx4 ∈ H. Furthermore, for allx ∈ H following quantities are

classically defined:

(i) The scalar part ofx is Sc [x] = x1

(ii) The vectorial part is Vec [x] = x = ix2 + jx3 + kx4

(iii) The conjugate ofx is x = x1 − x = x1 − ix2 − jx3 − kx4

(iv) Thek-involution of x is x̂ = −kxk= x1 − ix2 − jx3 + kx4

(v) The norm is|x| =
√

xx =
√

x2
1 + x2

2 + x2
3 + x2

4

(vi) The inverse ofx , 0 is x−1 = x/|x|2

The reduced quaternion set denoted byA ≃ R3 is defined as the subset ofH generated by (1, i, j):

A =
{
x = x1 + ix2 + jx3, (x1, x2, x3) ∈ R3

}

It should be noted thatA is only a real vector space and not a sub-algebra ofH because ifx andy are two elements

ofA the productxy < A (of coursexy ∈ H). Moreover, let bex = x1 + ix2 + jx3 + kx4 ∈ H.

LetΩ be an open subset ofR3 ≃ A with piecewise smooth boundary. AnH-valued functionv :


Ω→ H

x 7→ v(x)
,

is defined with fourR-valued functionsvl :


Ω→ R

x 7→ vl(x)
(l ∈ {1; ...; 4}), such asv = v1+iv2+ jv3+kv4. Continuity,

differentiability or integrability ofv are defined coordinate-wisely. All functions considered inthe following will

be taken either in the rightH-linear or in the rightR-linear Hilbert space of square-integrableH-valued functions

denoted byL2(Ω,H) or L2(Ω,R). For a detailed discussion of the function spaces and the corresponding inner

product see e.g. Gürlebeck et al. (2007).
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Definition 2. The generalized Cauchy-Riemann operator and its conjugateare defined by:



∂ =
∂

∂x1
+
∂

∂x
=
∂

∂x1
+ i
∂

∂x2
+ j
∂

∂x3

∂ =
∂

∂x1
− ∂
∂x
=
∂

∂x1
− i
∂

∂x2
− j
∂

∂x3

(12)

Definition 3 (Monogenic, Anti-monogenic, Monogenic constant). A function v ∈ C1(Ω,H) is calledmonogenic

in Ω ⊂ R3 if

∂̄v = 0 in Ω (or equivalentlyv ∈ ker∂̄ in Ω). (13)

Conversely, a functionv ∈ C1(Ω,H) is calledanti-monogenicin Ω ⊂ R3 if

∂v = 0 in Ω (or equivalentlyv ∈ ker∂ in Ω). (14)

Furthermore, a functionv ∈ C1(Ω,H) is calledmonogenic constantin Ω ⊂ R3 if

∂̄v = ∂v = 0 inΩ (or equivalentlyv ∈ ker∂̄ ∩ ker∂ in Ω). (15)

Generalized Cauchy-Riemann operators are analogous to thewell known Cauchy-Riemann operators in com-

plex analysis, and monogenic (resp anti-monogenic) functions are analogous to holomorphic (resp anti-holomorphic)

functions in 2D. A conversion of a given monogenic function into an anti-monogenic function and vice versa can

be done via the following proposition.

Proposition 1. Let v = v1 + iv2 + jv3 + kv4 ∈ C1(Ω,H) be a monogenic function inΩ ⊂ R
3. The function

v̂ = v1 − iv2 − jv3 + kv4 (16)

defines an anti-monogenic function inΩ (such that∂̂v = 0). Conversely ifv is anti-monogeniĉv is monogenic

(such that̄∂̂v = 0)

Proof. A straightforward calculation using the definition 3 gives:

∂ v̂ = ̂̄∂v and∂v = ∂̄ v̂ (17)

which demonstrates the proposition.

This latter proposition enables to simplify significantly calculations in the following. Here, it should be empha-

sized that in the complex case the conjugation of an holomorphic functionv ∈ C1(Ω,C) or a monogenic function

v ∈ C1(Ω,A) gives directly the corresponding anti-holomorphic function v̂ because inC andA one have ¯v = v̂.

ForH-valued monogenic functions this property doesn’t hold in general as Proposition 1 shows.

The geometrical restriction that apply to the domain in thispaper is defined below.

Definition 4 (Domain normal with respect to thex1-direction). LetΩ be an open subset ofR3, Ω is said normal

with respect to thex1-direction if there existsx∗1 such as for all (x1, x2, x3) ∈ Ω and for allx′1 ∈
[
x∗1, x1

]
the point

(x′1, x2, x3) is inΩ.
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Basically domains normal with respect to thex1-direction are constructed in two steps. First, a plane domain

Ω⊥ ⊂ span(i, j) is defined without geometrical restriction. Then two real functionsα(x2, x3) andβ(x2, x3) mapping

fromΩ⊥ toR define the upper and lower boundaries and:

Ω =
{
(x1, x2, x3) such as (x2, x3) ∈ Ω⊥ andx1 = tα(x2, x3) + (1− t)β(x2, x3),∀t ∈ [0, 1]

}

Examples are presented in Figure 1.

x
1

x
2

x
3

(a) Domain normal with respect to thex1-direction

x
1

x
2

x
3

(b) Domain not normal with respect to thex1-direction

Figure 1: Geometrical restrictions

The monogenic representation demonstrated in this paper relies on the following result, which has been

demonstrated in a more general framework by Klein Obbink (1993) and more recently in the thesis of Álvarez-

Peña (2013) or shortened in Álvarez-Peña and Porter (2014).A simple proof is reproduced here for sake of

clarity.

Theorem 1 (Decomposition of harmonic functions into monogenic and anti monogenic functions). LetΩ be on

open subset ofR3 normal with respect to thex1-direction and letf = f1 + i f2 + j f3 be an harmonic function

onΩ(∆ f = 0). There exists a monogenic functionΦ orthogonal to the set of monogenic constants and an anti-

monogenic functionΘ (more preciselyΦ ∈ ker∂ ⊥ (ker∂ ∩ ker∂) andΘ ∈ ker∂) such that:

f = Φ + Θ (18)

Proof. Since the domainΩ is normal with respect to thex1-direction there existsx∗1 such as one can define:

f ∗(x1, x2, x3) =
∫ x1

x∗1

f (t, x2, x3)dt (19)

It is easily verified thatf ∗ is harmonic (∆ f ∗ = 0) indeed:

∆ f ∗ =
∂2

∂x2
1

∫ x1

x∗1

f (t, x2, x3)dt +
∫ x1

x∗1


∂2

∂x2
2

f (t, x2, x3) +
∂2

∂x2
3

f (t, x2, x3)

 dt

=
∂

∂x1
f (x1, x2, x3) − ∂

∂x1
f (x∗1, x2, x3) −

∫ x1

x∗1

∂2

∂x2
1

f (t, x2, x3)dt

=
∂

∂x1
f (x1, x2, x3) − ∂

∂x1
f (x1, x2, x3) = 0

(20)

Let introduceΦ = 1
2∂ f ∗ andΘ = 1

2 ∂̄ f ∗. Since∆ = ∂∂̄ = ∂̄∂, ∂̄Φ = 0 and∂Θ = 0 thusΦ andΘ are respectively

monogenic and anti-monogenic. Moreover:

Φ + Θ =
1
2

(
∂ f ∗ + ∂̄ f ∗

)
=
∂ f ∗

∂x1
= f (21)
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This decomposition is not unique since for any monogenic constantΛ ∈ (ker∂∩ker∂) potentialsΦ+Λ andΘ−Λ

are still respectively monogenic and anti-monogenic. By setting Λ correctly one can consider thatΦ ∈ ker∂ ⊥

(ker∂ ∩ ker∂). This will be constructively done in equation (42).

4. Complete monogenic representation

4.1. Displacement field

In this section, a monogenic representation of displacement field is proposed with a proof of completeness

using mathematical results of Section 3. The elastic domainis assumed to be normal with respect to thex1-

direction. The starting point is the Papkovich-Neuber complete representation reminded in Section 2. Let consider

theH-valued representation of the displacement vectoru = u1 + iu2 + ju3 the Papkovich-Neuber potentialf =

f1 + i f2 + j f3 and the potential related to the left side term of the Lamé-Navier equationΓ∗ = Γ∗1 + iΓ∗2+ jΓ∗3. Thus

the bi-harmonic function (8) can be re-written:

G =
1
2

(
x f + f x

)
+ h, (22)

Thus, the classical Papkovic-Neuber solution (11) reads inquaternionic algebra equivalently

2µu = 4(1− ν) f −
(
∂G
∂x1
+ i
∂G
∂x2
+ j
∂G
∂x3

)
+ Γ∗ = 4(1− ν) f − 1

2
∂
(
x f + f x+ 2h

)
+ Γ∗ (23)

Now, sincef ∈ ker∆, Theorem 1 applies and there exist a decomposition off , such that:

f = Φ + Θ (24)

whereΦ ∈ ker∂ ⊥ (ker∂ ∩ ker∂) defines a monogenic function orthogonal to the subset of monogenic con-

stants,Θ ∈ ker∂ an anti-monogenic function. This decomposition (24) is theexplicit link between the presented

monogenic representation and Papkovich-Neuber representation. Thus, applying the decomposition in (23) yields

2µu = 4(1− ν) (Φ + Θ) − 1
2∂

(
x (Φ + Θ) + (Φ + Θ)x+ 2h

)
+ Γ∗

= 4(1− ν)Φ − 1
2∂

(
xΦ + Φx

)
− 1

2∂
(
xΘ + Θx

)
+ 4(1− ν)Θ − ∂h+ Γ∗

(25)

Now, it is easy to verify that:

(a) 1
2∂

(
xΘ + Θx

)
= ∂ (x1Θ1 + x2Θ2 + x3Θ3) ∈ ker∂, since∂Θ = 0 one have:

1
2
∂∂

(
xΘ + Θx

)
=x1∆Θ1 + x2∆Θ2 + x3∆Θ3 + 2

(
∂Θ1

∂x1
+
∂Θ2

∂x2
+
∂Θ3

∂x3

)
= 0. (26)

(b) ∂h ∈ ker∂,sinceh ∈ ker∆.

(c) 4(1− ν)Θ ∈ ker∂.

Therefore, there exist a monogenic functionΨ (cf Proposition 1) such aŝΨ is anti-monogenic and:

Ψ̂ =
1
2
∂
(
xΘ + Θx

)
− 4(1− ν)Θ + ∂h (27)
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Hence from (25) the completegeneralized Kolosov-Muskhelishvili formulafor displacements reads as follows:

2µu = 4(1− ν)Φ −
1
2
∂
(
xΦ + Φx

)
− Ψ̂ + Γ∗ (28)

Or coordinate-wisely (Φ = Φ1 + iΦ2 + jΦ3 + kΦ4 andΨ̂ = Ψ1 − iΨ2 − jΨ3 + Ψ4):


2µu1 = 4(1− ν)Φ1 −
∂

∂x1
[x1Φ1 + x2Φ2 + x3Φ3] −Ψ1 + Γ

∗
1

2µu2 = 4(1− ν)Φ2 −
∂

∂x2
[x1Φ1 + x2Φ2 + x3Φ3] + Ψ2 + Γ

∗
2

2µu3 = 4(1− ν)Φ3 −
∂

∂x3
[x1Φ1 + x2Φ2 + x3Φ3] + Ψ3 + Γ

∗
3

(29)

It should be noted that sinceu = u1 + iu2 + ju3 + ku4 with u4 = 0 the the fourth component of (28) gives:

4(1− ν)Φ4 −Ψ4 = 0 (30)

The latter condition (30) that arises in a natural way is essential for fixing linear dependencies when monogenic

polynomials are used. It should be noted that any choice of monogenic functionsΦ andΨ satisfy the Lamé-

Navier equations even if it does not fulfill (30), which generates an extra fourth component for the displacement

but without interest. However in practice the best option isto seek monogenic potentials that fulfill (30). A

further structural insight directly obtained from the extended hypercomplex formulation (28) is related to the

representation of the bi-harmonic functionG, which is by construction decomposed into a purely bi-harmonic

part, i.e. Sc(xΦ) with Φ ∈ ker∂ ⊥ (ker∂ ∩ ker∂) and a purely harmonic part, i.e. Sc(Ψ̂) with Ψ̂ ∈ ker∂. The

Papkovich-Neuber formulation does not allow such a direct decomposition.

The expression (28) is a complete (because the existence of potentials has been proven) representation of dis-

placement field using only one monogenic function and one anti-monogenic function, thus 8 harmonic functions

are needed, but it should be emphasized that monogenicity and anti-monogenicity (13) impose strong relationships

between these 8 functions which lead to very interesting properties as pointed out in introduction. This is similar

with Kolosov-Muskhelishvili formulas in 2D, two holomorphic functions are needed (which means 4 real-valued

functions) although only one real bi-harmonic function is needed for the Airy potential, but holomorphy impose a

strong relationship between the 4 real-valued functions, and interesting properties are obtained.

4.2. Stress field

Stress field is related to displacement field by the behavior in the equation set (1). Thus, by introducing

ǫ
∗ = ǫ th + ǫres andσ∗ = σ + λtr

(
ǫ
∗
)

I + 2µǫ∗ = λtr
(
ǫ

)
I + 2µǫ it is obtained:



σ∗11 = σ11 +
(
λtr

(
ǫ
∗
)
+ 2µǫ∗11

)
= λ

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
+ 2µ

∂u1

∂x1

σ∗22 = σ22 +
(
λtr

(
ǫ
∗
)
+ 2µǫ∗22

)
= λ

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
+ 2µ

∂u2

∂x2

σ∗33 = σ33 +
(
λtr

(
ǫ
∗
)
+ 2µǫ∗33

)
= λ

(
∂u1

∂x1
+
∂u2

∂x2
+
∂u3

∂x3

)
+ 2µ

∂u3

∂x3

σ∗12 = σ12 + 2µǫ∗12 = µ

(
∂u1

∂x2
+
∂u2

∂x1

)

σ∗13 = σ13 + 2µǫ∗13 = µ

(
∂u1

∂x3
+
∂u3

∂x1

)

σ∗23 = σ23 + 2µǫ∗23 = µ

(
∂u2

∂x3
+
∂u3

∂x2

)

(31)
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The stress tensorσ is obtained ifσ∗ can be evaluated becauseǫ∗ is known. Thus tr
(
σ
∗
)

is written:

σ∗11 + σ
∗
22 + σ

∗
33 = (3λ + 2µ)Sc [∂u] (32)

Let introduce following quantities related to displacements:

σ̃∗12 = µ

(
∂u1

∂x2
− ∂u2

∂x1

)
σ̃∗13 = µ

(
∂u3

∂x1
− ∂u1

∂x3

)
σ̃∗23 = µ

(
∂u2

∂x3
− ∂u3

∂x2

)
(33)

Hence:

−σ∗11 + σ
∗
22 + σ

∗
33 + 2iσ∗12 + 2 jσ∗13 + 2kσ̃∗23 = λSc [∂u] − 2µ∂̂u

σ∗11 − σ
∗
22 + σ

∗
33 − 2iσ∗12 + 2 jσ̃∗13 + 2kσ∗23 = λSc [∂u] − 2µi∂(i û)

σ∗11 + σ
∗
22 − σ

∗
33 + 2iσ̃∗12 − 2 jσ∗13 − 2kσ∗23 = λSc [∂u] − 2µ j∂( j û)

(34)

A straightforward calculation gives completegeneralized Kolosov-Muskhelishvili formulas:

2µu = 4(1− ν)Φ − 1
2
∂
(
xΦ + Φx

)
− Ψ̂ + Γ∗

σ∗11 + σ
∗
22 + σ

∗
33 =

1+ ν
1− 2ν

Sc
[
2(1− 2ν)∂Φ + ∂Γ∗

]

−σ∗11 + σ
∗
22 + σ

∗
33 + 2iσ∗12+ 2 jσ∗13 + 2kσ̃∗23 =

ν

1− 2ν
Sc

[
2(1− 2ν)∂Φ + ∂Γ∗

]
+ ∂∂

(
Sc

[
xΦ

])
+ Ψ − ∂Γ̂∗

σ∗11 − σ
∗
22 + σ

∗
33 − 2iσ∗12+ 2 jσ̃∗13 + 2kσ∗23 =

ν

1− 2ν
Sc

[
2(1− 2ν)∂Φ + ∂Γ∗

]

−4(1− ν)i∂
(
iΦ̂

)
+ i∂

(
i∂

(
Sc

[
xΦ

]))
+ i∂ (iΨ) − i∂

(
iΓ̂∗

)

σ∗11 + σ
∗
22 − σ

∗
33 + 2iσ̃∗12− 2 jσ∗13 − 2kσ∗23 =

ν

1− 2ν
Sc

[
2(1− 2ν)∂Φ + ∂Γ∗

]

−4(1− ν) j∂
(
jΦ̂

)
+ j∂

(
j∂

(
Sc

[
xΦ

]))
+ j∂ ( jΨ) − j∂

(
jΓ̂∗

)

(35)

It can be noted that quantities̃σ∗12, σ̃
∗
13 and σ̃∗23 which are not of particular interest for an elastic problem,do

not overlap the other components of the stress tensor. Thus these formal quantities simplifying the expression of

stresses, do not disturb the classical boundary values problem.

The demonstrated monogenic representation has been developed as a refinement of classical harmonic Papko-

vich-Neuber representation because of the monogenicity ofboth potentialsΦ andΨ. Any choice of monogenic

potentials leads to an elastic problem with some boundary conditions, equilibrium, behavior and compatibility are

automatically verified. Monogenic functions constitute a subspace of harmonic functions, and therefore this paper

enables to reduce the space where potentials are sought. Properties of monogenic functions are studied intensively.

Expansion into power series (see e.q. Malonek (1990); Bock and Gürlebeck (2010); Bock (2012b)) and Laurent

series (see e.g. van Lancker (1999); Bock (2012a)) are available. Conformal mapping technics are more limited

than in 2D, but Möbius transformations of the form (ax+ b)(cx+ d)−1 are available as demonstrated by Sudbery

(1979).
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5. Restriction to two-dimensions

This section aims at proving that the representation with two monogenic potentials presented in this paper is

a straightforward generalization of the classical plane holomorphic representation developed by Muskhelishvili

(1953b). Let begin with plane strain formulas. In this case potentials do not depend onx3, moreover let consider

thatΦ andΨ are twoC-valued functions (i.e.Φ3 = Φ4 = Ψ3 = Ψ4 = 0). ThusΦ andΨ are holomorphic

(because monogenicity coincides with holomorphy in 2D). Therefore commutativity is reestablished. Furthermore

z= x1 + ix2, ∂Φ = 2∂/∂z− j∂/∂x3 and∂ = 2∂/∂z+ j∂/∂x3. Thus:

2µu = 4(1− ν)Φ − 2
∂

∂z


zΦ + zΦ

2

 −Ψ

= (3− 4ν)Φ − zΦ′ −Ψ
(36)

For the stress field (35) gives:

σ11 + σ22 + σ33 = 2(1+ ν)(Φ′ + Φ′)

−σ11 + σ22 + σ33 + 2iσ12 + 2 jσ13 = 2ν(Φ′ + Φ′) + 2zΦ′′ + 2Ψ′

σ11 − σ22 + σ33 − 2iσ12 + 2kσ23 = 2ν(Φ′ + Φ′) − 2zΦ′′ − 2Ψ′

(37)

Thus, from (36) and (37):



σ33 = 2ν(Φ′ + Φ′)

σ13 = σ23 = 0

u3 = 0

(38)

Therefore the classic Muskhelishvili formulas for plane strain are obtained:



2µ(u1 + iu2) = (3− 4ν)Φ − zΦ′ − Ψ

σ11 + σ22 = 2(Φ′ + Φ′)

−σ11+ σ22 + 2iσ12 = 2(zΦ′′ + Ψ′)

(39)

Plane stress formulas are obtained by considering that 3−4ν = (λ+3µ)/(λ+µ). Classically, plane stress problems

verify the same equation set as in plane strain by replacingλ by λ∗ = 2µλ/(λ + 2µ). Thus (λ∗ + 3µ)/(λ∗ + µ) =

(3− ν)/(1+ ν) and the plane stress Muskhelishvili formulas are therefore obtained.

6. Orthogonal basis of solid spherical monogenics

Completeness of the generalized Kolosov-Muskhelishvili formulas has been proved. This section deals with

the construction of a polynomial basis of Lamé solutions by using in particular the hypercomplex structure of

the representation formulas. The corresponding problem offinding linear dependencies is well known as the

uniqueness problem of the Papkovich-Neuber solutions (seee.g. Cong and Steven (1979b); Cong (1995) and

references therein). Here are presented explicit conditions for fixing the linear dependencies which naturally arise

from the properties and the finer structure of the function spaces used. To this end, the full quaternionic setting

(28) is used which preserves all the structural properties of the functions.

14



Let us consider an orthogonal basis of monogenic polynomials with respect to the unit ballB3 in R3. This

polynomial basis can be seen as a generalization of the holomorphicz-powers toR3 having special properties

regarding the hypercomplex derivation and primitivation.In this section the basis elements are introduced by a

two-step recurrence relation and some essential properties are highlighted. For a detailed explanation we refer to

Bock and Gürlebeck (2010); Bock (2012b).

Proposition 2 (Bock (2012b)). For eachn ∈ N andl = 0, . . . , n, Al
n denotes monogenic polynomials of degreen,

that form an orthogonal basis of monogenic polynomials inL2(Ω,H) satisfying the two-step recurrence formula:

Al
n+1 =

n+ 1
2(n− l + 1)(n+ l + 2)

[(
(2n+ 3)x+ (2n+ 1)x

)
Al

n − 2nxxAl
n−1

]
(40)

with

Al
l+1 =

1
4
[
(2l + 3)x+ (2l + 1)x

]
Al

l and Al
l = (x1 − kx2)l (41)

Note, that the initial values of the recurrence relation aredefined by the subset of monogenic constants
{
Al

l

}
l≥0

which are polynomials isomorphic to the complexz-powers. We remark that the functionΛ from Theorem 1 can

be represented by the subset of monogenic constants
{
Al

l

}
l≥0

. It is well known, e.g. Bauch (1981), that for each

n ∈ N∗ the polynomial solutions to the Lamé-Navier system of exactdegreen form a subspace of dimension

6n + 3. Now, using (14) and (40) monogenic potentialΦ and anti-monogenic potential̂Ψ are sought in form of

polynomials expansion:

Φ(x) =
∞∑

n=0

n−1∑

l=0

Al
nαn,l and Ψ̂(x) =

∞∑

m=0

m∑

k=0

Âk
mβm,k (42)

with αn,l , βm,k ∈ H. Let mention that monogenic constants are not considered inthe polynomial expansion of

Φ ∈ ker∂ ⊥ (ker∂ ∩ ker∂). Furthermore, it should be noted that polynomial basis of anti-monogenic functions

was constructed by applying Proposition1 to the monogenic basis. Consequently, by substitution of the polynomial

expansions in equation (28), we obtain with respect to theR-linear space 4(2n+ 1) = 8n+4H-valued polynomial

solutions to the Lamé-Navier equation. The redundant polynomials of dimension 2n+1 are fixed with the condition

(30). This corresponds naturally to the dimension of the harmonic subspace, since by construction 4(1−ν)Φ4−Ψ4 ∈

ker∆. For the polynomial basis (40) used here one could prove the following explicit 2n+ 1 algebraic conditions:

Proposition 3. For eachn ∈ N∗ and using the polynomial expansions (42) in terms of the polynomial basis (40)

in the extended displacement field (28), the 2n+ 1 algebraic conditions such that 4(1− ν)Φ4 − Ψ4 = 0 are given

by:

2β1
n,m+1 − β

2
n,m = 4(1− ν)[α2

n,m+ 2α1
n,m+1]

2β4
n,m+1 − β

3
n,m = 4(1− ν)[α3

n,m+ 2α4
n,m+1]

β4
n,0 = 4(1− ν)α4

n,0

(43)

with m= 0, . . . , n− 1. Note that for a compact representation the conventionsα1
n,n = α

4
n,n = 0 are used.

These conditions ensure that we obtain 6n+ 3A-valued solutions to the Lamé-Navier equation equation and

can be either included in the polynomial expansions or addedas additional equations in the solution of the bound-

ary value problem. Finally, some examples of the described scheme for the polynomial degreesn = 0, 1, 2 are
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given in Table 2. Symbolic mathematical programs such Mathematica or Maple can be used efficiently to generate

automatically these independent polynomials. The corresponding displacements are obtained by replacingΦ and

Ψ̂ coordinate-wisely in (28) by the ansatz functions of Table 2and using (42).

Table 2: Ansatz functions and algebraic conditions for the extended displacement field

n ansatz functions coefficients algebraic conditions

0 Â0
0 = 1 β0,0 ∈ H β4

0,0 = 0

1 A0
1 = x1 +

1
2(x2i + x3 j) α1,0 ∈ H 2β1

1,1 − β
2
1,0 = 4(1− ν)α2

1,0

Â0
1 = x1 − 1

2(x2i + x3 j) β1,0, β1,1 ∈ H 2β4
1,1 − β

3
1,0 = 4(1− ν)α3

1,0

Â1
1 = x2 − x3k β4

1,0 = 4(1− ν)α4
1,0

2 A0
2 = x2

1 −
1
2(x2

2 + x2
3) + x1x2i + x1x3 j α2,0, α2,1 ∈ H 2β1

2,1 − β
2
2,0 = 4(1− ν)[α2

2,0 + 2α1
2,1]

A1
2 = 2x1x2 +

1
2(x2

2 − x2
3)i + x2x3 j − 2x1x3k β2,0, β2,1, β2,2 ∈ H 2β1

2,2 − β
2
2,1 = 4(1− ν)α2

2,1

Â0
2 = x2

1 −
1
2(x2

2 + x2
3) − x1x2i − x1x3 j 2β4

2,1 − β
3
2,0 = 4(1− ν)[α3

2,0 + 2α4
2,1]

Â1
2 = 2x1x2 − 1

2(x2
2 − x2

3)i − x2x3 j − 2x1x3k 2β4
2,2 − β

3
2,1 = 4(1− ν)α3

2,1

Â2
2 = x2

2 − x2
3 − 2x2x3k β4

2,0 = 4(1− ν)α4
2,0

7. Conclusion and outlook

One of most fruitful and elegant method for elastic plane problems has been established by Muskhelishvili

(1953b) by using only two complex-valued holomorphic potentials. In this paper, an extension in 3D has been

demonstrated by using two quaternionic-valued monogenic potentials, which appears to be a suitable extension

in higher dimensions of classical holomorphic functions. The obtained monogenic representation is compact and

a straightforward calculation shows that classical Muskhelishivli formulas in 2D is embedded in the extended

formulation. Completeness is demonstrated with classicaltools of potential theory. Geometrical restrictions have

been specified. This leads to a very wide class of possible shapes for the elastic body, and more general shapes

can be considered by solving the elastic problem on subpartsthat verify the geometrical restrictions.

The obtained monogenic formulation of the three dimensional elasticity problem represents a refinement of the

classical harmonic Papkovich-Neuber solution. Due to the factorization of the 2nd order Laplace operator by the

1st order generalized Cauchy-Riemann operator and its adjointoperator, two vector-valued monogenic functions

have to be find (i.e., eight harmonic functions related to each other by a strong relationship) instead of four real-

valued harmonic functions. This is similar to the situationin 2D. A significant advantage of such a hypercomplex

representation is when approximate solutions of boundary value problems are sought using series expansions of

homogeneous polynomials. In Bock (2009) it was shown that the properties (e.g. orthogonality, Appell prop-
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erty, orthogonal decomposition into higher and lower dimensional subspaces) of the polynomial systems used to

approximate the monogenic potentialsΦ andΨ improve immediately the numerical properties of the resulting

polynomial solutions to the Lamé-Navier equation even if these polynomial solutions no longer have the men-

tioned properties. Moreover for the significant issue of finding polynomial approximations, structural properties

of monogenic basis (e.g. Bock and Gürlebeck (2009a)) enables to fix explicitly linear dependencies generated

by polynomial potentials. In a more general context this is known as the uniqueness problem of the Papkovich-

Neuber solution (see e.g. Cong and Steven (1979b)). There itis proved that under certain geometric restrictions

(star-shaped or domains normal with respect tox1-direction) one of the harmonic potentials can be neglectedfrom

the representation formula. For general simply connected domains this is not valid.

This contribution differs from existing related works by using an approach not relying on polynomial subspaces

but a constructive method that proves the existence of the monogenic potentials and thus completeness of the

representation. These efforts (previous and present works) help to understand betterthe structure behind the

representation uniqueness and possibly overcome the difficulty.
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