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EXISTENCE OF A PLATEAU FOR THE FLUX OF TASEP WITH
SITE DISORDER

C. BAHADORAN, T. BODINEAU

Abstract. We prove that the flux function of the totally asymmetric simple ex-
clusion process (TASEP) with site-disorder exhibits a plateau for sufficiently dilute
disorder. The result is established under a decay assumption of the maximum cur-
rent in finite boxes, which is implied in particular by a sufficiently slow power tail
assumption on the disorder distribution near its minimum. To circumvent the ab-
sence of explicit invariant measures, we use a renormalization procedure and some
ideas inspired by homogenization.
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1. Introduction

The flux function, also called current-density relation in traffic-flow physics [12], is
the most fundamental object to describe the macroscopic behavior of driven lattice
gases, as well as, to some extent, their fluctuations around this mean behavior. The
paradigmatic model in this class is the totally asymmetric simple exclusion process
(TASEP), where particles on the one-dimensional integer lattice hop to the right at
unit rate independently except that jumps are constrained to respect the exclusion
rule. Mass is the only conserved quantity, and its local density ρ ∈ (0, 1] has an
associated current (or flux), that is defined as the amount of mass crossing a given site
per unit time in a system with homogeneous density ρ. For TASEP, the flux function
is explicitly given by

(1.1) f(ρ) = ρ(1− ρ).

In the hyperbolic scaling limit [31], the empirical particle density field is governed by
entropy solutions of the scalar conservation law

(1.2) ∂tρ(t, x) + ∂x f
(
ρ(t, x)

)
= 0,
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with f given by (1.1). This flux function is obtained as a steady state expectation of
the microscopic flux:

(1.3) f(ρ) :=

∫
jx(η)dνρ(η),

where

(1.4) jx(η) := η(x)[1− η(x+ 1)].

In (1.4), η denotes a particle configuration and η(x) ∈ {0, 1} the number of particles
at site x. The microscopic flux (1.4) of TASEP is simply the rate at which a particle
hops to the right, and νρ denotes the product Bernoulli measure νρ with parameter
ρ ∈ [0, 1], that is extremal invariant for TASEP. This kind of result can be extended
to a variety of asymmetric models [37, 32, 5], but when the invariant measures are not
explicit, little can be said about the flux function. However, convexity or concavity
can be obtained as an automatic byproduct of the variational approach set up in [36],
which applies to totally asymmetric models with state-independent jump rates, like
TASEP. But strict convexity or concavity, that is a central issue, requires new ideas.
In fact, one does not even know whether an extremal measure exists for every possible
density value. Nevertheless, the flux function can still be expressed by (1.3)–(1.4) for
some densities, and the existence of a gap in a density interval implies that the flux
in this interval is necessarily defined by linear interpolation [32, 5]. The latter case
corresponds to a phenomenon of phase segregation at mesoscopic scale: if the local hy-
drodynamic density lies in a density gap, the system cannot reach a local equilibrium
state at the corresponding density. Instead, the system reorganizes itself into a suc-
cession of mesoscopic stretches of lower and higher densities associated to the closest
steady states. These mesoscopic density variations average out in a small macroscopic
box to yield the hydrodynamic density. Conversely, the presence of a partial linear
portion on the flux function suggests a phase transition. Although such a phenome-
non is not believed to happen for homogenous systems, one has neither a proof nor a
counterexample.

In this paper, we consider TASEP with i.i.d. site disorder, where the jump rate
of each site has a random value whose distribution is supported in an interval [r, 1],
with r ∈ (0, 1). Contrary to homogeneous systems, the existence of a phase transition
in disordered driven lattice gases is a partially established fact. It has been proved
mathematically for nearest-neighbor asymmetric site-disordered zero-range processes
(ZRP), which exhibits constant flux on a density interval [ρc,+∞), where ρc is the den-
sity of the maximal invariant measure. The necessary and sufficient condition for the
occurrence of a phase transition is a slow enough tail of the disorder distribution near
its minimum value r. Microscopically, phase transition takes the form of Bose-Einstein
condensation [15]. In a finite system of size L with periodic boundary conditions, a
stationary state with mean density ρ > ρc is achieved by completing the background
state of density ρc with a macroscopic condensate of mass L(ρ−ρc) at the slowest site.
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In an infinite system with mean drift to the right, the excess mass is captured by the
asymptotically slowest sites at −∞, as proven rigorously in [3] for the totally asymmet-
ric ZRP with constant rate, that is equivalent to TASEP with particlewise disorder, and
for nearest-neighbor ZRP with more general rates [6] (see also [18] for partial results
in higher dimension). The TASEP picture can be interpreted as a traffic-flow model
with slow and fast vehicles. The phase transition then occurs on a density interval
[0, ρ′c], where the flux is linear with a slope equal to the constant mean velocity of the
system. This velocity is imposed by the slowest vehicles at +∞. As one moves ahead,
slowest an slowest vehicles are encountered, followed by a platoon of faster vehicles,
and preceded by a gap before the next platoon [27]. The platoon is at equilibrium with
critical density ρ′c, while the gap is the TASEP version of the condensate in the ZRP
picture. The hydrodynamic limit for disordered asymmetric ZRP was first established
in [9] in any space dimension but only in the subcritical density interval. The full
hydrodynamic limit (including the plateau) was proved in [27] for the TAZRP with
constant rate, but remains open for more general ZRP.

The fundamental property of disordered ZRP, thanks to which the existence and lo-
cation of the phase transition are known, is the existence of explicit invariant measures
despite the presence of disorder, which allow exact computation of the flux function.
This does not hold for site-disordered TASEP, and the occurence of a phase transition
is an open and a priori, a challenging problem, for which no mathematical results exist
yet. On the other hand, a phase transition is firmly believed to hold in the physics
community and this is supported by several heuristic arguments [24, 44, 22]. Indepen-
dently of this, the existence of a hydrodynamic limit of the form (1.2) for TASEP with
i.i.d. site disorder was established in [37], using last-passage percolation (LPP) and
variational coupling. Consequently, the flux function was shown to be concave. More
generally, the existence of a limit of the type (1.2) was obtained in [5] for asymmetric
attractive systems in ergodic environment, based on the study of invariant measures.
We refer also to [11, 33, 34, 40] for further rigorous results in a different class of disor-
dered SEP.

The microscopic picture behind the phase transition in site-disordered TASEP is
jamming. As one moves ahead along the disorder, slower and slower regions are en-
countered, with larger and larger stretches of minimal (or near minimal) rate sites.
Locally a slow stretch of environment inside a typical region is expected to create a
picture similar to the slow bond TASEP introduced in [23]. It is known that a slow
bond with an arbitrarily small blockage [8] restricts the local current. On the hydro-
dynamic scale [38], this creates a traffic jam with a high density of queuing vehicles to
the left and a low density to the right, that is an antishock for Burgers’ equation. It
also follows from [38] that the single slow bond generates a plateau in the asymptotic
flux starting from a uniform density close to 1/2. Diphasic versions of TASEP [20]
and last-passage percolation [1] exhibit similar behaviour. However, these models are
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perturbations of the homogeneous case, and their analysis reduces to the understand-
ing of a single interface. In contrast, it is not clear if the quenched randomness will
round off this first-order phase transition, as it is often the case in many equilibrium
systems [2], or if the transition will remain in presence of disorder. Yet, one of the
heuristic arguments put forward in [44] to justify the transition is the comparison with
the so-called “fully segregated model”, which is nothing but a periodic version of [20],
that is microscopically very different from the disordered one.

Our analysis is based on a renormalization scheme which controls rigorously this multi-
scale recurring slow-bond picture. This scheme can also be interpreted in terms of
homogenization of scalar conservation laws [7]. A major difficulty compared to the
single slow bond is that as one moves to larger scales, the maximum current issued
by the typical environment and the maximum current admitted by the slow regions
converge to the same value r/4 when the jump rate distribution is supported by [r, 1].
The current limitation in both instances comes from large stretches of minimum rate
r, which restrict the current to the maximum value r/4 of a homogeneous TASEP with
jump rate r. In this context, one key problem is to make sure that the difference in the
mean current between the environment and the slow parts exceeds the typical order
of fluctuations at each scale, so that the slow-bond picture remains indeed valid at all
scales. Heuristically, this infinite hierarchy of slow-bond blockages [19, 24] is expected
to induce a dynamics of coalescing shocks and antishocks on mesoscopic scales depend-
ing on the disorder distribution. Similar behaviors can be found in many disordered
systems (see for example chapter 6.1 of [41]) and multi-scale analysis has been a key
tool for their study; we refer to [42, 45] for a general overview and to [10] for an ap-
proach related to ours.

Our main result is the existence of a plateau on the flux function of site-disordered
TASEP for sufficiently dilute disorder. The dilution parameter ε ∈ [0, 1] is defined by
the fact that a site is “fast” with probability 1 − ε, in which case it has rate 1, or
“slow” with probability ε, in which case its rate has some distribution Q with support
(r, 1] for some r ∈ (0, 1). A sufficient condition for our result is then that the tail of
the Q-distributed random rate α near r decays like o(α− r). However, unlike the ZRP,
we do not expect this condition to be necessary. In fact, we prove our result under a
more general but abstract condition on the decay of the maximum current in a finite
box. Heuristics suggest that this condition is always satisfied although we have not
been able so far to prove this conjecture. In particular, the worst possible case Q = δr,
where the rates only take the two possible values 1 and r, is currently not covered by
our result, but probably satisfies our decay assumption.

We achieve our renormalization scheme by formulating the problem in the exponen-
tial LPP framework. In this setting, we have a columnar disorder in wedge LPP, or
diagonal disorder in corner-growth LPP, while the better understood columnar disorder
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in the corner-growth model is equivalent to particlewise disorder in TASEP. In fact, our
approach, like many shape theorems [30], partially extends to LPP with more general
distributions. The core of this approach is to obtain a recursion between mean passage-
times at two successive scales, and reduce the problem to bounding our passage-times
by a family of “reference” passage-times, that correspond to trapezoidal flux functions.
In this picture, the phase transition takes the form of a pinning transition for the op-
timal path [26]. Densities close to 1/2 (i.e. large slopes of the optimal path in the
wedge last-passage picture) are avoided on the mesoscopic scale. Indeed to increase
its mean macroscopic slope, the path gets a better reward from vertical portions along
slow parts of the disorder. As a result, in the linear phase, current fluctuations are
expected to be governed by details of the disorder distribution, instead of the universal
KPZ behavior arising from the service time distributions in homogeneous TASEP. A
possibly related phenomenon is the disorder-dependent convergence speed in homoge-
nization of conservation laws inside the plateau [4]. In the same spirit, it is also believed
[21] that disorder-induced condensation will dominate the dynamics-induced [29] phase
transition in non-attractive ZRP, where, in the absence of disorder, a uniformly located
condensate appears in the supercritical phase.

The paper is organized as follows. In Section 2, we set up the notation and state
our main result. In Section 3, we formulate the problem in the last-passage percola-
tion framework and introduce the reference flux and the passage-time functions. In
Section 4, we introduce the renormalization procedure and describe the main steps of
the proof. In Section 5, we prove a recurrence relation linking passage-time bounds
of two successive scales, that is the heart of the renormalization argument. In Section
6, we study this recurrence in detail and show that it propagates the bounds we need
from one scale to another. In Section 7, we establish an important fluctuation estimate
needed in Section 5. Finally, the proof is completed in Section 8.

2. Notation and results

2.1. TASEP with site disorder. The disorder is modeled by α = (α(x) : x ∈ Z) ∈
A := [0, 1]Z, a stationary ergodic sequence of positive bounded random variables. The
precise distribution of α will be defined in Section 2.2. For a given realization of α, we
consider the TASEP on Z with site disorder α. The dynamics is defined as follows. A
site x is occupied by at most one particle which may jump with rate α(x) to the site
x + 1 if it is empty. A particle configuration on Z is of the form η = (η(x) : x ∈ Z),
where for x ∈ Z, η(x) ∈ {0, 1} is the number of particles at x. The state space is
X := {0, 1}Z. The generator of the process is given by

(2.1) Lαf(η) =
∑
x∈Z

α(x)η(x)[1− η(x+ 1)]
[
f
(
ηx,x+1

)
− f(η)

]
,
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where ηx,x+1 = η− δx + δx+1 denotes the new configuration after a particle has jumped
from x to x+ 1.

Current and flux function. The macroscopic flux function f can be defined as
follows. We denote by Jαx (t, η0) the rightward current across site x up to time t, that
is the number of jumps from x to x + 1 up to time t, in the TASEP (ηαt )t≥0 starting
from initial state η0, and evolving in environment α. For ρ ∈ [0, 1], let ηρ be an initial
particle configuration with uniform density profile ρ in the following sense:

(2.2) lim
n→∞

1

n

n∑
x=0

ηρ(x) = ρ = lim
n→∞

1

n

0∑
x=−n

ηρ(x).

We then set

(2.3) f(ρ) := lim
t→∞

1

t
Jαx (t, ηρ),

where the limit is understood in probability with respect to the law of the quenched
process. Equivalent definitions of the flux can be stated in terms of the steady state
expectation of the microscopic flux function

(2.4) jαx (η) = α(x)η(x)[1− η(x+ 1)]

through one of the following formulas:

f(ρ) := lim
N→∞,
k/N→ρ

∫
jαx (η)dναN,k(η),(2.5)

f(ρ) :=

∫
jαx (η)dναρ (η), ρ ∈ R.(2.6)

In (2.5), ναN,k is the steady state for a system of k particles evolving according to the
dynamics (2.1) restricted to a ring of size N instead of Z. In (2.6) (see [5] for details),
ναρ is the unique extremal invariant measure with mean density ρ for the system on
Z, R ⊃ {0, 1} is the (unknown) closed set of densities for which this measure exists,
and f is interpolated linearly outside R. We refer to [7] for the proof of equivalence of
these three definitions in a more general framework.

It is shown in [37] that f is a concave function, see (3.8) below. Apart from con-
cavity, little can be said about f . This is due to the fact that invariant measures for
site-disordered TASEP are not explicit (in contrast with particle-disordered TASEP
or equivalently site-disordered zero-range process, which has explicit product invariant
measures). One of the key issues is whether f is strictly concave or not. It is conjec-
tured in the physics literature (see e.g. [44]) that for i.i.d. disorder, the flux function
f exhibits a plateau, that is an interval [ρc, 1 − ρc] (with 0 ≤ ρc < 1/2) on which f
is constant (see figure 1). The goal of this paper is to prove such a result for a class
of disorder distributions. Our approach does not require the knowledge of invariant
measures and proceeds via renormalization and homogenization ideas.
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2.2. Existence of a plateau. From now on, we consider i.i.d disorder such that the
support of the distribution of α(x) is contained in [r, 1], where r > 0 is the infimum
of this support. The following easy result comes from the fact that the current of the
system dominates that of a homogeneous rate r TASEP, which has maximum current
r/4, while existence of arbitrarily large stretches of environment close to r also limit
the current to this same value. We refer to Appendix A for a detailed proof.

Proposition 2.1. The maximum value of the flux function is given by

max
ρ∈[0,1]

f(ρ) = r/4.

For our main result, we formulate additional assumptions on the distribution of the
environment. We assume that the disorder is a perturbation of the homogeneous case
with rate 1. Let 0 < r < R < 1 and Q be a probability measure on [r, R], such that
r is the infimum of the support of Q. Given ε ∈ (0, 1) a “small” parameter, we define
the distribution of α(x) by

(2.7) Qε = (1− ε)δ1 + εQ.

The law of α = (α(x), x ∈ Z) is the product measure with marginal Qε at each site

Pε(dα) :=
⊗
x∈Z

Qε[dα(x)].

Expectation with respect to Pε is denoted by Eε. We can interpret this by saying that
each site is chosen independently at random to be, with probability 1− ε, a “fast” site
with normal rate 1, or with probability ε to be a “defect” with rate distribution Q
bounded above away from 1 and 0. Thus ε is the mean density of defects. For example
if Q = δr, then the defects are slow bonds with rate r < 1.

Let us denote by fε the flux function (2.3) for this disorder distribution. Our main
result is the occurrence of a plateau in the flux for sufficiently dilute disorder. This
result holds under a general assumption (H) on the disorder, which will be stated and
explained in the next subsection. However we first state it under a concrete lower tail
assumption on α(x), which easily implies the general assumption (H).

Theorem 2.1. Assume Q satisfies the lower tail assumption

(2.8) for some κ > 1, Q
(
(r, r + u)

)
= O(uκ) as u→ 0+.

Then there exists ε0 > 0 such that, for every ε < ε0, the flux fε has a plateau with
value r/4.

2.3. A general assumption. Let us now formulate the general condition (H) an-
nounced before Theorem 2.1. For this we need the following definition.

Maximal current in a finite domain. Let B = [x1, x2] be an interval in Z. In
the following, αB := (α(x) : x ∈ B) denotes the environment restricted to B. Consider
the TASEP in B with the following boundary dynamics: a particle enters at site x1
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with rate α(x1 − 1) if this site is empty, and leaves from site x2 with rate α(x2) if this
site is occupied. Note that this process, although spatially restricted to B, depends in
fact on the restriction of the disorder to the larger box

(2.9) B# := [x1 − 1, x2] ∩ Z

In the sequel, our notational choice will be to index all related objects by B# (the
domain of the relevant disorder variables) rather than B (the domain where particles
evolve). The generator of this process is given by

LαB#f(η) :=

x2−1∑
x=x1

α(x)η(x)[1− η(x+ 1)]
[
f
(
ηx,x+1

)
− f(η)

]
+ α(x1 − 1)[1− η(x1)] [f (η + δx1)− f(η)] + α(x2)η(x2) [f (η − δx2)− f(η)] ,(2.10)

where η ± δx denotes creation/annihilation of a particle at x. We define now a notion
of maximal current relative to B.

Definition 2.1. The maximal current j∞,B#(αB#) is the stationary current in the open
system defined above, i.e. (independently of x = x1, . . . , x2 − 1)

j∞,B#(αB#) =

∫
α(x)η(x)[1− η(x+ 1)]dναB#(η),(2.11)

=

∫
[1− η(x1)]dναB(η) =

∫
α(x2)η(x2)dναB#(η),

where να
B# is the unique invariant measure for the process on B with generator Lα

B#.

Remark. One can see that the right-hand side of (2.11) is independent of x by writ-
ing that the expectation under να

B# of Lα
B#η(x) for x ∈ [x1, x2] ∩ Z (which yields the

difference of two consecutive integrals in (2.11)) is zero.

To simplify notation, we shall at times omit dependence on αB# and write j∞,B# .
It is well-known [14] that in the homogeneous case, i.e. when α(x) = r for all x in
[0, N ] (with r a positive constant), then j∞,[1,N ] is no longer a random variable and

(2.12) lim
N→∞

j∞,[0,N ] = inf
N
j∞,[0,N ] =

r

4
.

In fact, explicit computations [14] show that, for some constant C > 0,

(2.13) j∞,[0,N ] ≥
r

4
+
C

N
.

The constant environment with value r is a degenerate case of disorder for which the
maximal current is r/4, but the explicitely known flux function ρ 7→ rρ(1− ρ) has no
plateau. We will show that a slower rate of decay of j∞,[1,N ] than (2.13) is a sufficient
condition for the existence of a plateau. To this end, we introduce an assumption on
the disorder distribution, which quantifies the finite-size fluctuation of the maximal
current as a function of disorder.
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Assumption (H). There exists b ∈ (0, 2), a > 0, c > 0 and β > 0 such that, for ε
small enough, the following holds for any N

(2.14) Pε
(
j∞,[0,N ](α[0,N ]) ≤

r

4
+

a

N b/2

)
≤ c

Nβ
.

The main result of this paper is

Theorem 2.2. Assume Qε satisfies assumption (H). Then there exists ε0 > 0 such
that, for every ε < ε0, the flux fε has a plateau with value r/4

∃ρc ∈]0, 1/2[, ∀ρ ∈ [ρc, 1− ρc], fε(ρ) = r/4.

Remark 2.1. A coupling argument (see Lemma 2.1 below) shows that the value of
j∞,[0,N ](α[0,N ]) for any environment α(.) ≥ r dominates the value in (2.13). This is
true in particular for an environment with Bernoulli distribution taking only values r
and 1, that is Q = δr in (2.7). This lower bound, though very pessimistic (it assumes
that all environment variables take the worst possible values, while in a box of size N
the length of the longest stretch of defects is of order logN), is only slightly worse than
the one in Assumption (H). We believe that a refined analysis of j∞,[0,N ] (which we
have not succeeded in carrying out so far) could lead to the conclusion that Assumption
(H)is satisfied for Bernoulli disorder. Note that if indeed assumption (H)holds for
such disorder, Lemma 2.1 below implies that it holds for any distribution Q in (2.7).

Theorem 2.2 will be proved in Sections 3 to 8. To deduce Theorem 2.1, we only have
to check that the tail assumption (2.8) implies (H). This is done using the following
lemma, which relies on a standard coupling argument (see its proof in Appendix C).

Lemma 2.1. Assume α and α′ are two environments such that α ≤ α′ in the sense of
product order. Then, for every N ∈ N, j∞,[0,N ](α[0,N ]) ≤ j∞,[0,N ](α

′
[0,N ]).

Proof of Theorem 2.1. Let α? := minx∈[0,N ] α(x). It follows from Lemma 2.1 that

(2.15) j∞,[0,N ](α[0,N ]) ≥ j∞,[0,N ]

(
α?, . . . , α?

)
,

where j∞,[0,N ]

(
α?, . . . , α?

)
stands for the current of a homogeneous TASEP in [1, N ]

with bulk, exit and entrance rates α?. By (2.13), it is larger than α?/4, so that
j∞,[0,N ](α[0,N ]) ≥ α?/4. Thus Assumption (H) will be implied by a control of α?.
Using the tail of the distribution Q (2.8), we get

Pε
(

min
i∈[0,N ]

α(i) ≤ r +
a′

N b/2

)
≤ NQ

(
(r, r +

a′

N b/2
)

)
≤ c′

Nβ
,

for some well chosen parameters a′ > 0 , c′ > 0, b ∈ (0, 2), β > 0. This follows from
elementary computations. �

3. Last-passage percolation approach

The proof of Theorem 2.2 relies on a reformulation of the problem in terms of last-
passage percolation.
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3.1. Wedge last-passage percolation. Let Y = (Yi,j : (i, j) ∈ Z × N) be an i.i.d
family of exponential random variables with parameter 1 independent of the environ-
ment (α(i) : i ∈ Z). In the following, these variables will sometimes be called service
times, in reference to the queuing interpretation of TASEP. The distribution of Y is
denoted by IP, and expectation with respect to this distribution by IE. Let

W := {(i, j) ∈ Z2 : j ≥ 0, i+ j ≥ 0} .
Index i represents a site and index j a particle. Given two points (x, y) and (x′, y′)
in Z× N, we denote by Γ((x, y), (x′, y′)) the set of paths γ = (xk, yk)k=0,...,n such that
(x0, y0) = (x, y), (xn, yn) = (x′, y′), and (xk+1 − xk, yk+1 − yk) ∈ {(1, 0), (−1, 1)} for
every k = 0, . . . , n− 1. Note that Γ((x, y), (x′, y′)) = ∅ if (x′− x, y′− y) 6∈ W . Given a
path γ ∈ Γ((x, y), (x′, y′)), its passage time is defined by

(3.1) Tα(γ) :=
n∑
k=0

Yxk,yk
α(xk)

.

The last-passage time between (x, y) and (x′, y′) is defined by

(3.2) Tα((x, y), (x′, y′)) := max{Tα(γ) : γ ∈ Γ((x, y), (x′, y′))}.
We shall simply write Tα(x, y) for Tα((0, 0), (x, y)). This quantity has the following
particle interpretation. For (t, x) ∈ [0,+∞)× Z, let

Hα(t, x) = min{y ∈ N : Tα(x, y) > t},
ηαt (x) = Hα(t, x− 1)−Hα(t, x).

Then (ηαt )t≥0 is a TASEP with generator (2.1) and initial configuration η∗ = 1Z∩(−∞,0],
and Hα is its height process. Besides, if we label particles initially so that the particle
at x ≤ 0 has label −x, then for (x, y) ∈ W , Tα(x, y) is the time at which particle y
reaches site x+ 1. Let us recall the following result from [37]

Theorem 3.1. Let W ′ := {(x, y) ∈ R2 : y ≥ 0, x + y ≥ 0}. For P-a.e. realization α
of the disorder, the function

(3.3) (x, y) ∈ W ′ 7→ τ(x, y) := lim
N→∞

1

N
Tα([Nx], [Ny])

is well-defined in the sense of a.s. convergence with respect to the distribution of Y .
It is finite, positively 1-homogeneous and superadditive (thus concave). The function

(3.4) (t, x) ∈ [0,+∞)× R 7→ h(t, x) := lim
N→∞

1

N
Hα([Nt], [Nx])

is well-defined in the sense of a.s. convergence with respect to the distribution of Y . It
is finite, positively 1-homogeneous and subadditive (thus convex). These functions do
not depend on α and are related through

h(t, x) = inf{y ∈ [0,+∞) : τ(x, y) > t},(3.5)

τ(x, y) = inf{t ∈ [0,+∞) : h(t, x) ≥ y}.(3.6)
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By homogeneity, the function h in (3.4) is of the form

(3.7) h(t, x) = tk
(x
t

)
for some concave function k : R → R+. It is known that for homogeneous TASEP
(that is α(x) = 1 for all x), we have

τ(x, y) = (
√
x+ y +

√
y)2, k(v) =

(1− v)2

4
1[−1,1](v)− v1(−∞,−1)(v).

3.2. Reformulation of Theorem 2.2. In this section, we are going to rewrite the
flux in the last-passage framework and show that Theorem 2.2 can be deduced from a
statement on the passage time. It is shown in [37] that the macroscopic flux function
f is related to k (defined in (3.7)) by the convex duality relation

(3.8) f(ρ) := inf
v∈R

[k(v) + vρ], ρ ∈ [0, 1]

which implies concavity of f . We now introduce a family of “reference” macroscopic
flux functions and associated macroscopic passage-time and height functions. Let 0 ≤
ρc ≤ 1/2 and J ≥ 0. For ρ ∈ [0, 1], we define

(3.9) fρc,J(ρ) := J min

(
ρ

ρc
,
1− ρ
ρc

, 1

)
.

Given Proposition 2.1, Theorem 2.2 boils down to proving a lower bound for the flux,
i.e. to show the existence of ε0 > 0, ρc ∈ [0, 1/2) such that the flux remains above r/4
for densities in [ρc, 1− ρc]
(3.10) ∀ε < ε0, fε(ρ) ≥ fρc,r/4(ρ) with ρ ∈ [0, 1]

f ρc,J

ρ

r
4

ρc 1− ρc

J

Figure 1. The graphs of three flux functions are depicted. The highest
curve in dotted line is the graph of the homogeneous TASEP flux ρ(1 − ρ).
The middle curve is the truncated flux fρc,J and the dashed curve is the
conjectured flux fε for the disordered TASEP with a plateau at r/4.

The sufficient condition (3.10) for the plateau is actually necessary since, by Theorem
3.1 and (3.8)–(2.3), fε is a concave function such that fε(0) = fε(1) = 0. The convex
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conjugate of fρc,J through Legendre duality (3.8) is defined for x ∈ R by

kρc,J(x) := (−x)1(−∞,−J/ρc)(x)(3.11)

+ [J − (1− ρc)x]1[−J/ρc,0)(x) + [J − ρcx]1[0,J/ρc)(x).

Finally, one can associate to kρc,J a passage-time function and a height function, related
by (3.5)–(3.6), and defined for x ∈ R and y ≥ x− by

τ ρc,J(x, y) :=
ρcx

+ − (1− ρc)x− + y

J
,(3.12)

hρc,J(t, x) := tkρc,J(x/t),(3.13)

where x+ = max{x, 0} and x− = −min{x, 0}. Thus the lower bound (3.10) on the
flux can be rephrased in terms of an upper bound on the last passage time:

Theorem 3.2. Let τε be the limiting passage-time defined by (3.3) when the environ-
ment has distribution Pε, then there exist ε0 > 0 and ρc < 1/2 such that

(3.14) ∀ε < ε0, τε ≤ τ ρc,r/4.

In particular, τε(., y) has a cusp at x = 0.

The lower bound (3.10), and therefore Theorem 2.2, are a consequence of Theorem
3.2, which will be proved in the next sections.

Theorem 3.2 can be partially extended to LPP with general service-time distribution
and heavier tails. In this case the particle interpretation is less standard, though
the process can be viewed as a non-markovian TASEP (see e.g. [25]). Assume the
service times Yi,j are i.i.d. variables with some distribution P on R+. Let Mn be the
expectation of the maximum of n random variables with law P. If Mn = O(nk) for some
k ∈ (0, 1/4), the conclusion of Theorem 3.2 still holds if the constant b in Assumption
(H) satisfies b < 2(1 − 4k)/(1 + 2k). In particular, if Mn = O(nk) for all k > 0, the
conclusion holds for any b ∈ (0, 2). Recall that for exponential service times, one has
Mn ∼ log n. The tail of P is reflected in the bound (7.16) and consequently on the form
of the last (fluctuation) term on the r.h.s. of (4.12). The proof can be adapted with
relatively minor modifications. Our approach (and the extension just explained) also
applies to other LPP models with columnar disorder (in the wedge picture) or diagonal
disorder (in the square picture). For instance, both Theorems 3.2 and 2.2 apply to the
K-exclusion process [37].

3.3. Last-passage reformulation of Assumption (H). We will reformulate condi-
tion (H) in the last passage setting. To this end, we define restricted passage times.
Let B = [x1, x2]∩Z (where x1, x2 ∈ Z) be a finite interval of Z. If (x, y) and (x′, y′) are
such that x and x′ lie in B, we define ΓB((x, y), (x′, y′)) as the subset of Γ((x, y), (x′, y′))
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consisting of paths γ that lie entirely inside B in the sense that xk ∈ B for every
k = 0, . . . , n. We then define

(3.15) TαB((x, y), (x′, y′)) := max{Tα(γ) : γ ∈ ΓB((x, y), (x′, y′))}

The counterpart of Definition 2.1 is

Lemma 3.1. Let B = [x1, x2] ∩ Z. The limit

(3.16) T∞,B(αB) := lim
m→∞

1

m
TαB((x0, 0), (x0,m)) = sup

m∈N∗
IE

[
1

m
TαB((x0, 0), (x0,m))

]
exists IP-a.s. for x0 ∈ B, does not depend on the choice of x0, and defines a random
variable depending only on the disorder restricted to B. Besides, we have

(3.17) T∞,B(αB) =
1

j∞,B(αB)
,

where and j∞,B(αB) is the stationary current in the open system restricted to

(3.18) B′ := [x1 + 1, x2] ∩ Z

as in Definition 2.1.

Remark. Recall that in (2.11) we defined j∞,B#(αB#) as the maximum current for
the TASEP in B. Since by (2.9) and (3.18), we have (B′)# = B, the above lemma is
therefore consistent with (2.11).

The proof of this lemma is postponed to Appendix B. To simplify notation, we
shall at times omit αB and write T∞,B, j∞,B. We can now restate condition (H) as
follows:

Assumption (H). There exists b ∈ (0, 2), a > 0, c > 0 and β > 0 such that, for ε
small enough,

(3.19) Pε
(
T∞,[0,N ](α[0,N ]) ≥

4

r
− a

N b/2

)
≤ c

Nβ
.

The constants a, c in (2.14) are different from those in (3.19), but b and β are the same.

4. Renormalization scheme

From now, we are going to focus on the last passage percolation model in order
to prove Theorem 3.2. We first describe a renormalization procedure to show that a
bound of the form (3.14) holds with high probability at every scales (see Proposition
4.1).
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4.1. Definition of blocks. Let n ∈ N\{0} be the renormalization “level” and Kn =
Kn(ε) the size of a renormalized block of order n (by block we mean a finite subinterval
of Z). For n = 1, we initialize K1 = K1(ε), and define a block B of order 1 to be good
if it contains no defect, i.e. α(x) = 1 for every x ∈ B. Otherwise, the block is said to
be bad.

For n ≥ 1, we set Kn+1 = lnKn, where ln = bKγ
nc with γ ∈ (0, 1). For n ≥ 1, a

block Bn+1 of order n + 1 has size Kn+1 and is partitioned into ln disjoint blocks of
order n. This block is called “good” if it contains at most one bad block of order n,
and if condition (4.1) below holds

(4.1) j∞,Bn+1 ≥ jn+1 with jn+1 :=
r

4
+

a

K
b/2
n+1

,

where the constants a, b were defined in (2.14). Otherwise Bn+1 is said to be bad. We
stress the fact that the status (good or bad) of Bn+1 depends only on the disorder
variables αBn+1 in Bn+1 and not on the exponential times Yi,j.

The renormalization is built such that large blocks are good with high probability.
Let qn(ε) denote the probability under Pε that the block [0, Kn − 1] ∩ Z, at level n, is
bad.

Lemma 4.1. Suppose that assumption (H) holds and set

K∗(ε) :=

(
2c

ε

) 1
β+1

, K∗ := (4c)
1

β−γ(β+2) ,

with the constants c, β appearing in (3.19)–(2.14). Then there exists γ0, ε0 > 0 such
that for all γ ∈ (0, γ0) and ε ≤ ε0, the following holds for every K1 ∈ [K∗, K

∗(ε)]

(4.2) lim
n→∞

qn(ε) = 0,

where

(4.3) γ0 :=
β

β + 2
, ε0 := min

[
1, 2c, (2c)(4c)−

(β+1)
β−γ(β+2)

]
.

Proof. For n ≥ 1, let ζn = c

Kβ
n

be the upper bound in (3.19). Then, by definition of

good blocks and independence of the environment, one obtains the recursive inequality

q1 ≤ K1ε,

qn+1 ≤ (lnqn)2 + ζn+1, n ≥ 1.

Note that if for some n we have qn ≤ 2ζn and ζn+1 ≥ 4l2nζ
2
n, then qn+1 ≤ 2ζn+1. Thus if

we have q1 ≤ 2ζ1 and ζn+1 ≥ 4l2nζ
2
n for all n ≥ 1, then qn ≤ 2ζn for all n ≥ 1, implying

qn(ε)→ 0 as n→∞. On the one hand, q1 ≤ 2ζ1 follows from

(4.4) K1 ≤ K∗(ε).
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On the other hand, assuming 0 ≤ γ < β
β+2

, then ζn+1 ≥ 4l2nζ
2
n is equivalent to

Kβ−(β+2)γ
n ≥ 4c, ∀n ≥ 1.

Since Kn is increasing in n, the above inequality holds for all n ≥ 1 if it holds for n = 1,
which is equivalent to

(4.5) K1 ≥ K∗.

Finally, max(1, K∗) ≤ K∗(ε) if and only if ε ≤ ε0. �

4.2. Mean passage-time in a block. The strategy to prove Theorem 2.2 is now as
follows. To each block B = [x0, x1 := x0 +Kn−1]∩Z of order n, we associate finite-size
macroscopic restricted passage-time functions (in the left and right directions) taking
as origin either extremity of the block:τ

α
n,B(1, y) = IE

(
1
Kn
TαBn((x0, 0), (x1, [Kny]))

)
, y ≥ 0,

ταn,B(−1, y) = IE
(

1
Kn
TαBn((x1, 0), (x0, [Kny]))

)
, y ≥ 1,

(4.6)

which depend only on the disorder αBn . To keep compact notation, we will write both
functions in the form ταBn(σ, y) with σ = ±1 and y ≥ σ− = −min{σ, 0}.

The main step to Theorem 3.2, stated in Proposition 4.1 below, is to prove that the
mean passage time at each order n remains bounded by the reference function (3.12)
with parameters ρn, Jn appropriately controlled to ensure that the plateau is preserved
at each order. From now on, we will assume that K1 = K1(ε) is chosen depending on
ε so that

(4.7) lim
ε→0

K1(ε) = +∞

and (4.2) holds. For instance, one can take the integer part

(4.8) K1(ε) := [K∗(ε)] =

[(
2c

ε

) 1
β+1

]
,

where K∗(ε) was defined in Lemma 4.1.

Proposition 4.1. For small enough ε, there exist sequences (ρn)n≥1 ∈ [0, 1]N, (Jn)n≥1 ∈
[0,+∞)N such that:

(i) For any good block B of order n, every σ ∈ {+1,−1}, and every y ≥ σ−

(4.9) ταn,B(σ, y) ≤ τ ρn,Jn(σ, y),

(ii) limn→∞ Jn = r/4, and Jn > r/4 for all n ∈ N,
(iii) lim supn→∞ ρn < 1/2.

Once Proposition 4.1 is established, completing the proof of Theorem 3.2 (and thus
Theorem 2.2) is a relatively simple task, the main part of which is to obtain a similar
bound on unrestricted passage times. This will be done in Section 8. Let us now explain
the structure of the proof of Proposition 4.1.
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4.3. Coarse-graining and recursion. The strategy of the proof of Proposition 4.1
is based on a coarse-graining procedure. We assume that at scale n, we have found an
upper bound of the form

ταn,B(σ, y) ≤ gn(σ, y),

that holds for any good block B, where gn(σ, .) is a concave function for each σ ∈
{−1, 1}. By decomposing a block of size Kn+1 into subblocks of size Kn, we seek a
relation between gn and gn+1 so that a similar upper bound holds at scale n + 1. In
the next section, we will prove the following:

Proposition 4.2. Let

(4.10) jn+1 :=
r

4
+

a

K
b/2
n+1

, ln := bKγ
nc and δn := C

(logKn+1)3/2

√
Kn

,

where C is a large enough constant fixed once and for all. Then the sequence (gn)n≥1

defined on [σ−,+∞) by

(4.11) g1 = τ ρ1,J1 , with J1 ∈ (r/4, 1/4), ρ1 = 2J1,

and

gn+1(σ, y) := sup
σ−≤ȳ≤ ln

(ln−1)
y

{(
1− 1

ln

)[
gn(σ, ȳ)− ȳ

jn+1

]}
+

y

jn+1

+
1 + σ

2lnjn+1

+ δnϕ(y),

(4.12)

where

(4.13) ϕ(y) :=

√
σ

2
+ y [2 + log(1 + y)]3/2 ,

satisfies the bound

(4.14) ταn,B(σ, y) ≤ gn(σ, y),

for any good block B and n ≥ 1.

The proof of this Proposition is postponed to Section 5. Roughly speaking, to obtain
(4.12), a path at level n + 1 is decomposed into subbpaths contained in subblocks of
size Kn. We then express the total passage-time as a maximum of a sum of the partial
passage-times in each subblock, where the maximum is over all possible intermediate
heights of the path at the interfaces. The first line on the r.h.s. of (4.12) comes
from approximating each partial passage-time with its mean and using the induction
hypothesis (4.14). The second line is a fluctuation estimate (see Proposition 5.1 below)
on the difference between the expectation of the maximum of partial times and the
maximum of the expectations.

Given the initialization ρ1 < 1/2 from (4.11), we will show in Section 6 that
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Proposition 4.3. Assume (H) with b ∈ [1, 2). Then for ε small enough, the sequence
(gn)n≥1 defined in Proposition 4.2 satisfies the bound

(4.15) gn(σ, y) ≤ ρσn − σ− + y

Jn
= τ ρ

σ
n,Jn(σ, y),

with

(4.16) Jn := jn+1 and ρσn := sup
y≥σ−

{
jn+1 gn(σ, y)− y

}
+ σ−,

where ρσn satisfies

(4.17) ρσn+1 ≤
jn+2

jn+1

[(
1− 1

ln

)
ρσn +

1

ln
+ ∆n

]
,

with ∆n = ∆n(ε) which has the following property: there exist ε > 0 and C > 0 such
that for every 0 < ε ≤ ε0 and n ≥ 1

(4.18) ∆n ≤ C jn+1
δ2
n

2(j−1
n+2 − j−1

n+1)

[
log

(
δn

j−1
n+2 − j−1

n+1

)]3

,

with δn as in (4.10). In the following, we will consider ρn = max{ρ1
n, ρ
−1
n }.

The role of Assumption (H) is to ensure that the decay of jn to r/4 is slow enough so
that the additional fluctuations of order ∆n do not hinder property (ii) of Proposition
4.1. Note that (see Proposition 4.4 below) for the above proposition to be interesting,
γ has to be chosen close to 0 so that the upper bound (4.18) vanishes in the limit
n → ∞. Recall that ln, ∆n and ρn actually depend on ε. To conclude the proof of
Proposition 4.1, we will then show in Section 6 that

Proposition 4.4. Assume (H) with b ∈ [1, 2) and γ < inf{γ0,
2
b
−1}, with γ0 introduced

in (4.3). Then for small enough ε, any sequence
(
ρn)n≥1 satisfying (4.17) is such that

lim sup
n→∞

ρn < 1/2.

Note that a separate study of the case b ∈ (0, 1) is not necessary: indeed, if assump-
tion (H) is satisfied for some b ∈ (0, 1), it is satisfied a fortiori for b = 1.

The seemingly natural route to derive Proposition 4.3 from Proposition 4.2 would be
to plug the ansatz gn = τ ρn,Jn into (4.12), and try to obtain an induction on (ρn, Jn).
In fact, a more subtle treatment is required, because the induction obtained from such
an ansatz turns out to be effective only for b ∈ (0, 1), whereas it is not optimal for
b ∈ [1, 2). Although not necessary, let us indicate how to use the parametric form
when b ∈ (0, 1). In this case, Propositions 4.3 and 4.4 can be replaced by the following
variant, that is simpler to prove. The price of this simpler approach is to restrict
assumption (H) to values b ∈ (0, 1).
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Proposition 4.5. Assume (H) with b ∈ (0, 1), and γ < inf{γ0,
1
b
− 1}, with γ0 intro-

duced in (4.3). Then the following two assertions hold :

(i) There exists a sequence {ρn, Jn}n≥1 with ρ1 < 1/2 and J1 ∈ (r/4, 1/4), which
satisfies Proposition 4.1, and the recursive bounds

Jn+1 ≥ min(Jn, jn+1)− Cδn,(4.19)

ρn+1 ≤
(

1− 1

ln

)
ρn +

1

ln
+ Cδn,(4.20)

for some constant C > 0, with δn defined by (4.10).

(ii) Any such sequence satisfies lim supn→+∞ ρn < 1/2 and Jn > r/4.

The derivation of Proposition 4.5 is postponed to Subsection 6.3. If b ∈ [1, 2),
statement (i) of Proposition 4.5 can be derived, but the second inequality of statement
(ii) breaks down and Proposition 4.1 could not be established this way. In fact, the way
(4.19)–(4.20) is obtained from (4.12) is not optimal, because it amounts to bounding

the fluctuation term δn
√
σ/2 + y[2 + log(1 + y)]3/2 by δn(1 + y), which is not accurate

for large y, that corresponds to densities close to 1/2 (hence the expected location of
the plateau). In (4.19), fluctuations of Jn are controlled on the one hand by assumption
(H), which guarantees a margin of order L−b/2 above r/4, and on the other hand by
the fluctuations δn, which are essentially of order L−1/2, where L is the block size. The
latter annihilates the former if b ≥ 1.

5. Proof of Proposition 4.2

In this section, we prove the recursion in Proposition 4.2. To this end, we decompose
a path of length Kn+1 according to its traces on the interfaces between the subblocks
of size Kn (see figure 2). The set of such traces will hereafter be called the “skeleton”
of the path. The idea is to use (4.14) as an induction hypothesis for the subpaths in
each block of size Kn. If we neglect the fluctuations of these subpaths, the “‘mean”
computation reduces to optimizing the positions of the traces so as to maximize the
total passage times of subpaths of order n. This “mean” induction relation is altered
by an error term (see Proposition 5.1 below) arising from fluctuations of the subpaths
as well as the entropy induced by the many possible skeletons.

5.1. Skeleton decomposition. We consider B = [x, x′ = x + Kn+1 − 1] ∩ Z a block
of order n + 1, where x ∈ Z. Let γ = ((xk, yk))k=0,...,m−1 be a path restricted to B
connecting (x, 0) = (x0, y0 = 0) to (x′, y′ = [Kn+1y]) = (xm−1, ym−1). We define the
skeleton s(γ) = γ̃ of γ as follows (see figure 2). Let k0 = −1 and y−1 = 0. For i ∈ N,
we set

k2i+1 := min{k > k2i : xk = x+ (i+ 1)Kn − 1},
k2i+2 := max{k ≥ k2i+1 : xk = x+ (i+ 1)Kn − 1}.
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Figure 2. A block of level n + 1 is partitioned into blocks of length Kn

(only 3 blocks have been depicted). The grey regions represent the boundaries
between the blocks of order n which are separated by a microscopic length 1.
A coarse grained path is depicted and the black dots denote the renewal points

ki.

Because xk+1 − xk ≤ 1, we necessarily have x1+k2i+2
= x + (i + 1)Kn and y1+k2i+2

=
yk2i+2

. Note that xk2ln−1
= xk2ln = x′ and yk2ln = y′. Recall that the block B is

made of ln = bKγ
nc boxes of length Kn. The skeleton s(γ) of γ is then the sequence

γ̃ = (ỹi, z̃i)i=1,...,ln ∈ (N2)ln given by

ỹi := yk2i−1
− yk2i−2

,(5.1)

z̃i := yk2i − yk2i−1
.(5.2)

By definition, we have

(5.3)
ln∑
i=1

(ỹi + z̃i) = y′ = [Kn+1y].

In a similar way for the paths going from right to left, if B = [x′ = x−Kn+1 +1, x]∩Z,
we may define the skeleton of a path connecting (x, 0) = (x0, y0 = 0) to (x′, y′ =
[Kn+1y]) = (xm−1, ym−1). Let k0 = −1 and y−1 = −1. For i ∈ N, let

k2i+1 := min{k > k2i : xk = x− (i+ 1)Kn + 1},
k2i+2 := max{k ≥ k2i+1 : xk = x− (i+ 1)Kn + 1}.

Because xk+1 − xk ≥ −1, we necessarily have x1+k2i+2
= x− (i + 1)Kn and y1+k2i+2

=
1 + yk2i+2

. Note that xk2ln−1
= xk2ln = x′ and yk2ln = y′. The skeleton s(γ) of γ is then

the sequence γ̃ = (ỹi, z̃i)i=1,...,ln given by (5.1)–(5.2). Since allowed path increments are
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(1, 0) and (−1, 1), this sequence must now satisfy the constraint ỹi ≥ Kn for i ≥ 1.

Let Γ̃n((x, 0), (x′, y′)) denote the set of skeletons of all paths γ restricted to B con-
necting (x, 0) and (x′, y′), that is the set of sequences γ̃ = (ỹi, z̃i)i=1,...,ln ∈ (N2){1,...,ln}

satisfying (5.3), with the constraint ỹi ≥ Kn in the case x′ < x. We will simply write
Γ̃n when the endpoints are obvious from the context.

5.2. Passage-time decomposition. Let σ = ±1 denote as in (4.6) the direction of
the paths. To encompass both cases σ = ±1, we will use the following simplifying
convention: an interval can be written [a, b] even if a > b, in which case it actually
means [b, a]. We consider the block B = [0, σ(Kn+1−1)]. For l ∈ {1, . . . , ln}, we denote
by Bl := [σ(l−1)Kn, σ(lKn−1)]∩Z the l-th subblock of order n in the decomposition
of B. For a path skeleton γ̃ = (ỹl, z̃l)l=1,...,ln ∈ Γ̃n, define

h̃i :=
i−1∑
j=1

[ỹj + z̃j]

if i ≥ 2, and h̃1 = 0. The quantity h̃i represents the height at which a path with
skeleton γ̃ enters block i. For a path γ ∈ ΓB((0, 0), (σ(Kn+1 − 1), y′)) with skeleton γ̃,

Figure 3. A coarse grained path is depicted in a block of order n + 1.
The horizontal crossings through each block Bl are restricted to the dark grey
regions. The passage time UαB(σ, γ̃) depends only on the variables {Yi,j} inside
the grey regions which are disjoint from the regions used by the vertical paths
contributing to V α

B (σ, γ̃).

we have that

(5.4) TαB(γ) ≤ Uα
B(σ, γ̃) + V α

B (σ, γ̃) ≤ TαB((0, 0), (σ(Kn+1 − 1), y′)
)
,
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where

Uα
B(σ, γ̃) :=

ln∑
l=1

Uα
B,l(σ, γ̃), V α

B (σ, γ̃) :=
ln∑
l=1

V α
B,l(σ, γ̃),

with

Uα
B,l(σ, γ̃) := TαBl

(
σ(l − 1)Kn, h̃l), (σ(lKn − 2), h̃l + ỹl + σ − 1)

)
,

V α
B,l(σ, γ̃) := TαB

(
(σ(lKn − 1), h̃l + ỹl +

σ − 1

2
), (σ(lKn − 1), h̃l + ỹl +

σ − 1

2
+ z̃l)

)
,

(5.5)

where Uα
B(γ̃) is the contribution of the horizontal crossings in the blocks Bl and V α

B (γ̃)
the contribution of the vertical paths at the junction of the blocks Bl (see figure 3).
Noticing that the second inequality in (5.4) is an equality if and only if γ̃ is the skeleton
of the optimal path, we get

(5.6) TαB((0, 0), (σ(Kn+1 − 1), y′)) = max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{Uα
B(σ, γ̃) + V α

B (σ, γ̃)} .

To derive Proposition 4.1, we have to estimate

(5.7) ταn+1,B(σ, y) :=
1

Kn+1

IE
(
TαB((0, 0), (σ(Kn+1 − 1), y′))

)
with y′ = [Kn+1y] and we decompose this expectation into the sum of two components:

(5.8) max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
IE

(
Uα
B(σ, γ̃)

Kn+1

)
+ IE

(
V α
B (σ, γ̃)

Kn+1

)}
,

that is the “mean optimization problem” and a “fluctuation part” defined for y′ =
[Kn+1y] as

Fn(y) = IE
(

1
Kn+1

maxγ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

−maxγ̃∈Γ̃n((0,0),(σ(Kn+1−1),y′))

{
IE
(
UαB(σ,γ̃)

Kn+1

)
+ IE

(
V αB (σ,γ̃)

Kn+1

)}
.(5.9)

The term (5.8), which involves known information from subblocks, will give the main
recursion structure, while (5.9) will be an error term. The latter will be controlled by
fluctuations and entropy of paths. The precise result that will be established in the
Section 7 is the following:

Proposition 5.1. With the notation (5.9), one has uniformly in y

Fn(y) ≤ δn

√
σ

2
+ y

(
1 + log(1 + y)

)3/2
,(5.10)

with δn defined in (4.10).
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We will in fact replace the upper bound in (5.10) by a slightly worse one for the sole
purpose of making it a concave function of y, which is important for us. We therefore
observe that

(5.11) Fn(y) ≤ Gn(y) := δnϕ(y),

where ϕ is the (concave) function defined by (4.13).

5.3. The main recursion (4.12). Using the skeleton decomposition, we are now go-
ing to derive Proposition 4.2.

Let us explain the choice (4.11) of g1 in Proposition 4.2. To initiate the induction
relation, we need a bound at level 1 for ρ1 and J1. For n = 1, a good block of order 1
contains only rates α(x) = 1. Since the restricted passage times are smaller than the
unrestricted ones, the values for ρ1 and J1 can be inferred from the asymptotic shape
(3.7)–(3.8) of the homogeneous last passage percolation and the corresponding exact
upper bound for the expected passage time, due to superadditivity:

τα1,B(σ, y) ≤
(√

σ + y +
√
y
)2 ≤ 4

(
1

2
σ + y

)
≤ τ 2J1,J1(σ, y),

for every σ ∈ {−1, 1} and any J1 ∈ (0, 1/4], where the last inequality follows from
(3.12). However, we restrict to J1 ∈ (r/4, 1/4) in view of condition (ii) of Proposition
4.1. By construction g1 is concave. Note that, if gn(σ, .) is concave, then gn+1(σ, .)
defined by (4.12) inherits this property.

Suppose now that the inequality (4.14)

ταn,B(σ, y) ≤ gn(σ, y)

holds at step n and that gn is concave. We will show that the recursion is valid at step
n+ 1 with gn+1 defined as in (4.12).

We first focus on the mean optimization problem (5.8) and consider a good block
B = [0, σ(Kn+1−1)] at level n+1. For a fixed disorder α, note that, by superadditivity
and uniformity of α in the y-direction,

(5.12) IE
[
V α
B,l(σ, γ̃)

]
≤ 1

j∞,B
z̃l.

Since B is a good block, j∞,B satisfies (4.1). Thus

(5.13) j∞,B ≥
r

4
+

a

K
b/2
n+1

=: jn+1,

(recall that jn+1 was introduced in (4.1) as one of the conditions defining a good block).
As B is a good block, the subblocks Bl are good for all values of l = 1, . . . , ln except
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for possibly one bad subblock with index i0. The recurrence hypothesis (4.14) at order
n implies that the mean passage time on a good subblock Bl is bounded by

(5.14) IE
[
Uα
B,l(σ, γ̃)

]
= Knτ

α
n,Bl

(
σ,

ỹl
Kn

)
≤ Kngn

(
σ,

ỹl
Kn

)
.

For the possibly remaining value i0 such that Bi0 is a bad block, we use a crude upper
bound by artificially extending the path in order to compare its cost to the one of a
vertical connection:

Uα
B,i0

(σ, γ̃) ≤ TαBi0

((
σ(i0 − 1)Kn, h̃i0

)
,

(
σ(i0 − 1)Kn, h̃i0 + ỹi0 +

1 + σ

2
Kn

))
,

which yields, as in (5.12),

(5.15) IE
[
Uα
B,i0

(σ, γ̃)
]
≤ 1

j∞,Bi0

(
ỹi0 +

1 + σ

2
Kn

)
≤ 1

jn+1

(
ỹi0 +

1 + σ

2
Kn

)
.

Note that there may sometimes not exist any bad subblock, but even in this case
we may apply (5.15) to an arbitrarily chosen subblock to avoid distinguishing this
seemingly better case (by which distinction we would anyway gain nothing in the
sequel). Combining the above expectation bounds, we obtain

(5.16) IE [Uα
B(σ, γ̃) + V α

B (σ, γ̃)] ≤ Kn+1 g
(1)
n+1(σ, y, γ̃),

where

(5.17) g
(1)
n+1(σ, y, γ̃) :=

1

ln

{
ln∑

l=1, l 6=i0

gn(σ, ȳl) +
1

jn+1

[
1 + σ

2
+ ȳi0 +

ln∑
l=1

z̄l

]}
,

where (ȳl, z̄l)l=1,...,ln ∈ [0,+∞)2ln is the rescaled skeleton defined by ȳl = K−1
n ỹl and

z̄l = K−1
n z̃l, which satisfies the constraint (5.3), whence

(5.18)
ln∑
l=1

(ȳl + z̄l) ≤ lny, with ȳl ≥ σ−.

Define

(5.19) σ− ≤ ȳ :=
1

ln − 1

∑
l=1,...,ln: l 6=i0

ȳl ≤
ln

ln − 1
y,

so that from (5.18), we have

(5.20) ȳi0 +
ln∑
l=1

z̄l ≤ lny − (ln − 1)ȳ.
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By concavity of gn, (5.16)–(5.17) and (5.20), we obtain the following upper bound for
(5.8):

max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE

(
Uα
B(σ, γ̃)

Kn+1

)
+ IE

(
V α
B (σ, γ̃)

Kn+1

)}
(5.21)

≤ sup
σ−≤ȳ≤ ln

ln−1
y

{(
1− 1

ln

)[
gn(σ, ȳ)− ȳ

jn+1

]}
+

y

jn+1

+
1 + σ

2lnjn+1

,

where the value of ȳ in (5.19) has been replaced by a supremum. To bound from
above ταn+1,B(σ, y) (see (5.7)), it is enough to combine (5.21) and Proposition 5.1. This
completes the proof of Proposition 4.2.

6. Consequences of the main recursion

In this section, we prove Propositions 4.3, 4.4 and 4.5.

6.1. Proof of Proposition 4.3. As g1(σ, .) is concave, the recursion (4.12) implies
that gn(σ, .) is a concave function for all n. For notational simplicity, we shall write
details of the proof for σ = 1, and in this case simply write gn(.) for gn(σ, .). We will
only briefly indicate what changes are involved for σ = −1. We consider the sequence
(gn)n≥1 given by the recursion (4.12) and set

(6.1) yn := inf

{
y ≥ 0 : g′n(y) ≤ 1

jn+1

}
,

where g′n stands for the right derivative of the concave function. Thus, if y ≥ (1−l−1
n )yn

(6.2) gn+1(y) =

(
1− 1

ln

)[
gn (yn)− yn

jn+1

]
+

y

jn+1

+
1

lnjn+1

+ δnϕ(y),

and if y ≤ (1− l−1
n )yn

(6.3) gn+1(y) =

(
1− 1

ln

)[
gn

(
ln

ln − 1
y

)
− ln
ln − 1

y

jn+1

]
+

y

jn+1

+
1

lnjn+1

+ δnϕ(y).

Lemma 6.1. Assume (H) with b ∈ [1, 2). Then for ε small enough, the sequence
(yn)n≥1 satisfies

(6.4) ∀n ≥ 2, yn−1 ≤ yn <∞ and ϕ′(yn) =
j−1
n+1 − j−1

n

δn−1

,

with ϕ as in (4.13).

Proof. For n ≥ 1, we set

(6.5) tn+1 :=
j−1
n+2 − j−1

n+1

δn
= ψ3(Kn),
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with

ψ3(K) := (1 + γ)−3/2 K1/2

(logK)3/2

{(
r

4
+

a

K
b
2

(1+γ)2

)−1

−
(
r

4
+

a

K
b
2

(1+γ)

)−1
}

K→+∞∼ (1 + γ)−3/2 16a

r2
K

1
2
− b

2
(1+γ) K→+∞−→ 0.

Since b ≥ 1, using (4.7), we conclude that

(6.6) lim
ε→0

sup
n≥1

tn+1(ε) = 0.

Recall that for n = 1, g1 is defined by (4.11). Thanks to (4.7), we have limε→0 j2(ε) =
r/4. Thus, for small enough ε, we have j2(ε) < J1. It follows that y1 = 0 and, from
(6.2), we get that for every y ≥ 0,

g2(y) =
(
1− 1

l1

)ρ1

J1

+
y

j2

+
1

l1j2

+ δ1ϕ(y).(6.7)

Thus for n = 2, (6.1) becomes

y2 = inf

{
y ≥ 0 : ϕ′(y) ≤ j−1

3 − j−1
2

δ1

}
.

Since ϕ is strictly concave and limy→+∞ ϕ
′(y) = 0, (6.6) implies that for ε small enough,

y2 is the unique solution of ϕ′(y2) = t2. Thus identity (6.4) holds for n = 2.

We are going to prove the claim by induction. Suppose that (6.4) is valid up to rank
n. To show yn+1 ≥ yn, it is enough to check that

g′n+1(yn) > j−1
n+2.

Since yn > (1 − l−1
n )yn, the above derivative is computed from the expression (6.2).

Thus, using the induction hypothesis (6.4), we get for n ≥ 2

g′n+1(yn)− j−1
n+2 = j−1

n+1 − j−1
n+2 + δnϕ

′(yn)

= j−1
n+1 − j−1

n+2 +
δn
δn−1

(
j−1
n+1 − j−1

n

)
= ψ(Kn−1),(6.8)

where, since Kn = K1+γ
n−1 ,

ψ(K) =

(
r

4
+

a

K
b
2

(1+γ)2

)−1

−
(
r

4
+

a

K
b
2

(1+γ)3

)−1

+ (1 + γ)3/2K−γ/2

[(
r

4
+

a

K
b
2

(1+γ)2

)−1

−
(
r

4
+

a

K
b
2

(1+γ)

)−1
]
.(6.9)

Let us respectively denote by ψ1(K) and ψ2(K) the first and second line on the r.h.s.
of (6.9). Then as K → +∞,

ψ1(K) ∼ −16ar−2K−b(1+γ)2/2, ψ2(K) ∼ 16a(1 + γ)3/2 r−2K−b(1+γ)/2−γ/2.



26 C. BAHADORAN, T. BODINEAU

Since for b ≥ 1 and γ > 0 we have

b

2
(1 + γ) +

γ

2
<
b

2
(1 + γ)2.

It follows that ψ(K) > 0 for K large enough. As K1(ε) diverges when ε tends to 0
(see (4.7)), we have that for small enough ε, yn+1 ≥ yn ≥ (1− l−1

n )yn holds for all n ≥ 2.

As g′n+1(yn+1) is given by the derivative of (6.2) and ϕ is strictly concave, we have
to solve

(6.10) g′n+1(yn+1) = j−1
n+1 + δnϕ

′(yn+1) = j−1
n+2 ⇒ ϕ′(yn+1) =

j−1
n+2 − j−1

n+1

δn
= tn+1.

As above, (6.6) implies that, for ε small enough, a solution of (6.10) exists for all n ≥ 2.
This proves the second part of the claim (6.4).

In the case σ = −1, the infimum (6.1) defining yn is over y ≥ 1. The initialization
step differs slightly since we then have

g1(−1, y) =
ρ1 − 1 + y

J1

and y1 = 1. Therefore the inequality in (6.4) is no longer trivial for n = 2. However,
since ϕ′(y2) = t2, this inequality will be true if t2 ≤ ϕ′(1), which holds for ε small
enough thanks to (6.6). �

Using Lemma 6.1, we can now complete the proof of Proposition 4.3. The definition
(4.16) of ρn leads immediately to the inequality (4.15)

gn(y) ≤ τ ρn,Jn(1, y).

Thus it remains only to prove the inequality (4.17) satisfied by ρn. By definition (6.1)
of yn, we have

ρn = jn+1gn(yn)− yn.
We are going to obtain a recursion for ρn. To this end, consider

ρn+1 = jn+2gn+1(yn+1)− yn+1.

By Lemma 6.1, yn+1 ≥ yn > (1− l−1
n )yn, so gn+1(yn+1) is obtained from (6.2). Thus

ρn+1 = jn+2

(
1− 1

ln

) [
gn(yn)− yn

jn+1

]
+ jn+2

ln jn+1
+
(
jn+2

jn+1
− 1
)
yn+1 + jn+2δnϕ(yn+1)

≤ jn+2

jn+1

((
1− 1

ln

)
[jn+1gn(yn)− yn] + 1

ln
+ jn+1δnϕ(yn+1)

)
,(6.11)

where on the second line we have used jn+2 ≤ jn+1. Setting ∆n := jn+1δnϕ(yn+1), we
recovered the inequality (4.17), and it remains to verify (4.18). Starting from

ϕ′(y)
y→+∞∼ 1

2
√
y

(log y)3/2,
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we see that

(6.12) ϕ[ϕ
′−1(t)]

t→0∼ 1

2t

(
log

1

4t2

)3

.

Recall that by (6.10), yn+1 = ϕ
′−1(tn+1), where tn is defined by (6.5) and satisfies (6.6).

Thus, there exist C ′, C ′′ > 0 and ε2 > 0 such that, for every 0 < ε ≤ ε2 and n ≥ 1

ϕ(yn+1) = ϕ[ϕ
′−1(tn+1)] ≤ C ′′

1

tn+1

∣∣ log tn+1

∣∣3 ≤ C ′
δn

2(j−1
n+2 − j−1

n+1)

[
log

(
δn

j−1
n+2 − j−1

n+1

)]3

.

This implies (4.18) with ∆n = jn+1δnϕ(yn+1).

For σ = −1, we set
ρn − 1 = sup

y≥1

{
jn+1gn(−1, y)− y

}
and we get a recursion similar to (6.11)

ρn+1 − 1 ≤ jn+2

jn+1

((
1− 1

ln

)
[ρn − 1] + jn+1δnϕ(yn+1)

)
,

which can be rewritten

ρn+1 ≤
jn+2

jn+1

((
1− 1

ln

)
ρn +

1

ln
+ jn+1δnϕ(yn+1) +

jn+1

jn+2

− 1

)
.

For b ≥ 1, the remainder jn+1

jn+2
− 1 can be bounded by ∆n so that the same type of

inequality is also valid for σ = −1.

6.2. Proof of Proposition 4.4. Let an = 1− 1
ln

. Then one can see by induction that

(4.17) implies

ρn ≤ ρ1

n−1∏
i=1

ai +

(
1−

n−1∏
i=1

ai

)
+

n−1∑
i=1

∆i

n−1∏
j=i+1

aj

≤ ρ1

n−1∏
i=1

ai +

(
1−

n−1∏
i=1

ai

)
+

n−1∑
i=1

∆i,(6.13)

where we used that ji+1

ji
≤ 1 for any i ≥ 1. Remember that the quantities ρn, jn, an,

∆n actually depend on ε. The proof of Proposition 4.4 is then concluded thanks to
lemma 6.2. �

Lemma 6.2. Assume (H) with b ∈ [1, 2), and K1 given by (4.8). With the notation
of Lemma 4.1, we fix

γ < min
{
γ0,

2

b
− 1
}
.

Then

(1) limε→0

∏+∞
n=1 an(ε) = 1,

(2) limε→0

∑+∞
n=1 ∆n(ε) = 0.
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Proof.
Proof of (1). We have to show that

(6.14) lim
ε→0

+∞∑
n=1

log

(
1− 1

ln(ε)

)
= 0.

Since

ln(ε) = exp
[
log
(
K1(ε)

)
γ(1 + γ)n−1

]
≥ exp

[
γ(1 + γ)n−1

]
,

we have, for n ≥ 2, ln(ε)−1 ≤ C(γ) := e−γ(1+γ) < 1. Hence, for n ≥ 2,

0 ≤ − log

(
1− 1

ln(ε)

)
≤ 1

ln(ε)
+
C ′(γ)

ln(ε)2
≤ (1 + C ′(γ)) exp

[
−γ(1 + γ)n−1

]
.

The limit (6.14) then follows from dominated convergence, and limε→0K1(ε) = +∞,
which implies limn→∞ ln(ε) = 0 for any n ≥ 1.

Proof of (2). Here we can write ∆n ' ψ0(Kn), where

ψ0(K) := (logK)3

K

[(
r
4

+ a

K
b
2 (1+γ)2

)−1

−
(
r
4

+ a

K
b
2 (1+γ)

)−1
]−1

×
(

log

{
(logK)3/2√

K

[(
r
4

+ a

K
b
2 (1+γ)2

)−1

−
(
r
4

+ a

K
b
2 (1+γ)

)−1
]−1
})3

(6.15)

K→+∞∼ C ′′(logK)6K
b
2

(1+γ)−1.

for some constant C ′′ > 0. The assumption on b and the choice of γ imply that
c := 1 − b

2
(1 + γ) > 0 (equation (6.15) is the main reason for restricting to the case

b < 2). By (4.7), there exists ε1 > 0 such that Kn(ε) ≥ 2 for every n ≥ 1 and ε ∈ [0, ε1].
Thus, by (6.15), there exists a constant D > 0 such that, for such n and ε,

∆n(ε) ≤ D

Kn(ε)c
≤ D

K1(ε)c(1+γ)n
≤ D

2c(1+γ)n
.

Since limε→0K1(ε) = 0, the result follows again from dominated convergence. �

6.3. Proof of Proposition 4.5 for b ∈ (0, 1). Assume that gn(σ, y) ≤ τ ρn,Jn(σ, y)
for some ρn ∈ [0, 1/2[ and Jn ∈ (r/4, 1/4]. We use the recursion (4.12) to obtain
gn+1(σ, y) ≤ τ ρn+1,Jn+1(σ, y) for a new pair (ρn+1, Jn+1) defined as a function of (ρn, Jn).
We start with

(6.16) gn(σ, y) =
ρnσ

+ − (1− ρn)σ− + y

Jn
≤ ρnσ

+ − (1− ρn)σ− + y

J
(1)
n+1

=: g̃n(σ, y),

where

J
(1)
n+1 := min(Jn, jn+1).
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Replacing gn(σ, y) in (4.12) with g̃n(σ, y), since J
(1)
n+1 ≤ jn+1, the supremum of the new

expression is achieved for ȳ = lny/(ln − 1). On the other hand, there is a constant
B > 0 such that

ϕ(y) =
√
σ/2 + y[2 + log(1 + y)]3/2 ≤ B(1 + y).

This yields

(6.17) gn+1(σ, y) ≤ τ ρ
(1)
n+1,J

(1)
n+1(σ, y) +Bδn(1 + y),

where

J
(1)
n+1 := min(Jn, jn+1) and ρ

(1)
n+1 :=

(
1− 1

ln

)
ρn +

1

ln
.

A simple computation shows that

τ ρ,J(x, y) + δ(x+ y) ≤ τ ρ
′,J ′(x, y),

with

ρ′ :=
ρ+ δJ

1 + δJ
, J ′ :=

J

1 + δJ
.

Note that ρ′ ≤ ρ + δ and J ′ ≥ J − δ for J ≤ 1. Since Jn ≤ 1 for all n ≥ 1, we obtain
gn(σ, y) ≤ τ ρn,Jn(σ, y), with (ρn, Jn) satisfying (4.19)–(4.20).

Let us now prove that the two statements in (ii) of Proposition 4.1 hold. On the one
hand, (4.20) is similar to (6.13) with δn instead of ∆n, the first limit in statement (ii)
of Proposition 4.5 is proved exactly like Proposition 4.4, since 2) of Lemma 6.2 can be
also obtained for δn instead of ∆n. On the other hand, (4.19) implies

(6.18) Jn ≥ min

{
J1 −

n−1∑
j=1

δj; min
k=1,...,n−1

[
jk+1 −

n−1∑
j=k

δj

]}
.

The inequality Jn > r/4 then follows from (6.18) and

Lemma 6.3. Assume (H) with b ∈ (0, 1), and K1 given by (4.8). With the notation
of Lemma 4.1, we fix

ε ≤ ε0, γ < min
{
γ0,

1

b
− 1
}
, J1 ∈

(
r

4
,
1

4

)
.

Then the sequence δn(ε) := C (logKn+1)3/2√
Kn

(where the dependence on ε is encoded in

Kn) satisfies the properties:

(1) There exists ε1 ∈ (0, ε0) such that, for all k ≥ 1 and ε ∈ (0, ε1),

+∞∑
j=k

δj(ε) ≤ 2 δk(ε).

(2) There exists ε2 ∈ (0, ε1) such that, for all ε ∈ (0, ε2) and all k ≥ 1,

jk+1(ε)− 2 δk(ε) > r/4, and J1 − 2δ1(ε) > r/4.
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Proof.
Proof of (1). Since

δn+1(ε)

δn(ε)
= (1 + γ)3/2K−γ/2n ≤ (1 + γ)3/2K1(ε)−γ/2,

then for ε small enough so that (1 + γ)3/2K1(ε)−γ/2 < 1/2, we obtain
∑+∞

j=k δj(ε) ≤
2δk(ε).

Proof of (2). Recall that

jk+1 =
r

4
+

a

K
b/2
k+1

=
r

4
+

a

K
b′/2
k

,

where a is the constant in (2.14) and b′ = (1 + γ)b. The assumptions on b and γ imply
b′ ∈ (0, 1). Thus, there exists x0 ≥ 1 such that

a

xb′/2
> 4C

(lnx)3/2

√
x

,

for all x ≥ x0, where C is the constant in the definition of δn. Since Kn(ε) increases
with n, in view of (4.7), it suffices to choose ε small enough such that K1(ε) ≥ x0.
Since limε→0 δ1(ε) = 0, the second inequality follows for ε small enough from the choice
J1 > r/4. �

7. Fluctuation bounds : Proof of Proposition 5.1

In this section, we prove Proposition 5.1. We start in Subsection 7.1 by stating
preliminary estimates, and apply these in Subsection 7.2, which is the body of the
proof.

7.1. Concentration estimates. We shall need a classical gaussian concentration in-
equality for last-passage times (see e.g. [30]). In the following lemma, it is assumed
that the service times Yi,j involved in the definition (3.1)–(3.2) of last passage times
are i.i.d. random variables bounded by M instead of being exponentially distributed.
To avoid confusion with the previous notation, the corresponding probability IPM and
expectation IEM are denoted below by an index M .

Lemma 7.1. Assume that Y = (Yi,j : (i, j) ∈ Z × N) is a vector of non negative
independent random variables bounded from above by rM . Let (x1, y1) and (x2, y2) in
Z× N such that (x2 − x1, y2 − y1) ∈ W. Then

Tα
(
(x1, y1), (x2, y2)

)
= IEM

[
Tα
(
(x1, y1), (x2, y2)

)]
+ 8M

√
L((x1, y1), (x2, y2))Z,

where L((x1, y1), (x2, y2)) := (x2− x1) + 2(y2− y1) is the length of any path connecting
(x1, y1) to (x2, y2), and Z is a random variable with subgaussian tail

∀t ≥ 0, IPM(|Z| ≥ t) ≤ exp(−t2) .
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We stress the fact that Gaussian bounds on last passage times are by no means
optimal in the case of exponential service times, for which more refined (but also more
specific) gaussian-exponential estimates are available (see e.g. [43]). However, for our
purpose, they have the advantage of being both simple and sufficient, while also ex-
tending to service distributions with heavier tails, as a result of the cutoff procedure
introduced in Subsection 7.2.

The above concentration inequality will be combined with the following result.

Lemma 7.2. Let A and I be finite sets. Assume that for each a ∈ A, we have a family
(Ya,i)i∈I of independent random variables such that, for every i ∈ I,

(7.1) Ya,i = IE
(
Ya,i
)

+
√
Va,iZa,i,

where Va,i > 0, and Za,i is a random variable such that

(7.2) IP(Za,i ≥ t) ≤ e−t
2

,

for every t ≥ 0. Then

IE

(
max
a∈A

∑
i∈I

Ya,i
)
≤ max

a∈A

∑
i∈I

IE
(
Ya,i
)

+

(
max
a∈A

∑
i∈I

Va,i

) 1
2 (√

π
√
|I|+√π

√
A+
√
A
√

log |A|
)
,(7.3)

where |.| denotes the cardinality, and A is the same constant as in (ii) of Lemma 7.3.

The proof of Lemma 7.2 relies on the following elementary estimates.

Lemma 7.3.

(i) Let Y be a random variable such that IP(Y ≥ t) ≤ Ce−t
2/V for all t ≥ 0, where

C ≥ 1 and V > 0. Then, we have

Y =
√
V logC +

√
V X,

where IP(X ≥ t) ≤ e−t
2
.

(ii) There exists a positive constant A such that the following holds. Let (Xk)k=1,...,n be

nonnegative independent random variables such that IP(Xk ≥ t) ≤ e−t
2
, and (Vk)k=1,...,n

be nonnegative numbers. Then

n∑
k=1

√
VkXk =

√
π

n∑
k=1

√
Vk +

(
A

n∑
k=1

Vk

)1/2

Z,

where Z is a r.v. such that IP(Z ≥ t) ≤ e−t
2
.
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Proof of Lemma 7.3. (i) Follows from an immediate computation. To obtain (ii) we
note that, for θ ≥ 0,

IE
(
eθXk

)
≤ 1 +

∫ +∞

0

θeθtIP(Xk ≥ t)dt

≤ 1 + θeθ
2/4

∫ +∞

−θ/2
e−t

2

dt ≤ 1 +
√
πθeθ

2/4 .

Setting Yk = Xk −
√
π, we have, for θ ≥ 0,

Λ(θ) := log IE
(
eθYk

)
≤ log

[
1 +
√
πθeθ

2/4
]
−√πθ.

Thus there exists A > 0 such that Λ(θ) ≤ Aθ2/4 for θ ≥ 0. Hence, by independence of
the r.v.’s Xk,

log IE

[
exp

(
θ

(
n∑
k=1

√
VkXk −

√
π

n∑
k=1

√
Vk

))]
≤ A

4
θ2

n∑
k=1

Vk.

The result then follows by Cramer’s argument. �

Proof of Lemma 7.2. By (ii) of Lemma 7.3, for every a ∈ A, we have

(7.4)
∑
i∈I

Ya,i =
∑
i∈I

IE
(
Ya,i
)

+
√
π
∑
i∈I

√
Va,i +

(
A
∑
i∈I

Va,i

)1/2

Za,

where Za is a random variable satisfying IP(Za ≥ t) ≤ e−t
2

for all t ≥ 0. On the other
hand, by Cauchy-Schwarz inequality,

(7.5)
∑
i∈I

√
Va,i ≤

√
|I|
(∑

i∈I

Va,i

)1/2

.

Thus, for every a ∈ A,

(7.6)
∑
i∈I

Ya,i ≤ m+ (AV )1/2Z+
a ,

where

V := max
a∈A

∑
i∈I

Va,i and m :=
√
π
√
|I|
√
V + max

a∈A

∑
i∈I

IE
(
Ya,i
)
.

Next, for any t ≥ 0, we have

IP

(
max
a∈A

∑
i∈I

Ya,i ≥ m+ t

)
≤ IP

(⋃
a∈A

{∑
i∈I

Ya,i ≥ m+ t

})
≤

∑
a∈A

IP
(
(AV )1/2Z+

a ≥ t
)
≤ |A| e− t2

AV .
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It follows from (i) of Lemma 7.3 that

max
a∈A

∑
i∈I

Ya,i = m+
√

log |A|(AV )1/2 + (AV )1/2Z,

where Z is a random variable satisfying IP(Z ≥ t) ≤ e−t
2

for all t ≥ 0. The result then
follows from

IE(Z) ≤ IE(Z+) ≤
∫ +∞

0

IP(Z+ ≥ t)dt ≤
∫ +∞

0

e−t
2

dt =
√
π.

�

7.2. Path renormalization: fluctuation and entropy. We now proceed in three
steps. In step one, we define a cutoff procedure for the service times Yi,j, by condition-
ing on their maximum, in order to replace them with bounded variables, to which the
results of Subsection 7.1 apply. In step two, we apply Lemma 7.2 to passage-times in
subblocks. This yields for the cutoff service times a result similar to the statement of
the proposition 5.1, but without whole logarithmic correction. Finally, in step three,
we remove the cutoff and use a bound on the expectation of the maximum of exponen-
tial variables, to obtain a quasi-gaussian estimate with a logarithmic correction.

Step 1. Notation and conditional measure. Pick γ such that

(7.7) 0 < γ < min
{
γ0, (2/b)− 1

}
,

with γ0 introduced in Lemma 4.1, and b in (3.19)–(2.14). Let B = Z∩ [0, σ(Kn+1− 1)]
be a block of order n + 1 and partition B into the subblocks of order n denoted by
Bl = [σ(l − 1)Kn, σ(lKn − 1)] ∩ Z, where l = 1, . . . , ln.

Set y′ = [Kn+1y], Γ̃n = Γ̃n((0, 0), (σ(Kn+1 − 1), y′)) and define

MB(y) := max
{
Yi,j : i ∈ B, j = 0, . . . , y′ = [Kn+1y]

}
.

Given M > 0, denote by IPB,M,y′ the distribution of (Xi,j : i ∈ B, j = 0, . . . , y′),
where Xi,j are i.i.d. and have the same distribution as Yi,j conditioned on Yi,j ≤ rM .

(Note that after conditioning by rM , the percolation paths have weights
Yi,j
α
≤ M as

α ≥ r). Denote by IP′B,M,y′ the distribution of (Yi,j : i ∈ B, j = 0, . . . , y′) conditioned
on MB(y) = rM . A vector (Y ′i,j : (i, j) ∈ B × {0, . . . , y′}) with distribution IP′B,M,y′ is
obtained as follows. Pick a uniformly distributed (i0, j0) in B × {0, . . . , y′}; then give
value rM to Y ′i0,j0 , and let the other Y ′i,j for (i, j) 6= (i0, j0) be independent with the
same distribution as the above Xi,j.

Step 2. Fluctuation and entropy bounds. Given α, the random variables {Uα
B,l′(σ, γ̃),

V α
B,l(σ, γ̃)}l,l′ (defined in (5.5)) are independent under IPB,M,y′ , because they depend on
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disjoint subvectors of Y (see figure 3). On the other hand, by Lemma 7.1, we get{
Uα
B,l(σ, γ̃) = IEM

[
Uα
B,l(σ, γ̃)

]
+ 8M

√
σKn + 2ỹl Z

(1)
l ,

V α
B,l(σ, γ̃) = IEM

[
V α
B,l(σ, γ̃)

]
+ 8M

√
2z̃l Z

(2)
l ,

(7.8)

where (Z
(i)
l )l=1,...,ln;i=1,2 is a family of r.v.’s independent under IPB,M,y′ and such that

(7.9) IPB,M,y′

(
Z

(i)
l ≥ t

)
≤ exp(−t2),

for all t ≥ 0. To apply Lemma 7.2 to the random variables in (7.8), we take A =
Γ̃n
(
(0, 0), (σ(Kn+1 − 1), y′)

)
with I = {1, . . . , 2ln}, and for a = γ̃ ∈ A, we set

l ∈ {1, . . . , ln}, Ya,2l−1 = Uα
B,l(σ, γ̃) and Ya,2l = V α

B,l(σ, γ̃).

Thus in (7.3) we have |I| = 2ln = 2Kn+1/Kn, and (cf. (7.8) and (5.3))∑
i∈I

Va,i = 64M2(σKn+1 + 2y′) ≤ 64M2Kn+1(σ + 2y).

To estimate the cardinal |A| of the skeletons, we need the following

Lemma 7.4. For every y′ ∈ N, one has

log |A| = log
∣∣Γ̃n((0, 0), (±(Kn+1 − 1), y′)

)∣∣ ≤ 2
Kn+1

Kn

[1 + log (1 +Kny)] .

Proof. The number of such skeletons satisfies the inequality

(7.10) σ ∈ {−1, 1},
∣∣∣Γ̃n((0, 0), (σ(Kn+1 − 1), y′)

)∣∣∣ ≤ (2ln + y′ − 1

2ln − 1

)
.

The previous upper bound follows by noticing that choosing a skeleton amounts to
choose 2ln − 1 heights corresponding to the different renewal times to reach the total
height y′. In fact, when σ = 1, some of these heights can be equal if ỹi = 0 or z̃i = 0
for some i ≤ 2ln − 1. To take this into account, it is enough to choose a collection
of distinct heights in the larger set 2ln + y′ − 1. Thus estimate (7.10) is actually an
equality if σ = 1.

Recall the inequalities:

(7.11) log

(
N
k

)
≤ Nh

(
k

N

)
,

where h is defined on (0, 1) by

−h(x) := x log x+ (1− x) log(1− x),

and equal to 0 on {0, 1}. Furthermore

uh(1/u) ≤ 1 + log u

for u ≥ 1, and
2ln + y′ − 1

2ln − 1
≤ 1 +

y′

ln
= 1 +

Kn+1

ln
y,
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(the inequality follows from ln ≥ 1). This completes the Lemma 7.4.

The bound (7.11) follows e.g. from Cramer’s exact large deviation upper bound
applied to a sum of i.i.d. Bernoulli variables with parameter 1/2 denoted by (ζi)i=1,...,n,
since for k ≥ N/2, (

N
k

)
≤ 2N IP

(
1

N

N∑
i=1

ζi ≥
k

N

)
.

�

Combining (7.3) with the entropy estimate of Lemma 7.4, we obtain

IEM

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

(7.12)

≤ max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IEM (Uα

B(σ, γ̃) + V α
B (σ, γ̃))

}
+ 8M

√
Kn+1

√
σ + 2y

√
2
Kn+1

Kn

(√
π +
√
A+
√
A
√

[1 + ln (1 +Kny)]
)
,

where we used that 2Kn+1

Kn
≥ π.

Step 3. Removing the cut-off on Y . The random variables {Uα
B,l(σ, γ̃), V α

B,l(σ, γ̃)}l,l′
are nondecreasing functions of Y = (Yi,j : (i, j) ∈ Z× N) with respect to the product
order. Therefore, their distributions under IPB,M,y′ are stochastically dominated by
their distributions under IP and one has

(7.13) IE
[
Uα
B,l(σ, γ̃)

]
≥ IEM

[
Uα
B,l(σ, γ̃)

]
, IE

[
V α
B,l(σ, γ̃)

]
≥ IEM

[
V α
B,l(σ, γ̃)

]
.

On the other hand, a coupling argument shows that the distribution of TαB
(
(0, 0), (σ(Kn+1−

1), y′)
)

under IP′B,M,y′ is stochastically dominated by the distribution of TαB
(
(0, 0), (σ(Kn+1−

1), y′)
)

+M under IPB,M,y′ . This property combined with (7.13) and (7.12) yields

IE′M

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

(7.14)

≤ max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE [Uα

B(σ, γ̃) + V α
B (σ, γ̃)]

}
+M

+ 8MKn+1

√
σ + 2y

√
2

Kn

(√
π +
√
A+
√
A
√

[1 + log (1 +Kny)]
)
.

Recall that IE′M on the left-hand site of (7.14) stands for the expectation with respect
to IP conditioned on the maximum MB(y) = M . We can now remove this conditioning
by integrating both sides of (7.14) with respect to the law of MB(y). We first write

(7.15) IE
[
MB(y)

]
= m ([yKn+1]Kn+1) ,
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where the function t ∈ [0,+∞) 7→ m(t) is defined as the expectation of the maximum
of 1 + [t] i.i.d. exponential variables of rate 1. In particular, we have

(7.16) m(t) ≤ C[1 + log(1 + t)],

for some constant C > 0. Thus, after conditioning on MB(y), we obtain

1

Kn+1

IE

(
max

γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
Uα
B(σ, γ̃) + V α

B (σ, γ̃)
})

(7.17)

≤ 1

Kn+1

max
γ̃∈Γ̃n((0,0),(σ(Kn+1−1),[Kn+1y]))

{
IE (Uα

B(σ, γ̃) + V α
B (σ, γ̃))

}
+m ([yKn+1]Kn+1) ∆n(y),

where

∆̃n(y) :=
1

Kn+1

+ 8

√
σ + 2y√
Kn

(√
A
√
π +
√

2π +
√
A
√

1 + log (1 +Kny)
)
.

A simple computation shows that

m ([yKn+1]Kn+1) ∆̃n(y) ≤ δn
√
σ/2 + y[1 + log(1 + y)]3/2,

with δn given by (4.10). Using the notation of (5.9), we get

Fn(y) ≤ δn

√
σ

2
+ y [1 + log(1 + y)]3/2.

This completes the proof of Proposition 5.1. �

8. Completion of proof of Theorem 2.2

In this section, we complete the remaining parts in the proof of Theorem 2.2. In
Subsection 8.1, we deduce from Proposition 4.1 a similar statement for unrestricted
passage times (that is, when the paths are not restricted to the box defined by the
endpoints). Finally, in Subsection 8.2, we conclude the proof of Theorem 2.2 using the
fact that most boxes are good.

8.1. Bounds on unrestricted passage times. To obtain Theorem 2.2 from Propo-
sition 4.1, we first deduce from Proposition 4.1 the following result for unrestricted
passage times, i.e. passage times obtained by maximizing over paths not bound to stay
in the interval between the two endpoints (see figure 4).

Given the sequence (ρn)n≥1 of Proposition 4.4, we set

(8.1) ρc := lim sup
n→∞

ρn ∈ [0, 1/2).

Corollary 8.1. For σ ∈ {−1, 1} and y ≥ σ−, we consider the unrestricted passage-time

(8.2) ταn (σ, y) := IE

[
1

Kn

Tα(σKn, [Kny])

]
.
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0 Kn Kny−Kny

ykl
ykr

(Kn, Kny)

z̃l

z̃r

ỹ

Figure 4. The optimal path is not restricted to the box [0,Kn] × [0,Kny]
but can wander around the whole parallelogram marked by the dotted line.
The optimal path is split into 3 parts (0, yk1), (yk1 , yk2) and (yk2 , (Kn, [Kny])).

Then there are functions en(σ, y) such that, for all n ∈ N∗ and environments α for
which [0, σ(Kn − 1)] is a good block,

(8.3) ταn (σ, y) ≤ τ ρc,r/4(σ, y) + en(σ, y)

and for each σ ∈ {−1, 1}, en(σ, .) does not depend on α and converges locally uniformly
to 0 on [σ−,+∞) as n→ +∞.

Proof of Corollary 8.1. The unrestricted passage time Tα(σKn, [Kny]) may use paths
that do not stay in B := [0, σKn]. To control the contribution outside B, we use a
decomposition of the path in the same spirit as Section 5. The problem here is simpler
because there is no more renormalization, and there are only three regions to consider
for the path according to its x-coordinate (recall the simplifying notational convention
[a, b] = [b, a]), namely the interval [0, σ(Kn− 1)] and the two intervals on either side of
it, which are also bounded by the fact that the only possible increments are (1, 0) and
(−1, 1). If σ = 1, these intervals are [−[Kny],−1] and [Kn, Kn + [Kny]]. If σ = −1
then y ≥ 1 and these intervals are [−[Kny],−Kn] and [1,−Kn+[Kny]]. We thus define
a simpler path skeleton (z̃1, ỹ, z̃2) = γ̃ as described below.

Let γ = (xk, yk)k=0,...,m−1 be a path connecting (0, 0) = (x0, y0) to (xm−1, ym−1) =
(σKn, [Kny] = y′). We set

k1 := 1 + max{k = 0, . . . ,m− 1 : σxk < 0},
k2 := min{k = k1, . . . ,m− 1 : xk = σKn},

with the convention that the max is −1 if the corresponding set is empty. Since allowed
path increments are (1, 0) and (−1, 1), we have xk1 = 0. We then define (see figure 4)

z̃1 := yk1 , ỹ := yk2 − yk1 , z̃2 := y′ − yk2 .
Let Γ̃n denote the set of these new “skeletons”, that is the set of triples γ̃ = (z̃1, ỹ, z̃2)
such that

(8.4) z̃1 + ỹ + z̃2 = [Kny] =: y′, (z̃1, ỹ, z̃2) ∈ N× (N ∩ [σ−Kn,+∞))× N.
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The path between k1 and k2 corresponds to the restricted part which has already been
studied in the previous sections. As in (5.6), we write

Tα
(
(0, 0), (Kn, [Kny])

)
= max

(z̃1,ỹ,z̃2)∈Γ̃n

[V α
1 (σ, γ̃) + Uα

B(σ, γ̃) + V α
2 (σ, γ̃)] ,(8.5)

where B := [0, σKn − 1], and

V α
1 (σ, γ̃) := Tα((0, 0), (0, z̃1)),

Uα
B(σ, γ̃) := TαB

((
σ, z̃1 +

1− σ
2

)
,

(
σ(Kn − 1), z̃1 + ỹ − 1− σ

2

))
,

V α
2 (σ, γ̃) := Tα((σKn, z̃1 + ỹ), (σKn, z̃1 + ỹ + z̃2)).

Note that the second passage time in (8.5) is restricted to B by definition of the
skeleton. We then proceed as in Section 5 by studying the mean optimization problem
(that is the maximum of the expectations of the three terms in (8.5)) and estimating
the error due to this approximation.

By definition of restricted passage times ταB and superadditivity bounds for vertical
passage times,

IE
(
V α

1 (σ, γ̃)
)
≤ 4

r
z̃1, IE

(
V α

2 (σ, γ̃)
)
≤ 4

r
z̃2,

IE
(
Uα
B(σ, γ̃)

)
≤ Knτ

α
B(σ,K−1

n ỹ) ≤ Knτ
ρn,Jn(σ,K−1

n ỹ),

where the last inequality follows from Propositions 4.2 and 4.3. From the definition
(3.12) of τ ρ,J , we get for i = 1, 2

4

r
z̃i = τ ρc,r/4(0, z̃i) and

1

Jn
z̃i = τ ρn,Jn(0, z̃i).

Thus we deduce that

1

Kn

(
4

r
z̃1 +

4

r
z̃2 +Knτ

ρn,Jn(σ,K−1
n ỹ)

)
≤ τ ρc,r/4(σ, y)

+ τ ρn,Jn(σ, y)− τ ρc,r/4(σ, y) +

∣∣∣∣4r − 1

Jn

∣∣∣∣ y,(8.6)

where we used that z̃1 + z̃2 ≤ Kny. Let us denote by e
(1)
n (σ, y) the sum of the second

and third terms on the r.h.s. of (8.6). We have thus shown that

1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
)}
≤ τ ρc,r/4(1, y) + e(1)

n (σ, y),

where by the definition of τ ρ,J (3.12), of ρc (8.1) and the convergence of Jn to r/4, we
deduce the (locally uniform) convergence

lim
n→∞

e(1)
n (σ, .) = 0.

We conclude by controlling the error thanks to Proposition 8.1, in the same spirit as
Proposition 5.1. �
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Proposition 8.1. For σ ∈ {−1, 1}, there exist functions e
(2)
n (σ, y) such that

IE

(
1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
V α

1 (σ, γ̃) + Uα
B(σ, γ̃) + V α

2 (σ, γ̃)
})

− max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
)]}
≤ e(2)

n (σ, y),

(8.7)

and e
(2)
n (σ, .) converges locally uniformly to 0 on [σ−,+∞) as n→ +∞.

Proof. We proceed in three steps as in the proof of Proposition 5.1.

Step 1. Cutoff. We again use a truncation procedure for the service times Yi,j as
in step one of Subsection 7.2. Here, we define IP′n,M,y′ as the distribution of the family
(Yi,j : i ∈ [−y′, σKn + y′], j ∈ [0, y′]) conditioned on their maximum MB(y) being rM ,
and IPn,M,y′ as the distribution of the family (Xi,j : i ∈ [−σy′, σKn + y′], j ∈ [0, y′]),
where Xi,j are i.i.d. random variables, and the law of Xi,j is the law of Yi,j conditioned
on Yi,j ≤ rM . For notational simplicity we will only write IPM and IP′M for these
distributions.

Step 2. Fluctuations under cutoff. Applying Lemma 7.1 under IPn,M,y′ , we have

V α
1 (σ, γ̃) ≤ IEM

(
V α
l (σ, γ̃)

)
+ 8M

√
2z̃1Z1,

V α
2 (σ, γ̃) ≤ IEM

(
V α

2 (σ, γ̃)
)

+ 8M
√

2z̃2Z2,

Uα
B(σ, γ̃) ≤ IEM

(
Uα
B(σ, γ̃)

)
+ 8M

√
σKn + 2ỹZ0,(8.8)

where Z1, Z2 and Z0 are independent random variables such that

IPn,M,y(Zk ≥ t) ≤ e−t
2

,

for k ∈ {0, 1, 2}. We now apply Lemma 7.2 with A = Γ̃n, I = {1, 2, B}, and for
a = γ̃ ∈ Γ̃n, Ya,1 = V α

1 (σ, γ̃), Ya,2 = V α
2 (σ, γ̃), Ya,B = Uα

B(σ, γ̃), Va,1 = 2z̃1, Va,2 = 2z̃2,
Va,B = σKn + 2ỹ. Since (see (8.4))

(8.9) |Γ̃n| =
(

2 + [Kny]− σ−Kn

2

)
≤ K2

n(1 + y)2,
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we obtain

IEM

(
1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
V α

1 (σ, γ̃) + Uα
B(σ, γ̃) + V α

2 (σ, γ̃)
})

≤ max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IEM

(
V α

1 (σ, γ̃)
)

+ IEM

(
Uα
B(σ, γ̃)

)
+ IEM

(
V α

2 (σ, γ̃)
)] }

(8.10)

+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
≤ max

(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

[
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
)] }

+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
.

In the last inequality, we have used the fact that the passage times under IPM are
stochastically dominated by the passage times under IP.

Step 3. Removing the cutoff. As in step three of the proof of Lemma 7.2, a coupling
argument shows that the distribution under IP′M of any passage-time T depending
only on the previous set of Yi,j is dominated by the distribution under IPM of T +M .
Therefore

IE′M

(
1

Kn

max
(z̃1,ỹ,z̃2)∈Γ̃n

{
V α

1 (σ, γ̃) + Uα
B(σ, γ̃) + V α

2 (σ, γ̃)
})

≤ max
(z̃1,ỹ,z̃2)∈Γ̃n

{ 1

Kn

(
IE
(
V α

1 (σ, γ̃)
)

+ IE
(
Uα
B(σ, γ̃)

)
+ IE

(
V α

2 (σ, γ̃)
))}

+
M

Kn

+ 8M

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
.

Integrating the above inequality with respect to the distribution of MB(y) yields (8.7),
with

e(2)
n (σ, y) := m

(
[Kny](σKn + 2[Kny])

)
En(σ, y),

where m(.) satisfies the bound (7.16), and

En(σ, y) :=
1

Kn

+ 8

√
σ + 2y√
Kn

(√
3π +

√
π
√
A+
√
A

√
log |Γ̃n|

)
,

from which one can see that e
(2)
n (σ, .) converges locally uniformly to 0. �

8.2. Proof of Theorems 2.2 and 3.2. Theorem 2.2 is a consequence of Theorem 3.2
which we prove now. Given σ ∈ {−1, 1}, by Theorem 3.1, we have

τε(σ, y) = lim
n→∞

Eε × IE

(
1

Kn

T (σKn, [Kny])

)
= lim

n→∞
Eε (ταn (σ, y)) ,

where Eε stands for the expectation with respect to the disorder α. Note that the above
limit does not follow directly from Theorem 3.1, which yields an a.s. limit. However,
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the convergence in Theorem 3.1 holds also in L1. This follows from a quasi-Gaussian
tail estimate for the passage-time T (σKn, [Kny]), obtained from Lemma 7.1 and cutoff
as in step four of Subsection 7.2. Let Gn(σ) be the set of environments α for which
[0, σ(Kn − 1)] is a good block. The mean passage time τε(σ, y) can be decomposed as

Eε
[
ταn (σ, y)1Gn(σ)

]
+ Eε

[
ταn (σ, y)1A\Gn(σ)

]
,

where A := [0, 1]Z is the set of environments. By Corollary 8.1, the lim sup of the first
term is bounded above by τ ρc,r/4(1, y). On the other hand, the second term is bounded
above by

Eε
[
(ταn (σ, y))2]1/2 Pε [A\Gn(σ)]1/2 .

The Pε-probability vanishes as n→∞ by Lemma 4.1, while for the expectation of the
squared passage time we can take as upper bound

Eε
[
(ταn (σ, y))2] ≤ τn(σ, y)2,

where τn(σ, y) is defined as (8.2) for a homogeneous environment α(x) ≡ 1 (that is for
rate 1 homogeneous TASEP). The limit τn(σ, y)→ (

√
σ + y +

√
y)2 as n→∞, which

follows from the above remark on L1-convergence of rescaled passage times in Theorem
3.1, implies τn(σ, y)2 → (

√
σ + y +

√
y)4 as n→∞. We finally get

(8.11) τε(x, y) ≤ τ ρc,r/4(x, y),

for every x ∈ {−1, 1} and y ≥ x−. Since τε and τ ρc,r/4 are homogeneous functions,
(3.14) follows.

Appendix A. Proof of Proposition 2.1.

To show that the maximum value of the flux is at least r/4, we can use Definition
(2.3) and couple the process (ηαt )t≥0 with generator (2.1) with a homogeneous rate r
TASEP denoted by (ηrt )t≥0. A standard coupling argument (see proof of Lemma 2.1)
shows that Jαx (t, ηρ) ≥ Jrx(t, ηρ), where Jrx denotes the current in the homogeneous
TASEP. It is known (see e.g. [36]) that

lim
t→+∞

1

t
Jrx(t, ηρ) = rρ(1− ρ)

and it is maximum for ρ = 1/2.

We now prove that f(ρ) ≤ r/4 for all ρ ∈ [0, 1]. It is enough to consider ρ ∈ R, where
R is the density set in (2.6), since the flux is interpolated linearly outside this set. Since
the random variables α(x) are i.i.d. and the infimum of their support is r, for P-a.e.
environment α ∈ A, there exist sequences (xN)N≥1, (yN)N≥1 and (εN)N≥1 such that
xN ∈ {0, . . . , N−1}, yN ∈ {0, . . . , N−1}, limN→∞ xN = +∞, limN→∞[yN−xN ] = +∞,
limN→∞ εN = 0, and

(A.1) r ≤ min
x=xN ,...,yN

α(x) ≤ max
x=xN ,...,yN

α(x) ≤ r + εN .
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Set

aN =
2xN + yN

3
, bN =

xN + 2yN
3

,

which satisfy xN ≤ aN ≤ bN ≤ yN and bN − aN → +∞. By (2.6),

f(ρ) =
1

bN − aN + 1

bN∑
x=aN

∫
X

jαx (η)dναρ (η) ≤ [r + εN ]

∫
X

j̃(η)dµN(η),(A.2)

where j̃(η) = η(0)[1− η(1)], and

(A.3) µN :=
1

bN − aN + 1

bN∑
x=aN

τxν
α
ρ .

The sequence (µN)N∈N∗ of probability on the compact space X is tight. Let µ? be
one of its limit points. It follows from (A.3) that µ? is shift invariant, i.e. τxµ

? = µ?

for all x ∈ Z. We claim and prove below that µ? is an invariant measure for the
homogeneous TASEP, that is the process with generator (2.1) with α(x) ≡ 1. By
Liggett’s characterization result [17] for shift-invariant stationary measures, µ? is then
of the form

µ? =

∫
[0,1]

νργ(dρ).

where γ is a probability measure on [0, 1], and νρ is the product Bernoulli measure on
X with parameter ρ. Thus∫

X

j̃(η)dµ?(η) =

∫
[0,1]

ρ(1− ρ)dγ(ρ) ≤ 1

4
.

Letting N →∞ in (A.2) implies f(ρ) ≤ r/4.

We now prove that µ? is an invariant measure for the homogeneous TASEP. Let
g : X → R be a local function that depends on η only through sites x ∈ Z such
that |x| ≤ ∆, where ∆ ∈ N. Take N large enough so that ∆ < (yN − xN)/3. Notice
that the generator Lα defined in (2.1) satisfies the commutation relation

(A.4) τxL
τxαf = Lα(τxf).

It follows that ∫
X

Lτxαg d(τxν
α
ρ ) =

∫
X

Lα(τxg) dναρ = 0.

The last equality follows from invariance of ναρ . On the other hand, for x ∈ [aN , bN ] and
|y| ≤ (yN−xN)/3, τxα(y) ∈ [r, r+εN ]. Let L denote the generator of the homogeneous
TASEP on Z, that is the one obtained from (2.1) when α(x) ≡ 1. Since∣∣∣Lτxαg(η)− rLg(η)

∣∣∣ ≤ 2||g||∞ εN
∆∑

y=−∆−1

|τxα(y)− r|,
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it follows that

lim
N→∞

max
x=aN ,...,bN

sup
η∈X
|Lτxαg(η)− rLg(η)| = 0.

Hence∫
X

Lg(η) dµ?(η) = lim
N→∞

∫
X

Lg(η)dµN(η) = lim
N→+∞

1

bN − aN

bN∑
x=aN

∫
X

1

r
Lα(τxg) dναρ = 0

holds for every local function g.

Appendix B. Proof of Lemma 3.1

Before deriving Lemma 3.1, we first explain a mapping between the restricted passage-
times in a box B and the TASEP restricted to B with reservoirs.

B.1. Last-passage times in a finite domain. Let B := [x1, x2] ∩ Z. The purpose
of this subsection is to give an interpretation of the passage-times (3.15) restricted to
B in terms of an open disordered TASEP on B′ := [x1 + 1, x2] ∩ Z with generator
LαB, see (2.10) (recall from (2.9) and (3.18) that (B′)# = B). It is convenient to view
the dynamics generated by (2.10) as follows. We add an infinite stack of particles
(reservoir) at site x1, and a site x2 + 1 where the number of particles is not restricted.
Particles enter B′ from the stack at x1, and when they leave, they stay at x2 + 1
forever. We are going to check that TαB

(
(x1, 0), (i, j)

)
has the same distribution as the

time when particle j reaches site i + 1 in the process generated by LαB, if the initial
state is given by

(B.1) σ0(j) = x11{j≥0} + (x2 + 1)1{j≤−1}.

where σ0(j) denotes the initial position of the particle with label j, and particles
are numbered increasingly from right to left. In fact, we may define passage-times
associated with more general labeled initial configurations in B′. By this we mean that
σ0, instead of being defined by (B.1), can be any nonincreasing function σ0 from Z to
[x1, x2 + 1] ∩ Z. Let

B̃ := {(i, j) ∈ B × Z : i ≥ σ0(j)}(B.2)

B̄ := {(i, j) ∈ B × Z : i < σ0(j)}(B.3)

For (i, j) ∈ B ×Z, let TαB,σ0(i, j) denote the time at which particle j reaches site i+ 1.
These passage times are determined by the boundary condition

(B.4) TαB,σ0(i, j) = 0 for (i, j) ∈ B̄
together with the following recursions:

(B.5) TαB,σ0(i, j) =
Yi,j
α(i)

+ max[TαB,σ0(i− 1, j), TαB,σ0(i+ 1, j − 1)]
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for (i, j) ∈ B̃ such that x1 < i < x2,

(B.6) TαB,σ0(i, j) =
Yi,j
α(i)

+ TαB,σ0(i− 1, j),

for (i, j) ∈ B̃ such that i = x2,

(B.7) TαB,σ0(i, j) =
Yi,j
α(i)

+ TαB,σ0(i+ 1, j − 1)]

for (i, j) ∈ B̃ such that i = x1. In the special case (B.1), we have

(B.8) B̃ = [x1, x2]× N. B̄ = [x1, x2]× (Z \ N)

By plugging (B.8) into (B.5), one recovers

TαB,σ0(i, j) = TαB((x1, 0), (i, j))

where the r.h.s. was defined in (3.15). For notational simplicity, in the sequel of this
subsection, we omit dependence on α, B and σ0, and write T (i, j) instead of TαB,σ0(i, j).
The position of particle j at time t, denoted by σt(j) ∈ [x1, x2 + 1], is given by

(B.9) σt(j) =

 x1 if T (x1, j) > t
x2 + 1 if T (x2, j) ≤ t
i ∈ [x1 + 1, x2] ∩ Z if T (i− 1, j) ≤ t < T (i, j)

(B.10) T (i, j) = sup{t ≥ 0 : σt(j) ≤ i}.
The particle process (σt)t≥0 is equivalent to the growing cluster process (Ct)t≥0 defined
by

Ct := {(i, j) ∈ [x1, x2]× Z : T (i, j) ≤ t} = {(i, j) ∈ B × Z : i < σt(j)}
whose initial state is C0 = B̄. One can proceed as in [39] to show that both processes are
Markovian and that the undistinguishable particle process (ηt)t≥0 defined from (σt)t≥0

via

(B.11) ηt(x) :=
∑
j∈Z

1{σt(j)=x}

is Markov with generator LαB.

B.2. Proof of Lemma 3.1.

Step 1. We prove that definition (3.16) does not depend on x0. Let x0, x
′
0 ∈ B with

x0 < x′0. Then (3.15) implies
(B.12)
TαB
(
(x0, 0), (x0,m+ x′0 − x0)

)
≥ TαB

(
(x′0, 0), (x′0,m)

)
≥ TαB

(
(x0, x

′
0 − x0), (x0,m)

)
.

Since the sequence (Yi,j : i ∈ Z, j ≥ 0) is stationary with respect to shifts of j, the
expectation of the last quantity is equal to that of TB

(
(x0, 0), (x0,m− x′0 + x0)

)
. Thus

taking expectations, dividing by m and letting m→∞ yields the result.
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Step 2. Proof of (3.17). Given this statement, let us denote by Jα,Bx (t, η0) the current
up to time t across site x ∈ B′, in the open system on B′, when starting from η0.
Assume η0 is the occupation configuration associated with σ0 via (B.1)–(B.11). Then
it is clear that

Jα,Bx (t, η0) = min{j ∈ Z : TαB(x, j) > t},
which implies the IP a.s. limit

lim
t→∞

1

t
Jα,Bx (t, η0) =

1

T∞,B
= lim

t→∞
IE

(
1

t
Jα,Bx (t, η0)

)
= lim

t→∞
IE

(
1

t

∫ t

0

jα,Bx (ηs)ds

)
= lim

t→∞

∫
jα,Bx (η)dνt(η) =

∫
jα,Bx (η)dναB(η),

where

jα,Bx (η) =

 α(x)η(x)[1− η(x+ 1)] if x1 + 1 < x ≤ x2 − 1,
α(x2)η(x2) if x = x2,
1− η(x1 + 1) if x = x1 + 1,

and

νt :=
1

t

∫ t

0

δη0e
sLαBds.

The second equality follows from the fact that the family of random variables (1
t
Jα,Bx (t, η0))t≥0

is uniformly integrable, because
(
Jα,Bx (t, η0)

)
t≥0

is dominated in distribution by a Pois-

son random variable with parameter t. The last equality follows from the fact that νt
converges to the invariant measure ναB as t→∞. �

Appendix C. Proof of Lemma 2.1

We consider the coupled processes (ηαt )t≥0 and (ηα
′

t )t≥0 corresponding to the environ-
ments α, α′. To define the coupling, use the construction of TASEP from a space-time
Poisson point measure where an atom at (t, x) ∈ (0,+∞) × (Z ∩ [0, N ]) generates an
attempt for a potential particle at site x and time t− to jump to site x + 1 at time t.
Besides, at each Poissonian event, an additional U(0, 1) random variable U is gener-
ated, these r.v.’s being mutually independent and independent of the Poisson measure.
The jump is realized for the process in environment α (resp. α′) iff. at time t−, the
following conditions are fulfilled: site x does contain a particle, site x+ 1 is vacant at
time t−, and U ≤ α (resp. U ≤ α′). The same realization of the Poisson measure
and set of uniform variables is used for both processes. We consider that initially site
0 has an infinite stack of particles in both processes, that these particles are labeled
from 0 upward, and that the particle that jumps from 0 to 1 is the one with lowest
label among particles at this site. On the other hand, we take the initial configuration
in [1, N ] to be empty for both systems. Thus the initial configuration is given by (B.1)
with x1 = 0 and x2 = N . Let σi(t) denote the position at time t of particle i in ηαt ,
and write similarly σ′t(i) for the other process. Then it holds that

(C.1) ∀i ∈ N, σt(i) ≤ σ′t(i)
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(indeed it is easy to see that property (C.1) is preserved by each Poisson event). Let
J0(t) and J ′0(t) denote the current across 0 in each system, that is the number of jumps
from 0 to 1. In either process, this current is the highest label of a particle having left
site 0 up to time t. It follows from (C.1) that J0(t) ≤ J ′0(t) for every t ≥ 0. By the
ergodic theorem, one has the a.s. limit

j∞,[0,N ](α) = lim
t→+∞

1

t
J0(t)

and similarly for j∞,[0,N ](α
′). The result follows.
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[34] Schütz, G.: Conditioned stochastic particle systems and integrable quantum spin systems.

Preprint arXiv:1410.0184 (2014).
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