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Abstract. We prove that the flux function of the totally asymmetric simple exclu-
sion process (TASEP) with site disorder exhibits a flat segment for sufficiently dilute
disorder. For high dilution, we obtain an accurate description of the flux. The re-
sult is established under a decay assumption of the maximum current in finite boxes,
which is implied in particular by a sufficiently slow power tail assumption on the dis-
order distribution near its minimum. To circumvent the absence of explicit invariant
measures, we use an original renormalization procedure and some ideas inspired by
homogenization.

MSC: 60K35, 60K37, 82C22

Keywords: Totally asymmetric exclusion process; site disorder; flux function; plateau;
phase transition; renormalization; homogenization

1. Introduction

The flux function, also called current-density relation in traffic-flow physics [11], is
the most fundamental object to describe the macroscopic behavior of driven lattice
gases. The paradigmatic model in this class is the totally asymmetric simple exclusion
process (TASEP), where particles on the one-dimensional integer lattice hop to the
right at unit rate and obey an exclusion rule. Density ρ ∈ (0, 1] is the only conserved
quantity and is associated locally to a flux (or current) that is defined as the amount
of particles crossing a given site per unit time in a system with homogeneous density
ρ. For TASEP, the flux function is explicitly given by

(1.1) f(ρ) = ρ(1− ρ).

In the hyperbolic scaling limit [27], the empirical particle density field is governed by
entropy solutions of the scalar conservation law

(1.2) ∂tρ(t, x) + ∂x f
(
ρ(t, x)

)
= 0,
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with f given by (1.1). This kind of result can be extended to a variety of asymmetric
models [33, 28, 4], but when the invariant measures are not explicit, little can be
said about the flux function. Nevertheless, convexity or concavity can be obtained
as a byproduct of the variational approach set up in [32], which applies to totally
asymmetric models with state-independent jump rates, like TASEP. However strict
convexity or strict concavity, which are related to the absence of a phase transition,
require new mathematical ideas to be derived for general driven dynamics.

In disordered systems, a phase transition has been first proved for nearest-neighbor
asymmetric site-disordered zero-range processes (ZRP) and its signature is a constant
flux on a density interval [ρc,+∞), where ρc is the density of the maximal invariant
measure. The invariant measures of the disordered ZRP are explicit so that the flux
can be exactly computed and the phase transition precisely located. The necessary
and sufficient condition for the occurrence of a phase transition is a slow enough tail of
the jump rate distribution near its minimum value r. Microscopically, phase transition
takes the form of Bose-Einstein condensation [14]. In an infinite system with mean
drift to the right, the excess mass is captured by the asymptotically slowest sites at
−∞. This was proven rigorously in [3] for the totally asymmetric ZRP with constant
jump rate with respect to the number of particles which is equivalent to TASEP with
particlewise disorder [25]. This holds also for nearest-neighbor ZRP with more general
jump rates [5] (see also [17] for partial results in higher dimension). The TASEP
picture can be interpreted as a traffic-flow model with slow and fast vehicles. The
phase transition then occurs on a density interval [0, ρc], where the flux is linear with
a slope equal to the constant mean velocity of the system. This velocity is imposed
by the slowest vehicles at +∞. As one moves ahead, slower an slower vehicles are
encountered, followed by a platoon of faster vehicles, and preceded by a gap before the
next platoon [25].

In this paper, we consider TASEP with i.i.d. site disorder such that the jump rate at
each site has a random value whose distribution is supported in an interval [r, 1], with
r ∈ (0, 1). A flat piece in the flux was observed numerically by physicists [22, 40, 20]
and interpreted as the occurence of a phase transition by several heuristic arguments.
Contrary to the disordered ZRP, the invariant measures are no longer explicit in the
site-disordered TASEP, which makes the analysis of the flux more challenging. Before
commenting on the flat segment in the flux, let us mention that the existence of a
hydrodynamic limit of the form (1.2) for TASEP with i.i.d. site disorder was established
in [33], using last passage percolation (LPP) and variational coupling. Consequently,
the flux function was shown to be concave. More generally, the existence of a limit of the
type (1.2) was obtained in [4] for asymmetric attractive systems in ergodic environment,
based on the study of invariant measures. We refer also to [10, 29, 30, 37] for further
rigorous results in a different class of disordered SEP.

Recently, Sly gave in [36] a short and very elegant proof of the existence of a flat
segment in the flux for TASEP with general rate distribution. The proof in [36] relies
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on a clever coupling implemented in the LPP formulation of the TASEP. In this paper,
we develop a different approach, announced in [6], based on a renormalization method
to obtain a precise information on the flux function and on the flat segment at the
price of additional assumptions on the disorder distribution. To our knowledge, this
is the first time a renormalization procedure is applied in the context of TASEP. We
focus on the case of dilute disorder which plays a key role in the physical literature [22].
The jump rate at each site is chosen randomly, according to some dilution parameter
ε ∈ [0, 1], so that a site is “fast” with probability 1 − ε, in which case it has rate
1, or “slow” with probability ε, in which case its rate has some distribution Q with
support (r, 1] for some r ∈ (0, 1). Under some assumption on the distribution Q, and
for sufficiently diluted disorder, i.e. ε small enough, we prove the existence of a flat
segment and determine the limiting size of this segment when ε vanishes. Moreover, we
prove the convergence of the whole flux function to an explicit function. We stress the
fact that Sly’s argument [36] does not require any assumption on Q nor the dilution of
the disorder, however the control on the flux in [36] is less precise.

The physical interpretation of the flat segment in the flux [22] is the emergence at
different scales of atypical disorder slowing down the particles and leading to traffic
jams. As one moves ahead along the disorder, slowest and slowest regions are encoun-
tered, with larger and larger stretches of sites with the minimal rate r (or near this
minimal rate). Locally a slow stretch of environment inside a typical region is expected
to create a picture similar to the slow bond TASEP introduced in [21]. It is known that
a slow bond with an arbitrarily small blockage [7] restricts the local current. On the
hydrodynamic scale [34], this creates a traffic jam with a high density of queuing vehi-
cles to the left and a low density to the right, that is an antishock for Burgers’ equation.
Renormalization turns the problem into a hierarchy of slow-bond like pictures, where
at each scale, the difference between the “typically fast” and “atypically slow” region
becomes smaller and smaller. Slower jams will gradually absorb faster ones so that
one expects to see a succession of mesoscopically growing shocks and antishocks. Some
results in this direction were obtained in [19] in the case of particle disorder. Even
though, a single slow bond induces a phase transition, it is not clear if the transition
will remain in presence of disorder or if the randomness rounds it off as in equilibrium
systems [2].

Renormalization is often key to analyze multi-scale phenomena in disordered sys-
tems; we refer to [38, 41] for a general overview and to [9] for an approach related to
ours. Our renormalization scheme controls rigorously the multi-scale slow bond picture
described in the paragraph above. A major difficulty compared to the single slow bond
is that as one moves to larger scales, the typical maximum current associated to a
given scale and the maximum current associated to the rare slow regions occurring at
the same scale converge to the same value r/4 (with r the minimal value of the jump
rates). Thus a delicate issue is to show that this small current difference exceeds the
typical order of fluctuations at each scale, so that the slow-bond picture remains valid
at all scales. To quantify this difference, we rely on an assumption on the decay of the
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maximum current in a finite box (2.17). This assumption is satisfied under a condition
on the tail of the rate distribution Q near its minimum r (see Lemma 2.1). Heuristics
suggest that this assumption should be always valid although we have not been able
so far to prove this conjecture.

We achieve our renormalization scheme by formulating the problem in wedge LPP
framework with columnar disorder and exponential random variables. In the LPP
framework, the phase transition takes the form of a pinning transition for the optimal
path [24]: the path gets a better reward from vertical portions along slow parts of the
disorder. The core of this approach is to obtain a recursion between mean passage
times at two successive scales. Like many shape theorems [26], our results partially
extends to LPP with more general distributions.

The paper is organized as follows. In Section 2, we set up the notation and state
our main result. In Section 3, we formulate the problem in the last passage percolation
framework and introduce the reference flux and the passage time functions. In Section
4, we introduce the renormalization procedure and describe the main steps of the
proof. In Section 5, we prove a recurrence which links the passage time bounds of
two successive scales. This is the heart of the renormalization argument. In Section
6, we study this recurrence in detail and show that it propagates the bounds we need
from one scale to another. In Section 7, we establish an important fluctuation estimate
needed in Section 5. Finally, the proofs of our main theorems are completed in Section
8.

2. Notation and results

2.1. TASEP with site disorder. Let N := {0, 1, . . .} (resp. N∗ := {1, 2, . . .}) be the
set of nonnegative (resp. positive) integers. The disorder is modeled by α = (α(x) :
x ∈ Z) ∈ A := [0, 1]Z, a stationary ergodic sequence of positive bounded random
variables. The precise distribution of α will be defined in Section 2.2. For a given
realization of α, we consider the TASEP on Z with site disorder α. The dynamics is
defined as follows. A site x is occupied by at most one particle which may jump with
rate α(x) to site x + 1 if it is empty. A particle configuration on Z is of the form
η = (η(x) : x ∈ Z), where for x ∈ Z, η(x) ∈ {0, 1} is the number of particles at x. The
state space is X := {0, 1}Z. The generator of the process is given by

(2.1) Lαf(η) =
∑
x∈Z

α(x)η(x)[1− η(x+ 1)]
[
f
(
ηx,x+1

)
− f(η)

]
,

where ηx,x+1 = η− δx + δx+1 denotes the new configuration after a particle has jumped
from x to x+ 1.

Current and flux function. The macroscopic flux function f can be defined as
follows. We denote by Jαx (t, η0) the rightward current across site x up to time t, that
is the number of jumps from x to x + 1 up to time t, in the TASEP (ηαt )t≥0 starting
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from initial state η0, and evolving in environment α. For ρ ∈ [0, 1], let ηρ be an initial
particle configuration with asymptotic particle density ρ in the following sense:

(2.2) lim
n→∞

1

n

n∑
x=0

ηρ(x) = ρ = lim
n→∞

1

n

0∑
x=−n

ηρ(x).

We then set

(2.3) f(ρ) := lim
t→∞

1

t
Jαx (t, ηρ),

where the limit is understood in probability with respect to the law of the quenched
process. Other definitions of the flux and the proof of their equivalence with the above
definition can be found in [6].

It is shown in [33] that f is a concave function, see (3.8) below. It was conjectured
in [40] that for i.i.d. disorder, the flux function f exhibits a flat segment, that is an
interval [ρc, 1 − ρc] (with 0 ≤ ρc < 1/2) on which f is constant (see Figure 1). The
proof of [36] uses a comparison with a homogeneous rate r TASEP. We introduce a
different approach, based on renormalization and homogenization ideas, viewing the
disordered model as a perturbation of a homogenous rate 1 TASEP. This yields not
only an independent proof of the existence of a flat segment, but also optimal estimates
when the density of defects is small enough.

2.2. The flux and flat segment for rare defects. From now on, we consider i.i.d.
disorder such that the support of the distribution of α(x) is contained in [r, 1], where
r > 0 is the infimum of this support. Then the flux is bounded from above by r/4.

Proposition 2.1. The maximum value of the flux function is given by

max
ρ∈[0,1]

f(ρ) = r/4.

This result comes from the fact that the current of the disordered system is limited
by atypical large stretches with jump rates close to r. On these atypical regions, the
system behaves as a homogeneous rate r TASEP which has maximum current r/4.
A detailed proof can be found in Appendix A. For our main results, we formulate
additional assumptions on the distribution of the environment. We assume that the
disorder is a perturbation of the homogeneous case with rate 1. Let 0 < r < R < 1
and Q be a probability measure on [r, R], such that r is the infimum of the support of
Q. Given ε ∈ (0, 1) a “small” parameter, we define the distribution of α(x) by

(2.4) Qε = (1− ε)δ1 + εQ.

The law of α = (α(x), x ∈ Z) is the product measure with marginal Qε at each site

Pε(dα) :=
⊗
x∈Z

Qε[dα(x)].

Expectation with respect to Pε is denoted by Eε. We can interpret this by saying that
each site is chosen independently at random to be, with probability 1− ε, a “fast” site
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with normal rate 1, or with probability ε to be a “defect” with rate distribution Q
bounded above away from 1 and 0. Thus ε is the mean density of defects. For example
if Q = δr, then the defects are slow bonds with rate r < 1.

Let us denote by fε the flux function (2.3) for the disorder distribution Our main
results hold under a general assumption (H) on the disorder distribution Q which will
be stated and explained in the next subsection. Concretely, assumption (H) is easily
implied by the following simple tail assumption:

Lemma 2.1. Assumption (H) holds if the following condition is satisfied:

(2.5) for some κ > 1, Q
(
[r, r + u)

)
= O(uκ) as u→ 0+.

We now define the edge of the flat segment as

(2.6) ρc(ε) := inf

{
ρ ∈

[
0,

1

2

]
: fε ≡

r

4
on [ρ, 1− ρ]

}
.

It follows from Proposition 2.1 that ρc(ε) ≤ 1/2. It is also known (see [33]) that fε is
symmetric with respect to ρ = 1/2, i.e.

(2.7) ∀ρ ∈ [0, 1], fε(1− ρ) = fε(ρ).

Therefore, (2.6) is equivalent to saying that the flat segment of fε is the interval
[ρc(ε), 1− ρc(ε)].
Theorem 2.1. Under assumption (H), there exists ε0 > 0 such that ρc(ε) <

1
2

for
every ε < ε0. Furthermore, the size of the flat segment is explicit when ε vanishes:

(2.8) lim
ε→0

ρc(ε) = ρc(0),

with

(2.9) ρc(0) :=
1

2

(
1−
√

1− r
)
.

Remark 2.1. It follows from (2.8) that the limiting value of the length 1 − 2ρc(ε) of
the flat segment is

√
1− r. The result of [36] is that ρc(ε) < 1/2 for any ε ∈ (0, 1),

without requiring assumption (H)or (2.5). The proof of [36] yields an upper bound on
ρc(ε) implying that the limiting length of the flat segment is at least (1− r)/2.

The next theorem characterizes the dilute limit [22] of the whole flux function. Let

(2.10) ∀ρ ∈ [0, 1], f0(ρ) := min
[
ρ(1− ρ),

r

4

]
.

Theorem 2.2. Under assumption (H), uniformly over ρ ∈ [0, 1], one has

(2.11) lim
ε→0

fε(ρ) = f0(ρ).

It is important to note that, although ρc(0) is the lower bound of the flat segment of
f0, the convergence (2.8) is not a direct consequence from (2.11). Theorem 2.2 does not
imply the existence of the flat segment for given ε either. However, the proofs of (2.8)
and (2.11) are closely intertwined and both follow from our renormalization approach.
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2.3. A general assumption. Let us now state assumption (H) which is used in
Theorems 2.1 and 2.2. For this we first define the maximal current in a finite domain.

Let B = [x1, x2] be an interval in Z. In the following, αB := (α(x) : x ∈ B)
denotes the environment restricted to B. Consider the TASEP in B with the following
boundary dynamics: a particle enters at site x1 with rate α(x1−1) if this site is empty
and leaves from site x2 with rate α(x2) if this site is occupied. Note that this process
depends on the disorder in the larger box

(2.12) B# := [x1 − 1, x2] ∩ Z.

From now, we index all related objects by B# (the domain of the relevant disorder
variables) rather than B (the domain where particles evolve). The generator of this
process is given by

LαB#f(η) :=

x2−1∑
x=x1

α(x)η(x)[1− η(x+ 1)]
[
f
(
ηx,x+1

)
− f(η)

]
+ α(x1 − 1)[1− η(x1)] [f (η + δx1)− f(η)] + α(x2)η(x2) [f (η − δx2)− f(η)] ,(2.13)

where η ± δx denotes the creation/annihilation of a particle at x. We now define the
maximal current relative to the process restricted to B.

Definition 2.1. The maximal current j∞,B#(αB#) is the stationary current in the open
system defined above, i.e. (independently of x = x1, . . . , x2 − 1)

j∞,B#(αB#) =

∫
α(x)η(x)[1− η(x+ 1)]dναB#(η)(2.14)

=

∫
α(x1 − 1)[1− η(x1)]dναB#(η) =

∫
α(x2)η(x2)dναB#(η),

where να
B# is the unique invariant measure for the process on B with generator Lα

B#.

Remark 2.2. One can see that the right-hand side of (2.14) is independent of x by
writing that the expectation under να

B# of Lα
B#η(x) for x ∈ [x1, x2] ∩ Z (which yields

the difference of two consecutive integrals in (2.14)) is zero.

To simplify notation, we shall at times omit the dependence on αB# and write j∞,B# .
It is well-known [13] that in the homogeneous case, i.e. when α(x) = r for all x in
[0, N ] (with r a positive constant), then j∞,[0,N ] is no longer a random variable and

(2.15) lim
N→∞

j∞,[0,N ] = inf
N
j∞,[0,N ] =

r

4
.

In fact, explicit computations [13] show that, for some constant C > 0,

(2.16) j∞,[0,N ] ≥
r

4
+
C

N
.

The quantity j∞,[0,N ](α[0,N ]) is a function of the environment which measures the speed
of decay of the maximum current in a box to r/4 as the size of the box increases.
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Assumption (H), stated below, requires that with high probability on the disorder the
decay of the maximal current towards r/4 is slightly slower than (2.16).

Assumption (H). There exists b ∈ (0, 2), a > 0, c > 0 and β > 0 such that, for ε
small enough, the following holds for any N :

(2.17) Pε
(
j∞,[0,N ](α[0,N ]) ≤

r

4
+

a

N b/2

)
≤ c

Nβ
.

Note that if assumption (H) is satisfied for some b ∈ (0, 1), it is satisfied a fortiori for
b = 1. Thus, from now on, without loss of generality, we will assume that b ∈ [1, 2).
We stress the fact that the condition b < 2 is borderline as a simple comparison with
the homogeneous case (2.16) leads to a control of the decay for b = 2.

We have not been able to prove that assumption (H) is satisfied for Bernoulli disorder
Q = δr, although we believe this is true. However, as stated in Lemma 2.1, the tail
assumption (2.5) implies (H).

Proof of Lemma 2.1. Let α? := minx∈[0,N ] α(x). It follows from a standard coupling
argument that the flux is monotonous with respect to the jump rates

(2.18) j∞,[0,N ](α[0,N ]) ≥ j∞,[0,N ]

(
α?, . . . , α?

)
,

where j∞,[0,N ]

(
α?, . . . , α?

)
stands for the current of a homogeneous TASEP in [1, N ]

with bulk, exit and entrance rates α?. By (2.16), it is larger than α?/4, so that
j∞,[0,N ](α[0,N ]) ≥ α?/4. Thus assumption (H) will be implied by control of α?. Using
the tail of the distribution Q (2.5), we get

Pε
(

min
x∈[0,N ]

α(x) ≤ r +
a′

N b/2

)
≤ NQ

(
[r, r +

a′

N b/2
)

)
≤ c′

Nβ
,

for some well chosen parameters a′ > 0 , c′ > 0, b ∈ (0, 2), β > 0. This follows from
elementary computations. �

3. last passage percolation approach

The derivation of Theorems 2.1 and 2.2 relies on a reformulation of the problem in
terms of last passage percolation.

3.1. Wedge last passage percolation. Let Y = (Yi,j : (i, j) ∈ Z × N) be an i.i.d.
family of exponential random variables with parameter 1 independent of the environ-
ment (α(i) : i ∈ Z). In the following, these variables will sometimes be called service
times, in reference to the queuing interpretation of TASEP. The distribution of Y is
denoted by IP and the expectation with respect to this distribution by IE. Let

W := {(i, j) ∈ Z2 : j ≥ 0, i+ j ≥ 0} .
Index i represents a site and index j a particle. Given two points (x, y) and (x′, y′)
in Z× N, we denote by Γ((x, y), (x′, y′)) the set of paths γ = (xk, yk)k=0,...,n such that
(x0, y0) = (x, y), (xn, yn) = (x′, y′), and (xk+1 − xk, yk+1 − yk) ∈ {(1, 0), (−1, 1)} for
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every k = 0, . . . , n− 1. Note that Γ((x, y), (x′, y′)) = ∅ if (x′− x, y′− y) 6∈ W . Given a
path γ ∈ Γ((x, y), (x′, y′)), its passage time is defined by

(3.1) Tα(γ) :=
n∑
k=0

Yxk,yk
α(xk)

.

The last passage time between (x, y) and (x′, y′) is defined by

(3.2) Tα((x, y), (x′, y′)) := max{Tα(γ) : γ ∈ Γ((x, y), (x′, y′))}.
We shall simply write Tα(x, y) for Tα((0, 0), (x, y)). This quantity has the following
particle interpretation. For (t, x) ∈ [0,+∞)× Z, let

Hα(t, x) = min{y ∈ N : Tα(x, y) > t} and ηαt (x) = Hα(t, x− 1)−Hα(t, x).

Then (ηαt )t≥0 is a TASEP with generator (2.1) and initial configuration η∗ = 1Z∩(−∞,0],
and Hα is its height process. Besides, if we label particles initially so that the particle
at x ≤ 0 has label −x, then for (x, y) ∈ W , Tα(x, y) is the time at which particle y
reaches site x+ 1. Let us recall the following result from [33].

Theorem 3.1. Let W ′ := {(x, y) ∈ R2 : y ≥ 0, x + y ≥ 0}. For P-a.s. realization of
the disorder α, the function

(3.3) (x, y) ∈ W ′ 7→ τ(x, y) := lim
N→∞

1

N
Tα([Nx], [Ny])

is well-defined in the sense of a.s. convergence with respect to the distribution of Y . It
is finite, positively 1-homogeneous and superadditive (thus concave). The function

(3.4) (t, x) ∈ [0,+∞)× R 7→ h(t, x) := lim
N→∞

1

N
Hα([Nt], [Nx])

is well-defined in the sense of a.s. convergence with respect to the distribution of Y . It
is finite, positively 1-homogeneous and subadditive (thus convex). These functions do
not depend on α and are related through

h(t, x) = inf{y ∈ [0,+∞) : τ(x, y) > t},(3.5)

τ(x, y) = inf{t ∈ [0,+∞) : h(t, x) ≥ y}.(3.6)

By homogeneity, the function h in (3.4) is of the form

(3.7) h(t, x) = tk
(x
t

)
for some convex function k : R→ R+. It is known that for homogeneous TASEP (that
is α(x) = 1 for all x), we have

τ(x, y) = (
√
x+ y +

√
y)2, k(v) =

(1− v)2

4
1[−1,1](v)− v1(−∞,−1)(v).
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3.2. Reformulation of Theorems 2.1 and 2.2. In this section, we are going to
rewrite the flux in the last passage framework and show that Theorem 2.1 can be
deduced from a statement on the passage time. It is shown in [33] that the macroscopic
flux function f is related to k (defined in (3.7)) by the convex duality relation

(3.8) f(ρ) := inf
v∈R

[k(v) + vρ], ρ ∈ [0, 1]

which implies concavity of f . We now introduce a family of “reference” macroscopic
flux functions and associated macroscopic passage time and height functions. Let
0 ≤ ρc ≤ 1/2 and J ≥ 0. For ρ ∈ [0, 1], we define (see Figure 1)

(3.9) fρc,J(ρ) := J min

(
ρ

ρc
,
1− ρ
ρc

, 1

)
.

f ρc,J

ρ

r
4

ρc 1− ρc

J

Figure 1. The homogeneous TASEP flux f(ρ) = ρ(1 − ρ) is represented in dotted line and
3 graphs of modified fluxes fρn,Jn are depicted in plain line. The renormalization strategy is to

bound from below the flux at the scale n by fρn,Jn and to use this information to control the lower

bound on the flux at the scale n+ 1. As depicted in the figure, the fluxes Jn decay to r/4 when the
scale grows. The width of the flat segment [ρn, 1 − ρn] is also shrinking at each step but remains

controlled. When the dilution ε tends to 0, the limiting flux f0 defined in (2.10) is the flux f(ρ)

truncated in [ρc(0), 1 − ρc(0)] at the level r/4 (dashed line). For ε small enough, J1 can be chosen
very close to r/4 and ρ1 close to ρc(0). Furthermore for small ε, the flat segment [ρn, 1 − ρn] is

almost unchanged at each scale and this leads to the convergence in Theorem 2.1.

Given Proposition 2.1, the occurence of a flat segment in Theorem 2.1 boils down to
proving the existence of ε0 > 0 and ρ ∈ [0, 1/2) such that the flux remains above r/4
for densities in [ρ, 1− ρ]:

(3.10) ∀ε < ε0, fε ≥ fρ,r/4.

As fε ≤ r/4 by Proposition 2.1, lower bound (3.10) implies that fε equals r/4 on
[ρ, 1− ρ]. Since fε is concave and symmetric (2.7), ρc(ε) in (2.6) is characterized by:

(3.11) ρc(ε) = inf
{
ρ ∈ [0, 1/2] : f ≥ fρ,r/4

}
.

The convex conjugate of fρc,J through Legendre duality (3.8) is defined for x ∈ R by

kρc,J(x) := (−x)1(−∞,−J/ρc)(x)(3.12)

+ [J − (1− ρc)x]1[−J/ρc,0)(x) + [J − ρcx]1[0,J/ρc)(x).
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Finally, one can associate to kρc,J a passage time function and a height function, related
by (3.5)–(3.6), and defined for x ∈ R and y ≥ x− by

τ ρc,J(x, y) :=
ρcx

+ − (1− ρc)x− + y

J
and hρc,J(t, x) := tkρc,J(x/t),(3.13)

where x+ = max{x, 0} and x− = −min{x, 0}. It follows from (3.5), (3.7) and (3.8)
that

(3.14) f ≥ fρ,J ⇔ τ ≤ τ ρ,J .

Hence, the quantity ρc(ε) in (2.6) can be defined equivalently as follows:

(3.15) ρc(ε) = inf{ρ ∈ [0, 1/2] : τε ≤ τ ρ,r/4}.
Thus the lower bound (3.10) on the flux can be rephrased in terms of an upper bound
on the last passage time. Theorems 2.1–2.2 are consequences of the following theorems,
which will be proved in the next sections.

Theorem 3.2. Let τε be the limiting passage time defined by (3.3) when the environ-
ment has distribution Pε. Then, under assumption (H), there exist ε0 > 0 and ρ < 1/2
such that

(3.16) ∀ε < ε0, τε ≤ τ ρ,r/4,

with τ ρ,r/4 defined in (3.13). In particular, τε(., y) has a cusp at x = 0 and the optimal
value ρc(ε) introduced in (3.15) converges in the dilute limit:

(3.17) lim
ε→0

ρc(ε) =
1

2
(1−

√
1− r).

Theorem 3.3. The passage time function τε converges in the dilute limit:

(3.18) lim
ε→0

τε(x, y) = τ0(x, y) :=

 (
√
x+ y +

√
y)2 if y ≤ x+y1

1(0)− x−y−1
1 (0)

τ ρc(0),r/4(x, y) if y > x+y1
1(0)− x−y−1

1 (0)

where τ0 is the counterpart of the flux function f0 defined in (2.11) and

(3.19) y1
1(0) :=

ρc(0)2

1− 2ρc(0)
∈ [0,+∞], y−1

1 (0) :=
[1− ρc(0)]2

1− 2ρc(0)
∈ [0,+∞]

where ρc(0) was introduced in (2.9).

Theorem 3.2 can be partially extended to LPP with general service-time distribution
and heavier tails. In this case the particle interpretation is less standard, though
the process can be viewed as a non-markovian TASEP (see e.g. [23] and [33]). Our
approach (and the extension just explained) also applies to other LPP models with
columnar disorder (in the wedge picture) or diagonal disorder (in the square picture),
like for instance the K-exclusion process [33].
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3.3. Last passage reformulation of assumption (H). We will reformulate condi-
tion (H) in the last passage setting. To this end, we define restricted passage times.
Let B = [x1, x2]∩Z (where x1, x2 ∈ Z) be a finite interval of Z. If (x, y) and (x′, y′) are
such that x and x′ lie in B, we define ΓB((x, y), (x′, y′)) as the subset of Γ((x, y), (x′, y′))
consisting of paths γ that lie entirely inside B in the sense that xk ∈ B for every
k = 0, . . . , n. We then define

(3.20) TαB((x, y), (x′, y′)) := max
{
Tα(γ) : γ ∈ ΓB((x, y), (x′, y′))

}
.

The counterpart of Definition 2.1 is

Lemma 3.1. Let B = [x1, x2] ∩ Z. The limit

(3.21) T∞,B(αB) := lim
m→∞

1

m
TαB((x0, 0), (x0,m)) = sup

m∈N∗
IE

[
1

m
TαB((x0, 0), (x0,m))

]
exists IP-a.s. for x0 ∈ B, does not depend on the choice of x0, and defines a random
variable depending only on the disorder restricted to B. Besides, we have

(3.22) T∞,B(αB) =
1

j∞,B(αB)
,

where j∞,B(αB) is the stationary current (2.14) in the open system restricted to

(3.23) B′ := [x1 + 1, x2] ∩ Z.

Note that in (2.14), j∞,B#(αB#) was defined as the maximum current for the TASEP
in B. By (2.12) and (3.23), (B′)# = B so that the above lemma is consistent with
(2.14). The proof of Lemma 3.1 is postponed to Appendix B.

To simplify notation, we shall at times omit αB and write T∞,B, j∞,B. We can now
restate condition (H) in terms of last passage time:

Assumption (H). There exists b ∈ (0, 2), a > 0, c > 0 and β > 0 such that, for ε
small enough, one has for any N ∈ N∗:

(3.24) Pε
(
T∞,[0,N ](α[0,N ]) ≥

4

r
− a

N b/2

)
≤ c

Nβ
.

The constants a, c in (2.17) are different from those in (3.24), but b and β are the same.

4. Renormalization scheme

From now, we are going to focus on the last passage percolation model in order to
prove Theorems 3.2 and 3.3. We first describe a renormalization procedure to show that
a bound of the form (3.16) holds with high probability at every scale (see Proposition
4.1 below).
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4.1. Definition of blocks. Let n ∈ N∗ be the renormalization “level” andKn = Kn(ε)
the size of a renormalized block of level n (by block we mean a finite subinterval of Z).
For n = 1, we initialize K1 = K1(ε) and define a block B of order 1 to be good if it
contains no defect, i.e. α(x) = 1 for every x ∈ B. Otherwise, the block is said to be
bad.

For n ≥ 1, we set Kn+1 = lnKn, where ln = bKγ
nc with γ ∈ (0, 1). For n ≥ 1, a block

Bn+1 of order n + 1 has size Kn+1 and is partitioned into ln disjoint blocks of level n.
This block is called “good” if it contains at most one bad subblock of level n, and if
condition (4.1) below on the maximum current in the block holds:

(4.1) j∞,Bn+1 ≥ jn+1 with jn+1 :=
r

4
+

a

K
b/2
n+1

,

where the constants a, b were defined in (2.17). Otherwise Bn+1 is said to be bad. We
stress the fact that the status (good or bad) of Bn+1 depends only on the disorder
variables αBn+1 in Bn+1 and not on the exponential times Yi,j.

The renormalization is built such that large blocks are good with high probability.
Let qn(ε) denote the probability under Pε that the block [0, Kn − 1] ∩ Z, at level n, is
bad.

Lemma 4.1. Suppose that assumption (H) holds and set

K∗(ε) :=

(
2c

ε

) 1
β+1

, K∗ := 2 + (4c)
1

β−γ(β+2) ,

(4.2) γ0 :=
β

β + 2
, ε0 := min

{
1, 2−βc, (2c)

[
3 + (4c)−

1
β−γ(β+2)

]β+1
}
,

with the constants c, β appearing in (2.17) and (3.24). Then for all γ ∈ (0, γ0) and
ε ≤ ε0, there is an integer K1(ε) in the interval [K∗, K

∗(ε)] such that

(4.3) ∀ε < ε0, lim
n→∞

qn(ε) = 0 and furthermore lim
ε→0

K1(ε) = +∞.

Proof. For n ≥ 1, let ζn = c

Kβ
n

be the upper bound in (3.24). Then, by definition of

good blocks and independence of the environment, one obtains the recursive inequality

q1 ≤ K1ε,

qn+1 ≤ (lnqn)2 + ζn+1, n ≥ 1.

Note that if for some n, we have qn ≤ 2ζn and ζn+1 ≥ 4l2nζ
2
n, then qn+1 ≤ 2ζn+1. Thus if

we have q1 ≤ 2ζ1 and ζn+1 ≥ 4l2nζ
2
n for all n ≥ 1, then qn ≤ 2ζn for all n ≥ 1, implying

qn(ε)→ 0 as n→∞ provided K1 ≥ 2.
On the one hand, q1 ≤ 2ζ1 follows fromK1 ≤ K∗(ε). On the other hand, ζn+1 ≥ 4l2nζ

2
n

is equivalent to

Kβ−(β+2)γ
n ≥ 4c, ∀n ≥ 1.
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Assuming 0 ≤ γ < β
β+2

, since Kn is increasing in n, the above inequality holds for all

n ≥ 1 if it holds for n = 1, which is equivalent to

(4.4) K1 ≥ K ′ := (4c)
1

β−γ(β+2) .

Finally, setting K∗ := 2 +K ′, we have 1 +K∗ ≤ K∗(ε) if ε ≤ ε0. Thus (4.3) is satisfied
by choosing the sequence K1(ε) := bK∗(ε)c. �

4.2. Mean passage time in a block. Note that the scale Kn at level n depends on
ε through K1(ε) (see (4.3)) but we omit it in the notation for simplicity.

The strategy to prove Theorem 2.1 is now as follows. To each block B = [x0, x1 :=
x0 +Kn− 1]∩Z of level n, we associate finite-size macroscopic restricted passage time
functions (in the left and right directions) taking as origin either extremity of the block:τ

α
n,B(1, y) = IE

(
1
Kn
TαB((x0, 0), (x1, bKnyc))

)
, y ≥ 0,

ταn,B(−1, y) = IE
(

1
Kn
TαB((x1, 0), (x0, bKnyc))

)
, y ≥ 1,

(4.5)

which depend only on the disorder αBn . To keep compact notation, we will write both
functions in the form ταBn(σ, y) with σ = ±1 and y ≥ σ− = −min{σ, 0}.

The main step towards Theorem 3.2, stated in Proposition 4.1 below, is to prove
that the mean passage time at each level n remains bounded by the reference function
(3.13) with parameters ρn, Jn appropriately controlled to ensure that the flat segment
is preserved at each order.

Proposition 4.1. For small enough ε, there exist sequences (ρn = ρn(ε))n≥1 ∈ [0, 1]N
∗

and (Jn = Jn(ε))n≥1 ∈ [0,+∞)N
∗

such that:

(i) Uniformly over good blocks B at level n and for every σ ∈ {−1, 1}
(4.6) ∀y ≥ σ−, sup

good B
ταn,B(σ, y) ≤ τ ρn,Jn(σ, y),

(ii) limn→∞ Jn = r/4 and Jn > r/4 for all n ∈ N∗,
(iii) lim supn→∞ ρn < 1/2 and with the definition (2.9) of ρc(0)

lim sup
ε→0

lim sup
n→+∞

ρn(ε) ≤ ρc(0) =
1

2
(1−

√
1− r).

Once Proposition 4.1 is established, completing the proof of Theorem 3.2 (and thus
Theorem 2.1) is a relatively simple task, which boils down to obtain a similar bound on
unrestricted passage times (see Section 8). The upper bound τ ρn,Jn is the counterpart,
in the last passage percolation setting, of the modified flux fρn,Jn depicted Figure 1.

The derivation of Theorem 2.2 relies on a refined version of (4.6) in the dilute limit.

Proposition 4.2. For every σ ∈ {−1, 1} and σ− ≤ y < σ+y1
1(0)− σ−y−1

1 (0)

(4.7) lim sup
ε→0

lim sup
n→+∞

sup
good B

ταn,B(σ, y) ≤ (
√
σ + y +

√
y)2.

where y1(0) was defined in (3.19).
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4.3. Coarse-graining and recursion. The strategy of the proof of Propositions 4.1
and 4.2 is based on a coarse-graining procedure. We will first show a general estimate
for any good block B at level n ≥ 1 and σ ∈ {−1, 1}
(4.8) ∀y ≥ σ−, sup

good B
ταn,B(σ, y) ≤ gn(σ, y),

where gn(σ, ·) is a sequence of concave functions defined recursively in Proposition 4.3.
Then Propositions 4.1 and 4.2 will be deduced from (4.8).

Proposition 4.3. Fix C a large enough constant and set

(4.9) jn+1 :=
r

4
+

a

K
b/2
n+1

, ln := bKγ
nc and δn := C

(logKn+1)3/2

√
Kn

,

the sequence (gn)n≥1 defined on [σ−,+∞) by

(4.10) g1(σ, y) := (
√
σ + y +

√
y)2

and

gn+1(σ, y) := sup
σ−≤ȳ≤ ln

(ln−1)
y

{(
1− 1

ln

)[
gn(σ, ȳ)− ȳ

jn+1

]}
+

y

jn+1

+
1 + σ

2lnjn+1

+ δnϕ(y),

(4.11)

where

(4.12) ϕ(y) :=

√
σ

2
+ y [2 + log(1 + y)]3/2 ,

satisfies the bound (4.8) for any good block B and n ≥ 1.

The proof of this Proposition is postponed to Section 5. The recursion (4.11) between
gn and gn+1 is obtained by decomposing a path at level n+ 1 into subbpaths contained
in subblocks of size Kn. We then express the total passage time as a maximum of
a sum of the partial passage times in each subblock, where the maximum is over all
possible intermediate heights of the path at the interfaces. The last term δnϕ of (4.11)
is a fluctuation estimate (see Proposition 5.1 below) on the difference between the
expectation of the maximum of partial times and the maximum of the expectations.
The remaining part of (4.11) comes from approximating each partial passage time with
its mean and using the induction hypothesis (4.8).

To ge of Proposition 4.1, we next bound the functions gn in terms of the reference
function τ ρn,Jn

(4.13) gn(σ, y) ≤ ρσn − σ− + y

Jn
= τ ρ

σ
n,Jn(σ, y) ≤ τ ρn,Jn(σ, y),

where

(4.14) Jn := jn+1, ρσn := sup
y≥σ−

{
jn+1 gn(σ, y)− y

}
+ σ−, ρn := max(ρ1

n, ρ
−1
n ).
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We must then show that ρn and Jn satisfy (ii) and (iii) of Proposition 4.1. To this end,
in Section 6, we will prove Propositions 4.4 and 4.5 below (recall that ln, ∆n and ρn
actually depend on ε):

Proposition 4.4. Assume (H) with b ∈ [1, 2). Then for ε small enough, the sequence
(ρσn)n∈N∗ defined in (4.14) satisfies

(4.15) ρσn+1 ≤
jn+2

jn+1

[(
1− 1

ln

)
ρσn +

1

ln
+ ∆n

]
,

where ∆n = ∆n(ε) has the following property: there exist ε1 > 0 and C > 0 such that
for every 0 < ε ≤ ε1 and n ≥ 1

(4.16) ∆n ≤ C jn+1
δ2
n

2(j−1
n+2 − j−1

n+1)

[
log

(
δn

j−1
n+2 − j−1

n+1

)]3

,

with δn as in (4.9).

Assumption (H) ensures that the decay of jn to r/4 is slow enough so that the
additional fluctuations of order ∆n do not hinder property (ii) of Proposition 4.1. For
the above proposition to be useful, γ has to be chosen close to 0 so that the upper
bound (4.16) vanishes in the limit n→∞. This will imply Proposition 4.1.

Proposition 4.5. Assume (H) with b ∈ [1, 2) and γ < inf{γ0,
2
b
− 1} where γ0 is

introduced in (4.2). Then for small enough ε, the sequences (ρn = ρn(ε))n≥1 and
(Jn = Jn(ε))n≥1 defined in (4.14) satisfy the statements of Proposition 4.1.

The following result established in Section 6 will lead to Proposition 4.2.

Proposition 4.6. The dilute limit (4.7) holds as the sequence gn (defined in Proposi-
tion 4.3) satisfies
(4.17)

For σ− ≤ y < σ+y1
1(0)− σ−y−1

1 (0), lim sup
ε→0

lim sup
n→+∞

gn(σ, y) ≤ (
√
σ + y +

√
y)2.

Recall that gn depends on ε through the coarse graining scale.

5. Proof of Proposition 4.3

In this section, we prove the recursion in Proposition 4.3. To this end, we decompose
a path of length Kn+1 according to its traces on the interfaces between the subblocks
of size Kn (see Figure 2). The set of such traces will hereafter be called the “skeleton”
of the path. The idea is to use (4.8) as an induction hypothesis for the subpaths in
each block of size Kn. If we neglect the fluctuations of these subpaths, the “‘mean”
computation reduces to optimizing the positions of the traces so as to maximize the
total passage times of subpaths of level n. This “mean” induction relation is altered
by an error term (see Proposition 5.1 below) arising from fluctuations of the subpaths
as well as the entropy induced by the many possible skeletons.
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Figure 2. A block of level n+1 is partitioned into blocks of length Kn (only
3 blocks are depicted). The grey regions represent the boundaries between
the blocks of level n which are separated by a microscopic length 1. A coarse
grained path is depicted and the black dots denote the renewal points ki.

5.1. Skeleton decomposition. We consider B = [x, x′ = x + Kn+1 − 1] ∩ Z a block
of order n + 1, where x ∈ Z. Let γ = ((xk, yk))k=0,...,m−1 be a path restricted to B
connecting (x, 0) = (x0, y0 = 0) to (x′, y′ = [Kn+1y]) = (xm−1, ym−1). We define the
skeleton s(γ) = γ̃ of γ as follows (see figure 2). Let k0 = −1 and y−1 = 0. For i ∈ N,
we set

k2i+1 := min{k > k2i : xk = x+ (i+ 1)Kn − 1},
k2i+2 := max{k ≥ k2i+1 : xk = x+ (i+ 1)Kn − 1}.

Because xk+1 − xk ≤ 1, we necessarily have x1+k2i+2
= x + (i + 1)Kn and y1+k2i+2

=
yk2i+2

. Note that xk2ln−1
= xk2ln = x′ and yk2ln = y′. Recall that the block B is

made of ln = bKγ
nc boxes of length Kn. The skeleton s(γ) of γ is then the sequence

γ̃ = (ỹi, z̃i)i=1,...,ln ∈ (N2)ln given by

ỹi := yk2i−1
− yk2i−2

,(5.1)

z̃i := yk2i − yk2i−1
.(5.2)

By definition, we have

(5.3)
ln∑
i=1

(ỹi + z̃i) = y′ = bKn+1yc.

In a similar way for the paths going from right to left, if B = [x′ = x−Kn+1 +1, x]∩Z,
we may define the skeleton of a path connecting (x, 0) = (x0, y0 = 0) to (x′, y′ =
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[Kn+1y]) = (xm−1, ym−1). Let k0 = −1 and y−1 = −1. For i ∈ N, let

k2i+1 := min{k > k2i : xk = x− (i+ 1)Kn + 1},
k2i+2 := max{k ≥ k2i+1 : xk = x− (i+ 1)Kn + 1}.

Because xk+1 − xk ≥ −1, we necessarily have x1+k2i+2
= x− (i + 1)Kn and y1+k2i+2

=
1 + yk2i+2

. Note that xk2ln−1
= xk2ln = x′ and yk2ln = y′. The skeleton s(γ) of γ is then

the sequence γ̃ = (ỹi, z̃i)i=1,...,ln given by (5.1)–(5.2). Since allowed path increments are
(1, 0) and (−1, 1), this sequence must now satisfy the constraint ỹi ≥ Kn for i ≥ 1.

Let Γ̃n((x, 0), (x′, y′)) denote the set of skeletons of all paths γ restricted to B con-
necting (x, 0) and (x′, y′), that is the set of sequences γ̃ = (ỹi, z̃i)i=1,...,ln ∈ (N2){1,...,ln}

satisfying (5.3), with the constraint ỹi ≥ Kn in the case x′ < x. We will simply write
Γ̃n when the endpoints are obvious from the context.

5.2. passage time decomposition. Let σ = ±1 denote as in (4.5) the direction of the
paths. To encompass both cases σ = ±1, we will use the following simplifying conven-
tion: an interval can be written [a, b] even if a > b, in which case it actually means [b, a].
From now on, for notational simplicity, we consider the block B = [0, σ(Kn+1 − 1)],
instead of a block with arbitrary position x ∈ Z. For l ∈ {1, . . . , ln}, we denote by
Bl := [σ(l− 1)Kn, σ(lKn − 1)]∩Z the l-th subblock of level n in the decomposition of
B. For a path skeleton γ̃ = (ỹl, z̃l)l=1,...,ln ∈ Γ̃n, define

h̃i :=
i−1∑
j=1

[ỹj + z̃j]

if i ≥ 2 and h̃1 = 0. The quantity h̃i represents the height at which a path with
skeleton γ̃ enters block i without ever returning to block i − 1. For a path γ ∈
ΓB((0, 0), (σ(Kn+1 − 1), y′)) with skeleton γ̃, we have that

(5.4) TαB(γ) ≤ Uα
B(σ, γ̃) + V α

B (σ, γ̃) ≤ TαB((0, 0), (σ(Kn+1 − 1), y′)
)
,

where

Uα
B(σ, γ̃) :=

ln∑
l=1

Uα
B,l(σ, γ̃), V α

B (σ, γ̃) :=
ln∑
l=1

V α
B,l(σ, γ̃),

with

Uα
B,l(σ, γ̃) := TαBl

(
σ(l − 1)Kn, h̃l), (σ(lKn − 2), h̃l + ỹl + σ − 1)

)
,

V α
B,l(σ, γ̃) := TαB

(
(σ(lKn − 1), h̃l + ỹl +

σ − 1

2
), (σ(lKn − 1), h̃l + ỹl +

σ − 1

2
+ z̃l)

)
,

(5.5)

where Uα
B(γ̃) is the contribution of the horizontal crossings in the blocks Bl and V α

B (γ̃)
the contribution of the vertical paths at the junction of the blocks Bl (see figure 3).
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Figure 3. A coarse grained path is depicted in a block of order n + 1.
The horizontal crossings through each block Bl are restricted to the dark grey
regions. The passage time UαB(σ, γ̃) depends only on the variables {Yi,j} inside
the grey regions which are disjoint from the regions used by the vertical paths
contributing to V α

B (σ, γ̃).

Noticing that the second inequality in (5.4) is an equality if and only if γ̃ is the skeleton
of the optimal path, we get

(5.6) TαB((0, 0), (σ(Kn+1 − 1), y′)) = max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{Uα
B(σ, γ̃) + V α

B (σ, γ̃)} .

To derive Proposition 4.3, we have to estimate

(5.7) ταn+1,B(σ, y) :=
1

Kn+1

IE
(
TαB((0, 0), (σ(Kn+1 − 1), y′))

)
with y′ = bKn+1yc and we decompose this expectation into the sum of two components:

(5.8) max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
IE

(
Uα
B(σ, γ̃)

Kn+1

)
+ IE

(
V α
B (σ, γ̃)

Kn+1

)}
,

that is the “mean optimization problem” and a “fluctuation part” defined for y′ =
bKn+1yc as

Fn(y) = IE
(

1
Kn+1

maxγ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

−maxγ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
IE
(
UαB(σ,γ̃)

Kn+1

)
+ IE

(
V αB (σ,γ̃)

Kn+1

)}
.(5.9)

The term (5.8), which involves known information from subblocks, will give the main
recursion structure, while (5.9) will be an error term. The latter will be controlled by
fluctuations and entropy of paths. The precise result that will be established in Section
7 is the following:
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Proposition 5.1. With the notation (5.9), one has uniformly in y

Fn(y) ≤ δn

√
σ

2
+ y

(
1 + log(1 + y)

)3/2
,(5.10)

with δn defined in (4.9).

We will in fact replace the upper bound in (5.10) by a slightly worse one for the sole
purpose of making it a concave function of y, which is important for us. We therefore
observe that

(5.11) Fn(y) ≤ Gn(y) := δnϕ(y),

where ϕ is the (concave) function defined by (4.12).

5.3. The main recursion (4.11). Using the skeleton decomposition, we are now going
to derive Proposition 4.3. Let us explain the choice (4.10) of g1 in Proposition 4.3. To
initiate the induction relation, we need a bound at level 1 for ρ1 and J1. For n = 1, a
good block at level 1 contains only rates α(x) = 1. Since the restricted passage times
are smaller than the unrestricted ones, and the latter are superadditive, the asymptotic
shape (3.7)–(3.8) of the homogeneous last passage percolation yields the exact upper
bound

τα1,B(σ, y) ≤
(√

σ + y +
√
y
)2

=: g1(σ, y).

By definition, g1 is concave. Note that, if gn(σ, .) is concave, then gn+1(σ, .) defined by
(4.11) inherits this property.

Suppose now that the inequality (4.8)

ταn,B(σ, y) ≤ gn(σ, y)

holds at step n and that gn is concave. We will show that the recursion is valid at step
n+ 1 with gn+1 defined as in (4.11).

We first focus on the mean optimization problem (5.8) and consider a good block
B = [0, σ(Kn+1 − 1)] at level n + 1. For a fixed disorder α, by superadditivity and
uniformity of α in the y-direction, recalling (3.22), we have

(5.12) IE
[
V α
B,l(σ, γ̃)

]
≤ 1

j∞,B
z̃l.

Since B is a good block, j∞,B satisfies (4.1). Thus

(5.13) j∞,B ≥
r

4
+

a

K
b/2
n+1

=: jn+1,

(recall that jn+1 was introduced in (4.1) as one of the conditions defining a good block).
As B is a good block, the subblocks Bl are good for all values of l = 1, . . . , ln except
for possibly one bad subblock with index i0. The recurrence hypothesis (4.8) at level
n implies that the mean passage time on a good subblock Bl is bounded by

(5.14) IE
[
Uα
B,l(σ, γ̃)

]
= Knτ

α
n,Bl

(
σ,

ỹl
Kn

)
≤ Kngn

(
σ,

ỹl
Kn

)
.
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For the possibly remaining value i0 such that Bi0 is a bad block, we use a crude upper
bound by artificially extending the path in order to compare its cost to the one of a
vertical connection:

Uα
B,i0

(σ, γ̃) ≤ TαBi0

((
σ(i0 − 1)Kn, h̃i0

)
,

(
σ(i0 − 1)Kn, h̃i0 + ỹi0 +

1 + σ

2
Kn

))
,

which yields, as in (5.12),

(5.15) IE
[
Uα
B,i0

(σ, γ̃)
]
≤ 1

j∞,Bi0

(
ỹi0 +

1 + σ

2
Kn

)
≤ 1

jn+1

(
ỹi0 +

1 + σ

2
Kn

)
.

Note that if there is no bad subblock, we will still apply (5.15) to an arbitrarily chosen
subblock to avoid distinguishing this seemingly better case, which ultimately would
not improve our result. Combining the above expectation bounds, we obtain

(5.16) IE [Uα
B(σ, γ̃) + V α

B (σ, γ̃)] ≤ Kn+1 g
(1)
n+1(σ, y, γ̃),

where

(5.17) g
(1)
n+1(σ, y, γ̃) :=

1

ln

{
ln∑

l=1, l 6=i0

gn(σ, ȳl) +
1

jn+1

[
1 + σ

2
+ ȳi0 +

ln∑
l=1

z̄l

]}
,

where (ȳl, z̄l)l=1,...,ln ∈ [0,+∞)2ln is the rescaled skeleton defined by ȳl = K−1
n ỹl and

z̄l = K−1
n z̃l, which satisfies the constraint (5.3), whence

(5.18)
ln∑
l=1

(ȳl + z̄l) ≤ lny with ȳl ≥ σ−.

Define

(5.19) σ− ≤ ȳ :=
1

ln − 1

∑
l=1,...,ln: l 6=i0

ȳl ≤
ln

ln − 1
y,

so that from (5.18), we have

(5.20) ȳi0 +
ln∑
l=1

z̄l ≤ lny − (ln − 1)ȳ.

By concavity of gn, (5.16)–(5.17) and (5.20), we obtain an upper bound for (5.8):

max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE

(
Uα
B(σ, γ̃)

Kn+1

)
+ IE

(
V α
B (σ, γ̃)

Kn+1

)}
(5.21)

≤ sup
σ−≤ȳ≤ ln

ln−1
y

{(
1− 1

ln

)[
gn(σ, ȳ)− ȳ

jn+1

]}
+

y

jn+1

+
1 + σ

2lnjn+1

,

where the value of ȳ in (5.19) has been replaced by a supremum. To bound from
above ταn+1,B(σ, y) (see (5.7)), it is enough to combine (5.21) and Proposition 5.1. This
completes the proof of Proposition 4.3.
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6. Consequences of the main recursion

In this section, we prove Propositions 4.4, 4.5 and 4.6.

6.1. Proof of Proposition 4.4. As g1(σ, .) is concave, the recursion (4.11) implies
that gn(σ, .) is a concave function for all n. For notational simplicity, we shall write
details of the proof for σ = 1. In this case, we simply write gn(.) for gn(σ, .) and ρn for
ρσn. We will only briefly indicate what changes are involved for σ = −1. We consider
the sequence (gn)n≥1 given by the recursion (4.11) and set

(6.1) yn := inf

{
y ≥ 0 : g′n(y) ≤ 1

jn+1

}
,

where g′n stands for the right derivative of the concave function. Thus, if y ≥ (1−l−1
n )yn

(6.2) gn+1(y) =

(
1− 1

ln

)[
gn (yn)− yn

jn+1

]
+

y

jn+1

+
1

lnjn+1

+ δnϕ(y),

and if y ≤ (1− l−1
n )yn

(6.3) gn+1(y) =

(
1− 1

ln

)[
gn

(
ln

ln − 1
y

)
− ln
ln − 1

y

jn+1

]
+

y

jn+1

+
1

lnjn+1

+ δnϕ(y).

Lemma 6.1. Assume (H) with b ∈ [1, 2). Then for ε small enough, the sequence
(yn)n≥1 satisfies

(6.4) ∀n ≥ 2, yn−1 ≤ yn <∞ and ϕ′(yn) =
j−1
n+1 − j−1

n

δn−1

,

with ϕ as in (4.12).

Proof. The proof of (6.4) is split in 3 steps.

Preliminary computations. For n ≥ 1, we set

(6.5) tn+1 :=
j−1
n+2 − j−1

n+1

δn
= ψ3(Kn),

with

ψ3(K) := (1 + γ)−3/2 K1/2

(logK)3/2

{(
r

4
+

a

K
b
2

(1+γ)2

)−1

−
(
r

4
+

a

K
b
2

(1+γ)

)−1
}

K→+∞∼ (1 + γ)−3/2 16a

r2
K

1
2
− b

2
(1+γ) K→+∞−→ 0.

Since b ≥ 1 and K1(ε) diverges in the dilute limit (4.3), we conclude that

(6.6) lim
ε→0

sup
n≥1

tn+1(ε) = 0.

Case n = 2. Since y1 > (1− l−1
1 )y1, g′2(1, y1) is obtained by differentiating (6.2):

g′2(1, y1)− j−1
3 = j2

−1 − j−1
3 + δ1ϕ

′(y1) = ψ4(K1),
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where ψ4(K1) > 0, for large K1, because as K1 → +∞, we have

j−1
2 − j−1

3 ∼ −K−b(1+γ)/2
1 with

b(1 + γ)

2
>

1

2
and δ1 = C

(logK1)3/2

K
1/2
1

,

(recall b ≥ 1 and γ > 0). Thus y2 > y1 > (1 − l−1
1 )y1 as g′2(1, y1) > j−1

3 for ε
small enough. Hence, for y in the neighborhood of y2, g′2(1, y) is also obtained by
differentiating the expression (6.2). It follows that

y2 = inf

{
y ≥ 0 : ϕ′(y) ≤ j−1

3 − j−1
2

δ1

}
.

Since ϕ is strictly concave and limy→+∞ ϕ
′(y) = 0, (6.6) implies that for ε small enough,

y2 is the unique solution of ϕ′(y2) = t2. Thus identity (6.4) holds for n = 2.

Case n > 2. We are going to prove the claim by induction. Suppose that (6.4) is valid
up to rank n. To show yn+1 ≥ yn, it is enough to check that

g′n+1(yn) > j−1
n+2.

Since yn > (1 − l−1
n )yn, the above derivative is computed from the expression (6.2).

Thus, using the induction hypothesis (6.4), we get for n ≥ 2

g′n+1(yn)− j−1
n+2 = j−1

n+1 − j−1
n+2 + δnϕ

′(yn) = j−1
n+1 − j−1

n+2 +
δn
δn−1

(
j−1
n+1 − j−1

n

)
= ψ(Kn−1),(6.7)

where, since Kn = K1+γ
n−1 ,

ψ(K) =

(
r

4
+

a

K
b
2

(1+γ)2

)−1

−
(
r

4
+

a

K
b
2

(1+γ)3

)−1

+ (1 + γ)3/2K−γ/2

[(
r

4
+

a

K
b
2

(1+γ)2

)−1

−
(
r

4
+

a

K
b
2

(1+γ)

)−1
]
.(6.8)

Let us respectively denote by ψ1(K) and ψ2(K) the first and second line on the r.h.s.
of (6.8). Then as K → +∞,

ψ1(K) ∼ −16ar−2K−b(1+γ)2/2, ψ2(K) ∼ 16a(1 + γ)3/2 r−2K−b(1+γ)/2−γ/2.

Since for b ≥ 1 and γ > 0 we have

b

2
(1 + γ) +

γ

2
<
b

2
(1 + γ)2.

It follows that ψ(K) > 0 for K large enough. As K1(ε) diverges when ε tends to 0
(see (4.3)), we have that for small enough ε, yn+1 ≥ yn ≥ (1− l−1

n )yn holds for all n ≥ 2.
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As g′n+1(yn+1) is given by the derivative of (6.2) and ϕ is strictly concave, we have
to solve

(6.9) g′n+1(yn+1) = j−1
n+1 + δnϕ

′(yn+1) = j−1
n+2 ⇒ ϕ′(yn+1) =

j−1
n+2 − j−1

n+1

δn
= tn+1.

As above, (6.6) implies that, for ε small enough, a solution of (6.9) exists for all n ≥ 2.
This proves the second part of the claim (6.4). The proof is similar for σ = −1. �

Using Lemma 6.1, we can now complete the proof of Proposition 4.4. We must show
that inequality (4.15) holds for the sequence (ρn)n∈N∗ with ∆n satisfying (4.16). By
definition (6.1) of yn, the supremum in (4.14) is reached at yn so that

ρn = jn+1gn(yn)− yn.
We are going to obtain a recursion for ρn. To this end, consider

ρn+1 = jn+2gn+1(yn+1)− yn+1.

By Lemma 6.1, yn+1 ≥ yn > (1− l−1
n )yn, so gn+1(yn+1) is obtained from (6.2). Thus

ρn+1 = jn+2

(
1− 1

ln

) [
gn(yn)− yn

jn+1

]
+ jn+2

ln jn+1
+
(
jn+2

jn+1
− 1
)
yn+1 + jn+2δnϕ(yn+1)

≤ jn+2

jn+1

((
1− 1

ln

)
[jn+1gn(yn)− yn] + 1

ln
+ jn+1δnϕ(yn+1)

)
,(6.10)

where on the second line we have used jn+2 ≤ jn+1. Setting ∆n := jn+1δnϕ(yn+1), we
recovered the inequality (4.15), and it remains to verify (4.16). Starting from

ϕ′(y)
y→+∞∼ 1

2
√
y

(log y)3/2,

we see that

(6.11) ϕ[ϕ
′−1(t)]

t→0∼ 1

2t

(
log

1

4t2

)3

.

Recall that by (6.9), yn+1 = ϕ
′−1(tn+1), where tn is defined by (6.5) and satisfies (6.6).

Thus, there exist C ′, C ′′ > 0 and ε2 > 0 such that, for every 0 < ε ≤ ε2 and n ≥ 1

ϕ(yn+1) = ϕ[ϕ
′−1(tn+1)] ≤ C ′′

1

tn+1

∣∣ log tn+1

∣∣3 ≤ C ′
δn

2(j−1
n+2 − j−1

n+1)

[
log

(
δn

j−1
n+2 − j−1

n+1

)]3

.

This implies (4.16) with ∆n = jn+1δnϕ(yn+1).

For σ = −1, still writing ρn for ρσn, we have

ρn − 1 = sup
y≥1

{
jn+1gn(−1, y)− y

}
and we get a recursion similar to (6.10)

ρn+1 − 1 ≤ jn+2

jn+1

((
1− 1

ln

)
[ρn − 1] + jn+1δnϕ(yn+1)

)
,
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which can be rewritten

ρn+1 ≤
jn+2

jn+1

((
1− 1

ln

)
ρn +

1

ln
+ jn+1δnϕ(yn+1) +

jn+1

jn+2

− 1

)
.

For b ≥ 1, the remainder jn+1

jn+2
− 1 can be bounded by ∆n so that the same type of

inequality is also valid for σ = −1.

6.2. Proof of Proposition 4.5. Let an = 1− 1
ln

. Then one can see by induction that

(4.15) implies

ρσn ≤ ρσ1

n−1∏
i=1

ai +

(
1−

n−1∏
i=1

ai

)
+

n−1∑
i=1

∆i

n−1∏
j=i+1

aj

≤ ρσ1

n−1∏
i=1

ai +

(
1−

n−1∏
i=1

ai

)
+

n−1∑
i=1

∆i,(6.12)

where we used that ji+1

ji
≤ 1 for any i ≥ 1. Remember that the quantities ρn, jn, an,

∆n actually depend on ε. Since g1 is given by (4.10), a simple computation shows that

(6.13) ρ1
1 := sup

y≥0

{
j2 g1(1, y)− y

}
is the smaller root ρ of the equation

(6.14) ρ(1− ρ) = j2,

and that the supremum in (6.13) is achieved at y1
1 :=

ρ21
1−2ρ1

. For σ = −1, we have

(6.15) ρ−1
1 := sup

y≥1

{
j2 g1(−1, y)− y

}
+ 1 = ρ1

1

and the supremum achieved for y−1
1 := (1−ρ1)2

1−2ρ1
. In particular, since the divergence of

K1 (4.3) implies limε→0 j2(ε) = r/4, we also have

(6.16) lim
ε→0

ρσ1 (ε) =
1

2

(
1−
√

1− r
)

= ρc(0)

that is the lower solution of (6.14) with r/4 instead of j2. This says that the approxi-
mation after one step of renormalization is close to the dilute limit. Lemma 6.2, stated
below, shows that ρn(ε) remains close to ρc(0) for ε small. By (6.16), (6.12) and Lemma
6.2 below, we have

(6.17) lim sup
ε→0

lim sup
n→+∞

ρn(ε) ≤ ρc(0).

This completes the proof of Proposition 4.5.

Lemma 6.2. Assume (H) with b ∈ [1, 2) and K1 satisfies (4.3). With the notation of
Lemma 4.1, we fix γ < min

{
γ0,

2
b
− 1
}

. Then

(1) limε→0

∏+∞
n=1 an(ε) = 1,
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(2) limε→0

∑+∞
n=1 ∆n(ε) = 0.

Proof.
Proof of (1). We have to show that

(6.18) lim
ε→0

+∞∑
n=1

log

(
1− 1

ln(ε)

)
= 0.

Since

ln(ε) = exp
[
log
(
K1(ε)

)
γ(1 + γ)n−1

]
≥ exp

[
γ(1 + γ)n−1

]
,

we have, for n ≥ 2, ln(ε)−1 ≤ C(γ) := e−γ(1+γ) < 1. Hence, for n ≥ 2,

0 ≤ − log

(
1− 1

ln(ε)

)
≤ 1

ln(ε)
+
C ′(γ)

ln(ε)2
≤ (1 + C ′(γ)) exp

[
−γ(1 + γ)n−1

]
.

The limit (6.18) then follows from dominated convergence, and limε→0K1(ε) = +∞,
which implies limε→0 ln(ε) = 0 for any n ≥ 1.

Proof of (2). Here we can write ∆n ' ψ0(Kn), where

ψ0(K) := (logK)3

K

[(
r
4

+ a

K
b
2 (1+γ)2

)−1

−
(
r
4

+ a

K
b
2 (1+γ)

)−1
]−1

×
(

log

{
(logK)3/2√

K

[(
r
4

+ a

K
b
2 (1+γ)2

)−1

−
(
r
4

+ a

K
b
2 (1+γ)

)−1
]−1
})3

(6.19)

K→+∞∼ C ′′(logK)6K
b
2

(1+γ)−1.

for some constant C ′′ > 0. The assumption on b and the choice of γ imply that
c := 1 − b

2
(1 + γ) > 0 (Equation (6.19) is the main reason for restricting to the case

b < 2). By (4.3), there exists ε1 > 0 such that Kn(ε) ≥ 2 for every n ≥ 1 and ε ∈ [0, ε1].
Thus, by (6.19), there exists a constant D > 0 such that, for such n and ε,

∆n(ε) ≤ D

Kn(ε)c
≤ D

K1(ε)c(1+γ)n
≤ D

2c(1+γ)n
.

Since limε→0K1(ε) = +∞, the result follows again from dominated convergence. �

6.3. Proof of Proposition 4.6. Note that

(6.20) lim
ε→0

+∞∏
n=1

ln(ε)

ln(ε)− 1
= 1.

Thus for any δ > 0, there exists ε∗ > 0 such that, for ε ≤ ε∗, the following holds

(6.21)
+∞∏
n=1

ln(ε)

ln(ε)− 1
< 1 + δ,
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and (yn)n≥0 is an increasing sequence thanks to Lemma 6.1. We fix y < y1
1+δ

and ε ≤ ε∗.
For any N ∈ N∗, we define the sequence

(6.22) yN,N := y and ∀n ∈ {1, N − 1}, yn,N :=
N∏

k=n+1

lk
lk − 1

y ≤ y1 ≤ yn.

As ln
ln−1

yn,N = yn−1,N ≤ yn, then gn+1(1, yn,N) is determined by (6.3) so that

gn+1(1, yn,N) =

(
1− 1

ln

)
gn (1, yn−1,N) +

1

ln
jn+1 + δnϕ (yn,N) .(6.23)

Starting from yN,N := y and proceeding recursively, we deduce that

gN+1(1, y) ≤
N∏
n=1

(
1− 1

ln

)
gk

[
1,

N∏
n=1

ln
ln − 1

y

]
+

4

r

N∑
n=1

1

ln
+

N∑
n=1

δnϕ

(
N∏

r=n+1

lr
lr − 1

y

)
.

(6.24)

From (6.16), we know that y1 = y1(ε) converges to y1(0) = ρc(0)2

1−2ρc(0)
. Furthermore

limε→0 ln(ε) = +∞ and limε→0 δn(ε) = 0. Thus it follows from (6.24) that

(6.25) ∀y < y1(0)

1 + δ
, lim sup

ε→0
lim sup
N→+∞

gN(1, y)≤g1(y).

In the dilute limit, δ can be arbitrarily small so that the inequality above holds more
generally for y < y1(0). A similar result holds for σ = −1.

7. Fluctuation bounds : Proof of Proposition 5.1

Proposition 5.1 is proved in this section. Preliminary estimates are stated in Sub-
section 7.1 and then applied in Subsection 7.2, which is the body of the proof.

7.1. Concentration estimates. We shall need a classical gaussian concentration in-
equality for last passage times. In the following lemma, it is assumed that the service
times Yi,j involved in the definition (3.1)–(3.2) of last passage times are i.i.d. random
variables bounded by M instead of being exponentially distributed. To avoid confusion
with the previous notation, the corresponding probability IPM and expectation IEM are
denoted below by an index M .

Lemma 7.1. [26, Lemma 3.1] Assume that Y = (Yi,j : (i, j) ∈ Z × N) is a vector of
non negative independent random variables bounded from above by rM . Let (x1, y1)
and (x2, y2) in Z× N be such that (x2 − x1, y2 − y1) ∈ W. Then

Tα
(
(x1, y1), (x2, y2)

)
= IEM

[
Tα
(
(x1, y1), (x2, y2)

)]
+ 8M

√
L((x1, y1), (x2, y2))Z,

where L((x1, y1), (x2, y2)) := (x2− x1) + 2(y2− y1) is the length of any path connecting
(x1, y1) to (x2, y2), and Z is a random variable with subgaussian tail

∀t ≥ 0, IPM(|Z| ≥ t) ≤ exp(−t2) .
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We stress the fact that Gaussian bounds on last passage times are by no means
optimal in the case of exponential service times, for which more refined (but also more
specific) gaussian-exponential estimates are available (see e.g. [39]). However, for
our purpose, they have the advantage of being both simple and sufficient, while also
extending to service distributions with heavier tails, as a result of the cutoff procedure
introduced in Subsection 7.2.

The above concentration inequality will be combined with the following result, es-
tablished in Appendix C.

Lemma 7.2. Let A and I be finite sets. Assume that for each a ∈ A, we have a family
(Ya,i)i∈I of independent random variables such that, for every i ∈ I,

(7.1) Ya,i = IE
(
Ya,i
)

+
√
Va,iZa,i,

where Va,i > 0, and Za,i is a random variable such that

(7.2) IP(Za,i ≥ t) ≤ e−t
2

,

for every t ≥ 0. Then

IE

(
max
a∈A

∑
i∈I

Ya,i
)
≤ max

a∈A

∑
i∈I

IE
(
Ya,i
)

+

(
max
a∈A

∑
i∈I

Va,i

) 1
2 (√

π
√
|I|+√π

√
A+
√
A
√

log |A|
)
,(7.3)

where |.| denotes the cardinality, and A is the same constant as in (ii) of Lemma C.1.

7.2. Path renormalization: fluctuation and entropy. We now proceed in three
steps. In step one, we define a cutoff procedure for the service times Yi,j, by condition-
ing on their maximum, in order to replace them with bounded variables, to which the
results of Subsection 7.1 apply. In step two, we apply Lemma 7.2 to passage times in
subblocks. This yields for the cutoff service times a result similar to the statement of
proposition 5.1, but without the whole logarithmic correction. Finally, in step three,
we remove the cutoff and use a bound on the expectation of the maximum of exponen-
tial variables, to obtain a quasi-gaussian estimate with a logarithmic correction.

Step 1. Notation and conditional measure. Pick γ such that

(7.4) 0 < γ < min
{
γ0, (2/b)− 1

}
,

with γ0 introduced in Lemma 4.1, and b in (2.17) and (3.24). Let B = Z∩ [0, σ(Kn+1−
1)] be a block of order n + 1 and partition B into subblocks of level n denoted by
Bl = [σ(l − 1)Kn, σ(lKn − 1)] ∩ Z, where l = 1, . . . , ln.

Set y′ = bKn+1yc, Γ̃n = Γ̃n((0, 0), (σ(Kn+1 − 1), y′)) and define

MB(y) := max
{
Yi,j : i ∈ B, j = 0, . . . , y′ = bKn+1yc

}
.
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Given M > 0, denote by IPB,M,y′ the distribution of (Xi,j : i ∈ B, j = 0, . . . , y′),
where Xi,j are i.i.d. and have the same distribution as Yi,j conditioned on Yi,j ≤ rM .

(Note that after conditioning by rM , the percolation paths have weights
Yi,j
α
≤ M as

α ≥ r). Denote by IP′B,M,y′ the distribution of (Yi,j : i ∈ B, j = 0, . . . , y′) conditioned
on MB(y) = rM . A vector (Y ′i,j : (i, j) ∈ B × {0, . . . , y′}) with distribution IP′B,M,y′ is
obtained as follows. Pick a uniformly distributed (i0, j0) in B × {0, . . . , y′}; then give
value rM to Y ′i0,j0 , and let the other Y ′i,j for (i, j) 6= (i0, j0) be independent with the
same distribution as the above Xi,j.

Step 2. Fluctuation and entropy bounds. Given α, the random variables {Uα
B,l′(σ, γ̃),

V α
B,l(σ, γ̃)}l,l′ (defined in (5.5)) are independent under IPB,M,y′ , because they depend on

disjoint subvectors of Y (see figure 3). On the other hand, by Lemma 7.1, we get{
Uα
B,l(σ, γ̃) = IEM

[
Uα
B,l(σ, γ̃)

]
+ 8M

√
σKn + 2ỹl Z

(1)
l ,

V α
B,l(σ, γ̃) = IEM

[
V α
B,l(σ, γ̃)

]
+ 8M

√
2z̃l Z

(2)
l ,

(7.5)

where (Z
(i)
l )l=1,...,ln;i=1,2 is a family of r.v.’s independent under IPB,M,y′ and such that

(7.6) IPB,M,y′

(
Z

(i)
l ≥ t

)
≤ exp(−t2),

for all t ≥ 0. To apply Lemma 7.2 to the random variables in (7.5), we take A =
Γ̃n
(
(0, 0), (σ(Kn+1 − 1), y′)

)
with I = {1, . . . , 2ln}, and for a = γ̃ ∈ A, we set

l ∈ {1, . . . , ln}, Ya,2l−1 = Uα
B,l(σ, γ̃) and Ya,2l = V α

B,l(σ, γ̃).

Thus in (7.3) we have |I| = 2ln = 2Kn+1/Kn, and (cf. (7.5) and (5.3))∑
i∈I

Va,i = 64M2(σKn+1 + 2y′) ≤ 64M2Kn+1(σ + 2y).

To estimate the cardinality |A| of the skeletons, we need the following

Lemma 7.3. For every y′ ∈ N, one has

log |A| = log
∣∣Γ̃n((0, 0), (±(Kn+1 − 1), y′)

)∣∣ ≤ 2
Kn+1

Kn

[1 + log (1 +Kny)] .

Proof. The number of such skeletons satisfies the inequality

(7.7) σ ∈ {−1, 1},
∣∣∣Γ̃n((0, 0), (σ(Kn+1 − 1), y′)

)∣∣∣ ≤ (2ln + y′ − 1

2ln − 1

)
.

The previous upper bound follows by noticing that choosing a skeleton amounts to
choosing 2ln− 1 heights corresponding to the different renewal times to reach the total
height y′. In fact, when σ = 1, some of these heights can be equal if ỹi = 0 or z̃i = 0
for some i ≤ 2ln− 1. Thus, the number of ways for choosing the heights is bounded by
the number of ways for choosing 2ln−1 items from a set of 2ln+y′−1 items. Estimate
(7.7) is actually an equality if σ = 1.
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Recall the inequality:

(7.8) log

(
N
k

)
≤ Nh

(
k

N

)
,

where h is defined on [0, 1] by

−h(x) := x log x+ (1− x) log(1− x) with h(0) = h(1) = 0.

Furthermore

uh(1/u) ≤ 1 + log u

for u ≥ 1, and

2ln + y′ − 1

2ln − 1
≤ 1 +

y′

ln
= 1 +

Kn+1

ln
y,

(the inequality follows from ln ≥ 1). This completes the proof of Lemma 7.3.

Bound (7.8) follows e.g. from Cramer’s exact large deviation upper bound applied
to a sum of i.i.d. Bernoulli variables with parameter 1/2 denoted by (ζi)i=1,...,n, since
for k ≥ N/2, (

N
k

)
≤ 2N IP

(
1

N

N∑
i=1

ζi ≥
k

N

)
.

�

Combining (7.3) with the entropy estimate of Lemma 7.3, we obtain

IEM

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

(7.9)

≤ max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IEM (Uα

B(σ, γ̃) + V α
B (σ, γ̃))

}
+ 8M

√
Kn+1

√
σ + 2y

√
2
Kn+1

Kn

(√
π +
√
A+
√
A
√

[1 + ln (1 +Kny)]
)
,

where we used that 2Kn+1

Kn
≥ π.

Step 3. Removing the cut-off on Y . The random variables {Uα
B,l(σ, γ̃), V α

B,l(σ, γ̃)}l,l′
are nondecreasing functions of Y = (Yi,j : (i, j) ∈ Z× N) with respect to the product
order. Therefore, their distributions under IPB,M,y′ are stochastically dominated by
their distributions under IP and one has

(7.10) IE
[
Uα
B,l(σ, γ̃)

]
≥ IEM

[
Uα
B,l(σ, γ̃)

]
, IE

[
V α
B,l(σ, γ̃)

]
≥ IEM

[
V α
B,l(σ, γ̃)

]
.

On the other hand, a coupling argument shows that the distribution of TαB
(
(0, 0), (σ(Kn+1−

1), y′)
)

under IP′B,M,y′ is stochastically dominated by the distribution of TαB
(
(0, 0), (σ(Kn+1−
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1), y′)
)

+M under IPB,M,y′ . This property combined with (7.10) and (7.9) yields

IE′M

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

(7.11)

≤ max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE [Uα

B(σ, γ̃) + V α
B (σ, γ̃)]

}
+M

+ 8MKn+1

√
σ + 2y

√
2

Kn

(√
π +
√
A+
√
A
√

[1 + log (1 +Kny)]
)
.

Recall that IE′M on the left-hand site of (7.11) stands for the expectation with respect
to IP conditioned on the maximum MB(y) = M . We can now remove this conditioning
by integrating both sides of (7.11) with respect to the law of MB(y). We first write

(7.12) IE
[
MB(y)

]
= m ([yKn+1]Kn+1) ,

where the function t ∈ [0,+∞) 7→ m(t) is defined as the expectation of the maximum
of 1 + [t] i.i.d. exponential variables of rate 1. In particular, we have

(7.13) m(t) ≤ C[1 + log(1 + t)],

for some constant C > 0. Thus, after conditioning on MB(y), we obtain

1

Kn+1

IE

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

(7.14)

≤ 1

Kn+1

max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE (Uα

B(σ, γ̃) + V α
B (σ, γ̃))

}
+m ([yKn+1]Kn+1) ∆n(y),

where

∆̃n(y) :=
1

Kn+1

+ 8

√
σ + 2y√
Kn

(√
A
√
π +
√

2π +
√
A
√

1 + log (1 +Kny)
)
.

A simple computation shows that

m
(
[yKn+1]Kn+1

)
∆̃n(y) ≤ δn

√
σ/2 + y

[
1 + log(1 + y)

]3/2
,

with δn given by (4.9). Using the notation of (5.9), we get

Fn(y) ≤ δn

√
σ

2
+ y [1 + log(1 + y)]3/2.

This completes the proof of Proposition 5.1. �

8. Completion of proofs of Theorems 2.1 and 2.2

In this section, we complete the remaining parts in the proof of Theorem 2.1. In
Subsection 8.1, we deduce from Proposition 4.1 a similar statement for unrestricted
passage times (that is, when the paths are not restricted to the box defined by the
endpoints). Finally, Theorem 2.1 is completed, in Subsection 8.2, using the fact that
most boxes are good. The dilute limit (Theorem 2.2) is studied in Section 8.3.
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8.1. Bounds on unrestricted passage times. To obtain Theorem 2.1 from Propo-
sition 4.1, we first deduce from Proposition 4.1 the following result for unrestricted
passage times, i.e. passage times obtained by maximizing over paths not bound to stay
in the interval between the two endpoints (see figure 4).

0 Kn Kny−Kny

yk1
yk2

(Kn, [Kny])

z̃1

z̃2

ỹ

Figure 4. The optimal path is not restricted to the box [0,Kn] × [0,Kny]
but can wander around the whole parallelogram marked by the dotted line.
The optimal path is split into 3 parts (0, yk1), (yk1 , yk2) and (yk2 , (Kn, bKnyc)).

Given the sequence (ρn)n≥1 of Proposition 4.5, we set

(8.1) ρc = ρc(ε) := lim sup
n→∞

ρn ∈ [0, 1/2).

In the rest of this section, the asymptotics limn→+∞ means that we restrict to a sub-
sequence (fixed once and for all) of (ρn)n≥1 that achieves the lim sup in (8.1).

Corollary 8.1. For σ = ±1 and y ≥ σ−, we consider the unrestricted passage time

(8.2) ταn (σ, y) := IE

[
1

Kn

Tα(σKn, [Kny])

]
.

Then there are functions en(σ, y) such that, for all n ∈ N∗ and environments α for
which [0, σ(Kn − 1)] is a good block, the following bound holds:

(8.3) ταn (σ, y) ≤ τ ρc,r/4(σ, y) + en(σ, y).

Furthermore en(σ, .) does not depend on α and converges locally uniformly to 0 on
[σ−,+∞) as n→ +∞.

Proof of Corollary 8.1. The unrestricted passage time Tα(σKn, bKnyc) may use paths
that do not stay in B := [0, σKn]. To control the contribution outside B, we use a
decomposition of the path in the same spirit as Section 5. The problem here is simpler
because there is no more renormalization, and there are only three regions to consider
for the path according to its x-coordinate (recall the simplifying notational convention
[a, b] = [b, a]), namely the interval [0, σ(Kn− 1)] and the two intervals on either side of
it, which are also bounded by the fact that the only possible increments are (1, 0) and
(−1, 1). If σ = 1, these intervals are [−bKnyc,−1] and [Kn, Kn + bKnyc]. If σ = −1
then y ≥ 1 and these intervals are [−bKnyc,−Kn] and [1,−Kn + bKnyc]. We thus
define a simpler path skeleton (z̃1, ỹ, z̃2) = γ̃ as described below.



FLUX OF TASEP WITH SITE DISORDER 33

Let γ = (xk, yk)k=0,...,m−1 be a path connecting (0, 0) = (x0, y0) to (xm−1, ym−1) =
(σKn, [Kny] = y′). We set

k1 := 1 + max{k = 0, . . . ,m− 1 : σxk < 0},
k2 := min{k = k1, . . . ,m− 1 : xk = σKn},

with the convention that the max is −1 if the corresponding set is empty. Since allowed
path increments are (1, 0) and (−1, 1), we have xk1 = 0. We then define (see figure 4)

z̃1 := yk1 , ỹ := yk2 − yk1 , z̃2 := y′ − yk2 .

Let Γ̃n denote the set of these new “skeletons”, that is the set of triples γ̃ = (z̃1, ỹ, z̃2)
such that

(8.4) z̃1 + ỹ + z̃2 = bKnyc =: y′, (z̃1, ỹ, z̃2) ∈ N× (N ∩ [σ−Kn,+∞))× N.

The path between k1 and k2 corresponds to the restricted part which has already been
studied in the previous sections. As in (5.6), we write

Tα
(
(0, 0), (Kn, bKnyc)

)
= max

(z̃1,ỹ,z̃2)∈Γ̃n

[V α
1 (σ, γ̃) + Uα

B(σ, γ̃) + V α
2 (σ, γ̃)] ,(8.5)

where B := [0, σKn − 1], and

V α
1 (σ, γ̃) := Tα((0, 0), (0, z̃1)),

Uα
B(σ, γ̃) := TαB

((
σ, z̃1 +

1− σ
2

)
,

(
σ(Kn − 1), z̃1 + ỹ − 1− σ

2

))
,

V α
2 (σ, γ̃) := Tα((σKn, z̃1 + ỹ), (σKn, z̃1 + ỹ + z̃2)).

Note that the second passage time in (8.5) is restricted to B by definition of the
skeleton. We then proceed as in Section 5 by studying the mean optimization problem
(that is the maximum of the expectations of the three terms in (8.5)) and estimating
the error due to this approximation.

By definition of restricted passage times ταB and superadditivity bounds for vertical
passage times,

IE
(
V α

1 (σ, γ̃)
)
≤ 4

r
z̃1, IE

(
V α

2 (σ, γ̃)
)
≤ 4

r
z̃2,

IE
(
Uα
B(σ, γ̃)

)
≤ Knτ

α
B(σ,K−1

n ỹ) ≤ Knτ
ρn,Jn(σ,K−1

n ỹ),

where the last inequality follows from Propositions 4.3 and 4.4. From the definition
(3.13) of τ ρ,J , we get for i = 1, 2

4

r
z̃i = τ ρc,r/4(0, z̃i) and

1

Jn
z̃i = τ ρn,Jn(0, z̃i).
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Thus we deduce that

1

Kn

(
4

r
z̃1 +

4

r
z̃2 +Knτ

ρn,Jn(σ,K−1
n ỹ)

)
≤ τ ρc,r/4(σ, y)

+ τ ρn,Jn(σ, y)− τ ρc,r/4(σ, y) +

∣∣∣∣4r − 1

Jn

∣∣∣∣ y,(8.6)

where we used that z̃1 + z̃2 ≤ Kny. Define e
(1)
n (σ, y) as the second line of the r.h.s. of

(8.6). We have thus shown that

1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
)}
≤ τ ρc,r/4(σ, y) + e(1)

n (σ, y),

where by the definition of τ ρ,J (3.13), of ρc (8.1) and the convergence of Jn to r/4, we
deduce the (locally uniform) convergence

lim
n→∞

e(1)
n (σ, .) = 0.

We conclude by controlling the error thanks to Proposition 8.1, in the same spirit as
Proposition 5.1. �

Proposition 8.1. For σ ∈ {−1, 1}, there exist functions e
(2)
n (σ, y) such that

IE

(
1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
V α

1 (σ, γ̃) + Uα
B(σ, γ̃) + V α

2 (σ, γ̃)
})

− max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
)]}
≤ e(2)

n (σ, y),

(8.7)

and e
(2)
n (σ, .) converges locally uniformly to 0 on [σ−,+∞) as n→ +∞.

Proof. We proceed in three steps as in the proof of Proposition 5.1.

Step 1. Cutoff. We again use a truncation procedure for the service times Yi,j as
in step one of Subsection 7.2. Here, we define IP′n,M,y′ as the distribution of the family
(Yi,j : i ∈ [−y′, σKn + y′], j ∈ [0, y′]) conditioned on their maximum MB(y) being rM ,
and IPn,M,y′ as the distribution of the family (Xi,j : i ∈ [−σy′, σKn + y′], j ∈ [0, y′]),
where Xi,j are i.i.d. random variables, and the law of Xi,j is the law of Yi,j conditioned
on Yi,j ≤ rM . For simplicity, we will only write IPM and IP′M for these distributions.

Step 2. Fluctuations under cutoff. Applying Lemma 7.1 under IPn,M,y′ , we have

V α
1 (σ, γ̃) ≤ IEM

(
V α
l (σ, γ̃)

)
+ 8M

√
2z̃1Z1,

V α
2 (σ, γ̃) ≤ IEM

(
V α

2 (σ, γ̃)
)

+ 8M
√

2z̃2Z2,

Uα
B(σ, γ̃) ≤ IEM

(
Uα
B(σ, γ̃)

)
+ 8M

√
σKn + 2ỹZ0,(8.8)

where Z1, Z2 and Z0 are independent random variables such that

IPn,M,y(Zk ≥ t) ≤ e−t
2

,
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for k ∈ {0, 1, 2}. We now apply Lemma 7.2 with A = Γ̃n, I = {1, 2, B}, and for
a = γ̃ ∈ Γ̃n, Ya,1 = V α

1 (σ, γ̃), Ya,2 = V α
2 (σ, γ̃), Ya,B = Uα

B(σ, γ̃), Va,1 = 2z̃1, Va,2 = 2z̃2,
Va,B = σKn + 2ỹ. Since (see (8.4))

(8.9) |Γ̃n| =
(

2 + bKnyc − σ−Kn

2

)
≤ K2

n(1 + y)2,

we obtain

IEM

(
1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
V α

1 (σ, γ̃) + Uα
B(σ, γ̃) + V α

2 (σ, γ̃)
})

≤ max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IEM

(
V α

1 (σ, γ̃)
)

+ IEM

(
Uα
B(σ, γ̃)

)
+ IEM

(
V α

2 (σ, γ̃)
)] }

(8.10)

+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
≤ max

(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
)] }

+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
.

In the last inequality, we have used the fact that the passage times under IPM are
stochastically dominated by the passage times under IP.

Step 3. Removing the cutoff. As in step three of the proof of Lemma 7.2, a coupling
argument shows that the distribution under IP′M of any passage time T depending
only on the previous set of Yi,j is dominated by the distribution under IPM of T +M .
Therefore

IE′M

(
1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
V α

1 (σ, γ̃) + Uα
B(σ, γ̃) + V α

2 (σ, γ̃)
})

≤ max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

(
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
))}

+
M

Kn

+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
.

Integrating the above inequality with respect to the distribution of MB(y) yields (8.7),
with

e(2)
n (σ, y) := m

(
bKnyc(σKn + 2bKnyc)

)
En(σ, y),

where m(.) satisfies the bound (7.13), and

En(σ, y) :=
1

Kn

+ 8

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
,

from which one can see that e
(2)
n (σ, .) converges locally uniformly to 0. �
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8.2. Proof of Theorems 3.2 and 2.1. Theorem 2.1 is a consequence of Theorem 3.2
which we prove now. Given σ ∈ {−1, 1}, by Theorem 3.1, we have

τε(σ, y) = lim
n→∞

Eε × IE

(
1

Kn

T (σKn, bKnyc)
)

= lim
n→∞

Eε (ταn (σ, y)) ,

where Eε stands for the expectation with respect to the disorder α. Note that the above
limit does not follow directly from Theorem 3.1, which yields an a.s. limit. However,
the convergence in Theorem 3.1 holds also in L1. This follows from a quasi-Gaussian
tail estimate for the passage time T (σKn, bKnyc), obtained from Lemma 7.1 and a
cutoff as in step four of Subsection 7.2. Let Gn(σ) be the set of environments α for
which [0, σ(Kn − 1)] is a good block. The mean passage time can be decomposed as

Eε[ταn (σ, y)] = Eε
[
ταn (σ, y)1Gn(σ)

]
+ Eε

[
ταn (σ, y)1A\Gn(σ)

]
,

where A := [0, 1]Z is the set of environments. By Corollary 8.1 (recall that the function
en in (8.3) does not depend on α), the lim sup of the first term is bounded above by
τ ρc,r/4(σ, y). On the other hand, the second term is bounded above by

Eε
[
(ταn (σ, y))2]1/2 Pε [A\Gn(σ)]1/2 .

The Pε-probability vanishes as n → ∞ by Lemma 4.1, while the expectation of the
squared passage time can be bounded by

Eε
[
(ταn (σ, y))2] ≤ τn(σ, y)2,

where τn(σ, y) is defined as (8.2) for a homogeneous environment α(x) ≡ r (that is
for rate r homogeneous TASEP). The limit τn(σ, y)→ r−1(

√
σ + y +

√
y)2 as n→∞,

follows from the above remark on L1-convergence of rescaled passage times in Theorem
3.1. This implies τn(σ, y)2 → r−2(

√
σ + y +

√
y)4 as n→∞. We finally get

(8.11) τε(σ, y) ≤ τ ρc,r/4(σ, y),

for every σ ∈ {−1, 1} and y ≥ σ−. Since τε and τ ρc,r/4 are homogeneous functions,
(3.16) follows for ρ = ρc.

We now show that

lim
ε→0

ρc(ε) = ρc(0).

Indeed, by (3.15) and (8.11), we have ρc ≤ ρc. Then, by Proposition 4.5,

lim sup
ε→0

ρc(ε) ≤ lim sup
ε→0

ρc(ε) ≤ ρc(0).

The reversed inequality will be proved by contradiction. Suppose that we have

lim inf
ε→0

ρc(ε) < ρc(0),

then for some ε > 0 we would have ρc(ε) < ρc(0), hence

r

4
= max fε = fε[ρc(ε)] ≤ fTASEP[ρc(ε)] < fTASEP[ρc(0)] =

r

4
,
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where fTASEP denotes the flux of the homogeneous rate 1 TASEP, and the last inequality
follows from ρc(ε) < ρc(0) ≤ 1/2.

8.3. Proof of Theorems 3.3 and 2.2. Using Proposition 4.6, we are going to derive
the limiting passage time of Theorem 3.3 and then conclude Theorem 2.2.

By coupling with a rate 1 homogenous TASEP, we get

(8.12) τε(1, y) ≥ g1(1, y).

Combining this with Proposition 4.6, we deduce that

∀y < y1, lim
ε→0

τε(1, y) = g1(1, y) = (
√

1 + y +
√
y)2,

where τε denotes the limiting rescaled passage time. Similarly, one can show that

∀y ∈ [1, y′1], lim
ε→0

τε(−1, y) = g1(−1, y) = (
√
−1 + y +

√
y)2.

As the height profile hε(t, x) = tkε(
x
t
) (3.6) is the inverse of τε(x, y) wrt y, we obtain

(8.13) lim
ε→0

kε(v) =
(1− v)2

4
, ∀v ∈ [1− 2ρ1(0), 1] ∪ [−1, 2ρ1(0)− 1].

Next we use

(8.14) fε(ρ) = inf
v

[ρv + kε(v)].

For ρ 6∈ [ρ1(0), 1− ρ1(0)], it follows from (8.13) that the minimum in (8.14) is achieved
for v = vε → 1− 2ρ as ε→ 0, thus

lim
ε→0

fε(ρ) = ρ(1− ρ).

Since the above expression takes value r/4 for ρ ∈ {ρ1(0), 1−ρ1(0)}, and fε is a concave
function with maximum value r/4, we then necessarily have

lim
ε→0

fε(ρ) =
r

4
, ∀ρ ∈ [ρ1(0), 1− ρ1(0)].

Appendix A. Proof of Proposition 2.1.

To show that the maximum value of the flux is at least r/4, we use Definition (2.3)
and couple the process (ηαt )t≥0 with generator (2.1) with a homogeneous rate r TASEP
denoted by (ηrt )t≥0. A standard coupling argument shows that Jαx (t, ηρ) ≥ Jrx(t, ηρ),
where Jrx denotes the current in the homogeneous rate r TASEP. It is known (see e.g.
[32]) that

lim
t→+∞

1

t
Jrx(t, ηρ) = rρ(1− ρ)

and it is maximum for ρ = 1/2.
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We now prove that f(ρ) ≤ r/4 for all ρ ∈ [0, 1]. In [4, 6] it is shown that there
exists a closed subset R of [0, 1] containing 0 and 1, and a family (ναρ )ρ∈R of invariant
measures for the disordered TASEP, such that, for every ρ ∈ R,

(A.1) f(ρ) =

∫
jαx (η)dναρ (η), x ∈ Z,

where jαx (η) := α(x)η(x)[1 − η(x + 1)], and that f is interpolated linearly outside R.
Note (this follows from stationarity) that the integral in (A.1) does not depend on x.
It is thus enough to consider ρ ∈ R. Since the random variables α(x) are i.i.d. and

the infimum of their support is r, for P-a.e. environment α ∈ A, there exist sequences
(xN)N≥1, (yN)N≥1 and (εN)N≥1 such that limN→∞ xN = +∞, limN→∞[yN−xN ] = +∞,
limN→∞ εN = 0, and

(A.2) r ≤ min
x=xN ,...,yN

α(x) ≤ max
x=xN ,...,yN

α(x) ≤ r + εN .

Set

aN =
2xN + yN

3
, bN =

xN + 2yN
3

,

which satisfy xN ≤ aN ≤ bN ≤ yN and bN − aN → +∞. By (A.1),

f(ρ) =
1

bN − aN + 1

bN∑
x=aN

∫
X

jαx (η)dναρ (η) ≤ [r + εN ]

∫
X

j̃(η)dµN(η),(A.3)

where j̃(η) = η(0)[1− η(1)], and

(A.4) µN :=
1

bN − aN + 1

bN∑
x=aN

τxν
α
ρ .

The sequence (µN)N∈N∗ of probability on the compact space X is tight. Let µ? be
one of its limit points. It follows from (A.4) that µ? is shift invariant, i.e. τxµ

? = µ?

for all x ∈ Z. We claim and prove below that µ? is an invariant measure for the
homogeneous TASEP, that is the process with generator (2.1) with α(x) ≡ 1. By
Liggett’s characterization result [16] for shift-invariant stationary measures, µ? is then
of the form

µ? =

∫
[0,1]

νργ(dρ).

where γ is a probability measure on [0, 1], and νρ is the product Bernoulli measure on
X with parameter ρ. Thus∫

X

j̃(η)dµ?(η) =

∫
[0,1]

ρ(1− ρ)dγ(ρ) ≤ 1

4
.

Letting N →∞ in (A.3) implies f(ρ) ≤ r/4.

We now prove that µ? is an invariant measure for the homogeneous TASEP. Let
g : X → R be a local function that depends on η only through sites x ∈ Z such
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that |x| ≤ ∆, where ∆ ∈ N. Take N large enough so that ∆ < (yN − xN)/3. Notice
that the generator Lα defined in (2.1) satisfies the commutation relation

(A.5) τxL
τxαf = Lα(τxf).

It follows that ∫
X

Lτxαg d(τxν
α
ρ ) =

∫
X

Lα(τxg) dναρ = 0.

The last equality follows from invariance of ναρ . On the other hand, for x ∈ [aN , bN ] and
|y| ≤ (yN−xN)/3, τxα(y) ∈ [r, r+εN ]. Let L denote the generator of the homogeneous
TASEP on Z, that is the one obtained from (2.1) when α(x) ≡ 1. Since∣∣∣Lτxαg(η)− rLg(η)

∣∣∣ ≤ 2||g||∞
∆∑

y=−∆−1

|τxα(y)− r|,

it follows that

lim
N→∞

max
x=aN ,...,bN

sup
η∈X
|Lτxαg(η)− rLg(η)| = 0.

Hence∫
X

Lg(η) dµ?(η) = lim
N→∞

∫
X

Lg(η)dµN(η) = lim
N→+∞

1

bN − aN

bN∑
x=aN

∫
X

1

r
Lα(τxg) dναρ = 0

holds for every local function g.

Appendix B. Proof of Lemma 3.1

Before deriving Lemma 3.1, we first explain a mapping between the restricted passage
times in a box B and the TASEP restricted to B with reservoirs.

B.1. last passage times in a finite domain. Let B := [x1, x2] ∩ Z. The purpose
of this subsection is to give an interpretation of the passage times (3.20) restricted to
B in terms of an open disordered TASEP on B′ := [x1 + 1, x2] ∩ Z with generator
LαB, see (2.13) (recall from (2.12) and (3.23) that (B′)# = B). It is convenient to
view the dynamics generated by (2.13) as follows. We add an infinite stack of particles
(reservoir) at site x1, and a site x2 + 1 where the number of particles is not restricted.
Particles enter B′ from the stack at x1, and when they leave, they stay at x2 + 1
forever. We are going to check that TαB

(
(x1, 0), (i, j)

)
has the same distribution as the

time when particle j reaches site i + 1 in the process generated by LαB, if the initial
state is given by

(B.1) σ0(j) = x11{j≥0} + (x2 + 1)1{j≤−1}.

where σ0(j) denotes the initial position of the particle with label j, and particles
are numbered increasingly from right to left. In fact, we may define passage times
associated with more general labeled initial configurations in B′. By this we mean that
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σ0, instead of being defined by (B.1), can be any nonincreasing function σ0 from Z to
[x1, x2 + 1] ∩ Z. Let

(B.2) B̃ := {(i, j) ∈ B × Z : i ≥ σ0(j)} and B̄ := {(i, j) ∈ B × Z : i < σ0(j)}.
For (i, j) ∈ B ×Z, let TαB,σ0(i, j) denote the time at which particle j reaches site i+ 1.
These passage times are determined by the boundary condition

(B.3) TαB,σ0(i, j) = 0 for (i, j) ∈ B̄
together with the following recursions:

(B.4) TαB,σ0(i, j) =
Yi,j
α(i)

+ max[TαB,σ0(i− 1, j), TαB,σ0(i+ 1, j − 1)]

for (i, j) ∈ B̃ such that x1 < i < x2,

(B.5) TαB,σ0(i, j) =
Yi,j
α(i)

+ TαB,σ0(i− 1, j),

for (i, j) ∈ B̃ such that i = x2,

(B.6) TαB,σ0(i, j) =
Yi,j
α(i)

+ TαB,σ0(i+ 1, j − 1),

for (i, j) ∈ B̃ such that i = x1. In the special case (B.1), we have

(B.7) B̃ = [x1, x2]× N and B̄ = [x1, x2]× (Z \ N).

By plugging (B.7) into (B.4), one recovers

TαB,σ0(i, j) = TαB((x1, 0), (i, j)).

where the r.h.s. was defined in (3.20). For notational simplicity, in the sequel of this
subsection, we omit dependence on α, B and σ0, and write T (i, j) instead of TαB,σ0(i, j).
The position of particle j at time t, denoted by σt(j) ∈ [x1, x2 + 1], is given by

(B.8) σt(j) =

 x1 if T (x1, j) > t
x2 + 1 if T (x2, j) ≤ t
i ∈ [x1 + 1, x2] ∩ Z if T (i− 1, j) ≤ t < T (i, j)

(B.9) T (i, j) = sup{t ≥ 0 : σt(j) ≤ i}.
The particle process (σt)t≥0 is equivalent to the following growing cluster process:

Ct := {(i, j) ∈ [x1, x2]× Z : T (i, j) ≤ t} = {(i, j) ∈ B × Z : i < σt(j)}
with initial state C0 = B̄. One can proceed as in [35] to show that both processes are
Markovian and that the undistinguishable particle process (ηt)t≥0 defined by

(B.10) ηt(x) :=
∑
j∈Z

1{σt(j)=x}

is Markov with generator LαB.
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B.2. Proof of Lemma 3.1.

Step 1. We prove that definition (3.21) does not depend on x0. Let x0, x
′
0 ∈ B with

x0 < x′0. Then (3.20) implies
(B.11)
TαB
(
(x0, 0), (x0,m+ x′0 − x0)

)
≥ TαB

(
(x′0, 0), (x′0,m)

)
≥ TαB

(
(x0, x

′
0 − x0), (x0,m)

)
.

Since the sequence (Yi,j : i ∈ Z, j ≥ 0) is stationary with respect to shifts of j, the
expectation of the last quantity is equal to that of TB

(
(x0, 0), (x0,m− x′0 + x0)

)
. Thus

taking expectations, dividing by m and letting m→∞ yields the result.

Step 2. Proof of (3.22). Given this statement, let us denote by Jα,Bx (t, η0) the current
up to time t across site x ∈ B′, in the open system on B′, when starting from η0.
Assume η0 is the occupation configuration associated with σ0 via (B.1)–(B.10). Then
it is clear that

Jα,Bx (t, η0) = min{j ∈ Z : TαB(x, j) > t},
which implies the IP a.s. limit

lim
t→∞

1

t
Jα,Bx (t, η0) =

1

T∞,B
= lim

t→∞
IE

(
1

t
Jα,Bx (t, η0)

)
= lim

t→∞
IE

(
1

t

∫ t

0

jα,Bx (ηs)ds

)
= lim

t→∞

∫
jα,Bx (η)dνt(η) =

∫
jα,Bx (η)dναB(η),

where

jα,Bx (η) =

 α(x)η(x)[1− η(x+ 1)] if x1 + 1 < x ≤ x2 − 1,
α(x2)η(x2) if x = x2,
1− η(x1 + 1) if x = x1 + 1,

and

νt :=
1

t

∫ t

0

δη0e
sLαBds.

The second equality follows from the fact that the family of random variables (1
t
Jα,Bx (t, η0))t≥0

is uniformly integrable, because
(
Jα,Bx (t, η0)

)
t≥0

is dominated in distribution by a Pois-

son random variable with parameter t. The last equality follows from the fact that νt
converges to the invariant measure ναB as t tends to infinity. �

Appendix C. Proof of Lemma 7.2

The proof of Lemma 7.2 relies on the following elementary estimates.

Lemma C.1.
(i) Let Y be a random variable such that IP(Y ≥ t) ≤ Ce−t

2/V for all t ≥ 0, where
C ≥ 1 and V > 0. Then, we have

Y =
√
V logC +

√
V X,

where IP(X ≥ t) ≤ e−t
2
.
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(ii) There exists a positive constant A such that the following holds. Let (Xk)k=1,...,n be

independent random variables such that IP(Xk ≥ t) ≤ e−t
2

for all t ≥ 0, and (Vk)k=1,...,n

be nonnegative numbers. Then

n∑
k=1

√
VkXk =

√
π

n∑
k=1

√
Vk +

(
A

n∑
k=1

Vk

)1/2

Z,

where Z is a r.v. such that IP(Z ≥ t) ≤ e−t
2

for all t ≥ 0.

Proof of Lemma C.1. Assertion (i) follows from an immediate computation. To obtain
(ii) we note that, for θ ≥ 0,

IE
(
eθXk

)
≤ 1 +

∫ +∞

0

θeθtIP(Xk ≥ t)dt ≤ 1 + θeθ
2/4

∫ +∞

−θ/2
e−t

2

dt ≤ 1 +
√
πθeθ

2/4 .

Setting Yk = Xk −
√
π, we have, for θ ≥ 0,

Λ(θ) := log IE
(
eθYk

)
≤ log

[
1 +
√
πθeθ

2/4
]
−√πθ.

Thus there exists A > 0 such that Λ(θ) ≤ Aθ2/4 for θ ≥ 0. Hence, by independence of
the random variables Xk, we get

log IE

[
exp

(
θ

(
n∑
k=1

√
VkXk −

√
π

n∑
k=1

√
Vk

))]
≤ A

4
θ2

n∑
k=1

Vk.

The estimate on the tail of Z follows by an exponential Markov inequality. �

Proof of Lemma 7.2. By (ii) of Lemma C.1, for every a ∈ A, we have

(C.1)
∑
i∈I

Ya,i =
∑
i∈I

IE
(
Ya,i
)

+
√
π
∑
i∈I

√
Va,i +

(
A
∑
i∈I

Va,i

)1/2

Za,

where Za is a random variable satisfying IP(Za ≥ t) ≤ e−t
2

for all t ≥ 0. On the other
hand, by Cauchy-Schwarz inequality,

(C.2)
∑
i∈I

√
Va,i ≤

√
|I|
(∑

i∈I

Va,i

)1/2

.

Thus, for every a ∈ A,

(C.3)
∑
i∈I

Ya,i ≤ m+ (AV )1/2Z+
a ,

where

V := max
a∈A

∑
i∈I

Va,i and m :=
√
π
√
|I|
√
V + max

a∈A

∑
i∈I

IE
(
Ya,i
)
.
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Next, for any t ≥ 0, we have

IP

(
max
a∈A

∑
i∈I

Ya,i ≥ m+ t

)
≤ IP

(⋃
a∈A

{∑
i∈I

Ya,i ≥ m+ t

})
≤

∑
a∈A

IP
(
(AV )1/2Z+

a ≥ t
)
≤ |A| e− t2

AV .

It follows from (i) of Lemma C.1 that

max
a∈A

∑
i∈I

Ya,i = m+
√

log |A|(AV )1/2 + (AV )1/2Z,

where Z is a random variable satisfying IP(Z ≥ t) ≤ e−t
2

for all t ≥ 0. The result then
follows from

IE(Z) ≤ IE(Z+) ≤
∫ +∞

0

IP(Z+ ≥ t)dt ≤
∫ +∞

0

e−t
2

dt =
√
π.

�
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